最新人教A版高中数学必修一3.2.2函数模型的应用实例课时作业.doc
高中数学(人教A版)必修一课时作业3.2函数模型及其应用.2 Word版含解析
第三章级基础巩固一、选择题.一辆汽车在某段路程中的行驶速度与时间的关系图象如图,则=时,汽车已行驶的路程为( )....[解析]=时,汽车行驶的路程为:=×+×+×=++=,故选..某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为:=(\\(,≤<,∈*,+,≤<,∈*,,≥,∈*.))其中,代表拟录用人数,代表面试人数,若应聘的面试人数为,则该公司拟录用人数为( )....[解析]令=,若=,则=>,不合题意;若+=,则=,满足题意:若=,则=<,不合题意,故拟录用人数为,故选..某林场计划第一年造林亩,以后每年比前一年多造林,则第四年造林( ).亩.亩.亩.亩[解析]设年份为,造林亩数为,则=×(+)-,∴=时,=,故选..某工厂第三年的产量比第一年的产量增长,若每年的平均增长率相同(设为),则下列结论中正确的是( ).>.<.=.的大小由第一年产量确定[解析]由题意设第一年产量为,则第三年产量为(+)=(+),∴=.故选..一天,亮亮发烧了,早晨时他烧得很厉害,吃过药后感觉好多了,中午时亮亮的体温基本正常,但是下午时他的体温又开始上升,直到半夜时亮亮才感觉身上不那么发烫了.则下列各图能基本上反映出亮亮一天(~时)体温的变化情况的是( )[解析]从时到时,体温上升,图象是上升的,排除选项;从时到时,体温下降,图象是下降的,排除选项;从时到时,体温上升,图象是上升的,排除选项..(·四川理,)某公司为激励创新,计划逐年加大研发资金投入,若该公司年全年投入研发资金万元,在此基础上,每年投入的研发资金比上一年增长,则该公司全年投入的研发资金开始超过万元的年份是( )(参考数据:≈,≈,≈).年.年.年.年[解析]设年后该公司全年投入的研发资金为万元,由题可知,(+)=,解得===≈,因资金需超过万,则取,即年,选.二、填空题.某药品经过两次降价,每瓶的零售价由元降为元,已知两次降价的百分率相同,设为,则求两次降价的百分率列出的方程为(-)=[解析]因为两次降价的百分率相同,故列出的方程为(-)=..用清水洗衣服,若每次能洗去污垢的,要使存留的污垢不超过,则至少要清洗的次数是(≈)[解析]设至少要洗次,则(-)≤,∴≥≈,所以需次.三、解答题.某企业生产,两种产品,根据市场调查与预测,产品的利润与投资成正比,其关系如图;产品的利润与投资的算术平方根成正比,其关系如图(注:利润和投资单位:万元)()分别将,两种产品的利润表示为投资的函数关系式;()已知该企业已筹集到万元资金,并将全部投入,两种产品的生产.。
人教A版数学必修一3.2.2《函数模型的应用实例》课时作业
函数模型的应用实例1.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧c x ,x <A ,c A ,x ≥A ,(A ,c 为常数).已知工人组装第4件产品用时30 min ,组装第A件产品用时15 min ,那么c 和A 的值分别是( ).A .75,25B .75,16C .60,25D .60,16解析 由题意知,组装第A 件产品所需时间为c A =15,故组装第4件产品所需时间为c4=30,解得c =60.将c =60代入cA=15,得A =16. 答案 D2.据你估计,一种商品在销售收入不变的条件下,其销量y 与价格x 之间的关系图最可能是下图中的( ).解析 销售收入不变,∴xy =c (定值),∴y =cx. 答案 C3.(2013·杭州高一检测)衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t 天后体积V 与天数t 的关系式为:V =a ·e -kt.已知新丸经过50天后,体积变为49a .若一个新丸体积变为827a ,则需经过的天数为( ).A .125B .100C .75D .50解析 由已知,得49a =a ·e -50k ,∴e -k=.设经过t 1天后,一个新丸体积变为827a ,则827a =a ·e -kt 1, ∴827=(e -k )t 1=,∴t 150=32,t 1=75. 答案 C所以S =(4+x )⎝ ⎛⎭⎪⎫3-x 2=-12(x 2-2x -24)=252-12(x -1)2(0<x <6).故当x =1时,S 取得最大值252. 答案 12525.“学习曲线”可以用来描述学习某一任务的速度,假设函数t =-144lg ⎝ ⎛⎭⎪⎫1-N 90中,t 表示达到某一英文打字水平所需的学习时间,N 表示每分钟打出的字数.则当N =40时,t =________.(已知lg 2≈0.301,lg 3≈0.477)解析 当N =40时,则t =-144lg ⎝ ⎛⎭⎪⎫1-4090=-144lg 59=-144(lg 5-2lg 3)=36.72. 答案 36.726.图中一组函数图象,它们分别与其后所列的一个现实情境相匹配:情境A :一份30分钟前从冰箱里取出来,然后被放到微波炉里加热,最后放到餐桌上的食物的温度(将0时刻确定为食物从冰箱里被取出来的那一刻);情境B:一个1970年生产的留声机从它刚开始的售价到现在的价值(它被一个爱好者收藏,并且被保存得很好);情境C:从你刚开始放水洗澡,到你洗完后把它排掉这段时间浴缸里水的高度;情境D:根据乘客人数,每辆公交车一趟营运的利润;其中情境A,B,C,D分别对应的图象是________.解析对于A,加热时升温快,然后再变凉,易知为①;对于B,过时的物品价值先下降,直到收藏后价值才会升值,因此显然为③;对于C,由于洗澡一般是间歇性用水,所以易知水高度函数图象有多重折线,因此显然为④,对于D,乘客人数越多,利润越大,显然是②.答案①③④②7.某企业决定从甲、乙两种产品中选择一种进行投资生产,已知投资生产这两种产品的有关数据如下(单位:万美元):上交0.05x2万美元的特别关税.(1)写出该厂分别投资生产甲、乙两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系式;(2)分别求出投资生产这两种产品的最大利润;(3)如何决定投资可获得最大年利润.解(1)由题意,y1=(10-a)x-30,0≤x≤200,x∈N;y2=(18-8)x-50-0.05x2=10x-50-0.05x2,0≤x≤120,x∈N.(2)∵4≤a≤8,∴10-a>0,故y1=(10-a)x-30,0≤x≤200是增函数.所以x=200时,y1有最大值1 970-200a.y2=10x-50-0.05x2=-0.05(x-100)2+450.x∈[0,120],且∈N,∴当x=100时,y2取最大值450.∴投资生产这两种产品的最大利润分别为(1 970-200a)万美元和450万美元.(3)令1 970-200a=450,解得a=7.6,因为函数f(a)=1 970-200a是定义域上的减函数,所以当4≤a≤7.6时,投资甲产品;当7.6<a≤8时,投资乙产品;当a=7.6时,投资甲产品、乙产品均可.能力提升8.某工厂生产某产品x 吨所需费用为P 元,而卖出x 吨的价格为每吨Q 元,已知P =1 000+5x +110x 2,Q =a +xb ,若生产出的产品能全部卖出,且当产量为150吨时利润最大,此时每吨的价格为40元,则有( ).A .a =45,b =-30B .a =30,b =-45C .a =-30,b =45D .a =-45,b =-30解析 设生产x 吨产品全部卖出,获利润为y 元,则 y =xQ -p =x ⎝ ⎛⎭⎪⎫a +x b -⎝⎛⎭⎪⎫1 000+5x +110x 2=⎝ ⎛⎭⎪⎫1b -110x 2+(a -5)x -1 000(x >0). 由题意知,当x =150时,y 取最大值,此时Q =40.∴⎩⎨⎧-a -52⎝ ⎛⎭⎪⎫1b -110=150,a +150b =40,解得⎩⎪⎨⎪⎧a =45,b =-30.答案 A9.(2013·衢州高一检测)如图所示,某池塘中浮萍蔓延的面积y (m 2)与时间t (月)的关系y =a t,有以下几种说法: ①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30 m 2; ③浮萍从4 m 2蔓延到12 m 2需要经过1.5个月; ④浮萍每月增加的面积都相等. 其中正确的命题序号是________.解析 由图象知,t =2时,y =4, ∴a 2=4,故a =2,①正确.当t =5时,y =25=32>30,②正确, 当y =4时,由4=2t 1知t 1=2,当y =12时,由12=2t 2知t 2=log 212=2+log 23.t 2-t 1=log 23≠1.5,故③错误;浮萍每月增长的面积不相等,实际上增长速度越来越快,④错误. 答案 ①②10.某上市股票在30天内每股的交易价格P (元)与时间t (天)组成有序数对(t ,P ).点(t ,P )落在图中的两条线段上.该股票在30天内的日交易量Q (万股)与时间t (天)的部分数据如下表所示:(1)t (天)所满足的函数关系式;(2)根据表中数据确定日交易量Q (万股)与时间t (天)的一次函数关系式;(3)用y 表示该股票日交易额(万元),写出y 关于t 的函数关系式,并求在这30天中第几天日交易额最大,最大值是多少?解 (1)由图象知,前20天满足的是递增的直线方程,且过两点(0,2)、(20,6),容易求得直线方程为:P =15t +2;从20天到30天满足递减的直线方程,且过两点(20,6)、(30,5),求得方程为:P =-110t +8,故P (元)与时间t (天)所满足的函数关系式为: P =⎩⎪⎨⎪⎧15t +2,0≤t ≤20,t ∈N ,-110t +8,20<t ≤30,t ∈N.(2)由图表,易知Q 与t 满足一次函数关系, 即Q =-t +40,0≤t ≤30,t ∈N. (3)由以上两问,可知 y =⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫15t +2-t +,0≤t ≤20,t ∈N⎝ ⎛⎭⎪⎫-110t +8-t +,20<t ≤30,t ∈N=⎩⎪⎨⎪⎧-15t -2+125,0≤t ≤20,t ∈N ,110t -2-40,20<t ≤30,t ∈N ,当0≤t ≤20,t =15时,y max =125, 当20<t ≤30,y 随t 的增大而减小,∴在30天中的第15天,日交易额的最大值为125万元.。
人教a版必修1学案:3.2.2函数模型的应用实例(含答案)
3.2.2 函数模型的应用实例自主学习1.掌握几种初等函数的应用.2.理解用拟合函数的方法解决实际问题的方法. 3.了解应用实例的三个方面和数学建模的步骤.1.函数模型的应用实例主要包括三个方面:(1)________________________________________________; (2)________________________________________________; (3)________________________________________________. 2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________;(3)______________; (4)______________; (5)________;(6)______________.对点讲练已知函数模型的应用问题【例1】 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80 000 (x >400).其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)变式迁移1 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t的函数关系式为y =(116)t -a (a 为常数)如图所示.根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为__________________;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.自建函数模型的应用问题【例2】某公司每年需购买某种元件8 000个用于组装生产,每年分n次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?变式迁移2 某工厂拟建一座平面图为矩形且面积为200 m2的三级污水处理池(平面图如图所示),由于地形限制,长、宽都不能超过16 m,如果池外周壁建造单价为每米400元,中间墙建造单价为每米248元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.函数模型的选择【例3】某工厂今年1月、2月、3月生产某种产品的数量分别是1万件、1.2万件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数y=ab x+c(其中a,b,c为常数,a≠0),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.变式迁移3 某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/102kg)(1)Q 与上市时间t 的变化关系;Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t ;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.1.解答应用题的基本步骤: (1)设:合理、恰当地设出变量;(2)写:根据题意,抽象概括数量关系,并能用数学语言表示,得到数学问题; (3)算:对所得数学问题进行分析、运算、求解;(4)答:将数学问题的解还原到实际生活问题中,给出最终的答案. 2.在中学阶段,用函数拟合解决实际问题的基本过程是:课时作业一、选择题1现准备用下列函数中的一个近似地表示这些数满足的规律,其中最接近的一个是( )A .V =log 2tB .V =log 12t C .V =t 2-12D .V =2t -22.计算机成本不断降低,若每隔3年计算机价格降低13,则现在价格为8 100元的计算机,9年后的价格可降为( )A .2 400元B .900元C .300元D .3 600元3. 一个高为H ,盛水量为V 0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h 时水的体积为V ,则函数V =f (h )的图象大致是( )4.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡() A.3人B.4人C.5人D.6人二、填空题5.60年国庆,举国欢腾,某旅游胜地的客流量急速增加.某家客运公司为招揽游客,推出了客运定票的优惠政策:如果行程不超过100 km,票价是0.4元/km;如果超过100 km,则超过100 km的部分按0.3元/km定价.则客运票价y元与行程公里x km之间的函数关系是______________________________.6. 右图表示一位骑自行车和一位骑摩托车者在相距为80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用6 h(含途中休息的1 h),骑摩托车者用了2 h.有人根据这个函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上骑自行车者.其中正确的序号是__________________________________________________.三、解答题7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不赔本时(销售收入不小于总成本)的最低产量是多少.8.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,凡多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?3.2.2函数模型的应用实例答案自学导引1.(1)利用给定的函数模型解决实际问题 (2)建立确定性的函数模型解决问题 (3)建立拟合函数模型解决实际问题2.(1)收集数据 (2)描点 (3)选择函数模型 (4)求函数模型 (5)检验 (6)用函数模型解决实际问题对点讲练【例1】 解 (1)设每月产量为x 台,则总成本为20 000+100x ,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000 (0≤x ≤400)60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000,∴当x =300时,有最大值25 000;当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,f (x )取最大值.∴每月生产300台仪器时,利润最大, 最大利润为25 000元.变式迁移1 (1) y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110, t >110(2)0.6解析 (1)设y =kt (k ≠0),由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10, ∴y =10t (0≤t ≤0.1);由y =⎝⎛⎭⎫116t -a过点(0.1,1)得1=⎝⎛⎭⎫1160.1-a , a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).∴y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110,t >110.(2)由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6, 故至少需经过0.6小时.【例2】 解 设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入, 设为c 元,则y =500n +2×8 000n ×12+c=500n +8 000n +c =500(n +16n )+c=500(n -4n )2+4 000+c ,当且仅当n =4n,即n =4时,y 取得最小值且y min =4 000+c .所以分4次进货可使得每年购买和贮存元件总费用最低.变式迁移2 解 (1)设污水处理池的长为x m ,则宽为200xm ,总造价为y .∴y =400(2x +2×200x )+248×200x ×2+80×200=800(x +324x )+16 000.∵⎩⎪⎨⎪⎧0<x ≤160<200x≤16,∴12.5≤x ≤16.故其定义域为[12.5,16].(2)先讨论y =800(x +324x)+16 000在[12.5,16]上的单调性.设x 1,x 2∈[12.5,16]且x 1<x 2,则y 1-y 2=800[(x 1-x 2)+324(1x 1-1x 2)]=800(x 1-x 2)(1-324x 1x 2).∵x 1,x 2∈[12.5,16],x 1<x 2, ∴x 1·x 2<162<324.∴1-324x 1x 2<0,x 1-x 2<0.∴y 1-y 2>0.∴此函数在[12.5,16]上单调递减. ∴当x =16时,y min =45 000(元),此时,宽为20016m =12.5 m.∴当池长为16 m ,宽为12.5 m 时, 总造价最低为45 000元.【例3】 解 设f (x )=px 2+qx +r (p ≠0),则有 ⎩⎪⎨⎪⎧f (1)=p +q +r =1,f (2)=4p +2q +r =1.2,f (3)=9p +3q +r =1.3.解得p =-0.05,q =0.35,r =0.7. ∴f (x )=-0.05x 2+0.35x +0.7,∴f (4)=-0.05×42+0.35×4+0.7=1.3. 设g (x )=ab x +c (a ≠0),则有 ⎩⎪⎨⎪⎧g (1)=ab +c =1,g (2)=ab 2+c =1.2,g (3)=ab 3+c =1.3.解得a =-0.8,b =0.5,c =1.4. ∴g (x )=-0.8×0.5x +1.4,∴g (4)=-0.8×0.54+1.4=1.35.经比较可知,用g (x )=-0.8×0.5x +1.4作为模拟函数较好. 变式迁移3 解 (1)由表中数据知,当时间t 变化时,种植成本并不是单调的, 故只能选取Q =at 2+bt +c .即⎩⎪⎨⎪⎧150=a ×502+b ×50+c 108=a ×1102+b ×110+c 150=a ×2502+b ×250+c, 解得Q =1200t 2-32t +4252. (2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, ∴当t =150天时,西红柿的种植成本最低,为100元/102 kg. 课时作业 1.C 2.A3.D [考察相同的Δh 内ΔV 的大小比较.] 4.B [设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =172时,y 有最小值,此时共放水34×172=289(升),可供4人洗澡.]5.y =⎩⎪⎨⎪⎧0.4x ,0<x ≤100,40+0.3(x -100),x >1006.①②解析 ③错,骑摩托车者出发1.5 h 时走了60 km ,而从图中可看出骑自行车者走的距离大于60 km.7.解 由题意得⎩⎪⎨⎪⎧3 000+20x -0.1x 2≤25x 0<x <240解得150≤x <240,x ∈N *∴生产者不赔本时的最低产量是150台.8.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550(个).∴当一次订购量为550个时,每个零件的实际出厂价恰好降为51元. (2)当0<x ≤100时,P =60; 当100<x <550时,P =60-0.02(x -100)=62-0.02x ; 当x ≥550时,P =51.∴P =f (x )=⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x <550,51, x ≥550(x ∈N +).(3)设销售商一次订购量为x 个时,工厂获得的利润为S 元,则 S =(P -40)x =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x <550,11x , x ≥550(x ∈N +)当x =500时,S =22×500-0.02×5002=6 000(元);当x =1 000时,S =11×1 000=11 000(元).∴当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果一次订购1 000个零件时,利润是11 000元.。
人教A版数学必修一3.2.2函数模型的应用实例.docx
3.2.2 函数模型的应用实例【选题明细表】题号知识点、方法易中难利用已知函数模型解决问题 1 3、8自建函数模型解决问题2、6 4、9拟合函数模型解决问题7 5 10基础达标1.一辆汽车在某段路程中的行驶速度v与时间t的关系图象如图,则t=2时,汽车已行驶的路程为km.( C )(A)100 (B)125 (C)150 (D)225解析:t=2时,汽车行驶的路程为:s=50×0.5+75×1+100×0.5=25+75+50=150 km.故选C.2.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( D )(A)14400亩(B)172800亩(C)20736亩(D)17280亩解析:设年份为x,造林亩数为y,则y=10000×(1+20%)x-1,∴x=4时,y=17280.故选D.3.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为:y={4x,1≤x<10,x∈N*,2x+10,10≤x<100,x∈N*,1.5x,x≥100,x∈N*,其中,x代表拟录用人数,y代表面试人数.若应聘的面试人数为60,则该公司拟录用人数为( C )(A)15 (B)40 (C)25 (D)130解析:令y=60,若4x=60,则x=15>10,不合题意;若2x+10=60,则x=25,满足题意;若1.5x=60,则x=40<100,不合题意.故拟录用人数为25.故选C.4.(2012厦门高一检测)某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与售价x(元)满足一次函数:m=162-3x,若要每天获得最大的销售利润,每件商品的售价应定为( B )(A)30元(B)42元(C)54元(D)越高越好解析:设当每件商品的售价为x元时,每天获得的销售利润为y元.由题意得,y=m(x-30)=(x-30)(162-3x).上式配方得y=-3(x-42)2+432.∴当x=42时,利润最大.故选B.5.今有一组实验数据如表所示:u 1.5 4.04 7.5 12 18.01则体现这些数据关系的最佳函数模型是( C ) (A)u=log 2t (B)u=2t -2 (C)u=t 2-12(D)u=2t-2解析:由散点图可知,图象不是直线,排除D; 图象不符合对数函数的图象特征,排除A; 当t=3时,2t-2=23-2=6,t 2-12=32-12=4,由表格知当t=3时,u=4.04,模型u=t 2-12能较好地体现这些数据关系.故选C.6.由于电子技术的飞速发展,计算机的成本不断降低,每隔5年计算机的价格降低13,现在价格为8100元的计算机经过15年的价格为 元.解析:每隔5年价格降低13,15年共降价3次,每次降价为原来的23,则15年后计算机的价格为:8100×(1-13)3=2400元. 答案:24007.现测得(x,y)的两组值为(1,2),(2,5),现在两个拟合模型,甲:y=x 2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用 作为拟合模型较好. 解析:对于甲:x=3时,y=32+1=10,对于乙:x=3时,y=8,因此用甲作为拟合模型更好. 答案:甲能力提升8.某个病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=e kt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k= ,经过5小时,1个病毒能繁殖为个.解析:当t=0.5时,y=2,∴2=e12k,∴k=2ln 2,∴y=e2tln 2,当t=5时,y=e10ln 2=210=1024.答案:2ln 2 10249.(2012山东省实验中学高一月考)某市一家庭今年一月份、二月份和三月份煤气用量和支付费用如表所示:该市煤气收费的方法是:煤气费=基本费+超额费+保险费.若每月用气量不超过最低额度A(A>4)立方米时,只付基本费3元和每户每月定额保险费C(0<C≤5)元;若用气量超过A立方米时,超过部分每立方米付B元.(1)根据表格求A、B、C的值;(2)若用户第四月份用气量为30立方米,则应交煤气费多少元?解:(1)设每月用气量为x立方米,支付费用为y元,根据题意,得y={3+C(0≤x≤A),①3+B(x-A)+C(x>A),由题设知,A>4,0<C≤5,因此3+C≤8,从表格中可以看出第二、三月份的费用均大于8元.故用气量25立方米、35立方米均应大于最低额度A立方米,从而将x=25,x=35代入①得{3+C=4,3+B(25-A)+C=14, 3+B(35-A)+C=19,解得{A=5, B=0.5, C=1.(2)由(1)得y={4(0≤x≤5),0.5x+1.5(x>5).把x=30代入,得y=16.5.即第四月份应交煤气费为16.5元.10.某个体经营者把开始六个月试销A、B两种商品的逐月投资金额与所获纯利润列成如表:该经营者准备第七个月投入12万元经营这两种商品,但不知投入A,B两种商品各多少万元才合算.请你帮助制定一个资金投入方案,使得该经营者能获得最大纯利润,并按你的方案求出该经营者第七个月可获得的最大纯利润(结果保留两位有效数字).解:以投资额为横坐标,纯利润为纵坐标,在平面直角坐标系中画出散点图,如图所示.观察散点图可以看出,A 种商品所获纯利润y 与投资额x 之间的变化规律可以用二次函数模型进行模拟,如图(1)所示.取(4,2)为最高点,则y=a(x-4)2+2,再把点(1,0.65)代入, 得0.65=a(1-4)2+2,解得a=-0.15, 所以y=-0.15(x-4)2+2.B 种商品所获纯利润y 与投资额x 之间的变化规律是线性的,可以用一次函数模型进行模拟,如图(2)所示.设y=kx+b,取点(1,0.25)和(4,1)代入,得{0.25=k +b,1=4k +b,解得{k =0.25,b =0.所以y=0.25x.设第七个月投入A,B 两种商品的资金分别为x A 万元,x B 万元,总利润为W 万元,那么{x A +x B =12,W =y A +y B =−0.15(x A -4)2+2+0.25x B .所以W=-0.15(x A -196)2+0.15×(196)2+2.6. 当x A =196≈3.2万元时,W 取最大值,约为4.1万元,此时x B =8.8万元. 即该经营者第七个月把12万元中的3.2万元投资A 种商品,8.8万元投资B 种商品,可获得最大利润约为4.1万元.。
高中数学(人教版A版必修一)配套课时作业:第三章 函数的应用 3.2.2 Word版含解析.doc
3.2.2函数模型的应用实例课时目标 1.能够找出简单实际问题中的函数关系式.2.初步体会应用一次函数、二次函数、指数函数、对数函数、幂函数模型解决实际问题.3.体会运用函数思想处理现实生活中的简单问题,培养对数学模型的应用意识.1.几种常见的函数模型(1)一次函数:y=______________________(2)二次函数:y=______________________(3)指数函数:y=______________________(4)对数函数:y=______________________(5)幂函数:y=________________________(6)指数型函数:y=pq x+r(7)分段函数2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________________;(3)________________;(4)________________;(5)______;(6)__________________________.一、选择题1.细菌繁殖时,细菌数随时间成倍增长.若实验开始时有300个细菌,以后的细菌数如下表所示:x(h)012 3细菌数30060012002400A.75B.100C.150D.2002.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如右图所示,由图中给出的信息可知,营销人员没有销售量时的收入是()A.310元B.300元C.290元D.280元3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是()A.减少7.84%B.增加7.84%C.减少9.5%D.不增不减4.某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是()5.把长为12cm的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是()A.332cm2B.4cm2C.32cm2D.23cm26.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为()A.x=15,y=12B.x=12,y=15C.x=14,y=10D.x=10,y=14题号12345 6答案二、填空题7.某不法商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,那么每台彩电原价是________元.8.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区,成立于1985年,最初一年年底只有麋鹿100头,由于科学的人工培育,这种当初快要濒临灭绝的动物的数量y(头)与时间x(年)的关系可以近似地由关系式y=a log2(x+1)给出,则2000年年底它们的数量约为________头.9.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=e kt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k=________,经过5小时,1个病毒能繁殖为________个.三、解答题10.东方旅社有100张普通客床,若每床每夜收租费10元时,客床可以全部租出;若每床每夜收费提高2元,便减少10张客床租出;若再提高2元,便再减少10张客床租出;依此情况继续下去.为了获得租金最多,每床每夜租金选择多少?11.芦荟是一种经济价值很高的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位为:元/10kg)与上市时间t(单位:天)的数据情况如下表:(1)根据上表数据,从下列函数中选取一个最能反映芦荟种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·b t,Q=a log b t;(2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本.能力提升12.某工厂生产一种电脑元件,每月的生产数据如表:y=ax+b或y=a x+b(a,b为常数,且a>0)来模拟这种电脑元件的月产量y千件与月份的关系.请问:用以上哪个模拟函数较好?说明理由.13.一片森林原来的面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22,(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?1.函数模型的应用实例主要包括三个方面:(1)利用给定的函数模型解决实际问题;(2)建立确定性的函数模型解决问题;(3)建立拟合函数模型解决实际问题.2.函数拟合与预测的一般步骤:(1)能够根据原始数据、表格,绘出散点图.(2)通过考察散点图,画出“最贴近”的直线或曲线,即拟合直线或拟合曲线.如果所有实际点都落到了拟合直线或曲线上,滴“点”不漏,那么这将是个十分完美的事情,但在实际应用中,这种情况是一般不会发生的.因此,使实际点尽可能均匀分布在直线或曲线两侧,使两侧的点大体相等,得出的拟合直线或拟合曲线就是“最贴近”的了.(3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.3.2.2函数模型的应用实例知识梳理1.(1)kx+b(k≠0)(2)ax2+bx+c(a≠0)(3)a x(a>0且a≠1)(4)log a x(a>0且a≠1)(5)xα(α∈R) 2.(1)收集数据(2)画散点图(3)选择函数模型(4)求函数模型(5)检验(6)用函数模型解释实际问题作业设计1.A[由表中数据观察可得细菌数y与时间x的关系式为y =300·2x (x ∈Z ).当x =-2时,y =300×2-2=3004=75.]2.B [由题意可知,收入y 是销售量x 的一次函数,设y =ax +b ,将(1,800),(2,1300)代入得a =500,b =300. 当销售量为x =0时,y =300.]3.A [设某商品价格为a ,依题意得:a (1+0.2)2(1-0.2)2=a ×1.22×0.82=0.921 6a ,所以四年后的价格与原来价格比较(0.921 6-1)a =-0.078 4a ,即减少7.84%.]4.A [由于前三年年产量的增长速度越来越快,可用指数函数刻画,后三年年产量保持不变,可用一次函数刻画,故选A.] 5.D [设一段长为x cm ,则另一段长为(12-x )cm. ∴S =34(x 3)2+34(4-x 3)2=318(x -6)2+23≥2 3.] 6.A [由三角形相似得24-y 24-8=x 20,得x =54(24-y ), ∴S =xy =-54(y -12)2+180.∴当y =12时,S 有最大值,此时x =15.] 7.2250解析 设每台彩电的原价为x 元,则x (1+40%)×0.8-x =270,解得x =2250(元).8.400解析 由题意,x =1时y =100,代入求得a =100,2000年年底时,x =15,代入得y =400.9.2ln2 1024解析 当t =0.5时,y =2, ∴2=12k e , ∴k =2ln2,∴y =e 2t ln2,当t =5时, ∴y =e 10ln2=210=1024.10.解 设每床每夜租金为10+2n (n ∈N ),则租出的床位为 100-10n (n ∈N 且n <10) 租金f (n )=(10+2n )(100-10n ) =20[-(n -52)2+2254], 其中n ∈N 且n <10.所以,当n =2或n =3时,租金最多, 若n =2,则租出床位100-20=80(张); 若n =3,则租出床位100-30=70(张); 综合考虑,n 应当取3,即每床每夜租金选择10+2×3=16(元).11.解 (1)由所提供的数据可知,刻画芦荟种植成本Q 与上市时间t 的变化关系的函数不可能是常值函数,若用函数Q =at +b ,Q =a ·b t ,Q =a log b t 中的任意一个来反映时都应有a ≠0,且上述三个函数均为单调函数,这与表格所提供的数据不符合,所以应选用二次函数Q =at 2+bt +c 进行描述.将表格所提供的三组数据分别代入函数Q =at 2+bt +c ,可得:⎩⎨⎧150=2500a +50b +c ,108=12100a +110b +c ,150=62500a +250b +c ,解得a =1200,b =-32,c =4252.所以,刻画芦荟种植成本Q 与上市时间t 的变化关系的函数为Q =1200t 2-32t +4252.(2)当t =--322×1200=150(天)时,芦荟种植成本最低为 Q =1200×1502-32×150+4252=100(元/10kg). 12.解 将(1,50)、(2,52)分别代入两解析式得: ⎩⎨⎧ 50=a +b 52=2a +b 或⎩⎨⎧50=a +b ,52=a 2+b .(a >0)解得⎩⎨⎧a =2b =48(两方程组的解相同).∴两函数分别为y =2x +48或y =2x +48. 当x =3时,对于y =2x +48有y =54; 当x =3时,对于y =2x +48有y =56. 由于56与53.9的误差较大, ∴选y =ax +b 较好.13.解 (1)设每年砍伐面积的百分比为x (0<x <1),则 a (1-x )10=12a ,即(1-x )10=12,解得x =1-11012⎛⎫⎪⎝⎭.(2)设经过m 年剩余面积为原来的22,则a (1-x )m =22a ,即11021122m ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,m 10=12,解得m =5,故到今年为止,已砍伐了5年. (3)设从今年开始,以后砍了n 年, 则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, 31021122n ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.。
高一数学人教版必修1课时作业3.2.2 函数模型的应用实例 Word版含解析
基础过关.某学校开展研究性学习活动,一名同学获得了下面的一组试验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )=-===(-)解析代入点(,),(,)检验知选.答案.某商场的某款手机的价格不断降低,若每隔半年其价格降低,则现在价格为元的该款手机,两年后价格可降为( )元元元元解析两年后的价格为×=(元).答案.某杂志能以每本元的价格销售万本,假设定价每降低元,销售量就增加万本,要使总销售收入不低于万元,则杂志的价格最低为( )元元元元解析设杂志的价格降低了个元,则此时价格为(-×)元,卖出(+)万本,设总销售收入为万元,则=(-)(+)=--+(∈*),要使≥,即-+≤,解得≤≤,当=时,价格最低,为-=(元).答案.已知长为,宽为的矩形,若长增加,宽减少,则面积最大.此时=,面积=.解析根据题目条件<<,即<<,所以=(+)=-(--)=-(-)(<<).故当=时,取得最大值.答案.生产某机器的总成本(万元)与产量(台)之间的函数关系式是=-,若每台机器售价为万元,则该厂获利润最大时应生产的机器台数为台.解析设安排生产台,则获得利润()=-=-+=-(-)+.故当=台时,获利润最大.答案.为了保护环境,实现城市绿化,某房地产公司要在拆迁地(如图所示的长方形)上规划出一块长方形地面建小区公园(公园的一边落在上),但不超过文物保护区△的边.如何设计才能使公园占地面积最大?并求出最大面积(已知==,==,=,= ).解如图所示,设为上一点,矩形为规划出的公园,=,则=-.又因为=,=,所以由△∽△,得=,所以=·=·=(-),所以=-=-(-),所以=-=+(-).故矩形的面积为==-(-)+×(≤≤).所以,当=时,取最大值,最大值为=).此时,===.所以点在上,且=时,公园占地面积最大,最大面积为) ..某商品在近天内,商品的单价()(元)与时间 (天)的函数关系式如下:()=(≤≤,∈),,-()+(<≤,∈).))销售量()(件)与时间(天)的函数关系式是()=-+(≤≤,∈).则这种商品在这天内哪一天的销售额最高?解依题意知该商品在近天内日销售额()(元)与时间(天)的函数关系式为()=()·()=错误!。
人教A版数学必修一第三章3.2.2《函数模型的应用实例》讲解与例题
3.2.2 函数模型的应用实例1.用已知函数模型解决实际问题解决已给出函数模型的实际应用题,关键是考虑该题考查的是哪种函数,并要注意定义域,然后结合所给模型,列出函数关系式,最后结合其实际意义作出解答. 解决此类型函数应用题的基本步骤是:第一步:阅读理解,审清题意.读题要做到逐字逐句,读懂题中的文字叙述,理解叙述所反映的实际背景.在此基础上,分析出已知是什么,所求是什么,并从中提炼出相应的数学问题.第二步:根据所给模型,列出函数关系式.根据问题的已知条件和数量关系,建立函数关系式,在此基础上将实际问题转化为一个函数问题.第三步:利用数学方法将得到的常规函数问题(即数学模型)予以解答,求得结果. 第四步:再将所得结论转译成具体问题的解答.【例1】我国辽东半岛普兰店附近的泥炭层中,发掘出的古莲子,至今大部分还能发芽开花.经测定,古莲子出土时14C(半衰期为5 730年)的残余量占原始含量的87.9%,试推算古莲子的生活年代(经过科学鉴定,若14C 的原始含量为Q 0,则经过t 年后的残余量Q 与Q 0之间满足Q =Q 0·e -kt ).解析:利用半衰期求出参数k ,再根据出土的古莲子14C 的残余量求出古莲子的生活年代.解:已知残余量Q 与Q 0之间满足Q =Q 0·e -kt ,其中Q 0是初始量,t 是时间.因为半衰期为5 730年,即当012Q Q 时,t =5 730. 所以e -5 730k =12,解得k ≈0.000 12.所以Q =Q 0·e -0.000 12t . 由题目条件得0Q Q =87.9%,代入上式,解得t ≈1 075. 故古莲子的生活年代约是1 075年前.2.建立函数模型解决实际问题通过收集数据直接去解决问题的一般过程如下:第一步:收集数据.第二步:根据收集到的数在平面直角坐标系内画出散点图.第三步:根据点的分布特征,选择一个能刻画散点图特征的函数模型.第四步:选择其中的几组数据求出函数模型.第五步:将已知数据代入所求出的函数模型进行检验,看其是否符合实际.若不符合实际,则重复第三、四、五步;若符合实际,则进入下一步.第六步:用求得的函数模型去解释实际问题.【例2则x ,y )A .y =a +bxB .y =b xC .y =2a x +b D .y =b x解析:散点图如图所示:由散点图可知,此函数图象不是直线,排除A 选项;此函数图象是“上升”的,因此该函数为增函数,排除C ,D 选项,故选择B .答案:B3.已知函数模型的应用题(1)常用到的函数模型:①正比例函数模型:y =kx (k ≠0);②反比例函数模型:y =cx d ax b++(a ≠0); ③一次函数模型:y =kx +b (k ≠0);④二次函数模型:y =ax 2+bx +c (a ≠0);⑤指数函数模型:y =m ·a x +b (a >0,且a ≠1,m ≠0);⑥对数函数模型:y =m log a x +c (m ≠0,a >0,且a ≠1);⑦幂函数模型:y =k ·x n +b (k ≠0).(2)二次函数模型是高中阶段应用最为广泛的模型.随着新课标的实施,指数、对数函数模型将会起到越来越重要的作用,必将在高考舞台中扮演愈来愈重要的角色._________________________________________________________________________________________________________________________________________________________________________________【例3-1】在不考虑空气阻力的条件下,火箭的最大速度v (m/s)和燃料的质量M (kg)、火箭(除燃料外)的质量m (kg)的关系式为 2 000ln 1M v m ⎛⎫=+⎪⎝⎭.当燃料质量是火箭质量的多少倍时,火箭的最大速度可达12 km/s? 解:由12 000=2 000ln 1M m ⎛⎫+ ⎪⎝⎭,即6=ln 1M m ⎛⎫+ ⎪⎝⎭, 1+M m =e 6,利用计算器算得M m ≈402. 故当燃料质量约是火箭质量的402倍时,火箭的最大速度可达12 km/s .【例3-2】现有甲、乙两桶,由甲桶向乙桶输水,开始时,甲桶有a L 水,t min 后,剩余水y L 满足函数关系式y =a e -nt ,那么乙桶的水就是y =a -a e -nt ,假设经过5 min ,甲桶和乙桶的水相等,则再经过__________min ,甲桶中的水只有8a L . 解析:由题意可得5 min 时,a e -5n =12a ,解得1ln 25n =. 那么剩余水y L 满足的函数关系式为1ln 25t y ae -=.由1ln 251e 8t a a -=,解得t =15. 因此,再经过10 min 后,甲桶中的水只有8a L . 答案:10点技巧 解决已知函数模型应用题的方法 一般来说,若题中已给出了函数模型,通常利用条件列方程(组),解得解析式中的参数的值,这样已知的函数模型完全确定,再将实际问题转化为求函数的函数值或最值等常见的函数问题来解.4.一次函数模型的应用现实生活中很多事例可以用一次函数模型来表示,例如:匀速直线运动的时间和位移的关系,弹簧的伸长和拉力的关系等.对一次函数来说,当一次项系数为正时,表现为匀速增长,即为增函数,一次项系数为负时为减函数.一次函数模型层次性不高,求解也较为容易,一般我们可以用“问什么,设什么,列什么”这一方法来处理.【例4】某列火车从北京西站开往石家庄,全程277 km .火车出发10 min 开出13 km 后,以120 km/h 匀速行驶.试写出火车行驶的总路程s 与匀速行驶的时间t 之间的函数关系式,并求离开北京2 h 时火车行驶的路程.解析:由“匀速行驶”可知总路程s 关于时间t 的函数为一次函数,注意时间t 的范围限制.解:因为火车匀速行驶的时间为27713111205-=(h),所以0≤t ≤115. 因为火车匀速行驶t h 所行驶的路程为120t km ,所以火车行驶的总路程s 与匀速行驶的时间t 之间的函数关系式为s =13+120t 1105t ⎛⎫≤≤ ⎪⎝⎭. 故离开北京2 h 时火车行驶的路程s =13+120×116=233(km). 5.二次函数模型的应用(1)在函数模型中,二次函数模型占有重要的地位,因为根据实际问题建立函数解析式后,可利用配方法、判别式法、换元法、函数的单调性等方法来求函数的最值,从而解决实际问题中的最大、最省问题.(2)在应用题中能够列出函数的解析式解答应用题的实质是要转化题意,寻找所给条件含有相等关系的关键词,用等式把变量联系起来,然后再整理成函数的解析式的形式.常用的方法有:①待定系数法:题目给出了含参数的函数关系式,或可确定其函数模型,此种情形下应用待定系数法求出函数解析式中相关参数(未知系数)的值,就可以得到确定的函数解析式.②归纳法:先让自变量x 取一些特殊值,计算出相应的函数值,从中发现规律,再推广到一般情形,从而得到函数解析式.③方程法:用x ,y 表示自变量及其他相关的量,根据问题的实际意义,运用掌握的数学、物理等方面的知识,列出x ,y 的二元方程,把x 看成常数,解方程得y (即函数关系式),此种方法形式上和列方程解应用题相仿,故称为方程法.______________________________________________________________________________________________________________________________________________________________________________________________________【例5-1】有A ,B 两城相距100 km ,在A ,B 两城之间距A 城x km 的D 地建一核电站给这两城供电.为保证城市安全,核电站与城市距离不得少于10 km .已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A 城供电量为20亿度/月,B 城供电量为10亿度/月.(1)把月供电总费用y 表示成x 的函数,并求定义域;(2)核电站建在距A 城多远时,才能使供电费用最小?解:(1)由题意:y =0.25[20x 2+10(100-x )2]=2100500007.533x ⎛⎫-+ ⎪⎝⎭.∵x ≥10,且100-x ≥10,∴10≤x ≤90.∴函数的定义域为[10,90].(2)由二次函数知当1003x =时,y 最小, 因此当核电站建在距离A 城1003 km 时,供电费用最小. 【例5-2】某企业实行裁员增效,已知现有员工a 人,每人每年可创纯收益(已扣工资等)1万元,据评估在生产条件不变的情况下,每裁员一人,则留岗员工每人每年可多创收0.01万元,但每年需付给每位下岗工人0.4万元的生活费,并且企业正常运转所需人数不得少于现有员工的34,设该企业裁员x 人后年纯收益为y 万元. (1)写出y 关于x 的函数关系式,并指出x 的取值范围.(2)当140<a ≤280时,该企业应裁员多少人,才能获得最大的经济效益?(注:在保证能取得最大经济效益的情况下,能少裁员,应尽量少裁员)解:(1)由题意可知,y =(a -x )(1+0.01x )-0.4x =21140100100100a x x a ⎛⎫-+-+ ⎪⎝⎭. ∵a -x ≥34a ,∴x ≤14a ,即x 的取值范围是区间0,4a ⎡⎫⎪⎢⎣⎭中的自然数. (2)∵2211707010021002a a y x a ⎡⎤⎛⎫⎛⎫=---+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,且140<a ≤280,∴当a 为偶数时,x =2a -70,y 取最大值. 当a 为奇数时,x =12a --70,y 取最大值(∵尽可能少裁人,∴舍去1702a x =-+). ∴当员工人数为偶数时,裁员702a ⎛⎫- ⎪⎝⎭人,才能获得最大的经济效益; 当员工人数为奇数时,裁员1702a -⎛⎫- ⎪⎝⎭人,才能获得最大的经济效益. 6.指数函数模型的应用(1)实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常可以用指数函数模型来表示,在建立函数模型时注意用区分、列举、归纳等方法来探求内在的规律.(2)当实际应用题中没有给出函数模型而函数模型又唯一时,其解题步骤是:第一步:认真读题,缜密审题,确切理解题意,明确问题的实际背景;第二步:恰当地设未知数,列出函数解析式,将实际问题转化成函数问题,即实际问题函数化;第三步:运用所学的数学知识和数学方法解答函数问题,得出函数问题的解;第四步:将所得函数问题的解还原成实际问题的结论.(3)解决函数应用题关键在于理解题意,这就要求:一要加强对常见函数模型的理解,弄清其产生的实际背景,把数学问题生活化;二要不断拓宽知识面,提高自己的间接生活阅历;三要抓住题目中的关键词或关键量,特别是关于变量的相等关系,这是函数解析式的原型.【例6】有一种放射性元素,因放出射线,其质量在不断减少,经测算,每年衰减的百分率相同.若该元素最初的质量为50 g ,经过一年后质量变为40 g .(1)设x (x ≥0)年后,这种放射性元素的质量为y g ,写出y 关于x 的表达式;(2)求经过多长时间,这种放射性元素的质量变为原来的一半?(精确到0.1年,参考数据:lg 2≈0.301 0,lg 3≈0.477 1)思路解析:本题属于降低率问题,建立指数函数模型解决.解:(1)由题意可知每经过一年该放射性元素衰减的百分率为504050-=20%,故y =50(1-20%)x ,则y =50×0.8x (x ≥0).(2)由题意知50×0.8x =25,即0.8x =0.5,则lg 0.8x =lg 0.5,从而可知x lg 0.8=lg 0.5.因此x =lg 0.5lg 20.3010lg 0.83lg 210.90301--=≈--≈3.1. 故约经过3.1年这种放射性元素的质量变为原来的一半.析规律 指数函数模型的应用 在实际问题中,有关增长率(减少率)问题常常用指数函数模型表示.通常可以表示为y =N (1±p )x ,其中N 为基础数,p 为增长率(减少率),x 为时间,增长率问题取“+”,减少率问题取“-”.7.对数函数模型的应用形如y =log a x (a >0,且a ≠1)的函数是对数函数,a >1时,此函数为增函数;0<a <1时,此函数为减函数.虽然直接以对数函数作为模型的应用问题不是很多,但我们要知道,对数运算实际是求指数的运算,因此在指数函数模型中,也常用对数计算.______________________________________________________________________________________________________________________________________________________________________________【例7】燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =25log 10Q ,单位是m/s ,其中Q 表示燕子的耗氧量. (1)计算:燕子静止时的耗氧量是多少个单位? (2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少? 解:(1)由题意知,当燕子静止时,它的速度v =0,代入题给公式可得0=25log 10Q ,解得Q =10.故燕子静止时的耗氧量是10个单位.(2)将耗氧量Q =80代入题给公式得v =2805log 10=5log 28=15(m/s). 故当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s .8.分段函数模型的应用由于分段函数与日常生活联系紧密,已成为考查的热点;对于分段函数,一要注意规范书写格式;二要注意各段的定义域的表示方法,对于中间的各个分点,一般是“一边闭,一边开”,以保证在各分点的“不重不漏”.例如,某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.试写出订购量与实际出厂单价的函数关系式.解:设每个零件的实际出厂价恰好降为51元时,一次订购量为100+60510.02-=550个. 因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.设一次订购量为x 个,零件的实际出厂单价为P 元,当0<x ≤100时,P =60,当100<x <550时,P =60-0.02(x -100)=62-50x ,当x≥550时,P=51,所以P=f(x)=60,0100,62,100550,5051,550.xxxx<≤⎧⎪⎪-<<⎨⎪≥⎪⎩【例8】某市居民自来水收费标准如下:每户每月用水不超过4 t时,每吨为1.80元,当用水超过4 t时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x,3x.(1)求y关于x的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.解:(1)当甲的用水量不超过4 t,即5x≤4时,乙的用水量也不超过4 t,y=(5x+3x)×1.8=14.4x;当甲的用水量超过4 t,乙的用水量不超过4 t,即3x≤4且5x>4时,y=4×1.80+3x×1.80+3×(5x-4)=20.4x-4.8;当甲、乙的用水量都超过4 t,即3x>4时,y=24x-9.6.故414.4, 0,54420.4 4.80,,534249.6,.3x xy x xx x⎧≤≤⎪⎪⎪=-<≤⎨⎪⎪->⎪⎩(2)由于y=f(x)在各段区间上均为单调递增函数,当x∈40,5⎡⎤⎢⎥⎣⎦时,y≤45f⎛⎫⎪⎝⎭=11.52<26.4;当x∈44,53⎛⎤⎥⎝⎦时,y≤43f⎛⎫⎪⎝⎭=22.4<26.4;当x∈4,3⎛⎫+∞⎪⎝⎭时,令24x-9.6=26.4,解得x=1.5,因此5x=7.5,甲户用水量为7.5 t,甲应付费s1=4×1.80+3.5×3=17.70(元).3x=4.5,乙户用水量为4.5 t.乙应付费s2=4×1.80+0.5×3=8.70(元).点技巧分段函数解析式的求法分段函数的每一段的自变量变化所遵循的规律不同,可先将其看作几个问题,将各段的变化规律分别找出来,再将其合到一起,从而写出函数的解析式.要注意各段自变量的变化范围,特别是端点值.9.拟合函数模型的应用(1)此类题目的解题步骤①作图:根据已知数据作出散点图.画散点图时,首先确定自变量和因变量,再以自变量的值为横坐标,以观察到的对应的因变量的值为纵坐标,在平面直角坐标系中描出各点.当然,如果条件允许,最好借助于计算机画出最准确的散点图.②选择函数模型:根据散点图,结合基本初等函数的图象形状,利用“假设”,找出比较接近的函数模型.这要求会根据图象形状估计函数模型:图象是直线,那么函数模型是一次函数模型y=kx+b(k≠0);图象是抛物线,那么函数模型是二次函数模型y=ax2+bx+c(a≠0);图象位于某条垂直于y轴的直线一侧,与y轴相交,且是“上升”的或“下降”的,那么函数模型是指数函数模型;图象位于某条垂直于x 轴的直线一侧,与x 轴相交,且是“上升”的或“下降”的,那么函数模型是对数函数模型.③根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.④利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.(2)关于“假设”问题就一般的数学建模来说,是离不开“假设”的,如果在问题的原始状态下不作任何“假设”,将所有的变化因素全部考虑进去,对于稍复杂一点的问题就无法下手了.“假设”的作用主要表现在以下几个方面:①进一步明确模型中需要考虑的因素和它们在问题中的作用.通常初步接触一个问题,会觉得围绕它的因素非常多,经仔细分析筛查,发现有的因素并无实质联系,有的因素是无关紧要的,排除这些因素,问题则越发清晰明朗.在“假设”时就可以设这些因素不需考虑.②降低解题难度.经过适当的“假设”可以建立数学模型,使问题简单化,从而得到相应的解.一般情况下,最先在最简单的情形下组建模型,然后通过不断地调整假设使模型尽可能地接近实际,从而得到更满意的解.【例9】某个体经营者把开始六个月试销A ,B 两种商品的逐月投资与所获纯利润列成下表:A 才合算.请你帮助设计一个资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字).解:以投资额为横坐标,纯利润为纵坐标,在平面直角坐标系中画出散点图,如图所示:观察散点图可以看出:A 种商品的所获纯利润y 与投资额x 之间的变化规律可以用二次函数模型进行模拟,如图①所示:取(4,2)为最高点,则y =a (x -4)2+2,再把点(1,0.65)代入,得0.65=a (1-4)2+2,解得a =-0.15.故y =-0.15(x -4)2+2.B 种商品所获纯利润y 与投资额x 之间的变化规律是线性的,可用一次函数模型模拟,如图②所示:设y =kx +b ,取点(1,0.25)和(4,1)代入得0.25,14,k b k b =+⎧⎨=+⎩ 解得0.25,0.k b =⎧⎨=⎩故y =0.25x .因此前6个月所获纯利润y 关于月投资A 种商品的金额x 的函数关系式是y =-0.15(x -4)2+2;前6个月所获纯利润y 关于月投资B 种商品的金额x 的函数关系式是y =0.25x . 设下月投入A ,B 两种商品的资金分别为x A ,x B (万元),总利润为W (万元),则212,0.15(4)20.25,A B A B A B x x W y y x x +=⎧⎨=+=--++⎩ 于是W =-0.152196A x ⎛⎫- ⎪⎝⎭+0.15×2196⎛⎫ ⎪⎝⎭+2.6, 当x A =196≈3.2(万元)时,W 取最大值,约为4.1万元. 此时x B ≈8.8(万元).故该经营者下月把12万元中的3.2万元投资A 种商品,8.8万元投资B 种商品,可获得最大利润约为4.1万元.。
人教A版必修一3.2.2函数模型的应用实例
类型一:难题,需要55的接受能力以及13 min时间,老师能否及时在学生一直达到 所需接受能力的状态下讲授完这个难题?. 思路点拨:利用所给函数关系式解决有关问题
规律方法:本题是常数函数、一次函数、二次函数混合在一起的分段函数,自变量的取值 不同函数解析式可能不一样,这一点要特别注意.另外,函数的最值也是通过先求每一段 的最值,然后再作比较而求得. 变式训练1-1:某工厂今年1月、2月、3月生产某产品分别为1万件、1.2万件、1.3万件.为 了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产 量y与月份数x的关系,模拟函数可以选用二次函数或指数型函数,已知4月份该产品的产 量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.
思路点拨:解答本题可首先根据表中数据作出散点图,然后通过观 察图象判断问题所适用的函数模型.
这样,我们得到一个函数模型:y=2.2+1.8x.作出函数图象如图(乙),可以发现,这 个函数模型与已知数据的拟合程度较好,这说明它能较好地反映积雪深度与灌溉面积的关 系. (3)由y=2.2+1.8×25,求得y=47.2,即当积雪深度为25 cm时,可以灌溉土地47.2公顷. 规律方法:对于此类实际应用问题,关键是建立适当的函数关系式,再解决数学问题 ,最后验证并结合问题的实际意义作出回答,这个过程就是先拟合函数再利用函数解题. 函数拟合与预测的一般步骤是:
类型二:自建函数模型解应用题 【例2】 某市原来民用电价为0.52元/kW·h.换装分时电表后,峰时段(早上八点到晚上 九点)的电价为0.55元/kW·h,谷时段(晚上九点到次日早上八点)的电价为0.35元 /kW·h.对于一个平均每月用电量为200 kW·h的家庭,要使节省的电费不少于原来电费的 10%,则这个家庭每月在峰时段的平均用电量至多为多少kW·h?
必修1 新课标 数学 《3.2.2 函数模型的应用实例》测试题
《3.2.2 函数模型的应用实例》测试题一、选择题1.某种细胞在正常培养过程中,时刻(单位:分)与细胞数(单位:个)的部分数据如下:个细胞时的时刻最接近于)A.200B.220C.240D.260考查目的:考查观察分析能力、函数建模能力和运用指数函数的性质解决实际问题的能力.答案:A.解析:由表中数据可以看出,与的函数关系式为.令,则,而,∴繁殖到1000个细胞时,时刻最接近200分,故答案应选A.2.(2011北京)据统计,一名工人组装第件某产品所用的时间(单位:分钟)为(为常数).已知工人组装第4件产品用时30分钟,组装第A件产品时用时15分钟,那么的值分别是( ).A.75,25B.75,16C.60,25D.60,16考查目的:考查读题审题能力和分段函数模型的应用能力.答案:D.解析:由条件可知,时所用时间为常数,所以组装第4件产品用时必然满足第一个分段函数,即,∴,,∴,故答案应选D.3.如果在今后若干年内,我国国民经济生产总值都控制在平均每年增长8%的水平,那么要达到国民经济生产总值比2009年翻两番的年份大约是( ).(,,,)A.2018年B.2025年C.2027年D.2028年考查目的:考查增长率问题和指数、对数的相互转化及其运算.答案:C.解析:设2009年总值为,经过年翻两番,则,∴,∴,故答案应选C.二、填空题4.某商品零售价2012年比2011年上涨了25%,欲控制该商品零售价2013年比2011年只上涨10%,则2013年应比2012年降价________%.考查目的:考查读题审题能力、增长率问题解决能力和函数思想.答案:12.解析:设该商品零售价2011年为元,2013年应比2012年降价,则2012年零售价为元,而2013年零售价为元,∴,解得.5.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元.当用水超过4吨时,超过的部分按每吨3.00元计算.若甲、乙两户某月共交水费元,且甲乙两户某月用水量分别为吨、吨,则关于的函数关系式为 .考查目的:考查分段函数模型应用能力和分类讨论思想.答案:.解析:由题意知,当甲乙两户用水量都不超过4吨时,即当时,;当甲户用水量超过4吨,乙户用水量不超过4吨时,即当时,;当甲乙两户用水量都超过4吨时,即当时,.6.A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台.已知从A市调运一台机器到C村和D村的运费分别是400元和800元;从B市调运一台机器到C 村和D村的运费分别是300元和500元.设B市运往C村机器台,若要求运费W不超过9000元,则共有种调运方案.考查目的:考查函数建模与实际应用能力.答案:3.解析:由于B市运往C村机器台,则B市运往D村机器台,A市运往C村机器台,则A市运往D村机器台,∴,由得.∵是自然数,∴可取0,1,2,∴共有3种调运方案.三、解答题7.(2012上海春)某环线地铁按内、外环线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异).⑴当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10分钟,求内环线列车的最小平均速度;⑵新调整的方案要求内环线列车平均速度为25千米/小时,外环线列车平均速度为30千米/小时.现内、外环线共有18列列车全部投入运行,要使内、外环线乘客的最长候车时间之差不超过1分钟,问:内、外环线应各投入几列列车运行?考查目的:考查读题审题能力、函数建模能力,以及函数与不等式的综合应用能力.答案:⑴20;⑵10.解析: ⑴设内环线列车运行的平均速度为千米/小时,由题意得,解得,∴要使内环线乘客最长候车时间为10分钟,列车的最小平均速度是20千米/小时.⑵设内环线投入列列车运行,则外环线投入列列车运行,内、外环线乘客最长候车时间分别为分钟,则,故,可化为,解得,∴.又∵,∴,∴当内环线投入列,外环线投入8列列车运行,内、外环线乘客最长候车时间之差不超过1分钟.8.(2011湖南)如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为,雨速沿E移动方向的分速度为.E移动时单位时间内的淋雨量包括两部分:①P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与成正比,比例系数为;②其它面的淋雨量之和,其值为,记为E移动过程中的总淋雨量,当移动距离,面积时.⑴写出的表达式;⑵设,,试根据的不同取值范围,确定移动速度,使总淋雨量最少.考查目的:考查读题审题能力、函数建模能力和函数性质的综合应用,以及分类讨论思想.答案:⑴;⑵当时,是关于的减函数,故当时,.当时,在上,是关于的减函数;在上,是关于的增函数;故当时,.解析:⑴由题意知,E移动时单位时间内的淋雨量为,故.⑵由⑴知,当时,当时,,故.当时,是关于的减函数,故当时,.当时,在上,是关于的减函数;在上,是关于的增函数;故当时,.。
[精品]新人教A版必修一高中数学3.2.2函数模型的应用实例习题和答案
3.2.2函数模型的应用实例班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.在不考虑空气阻力的情况下,火箭的最大速度v(单位:米/秒)和燃料的质量M(单位:千克)、火箭(除燃料外)的质量m(单位:千克)的函数关系式是v=2 000·ln(1+).当燃料质量是火箭质量的倍时,火箭的最大速度可达12千米/秒.2.某地区植被被破坏,土地沙化越来越严重,最近三年测得该地区沙漠面积增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠面积增加值y(单位:万公顷)关于年数x的函数关系较为近似的是A.y=0.2xB.y=(x2+2x)C.y=D.y=0.2+log16x3.某厂日产手套总成本y(元)与手套日产量x(副)的函数解析式为y=5x+4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( )A.200副B.400副C.600副D.800副4.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为:,其中,代表拟录用人数,代表面试人数,若应聘的面试人数为60人,则该公司拟录用人数为A.15B.40C.25D.1305.有一批材料可以建成200 m的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成面积相等的矩形,如图所示,则围成的矩形场地的最大面积为m2(围墙厚度不计).6.某种病毒经30分钟可繁殖为原来的2倍,且已知病毒的繁殖规律为y=e kt(其中k为常数;t表示时间,单位:小时;y表示病毒个数),则k= ,经过5小时,1个病毒能繁殖为个. 7.一工厂对某种原料的全年需求量是Q吨,为保证生产又节省开支,打算全年分若干次等量订购,且每次用完后立即购进.已知每次订购费用是元,工厂每天使用的原料数量相同,仓库贮存原料的年保管费用是元/吨,问全年订购多少次,才能使订购费用与保管费用之和最少?8.我们知道:人们对声音有不同的感觉,这与它的强度有关系.声2强度水平表示,它们满足以下公式:(单位为分贝,,其中,这是人们平均能听到的最小强度,是听觉的开端).回答以下问题:(1)树叶沙沙声的强度是,耳语的强度是,恬静的无线电广播的强度是,试分别求出它们的强度水平;(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50分贝以下,试求声音强度的范围为多少?【能力提升】通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)的值越大,表示接受能力越强),x表示提出和讲授概念的时间(单位:分钟),可以有以下公式:f(x)=.(1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟?(2)开讲5分钟时与开讲20分钟时比较,学生的接受能力何时强一些?(3)一道数学难题,需要55的接受能力以及13分钟的时间,老师能答案【基础过关】1.e6-1【解析】当v=12 000米/秒时,2 000·ln(1+)=12 000,∴ln(1+)=6,∴=e6-1.2.C【解析】由题意得,当x=1时,y=0.2,排除B;当x=2时,y=0.4,排除D;当x=3时,y=0.76,排除A.故选C.3.D【解析】由5x+4 000≤10x,解得x≥800,即日产手套至少800副时才不亏本.4.C【解析】若4x=60,则x=15>10,不合题意;若2x+10=60,则x =25满足题意;若1.5x=60,则x=40<100不合题意.故拟录用人数为25人.5.2 500【解析】设矩形场地的宽为x m,则矩形场地的长为(200-4x)m,则矩形场地的面积S=x(200-4x)=-4(x-25)2+2500(0<x<50),∴x=25时,S max=2 500.6.2ln2 1 024【解析】当t=0.5时,y=2,∴2=,∴k=2ln 2,∴y=e2t ln 2,当t=5时,y=e10ln 2=210=1 024.7.解:由题意得:订购费与全年保管费用之和为而,当时等号成立;即当时,【解析】本题考查函数模型及其实际应用.8.(1)由题意可知:树叶沙沙声的强度是,则,所以,即树叶沙沙声的强度水平为0分贝;耳语的强度是,则,所以,即耳语的强度水平为20分贝;恬静的无线电广播的强度是,则,所以,,即恬静的无线电广播的强度水平为40分贝.(2)由题意知:即,所以,,即.所以新建的安静小区的声音强度I大于或等于,同时应小于.【解析】(1)代入公式即可.(2)列出满足的条件,解不等式.【能力提升】(1)当0<x≤10时,f(x)=-0.1x2+2.6x+43=-0.1(x-13)2+59.9.故f(x)在0<x≤10时,函数值越来越大,最大值为f(10)=-0.1×(10-13)2+59.9=59.当10<x≤16时,f(x)=59.当x>16时,f(x)的值越来越小,且f(x)<59,因此,开讲10分钟后,学生达到最强接受能力(为59),能维持6分钟.(2)f(5)=-0.1×(5-13)2+59.9=53.5,f(20)=-3×20+107=47<53.5,故开讲5分钟时学生的接受能力比开讲20分钟时要强一些.(3)当0<x≤10时,令f(x)=55,解得x=6(x=20舍去).当x>16时,令f(x)=55,解得x=17.因此学生达到(含超过)55的接受能力时间为17-6=11(分钟)<13(分钟).故老师来不及在学生一直达到所需接受能力的状态下讲授完这道难题.。
人教A版高一数学必修一 3-2-2 函数模型的应用实例 教
3.2.2 函数模型的应用实例一、教学目标:知识与技能:1.会分析所给出数据,画出散点图. 2.会利用选择或建立的函数模型. 3.会运用函数模型解决实际问题. 过程与方法:1.通过对给出的数据的分析,抽象出相应的确定性函数模型,并验证函数模型的合理性.2.通过收集到的数据作出散点图,并通过观察图像判断问题所适用的函数模型,在合理选择部分数据计算机的拟合功能得出具体的满意的函数解析式,并应用模型解决实际问题.情感、态度和价值观:1.经历建立函数模型解决实际问题的过程,领悟数学源自生活,服务生活,体会数学的应用价值.2.培养学生的应用意识、创新意识和探索精神,优化学生的理性思维和求真务实的科学态度. 二、重点难点重点:根据收集的数据作出散点图,并通过观察图像选择问题所适用的函数模型,利用演算或计算机数据建立具体的函数解析式.难点:怎样合理分析数据选择函数模型和建立具体的函数解析式. 三、教学方法通过让学生观察、思考、交流、讨论、展示。
四、教学过程(1)温故知新,提出问题;上节课我们已经学习了应用已知函数模型解决实际问题,主要的函数模型有y kx b =+,2y ax bx c =++,log a y x =,0rx y y e =.但在实际解决问题中,我们常常碰到没有函数模型或不能建立确切的函数模型,那我们又改如何选择和确定函数模型,如何解决实际问题呢?设计意图:从温故的角度自然地复习已经学习的函数模型内容,进入学习函数模型实际应用的情景,以及为本节课中选择函数模型作好铺垫.同时提出没有函数模型或不能建立确切的函数模型的实际问题如何解决,明确本节课的任务,以及点出本节课的课题.(2)问题探究;例1 人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766—1834)就提出了自然状态下的人口增长模型:y=y0e rt,其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料:(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)如果按表的增长趋势,大约在哪一年我国的人口达到13亿?师生:共同完成例1 解答:(1)设1951~1959年的人口增长率分别为r1,r2,…,r9.由55196(1 + r1) = 56300,可得1951年的人口增长率,r1≈0.0200.同理可得,r2≈0.0210,r3≈0.0229,r4≈0.0250,r5≈0.0197,r6≈0.0223,r7≈0.0276,r8≈0.0222,r9≈0.0184.于是,1951~1959年期间,我国人口的年均增长率为;r(r1+r2+…+r9)÷9≈0.0221.令y0=55196,则我国在1950~1959年期间的人口增长模型为y=55196e0.0221t,t∈N.根据表中的数据作出散点图并作出函数y=55196e0.0221t(t∈N)的图象由图可以看出,所得模型与1950~1959年的实际人口数据基本吻合.(2)将y=130000代入y=55196e0.0221t,由计算器可得t≈38.76.所以,如果按表的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿.由此可以看到,如果不实行计划生育,而是让人口自然增长,今天我国将面临难以承受的人口压力.例2 某地区不同身高的未成年男性的体重平均值如表年男性体重y kg与身高x cm的函数关系?试写出这个函数模型的解析式.(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm,体重为78kg的在校男生的体重是否正常?解答:(1)以身高为横坐标,体重为纵坐标,画出散点图.根据点的分布特征,可考虑以y=a·b x 作为刻画这个地区未成年男性的体重与身高关系的函数模型.如果取其中的两组数据(70,7.90),(160,47.25),代入y=a·b x得:701607.947.25a ba b⎧=⋅⎪⎨=⋅⎪⎩,用计算器算得a≈2,b≈1.02.这样,我们就得到一个函数模型:y=2×1.02x.将已知数据代入上述函数解析式,或作出上述函数的图象,可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映这个地区未成年男性体重与身高的关系.(2)将x=175代入y=2×1.02x得y=2×1.02175,由计算器算得y≈63.98.由于78÷63.98≈1.22>1.2,所以,这个男生偏胖.设计意图:利用问题串引导学生分析问题所提供的数据特点,由数据特点抽象出函数模型,培养学生建模能力,从而提高解决问题的能力.学生独立思考与学生小组合作,即锻炼学生的思考能力,又加强学生的小组合作,学会团结合作,为下一种选择函数模型作好必要知识和能力铺垫.利用图像发现函数模型,渗透数形结合思想,同时加深对函数的表格、解析式、图像的三种表示形式.归纳总结:通过建立函数模型,解决实际实际问题的基本过程:设计意图:回顾解题过程,系统总结一个较为完整的建立函数模型解决问题的过程,学生理解从解题过程上升为解题策略,培养学生的反思和总结能力.当堂检测:1.某商人购货,进价按原价扣去25%,他希望对货物订一新价,以便按新价让利20%销售后可获得售价25%的纯利,则此商人经营这种货物的件数与按新价让利总额之间的函数关系是 .2.已知镭经过100年,质量便比原来减少4.24%,设质量为1的镭经过年后的剩留量为,则的函数解析式为.3.某企业实行裁员增效.已知现有员工人,每人每年可创纯收益(已扣工资等)1万元,据评估在生产条件不变的条件下,每裁员一人,则留岗员工每人每年可多创收0.01万,但每年需付给每位下岗工人0.4万元的生活费,并且企业正常运转所需人数不得少于现有员工的,设该企业裁员人后年纯收益为万元.(1)写出关于的函数关系式,并指出的取值范围.(2) 当时,问该企业应裁员多少人,才能获得最大的经济效益?(注:在保证能取得最大经济效益的情况下,能少裁员,应尽量少裁.)4.某工厂今年1月,2月,3月生产某产品分别为1万件,1.2万件,1.3万件,为了预测以后每个月的产量,以这三个月的产量为依据,用一个函数模拟该产品的月产量与月份数的关系,模拟函数可选用二次函数或指数型函数(其中,,为常数).已知4月份该产品的产量为1.37万件,请问选择以上哪个函数作为模型较好?并说明理由.答案;1.(x∉N*) 2.3.(1)由题意可得y=(a-x)(1+0.01x)-0.4x,因为,所以.即x的取值范围是中的自然数.(2)因为,且140<a≤280,所以当a为偶数时,,y取最大值.当a为奇数时,,y取最大值.(因为尽可能少裁人,所以舍去.)答:当员工人数为偶数时,裁员人,才能获得最大的经济效益,当员工人数为奇数时,裁员人,才能获得最大的经济效益.4.设y1=f(x)=ax2+bx+c(a≠0),则有;解得所以f(4)=-0.05×42+0.35×4+0.7=1.3.①设y2=g(x)=mn x+p则有;解得所以g(4)=-0.8×0.54+1.4=135.②比较①,②知,g(4)=1.35更接近4月份的实际产量1.37万件.故选择y=-0.8×0.5x+1.4作为模型较好.五、课堂小结所谓数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表述的一种数学结构.数学模型剔除了事物中一切与研究目标无本质联系的各种属性,在纯粹状态下研究数量关系和空间形式,函数就是最重要的数学模型,用函数解决方程问题,使求解变得容易进行,这是数学模型间的相互转换在发挥作用.而用函数解决实际问题,则体现了数学模型是联系数学与现实世界的桥梁.六、课后作业课时练与测七、教学反思。
高中数学必修一 人教A版·数学·必修1课时作业23函数模型的应用实例 Word版含解析
需经过y 年,则函数y =f (x )的图像大致为
设某林区的森林蓄积量原来为a ,
=a (1+9.5%)y ,所以y =log 1.095x .
则这个函数的解析式为( )
.p =-96V
A容器下粗上细,水高度的变化先慢后快,故与
容器为球形,水高度变化为快—慢—快,应与(1)对应;
容器都是柱形的,水高度的变化速度都应是直线形,但容器粗,故水高度的变化为:C容器快,与(3)
向一杯子中匀速注水时,杯中水面高度的图象如图所示,则杯子的形状是( )
从题图中看出,在时间段[0,t 1],]上升慢,在[t 1,t 2]上升快,故选计算机的价格大约每3年下降23,那么今年花
=8 100×⎝ ⎛⎭
⎪⎫133=300(元). 【答案】 300
13.一片森林原来面积为a ,计划每年砍伐一些树
,4a +,b =,-18千克/立方米,依题意并由,-18x 2+为增函数,故=-18x 2。
高一数学人教A版必修1课时作业:3.2.2函数模型的应用实例
课时作业(二十三)函数模型的应用实例[学业水平层次]一、选择题1.下图给出了红豆生长时间t(月)与枝数y(枝)的散点图;那么“红豆生南国,春来发几枝”的红豆生长时间与枝数的关系,用下列哪个函数模型拟合最好?图3-2-7A.指数函数:y=2t B.对数函数:y=log2tC.幂函数:y=t3D.二次函数:y=2t2【解析】结合图象的变化趋势可以看出,红豆生长时间与枝数的关系大约成指数函数关系,故选A.【答案】 A2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如下图3-2-8所示,由图中给出的信息可知,营销人员没有销售量时的收入是()图3-2-8A.310元B.300元C.290元D.280元【解析】设函数解析式为y=kx+b(k≠0),函数图象过点(1,800),(2,1 300), 则⎩⎪⎨⎪⎧k +b =800,2k +b =1 300,解得⎩⎪⎨⎪⎧k =500,b =300, ∴y =500x +300,当x =0时,y =300. ∴营销人员没有销售量时的收入是300元. 【答案】 B3.某种细胞在正常培养过程中,时刻t (单位:分)与细胞数n (单位:个)的部分数据如下表:( ) A .200 B .220 C .240 D .260【解析】 由表中数据可以看出,n 与t 的函数关系式为n =2t 20,令n =1 000,则2t 20=1 000,而210=1 024,所以繁殖到1 000个细胞时,时刻t 最接近200分钟,故答案应选A.【答案】 A4.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x 倍,需经过y 年,则函数y =f (x )的图象大致是( )【解析】 设该林区的森林原有蓄积量为a ,由题意可得ax =a (1+0.104)y ,故y =log 1.104x (x ≥1).函数为对数函数,所以函数y =f (x )的图象大致为D 中图象,故选D.【答案】 D 二、填空题5.(2014·徐州高一检测)用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要清洗的次数是________(lg2≈0.301 0).【解析】 设至少要洗x 次,则⎝ ⎛⎭⎪⎫1-34x ≤1100,∴x ≥1lg2≈3.322,所以需4次. 【答案】 46.甲同学家到乙同学家的途中有一公园,甲同学家到公园的距离与乙同学家到公园的距离都是2 km.如下图3-2-9表示甲从家出发到乙同学家经过的路程y (km)与时间x (min)的关系,其中甲在公园休息的时间是10 min ,那么y =f (x )的解析式为________.图3-2-9【解析】 由题图知所求函数是一个分段函数,且各段均是直线,可用待定系数法求得y =f (x )=⎩⎪⎨⎪⎧115x (0≤x ≤30),2 (30<x <40),110x -2 (40≤x ≤60).【答案】 y =f (x )=⎩⎪⎨⎪⎧115x (0≤x ≤30),2 (30<x <40),110x -2 (40≤x ≤60).7.(2014·宿迁高一检测)如图3-2-10所示,在矩形ABCD 中,已知AB =13,BC =3,在AB ,AD ,CD ,CB 上分别截取AE ,AH ,CG ,CF ,且AE =AH =CG =CF =x ,则x =________时,四边形EFGH 的面积最大,最大面积为________.图3-2-10【解析】 设四边形EFGH 的面积为S ,则S =13×3-2⎣⎢⎡⎦⎥⎤12x 2+12(13-x )(3-x )=-2x 2+16x =-2(x -4)2+32,x ∈(0,3]. 因为S =-2(x -4)2+32在(0,3]上是增函数, 所以当x =3时,S 有最大值为30. 【答案】 3 30 三、解答题8.(2014·茂名高一检测)“学习曲线”可以用来描述学习达到某一水平所需的学习时间.假设“学习曲线”符合函数t =5log 2⎝ ⎛⎭⎪⎫N B (B 为常数),N (单位:字)表示某一英文词汇量水平,t (单位:天)表示达到这一英文词汇量所需要的学习时间.(1)已知某人练习达到40个词汇量时需要10天,求该人的学习曲线解析式. (2)他学习几天能掌握160个词汇量?(3)如果他学习时间大于30天,他的词汇量情况如何?【解】 (1)把t =10,N =40代入t =5log 2⎝ ⎛⎭⎪⎫N B ,得10=5log 2⎝ ⎛⎭⎪⎫40B ,解得B =10.所以t =5log 2⎝ ⎛⎭⎪⎫N 10(N >0).(2)当N =160时,t =5log 2⎝ ⎛⎭⎪⎫16010=5log 216=20(天).(3)当t >30时,5log 2⎝ ⎛⎭⎪⎫N 10>30,解得N >640.所以学习时间大于30天,他的词汇量大于640个.9.某医药研究所研发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的关系近似满足如图3-2-11所示的曲线.图3-2-11(1)写出服药后y 与t 之间的函数关系式y =f (t );(2)进一步测定:每毫升血液中含药量不少于0.25毫克时,药物对治疗疾病有效.求服药一次治疗疾病的有效时间.【解】 (1)由题图得,当t ∈[0,1]时,函数的解析式为y =kt ,将M (1,4)代入得k =4,∴y =4t .又当t ∈(1,+∞)时,函数的解析式为y =⎝ ⎛⎭⎪⎫12t -a,将点(3,1)代入得a =3,∴y =⎝ ⎛⎭⎪⎫12t -3.综上有y =f (t )=⎩⎪⎨⎪⎧4t ,(0≤t ≤1),⎝ ⎛⎭⎪⎫12t -3,(t >1).(2)由f (t )≥0.25, 解得116≤t ≤5.∴服药一次治疗疾病的有效时间为5-116=41516个小时. [能力提升层次]1.(2013·湖北高考)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )【解析】 距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.【答案】 C2.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为y =⎩⎨⎧4x ,1≤x <10,x ∈N ,2x +10,10≤x <100,1.5x ,x ≥100,x ∈N ,x ∈N ,其中,x 代表拟录用人数,y 代表面试人数,若面试人数为60,则该公司拟录用人数为( )A .15B .40C .25D .130【解析】 若4x =60,则x =15>10,不合题意;若2x +10=60,则x =25,满足题意;若1.5x =60,则x =40<100,不合题意.故拟录用25人.【答案】 C3.(2014·温州高一检测)某地区发生里氏8.0级特大地震.地震专家对发生的余震进行了监测,记录的部分数据如下表:地震强度(x )和震级(y )的模拟函数关系可以选用y =a lg x +b (其中a ,b 为常数).利用散点图可知a 的值等于________.(取lg 2=0.3进行计算)图3-2-12【解析】 由记录的部分数据可知 x =1.6×1019时,y =5.0, x =3.2×1019时,y =5.2. 所以5.0=a lg(1.6×1019)+b ① 5.2=a lg(3.2×1019)+b ②②-①得0.2=a lg 3.2×10191.6×1019,0.2=a lg2.所以a =0.2lg 2=0.20.3=23. 【答案】 234.设在海拔x m 处大气压强是y Pa ,y 与x 之间的函数关系式是y =C e kx ,其中C ,k 是常量.已知某地某日在海平面的大气压强为1.01×105Pa ,1 000m 高空的大气压强为0.90×105Pa ,求600m 高空的大气压强(结果保留3个有效数字).【解】 将x =0,y =1.01×105,x =1 000,y =0.90×105分别代入y =C e kx ,得⎩⎪⎨⎪⎧1.01×105=C e k ·0,0.90×105=C e 1 000k ,即⎩⎪⎨⎪⎧C =1.01×105,0.90×105=C e1 000k.将C =1.01×105代入0.90×105=C e 1 000k ,得 0.90×105=1.01×105e 1 000k ,即0.9=1.01e 1 000k . 两边取以e 为底的对数(自然对数), 得k =11 000ln 0.91.01≈-1.15×10-4, 所以y =1.01×105×e -1.15×10-4x .将x=600代入,得y=1.01×105×e-1.15×10-4×600≈0.943×105.答:在600m高空的大气压强约为0.943×105Pa.。
高中数学人教A版必修一练习:3.2.2 函数模型的应用实例.doc
3.2.2 函数模型的应用实例【选题明细表】1.(2018·娄底高一期末)某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用( D )(A)一次函数(B)二次函数(C)指数型函数(D)对数型函数解析:由题意可知,函数模型对应的函数是个增函数,而且增长速度越来越慢,故应采用对数型函数来建立函数模型,故选D.2.已知等腰三角形的周长为40 cm,底边长y(cm)是腰长 x(cm) 的函数,则函数的定义域为( A )(A)(10,20) (B)(0,10)(C)(5,10) (D)[5,10)解析:y=40-2x,由得10<x<20.故选A.3.如图所示的是某池塘中的浮萍蔓延的面积y(m2)与时间t(月)的关系:y=a t,有以下叙述:①这个指数函数的底数是2;②第5个月时,浮萍的面积就会超过30 m2;③浮萍从4 m2蔓延到12 m2需要经过1.5个月;④浮萍每个月增加的面积都相等.其中正确的是( B )(A)①(B)①②(C)②③④ (D)①②④解析:图象单调递增,底数大于1,又过点(2,4),所以a2=4,所以a=2(a>0),故①对;令t=5,得y=25=32>30,故②对;若浮萍从4 m2蔓延到12 m2需要经过的时间是1.5个月,则有12=23.5,因为23.5=8≠12,故③错;由指数型函数模型的图象上升特征可知④错.故选B.4.(2018·海淀区高一月考)2011年12月,某人的工资纳税额是245元,若不考虑其他因素,则他该月工资收入为( A )注:本表所称全月应纳税所得额是以每月收入额减去3 500元(起征点)后的余额.(A)7 000元(B)7 500元(C)6 600元(D)5 950元解析:设此人该月工资收入为x元.1 500×3%=45元.(x-3 500-1 500)×10%=245-45,得x=7 000元.5.(2018·河北省石家庄市质检)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率P与加工时间t(单位:分钟)满足函数关系P=at2+bt+c(a,b,c是常数),如图记录了三次实验数据,根据上述函数模型和实验数据,可得到最佳加工时间为( B )(A)3.50分钟(B)3.75分钟(C)4.00分钟(D)4.25分钟解析:依题意有解得a=-0.2,b=1.5,c=-2.所以P=-0.2t2+1.5t-2=-(t-)2+.所以当t==3.75时,P取得最大值.即最佳加工时间为3.75分钟.6.(2017·泉州高一月考)在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( B )(A)y=2x-2 (B)y=(x2-1)(C)y=log2x (D)y=lo x解析:由题意可得表中数据y随x的变化趋势.函数在(0,+∞)上是增函数,且y的变化随x的增大越来越快.因为A中函数是线性增加的函数,C中函数是比线性增加还缓慢的函数,D中函数是减函数,所以排除A,C,D;所以B中函数y=(x2-1)符合题意.7.已知甲、乙两地相距150 km,某人开汽车以60 km/h的速度从甲地到达乙地,在乙地停留一小时后再以50 km/h的速度返回甲地,把汽车离开甲地的距离s表示为时间t的函数,则此函数表达式为. 解析:当0≤t≤2.5时s=60t,当2.5<t<3.5时s=150,当3.5≤t≤6.5时s=150-50(t-3.5)=325-50t,综上所述,s=答案:s=8.现测得(x,y)的两组值为(1,2),(2,5),现有两个拟合模型,甲:y=x2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用作为拟合模型较好.解析:对于甲:x=3时,y=32+1=10,对于乙:x=3时,y=8,因此用甲作为拟合模型较好.答案:甲9.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元.某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x吨、3x吨.(1)求y关于x的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.解:(1)当甲的用水量不超过4吨时,即5x≤4,乙的用水量也不超过4吨,y=1.8(5x+3x)=14.4x;当甲的用水量超过4吨时,乙的用水量不超过4吨,即3x≤4,且5x>4时,y=4×1.8+3x×1.8+3(5x-4)=20.4x-4.8.当乙的用水量超过4吨,即3x>4时,y=2×4×1.8+3×[(3x-4)+(5x-4)]=24x-9.6.所以y=(2)由于y=f(x)在各段区间上均单调递增;当x∈[0,]时,y≤f()<26.4;当x∈(,]时,y≤f()<26.4;当x∈(,+∞)时,令24x-9.6=26.4,解得x=1.5.所以甲户用水量为5x=5×1.5=7.5(吨);付费S甲=4×1.8+3.5×3=17.70(元);乙户用水量为3x=4.5(吨),付费S乙=4×1.8+0.5×3=8.70(元).10.(2018·河北省枣强中学高一期中)2016年9月15日,天宫二号空间实验室发射成功,借天宫二号东风,某厂推出品牌为“玉兔”的新产品,生产“玉兔”的固定成本为20 000元,每生产一件“玉兔”需要增加投入100元,根据统计数据,总收益P(单位:元)与月产量x(单位:件)满足P=(注:总收益=总成本+利润)(1)请将利润y(单位:元)表示成月产量x的函数;(2)当月产量为多少时,利润最大?最大利润是多少?解:(1)依题意,总成本是20 000+100x,所以y=P-(20 000+100x),即y=(2)由(1)知,当x∈(0,400]时,y=-(x-300)2+25 000,所以当x=300时,y max=25 000;当x>400时,y=60 000-100x<20 000.故当月产量x为300件时,利润y最大,且最大利润为25 000元.。
人教A版高中数学必修1课时作业(24) 函数模型的应用实例
课时作业(二十四)函数模型的应用实例一、选择题1.一个模具厂一年中12月份的产量是1月份产量的m倍,那么该模具厂这一年中产量的月平均增长率是( )A.m11B.m12C.12m-1 D.11m-1解析:选D 设每月的产量增长率为x,1月份产量为a,则a(1+x)11=ma,所以1+x=11m,即x=11m-1.2.某自行车存车处在某一天总共存放车辆4 000辆次,存车费为:电动自行车0.3元/辆,普通自行车0.2元/辆.若该天普通自行车存车x辆次,存车费总收入为y元,则y与x的函数关系式为( )A.y=0.2x(0≤x≤4 000)B.y=0.5x(0≤x≤4 000)C.y=-0.1x+1 200(0≤x≤4 000)D.y=0.1x+1 200(0≤x≤4 000)解析:选C 由题意得y=0.3(4 000-x)+0.2x=-0.1x+1 200.3.下面是一幅统计图,根据此图得到的以下说法中,正确的个数是( )(1)这几年生活水平逐年得到提高;(2)生活费收入指数增长最快的一年是2013年;(3)生活价格指数上涨速度最快的一年是2014年;(4)虽然2015年生活费收入增长缓慢,但生活价格指数也略有降低,因而生活水平有较大的改善.A.1 B.2C.3 D.4解析:选 C 由题意知,“生活费收入指数”减去“生活价格指数”的差是逐年增大的,故(1)正确;“生活费收入指数”在2013~2014年最陡;故(2)正确;“生活价格指数”在2014~2015年比较平缓,故(3)不正确;“生活价格指数”略呈下降,而“生活费收入指数”呈上升趋势,故(4)正确.4.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为y=⎩⎪⎨⎪⎧ 4x ,1≤x<10,x ∈N , 2x +10,10≤x<100,x ∈N ,1.5x ,x≥100,x ∈N ,其中,x 代表拟录用人数,y 代表面试人数,若面试人数为60,则该公司拟录用人数为( )A .15B .40C .25D .130解析:选C 若4x =60,则x =15>10,不合题意;若2x +10=60,则x =25,满足题意;若1.5x =60,则x =40<100,不合题意.故拟录用25人.5.某城市出租汽车的收费标准是:起步价为6元,行程不超过2千米者均按此价收费;行程超过2千米,超过部分按3元/千米收费(不足1千米按1千米计价);另外,遇到堵车或等候时,汽车虽没有行驶,但仍按6分钟折算1千米计算(不足1千米按1千米计价).陈先生坐了一趟这种出租车,车费24元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程的取值范围是( )A .[5,6)B .(5,6]C .[6,7)D .(6,7]解析:选 B 若按x(x ∈Z)千米计价,则6+(x -2)×3+2×3=24,得x =6.故实际行程应属于区间(5,6].二、填空题6.在不考虑空气阻力的情况下,火箭的最大速度v(米/秒)和燃料的质量M(千克)、火箭(除燃料外)的质量m(千克)的函数关系式是v =2 000·ln ⎝ ⎛⎭⎪⎫1+M m .当燃料质量是火箭质量的________倍时,火箭的最大速度可达12千米/秒.解析:当v =12 000时,2 000·ln ⎝ ⎛⎭⎪⎫1+M m =12 000, ∴ln ⎝ ⎛⎭⎪⎫1+M m =6,∴M m =e 6-1. 答案:e 6-17.一水池有2个进水口、1个出水口,2个进水口的进水速度如图甲、乙所示,出水口的排水速度如图丙所示,某天0点到6点,该水池的蓄水量如图丁所示.给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.其中一定正确的论断序号是________.解析:从0点到3点,两个进水口的进水量为9,故①正确;由排水速度知②正确;4点到6点可以是不进水,不出水,也可以是开一个进水口(速度快的)、一个排水口,故③不正确.答案:①②8.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n 年的累计产量为f(n)=12n(n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是________年.解析:由题意知,第一年产量为a 1=12×1×2×3=3; 以后各年产量分别为a n =f(n)-f(n -1)=12n(n +1)(2n +1)-12n(n -1)(2n -1) =3n 2(n ∈N *),令3n 2≤150,得1≤n≤52⇒1≤n≤7,故生产期限最长为7年.答案:7三、解答题9.某租车公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加60元时,未租出的车将会增加一辆,租出的车每月需要维护费160元,未租出的车每月需要维护费40元.(1)当每辆车的月租金定为3 900元时,能租出多少辆车?(2)当每辆车的月租金为多少元时,租车公司的月收益最大?最大月收益是多少?解:(1)租金增加了900元,900÷60=15,所以未租出的车有15辆,一共租出了85辆. (2)设租金提高后有x 辆未租出,则已租出(100-x)辆.租赁公司的月收益为y 元,y =(3 000+60x)(100-x)-160(100-x)-40x,其中x ∈[0,100],x ∈N,整理,得y =-60x 2+3 120x +284 000=-60(x -26)2+324 560,当x =26时,y =324 560,即最大月收益为324 560元.此时,月租金为3 000+60×26=4 560(元).10.某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产1百件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为5百件,产品销售数量为t(百件)时,销售所得的收入为⎝ ⎛⎭⎪⎫5t -12t 2万元. (1)该公司这种产品的年生产量为x 百件,生产并销售这种产品得到的利润为当年产量x 的函数f(x),求f(x);(2)当该公司的年产量为多大时当年所获得的利润最大.解:(1)当x ≤5时,f(x)=5x -12x 2-(0.25x +0.5)=-x 22+194x -12; 当x>5时,f(x)=5×5-12×52-(0.25x +0.5)=12-14x ; 所以f(x)=⎩⎪⎨⎪⎧ -x 22+194x -12,0<x≤5,12-14x ,x>5.(2)当0<x≤5时,f(x)=-x 22+194x -12=-12⎝ ⎛⎭⎪⎫x -1942+34532, 故当x =194百件=475件时,f(x)max =34532(万元); 当x>5时,f(x)=12-14x<12-54<34532. 故当该公司的年产量为475件时,当年获得的利润最大.11.国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,飞机票价格为900元;若旅行团人数多于30人,则给予优惠:每多1人,飞机票价格就减少10元,直到达到规定人数75人为止.旅行团乘飞机,旅行社需付给航空公司包机费15 000元.(1)写出飞机票的价格关于人数的函数;(2)旅行团人数为多少时,旅行社可获得最大利润?解:(1)设旅行团人数为x,飞机票价格为y 元,则y =⎩⎪⎨⎪⎧ 900,0<x≤30,900-10x -30,30<x≤75,即y =⎩⎨⎧ 900,0<x≤30,1 200-10x ,30<x≤75.(2)设旅行社获利S 元, 则S =⎩⎪⎨⎪⎧ 900x -15 000,0<x≤30,x 1 200-10x -15 000,30<x≤75.即S =⎩⎪⎨⎪⎧ 900x -15 000,0<x≤30,-10x -602+21 000,30<x≤75. 因为S =900x -15 000在区间(0,30]上单调递增,当x =30时,S 取最大值12 000,又因为S =-10(x -60)2+21 000在区间(30,75]上,当x =60时,S 取最大值21 000.故当x =60时,旅行社可获得最大利润.。
人教A版数学必修一3.2.2函数模型的应用实例.docx
高中数学学习材料马鸣风萧萧*整理制作3.2.2 函数模型的应用实例【选题明细表】题号知识点、方法易中难利用已知函数模型解决问题 1 3、8自建函数模型解决问题2、6 4、9拟合函数模型解决问题7 5 10基础达标1.一辆汽车在某段路程中的行驶速度v与时间t的关系图象如图,则t=2时,汽车已行驶的路程为km.( C )(A)100 (B)125 (C)150 (D)225解析:t=2时,汽车行驶的路程为:s=50×0.5+75×1+100×0.5=25+75+50=150 km.故选C.2.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( D )(A)14400亩(B)172800亩(C)20736亩(D)17280亩解析:设年份为x,造林亩数为y,则y=10000×(1+20%)x-1,∴x=4时,y=17280.故选D.3.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为:y=其中,x代表拟录用人数,y代表面试人数.若应聘的面试人数为60,则该公司拟录用人数为( C )(A)15 (B)40 (C)25 (D)130解析:令y=60,若4x=60,则x=15>10,不合题意;若2x+10=60,则x=25,满足题意;若1.5x=60,则x=40<100,不合题意.故拟录用人数为25.故选C.4.(2012厦门高一检测)某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与售价x(元)满足一次函数:m=162-3x,若要每天获得最大的销售利润,每件商品的售价应定为( B )(A)30元(B)42元(C)54元(D)越高越好解析:设当每件商品的售价为x元时,每天获得的销售利润为y元.由题意得,y=m(x-30)=(x-30)(162-3x).上式配方得y=-3(x-42)2+432.∴当x=42时,利润最大.故选B.5.今有一组实验数据如表所示:t 1.99 3.0 4.0 5.1 6.12u 1.5 4.04 7.5 12 18.01则体现这些数据关系的最佳函数模型是( C )(A)u=log2t (B)u=2t-2(C)u=- (D)u=2t-2解析:由散点图可知,图象不是直线,排除D;图象不符合对数函数的图象特征,排除A;当t=3时,2t-2=23-2=6,-=-=4,由表格知当t=3时,u=4.04,模型u=-能较好地体现这些数据关系.故选C.6.由于电子技术的飞速发展,计算机的成本不断降低,每隔5年计算机的价格降低,现在价格为8100元的计算机经过15年的价格为元.解析:每隔5年价格降低,15年共降价3次,每次降价为原来的,则15年后计算机的价格为:8100×(1-)3=2400元.答案:24007.现测得(x,y)的两组值为(1,2),(2,5),现在两个拟合模型,甲:y=x2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用作为拟合模型较好. 解析:对于甲:x=3时,y=32+1=10,对于乙:x=3时,y=8,因此用甲作为拟合模型更好.答案:甲能力提升8.某个病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=e kt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k= ,经过5小时,1个病毒能繁殖为个.解析:当t=0.5时,y=2,∴2=,∴k=2ln 2,∴y=e2tln 2,当t=5时,y=e10ln 2=210=1024.答案:2ln 2 10249.(2012山东省实验中学高一月考)某市一家庭今年一月份、二月份和三月份煤气用量和支付费用如表所示:月份用气量(立方米) 煤气费(元)1 4 42 25 143 35 19该市煤气收费的方法是:煤气费=基本费+超额费+保险费.若每月用气量不超过最低额度A(A>4)立方米时,只付基本费3元和每户每月定额保险费C(0<C5)元;若用气量超过A立方米时,超过部分每立方米付B元.(1)根据表格求A、B、C的值;(2)若用户第四月份用气量为30立方米,则应交煤气费多少元?解:(1)设每月用气量为x立方米,支付费用为y元,①根据题意,得y=-由题设知,A>4,0<C5,因此3+C8,从表格中可以看出第二、三月份的费用均大于8元.故用气量25立方米、35立方米均应大于最低额度A立方米,从而将x=25,x=35代入①得--解得(2)由(1)得y=把x=30代入,得y=16.5.即第四月份应交煤气费为16.5元.10.某个体经营者把开始六个月试销A、B两种商品的逐月投资金额与所获纯利润列成如表:投资A种商1 2 3 4 5 6品金额(万元)获纯利润(万元) 0.65 1.39 1.85 2 1.84 1.40投资B种商1 2 3 4 5 6品金额(万元)获纯利润(万元) 0.25 0.49 0.76 1 1.26 1.51 该经营者准备第七个月投入12万元经营这两种商品,但不知投入A,B两种商品各多少万元才合算.请你帮助制定一个资金投入方案,使得该经营者能获得最大纯利润,并按你的方案求出该经营者第七个月可获得的最大纯利润(结果保留两位有效数字).解:以投资额为横坐标,纯利润为纵坐标,在平面直角坐标系中画出散点图,如图所示.观察散点图可以看出,A种商品所获纯利润y与投资额x之间的变化规律可以用二次函数模型进行模拟,如图(1)所示.取(4,2)为最高点,则y=a(x-4)2+2,再把点(1,0.65)代入,得0.65=a(1-4)2+2,解得a=-0.15,所以y=-0.15(x-4)2+2.B种商品所获纯利润y与投资额x之间的变化规律是线性的,可以用一次函数模型进行模拟,如图(2)所示.设y=kx+b,取点(1,0.25)和(4,1)代入,得解得所以y=0.25x.设第七个月投入A,B两种商品的资金分别为x A万元,x B万元,总利润为W万元,那么所以W=-0.15(x A-)2+0.15×()2+2.6.当x A=≈3.2万元时,W取最大值,约为4.1万元,此时x B=8.8万元.即该经营者第七个月把12万元中的3.2万元投资A种商品,8.8万元投资B种商品,可获得最大利润约为4.1万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.2 函数模型的应用实例课时目标 1.能够找出简单实际问题中的函数关系式.2.初步体会应用一次函数、二次函数、指数函数、对数函数、幂函数模型解决实际问题.3.体会运用函数思想处理现实生活中的简单问题,培养对数学模型的应用意识.1.几种常见的函数模型(1)一次函数:y=______________________(2)二次函数:y=______________________(3)指数函数:y=______________________(4)对数函数:y=______________________(5)幂函数:y=________________________(6)指数型函数:y=pq x+r(7)分段函数2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________________;(3)________________;(4)________________;(5)______;(6)__________________________.一、选择题1.细菌繁殖时,细菌数随时间成倍增长.若实验开始时有300个细菌,以后的细菌数如下表所示:x(h)012 3细菌数300600 1 200 2 400A.75 B.100 C.150 D.2002.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如右图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( ) A.310元 B.300元C.290元 D.280元3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( )A.减少7.84% B.增加7.84%C.减少9.5% D.不增不减4.某工厂6年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是( )5.把长为12 cm的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )A.332cm2 B.4 cm2C.3 2 cm2 D.2 3 cm26.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为( )A.x=15,y=12 B.x=12,y=15C.x=14,y=10 D.x=10,y=14题12345 6二、填空题7.某不法商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,那么每台彩电原价是________元.8.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区,成立于1985年,最初一年年底只有麋鹿100头,由于科学的人工培育,这种当初快要濒临灭绝的动物的数量y(头)与时间x(年)的关系可以近似地由关系式y=a log2(x+1)给出,则2000年年底它们的数量约为________头.9.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y=e kt(其中k为常数,t表示时间,单位:小时,y表示病毒个数),则k=________,经过5小时,1个病毒能繁殖为________个.三、解答题10.东方旅社有100张普通客床,若每床每夜收租费10元时,客床可以全部租出;若每床每夜收费提高2元,便减少10张客床租出;若再提高2元,便再减少10张客床租出;依此情况继续下去.为了获得租金最多,每床每夜租金选择多少?11.芦荟是一种经济价值很高的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位为:元/10 kg)与上市时间t(单位:天)的数据情况如下表:t 50110250Q 150108150(1)Q与上市时间t;t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·b t,Q=a logb(2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本.能力提升12.某工厂生产一种电脑元件,每月的生产数据如表:月份12 3产量(千件)505253.9用函数y=ax +b或y=a x+b(a,b为常数,且a>0)来模拟这种电脑元件的月产量y千件与月份的关系.请问:用以上哪个模拟函数较好?说明理由.13.一片森林原来的面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22,(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?1.函数模型的应用实例主要包括三个方面:(1)利用给定的函数模型解决实际问题;(2)建立确定性的函数模型解决问题;(3)建立拟合函数模型解决实际问题.2.函数拟合与预测的一般步骤:(1)能够根据原始数据、表格,绘出散点图.(2)通过考察散点图,画出“最贴近”的直线或曲线,即拟合直线或拟合曲线.如果所有实际点都落到了拟合直线或曲线上,滴“点”不漏,那么这将是个十分完美的事情,但在实际应用中,这种情况是一般不会发生的.因此,使实际点尽可能均匀分布在直线或曲线两侧,使两侧的点大体相等,得出的拟合直线或拟合曲线就是“最贴近”的了.(3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.3.2.2 函数模型的应用实例知识梳理1.(1)kx+b(k≠0) (2)ax2+bx+c(a≠0) (3)a x(a>0且a≠1)(4)log a x(a>0且a≠1) (5)xα(α∈R) 2.(1)收集数据(2)画散点图(3)选择函数模型(4)求函数模型(5)检验(6)用函数模型解释实际问题作业设计1.A [由表中数据观察可得细菌数y与时间x的关系式为y=300·2x(x∈Z).当x=-2时,y=300×2-2=3004=75.]2.B [由题意可知,收入y是销售量x的一次函数,设y=ax+b,将(1,800),(2,1 300)代入得a=500,b=300.当销售量为x=0时,y=300.]3.A [设某商品价格为a,依题意得:a(1+0.2)2(1-0.2)2=a×1.22×0.82=0.921 6a,所以四年后的价格与原来价格比较(0.921 6-1)a=-0.078 4a,即减少7.84%.]4.A [由于前三年年产量的增长速度越来越快,可用指数函数刻画,后三年年产量保持不变,可用一次函数刻画,故选A.]5.D [设一段长为x cm,则另一段长为(12-x)cm.∴S=34(x3)2+34(4-x3)2=318(x-6)2+23≥2 3.]6.A [由三角形相似得24-y24-8=x20,得x=54(24-y),∴S=xy=-54(y-12)2+180.∴当y=12时,S有最大值,此时x=15.]7.2 250解析设每台彩电的原价为x元,则x(1+40%)×0.8-x=270,解得x=2 250(元).8.400解析由题意,x=1时y=100,代入求得a=100,2000年年底时,x=15,代入得y=400.9.2ln 2 1 024解析当t=0.5时,y=2,∴2=12k e,∴k=2ln 2,∴y=e2t ln 2,当t=5时,∴y=e10ln 2=210=1 024.10.解设每床每夜租金为10+2n(n∈N),则租出的床位为100-10n(n∈N且n<10)租金f(n)=(10+2n)(100-10n)=20[-(n-52)2+2254],其中n ∈N 且n <10.所以,当n =2或n =3时,租金最多, 若n =2,则租出床位100-20=80(张); 若n =3,则租出床位100-30=70(张); 综合考虑,n 应当取3,即每床每夜租金选择10+2×3=16(元).11.解 (1)由所提供的数据可知,刻画芦荟种植成本Q 与上市时间t 的变化关系的函数不可能是常值函数,若用函数Q =at +b ,Q =a ·b t,Q =a log b t 中的任意一个来反映时都应有a ≠0,且上述三个函数均为单调函数,这与表格所提供的数据不符合,所以应选用二次函数Q =at 2+bt +c 进行描述.将表格所提供的三组数据分别代入函数Q =at 2+bt +c ,可得:⎩⎨⎧150=2 500a +50b +c ,108=12 100a +110b +c ,150=62 500a +250b +c ,解得a =1200,b =-32,c =4252. 所以,刻画芦荟种植成本Q 与上市时间t 的变化关系的函数为Q =1200t 2-32t +4252. (2)当t =--322×1200=150(天)时,芦荟种植成本最低为Q =1200×1502-32×150+4252=100(元/10 kg). 12.解 将(1,50)、(2,52)分别代入两解析式得: ⎩⎨⎧ 50=a +b 52=2a +b 或⎩⎨⎧50=a +b ,52=a 2+b .(a >0)解得⎩⎨⎧a =2b =48(两方程组的解相同).∴两函数分别为y =2x +48或y =2x +48.当x =3时,对于y =2x +48有y =54; 当x =3时,对于y =2x +48有y =56. 由于56与53.9的误差较大, ∴选y =ax +b 较好.13.解 (1)设每年砍伐面积的百分比为x (0<x <1),则a (1-x )10=12a ,即(1-x )10=12, 解得x =1-11012⎛⎫⎪⎝⎭.(2)设经过m 年剩余面积为原来的22,则 a (1-x )m =22a ,即11021122m ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,m 10=12,解得m =5, 故到今年为止,已砍伐了5年. (3)设从今年开始,以后砍了n 年, 则n 年后剩余面积为22a (1-x )n .令22a (1-x )n ≥14a ,即(1-x )n ≥24, 31021122n ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.。