几种湍流模型

合集下载

9个湍流模型介绍

9个湍流模型介绍

9个湍流模型介绍

好的,为你介绍9个湍流模型:

1. Reynolds平均的NS方程(Reynolds-Averaged Navier-Stokes,RANS):Reynolds 提出了平均法,将“瞬时值=平均值+脉动值”带入不可压缩流体控制方程中,得到了一个更复杂的方程。对于可压缩流体,假设瞬时密度的变化对流动影响不大,忽略其影响。

2. Reynolds应力模型(RSM):模仿控制方程的样子,搞出一个针对Reynolds应力的输运方程。

3. 代数应力模型(ASM):简化Reynolds应力方程的对流项和扩散项。

此外,还有一些其他湍流模型,如Spalart-Allmaras模型、k-双方程模型等。这些模型都有各自的特点和适用范围,可根据具体问题选择合适的湍流模型进行计算。

不同湍流模型在管道流动阻力计算中的应用和比较

不同湍流模型在管道流动阻力计算中的应用和比较

不同湍流模型在管道流动阻力计算中的应用和比较

湍流是流体动力学中最重要的组成部分,在工程上得到了广泛的应用。为了精确地分析管道流动中的流动特性,需要准确地描述流体的湍流特性。湍流模型就是用来改进对流体的湍流的描述的数学模型。在管道流动阻力计算中,不同的湍流模型有不同的应用方式,下面简要介绍一下这几种湍流模型:

1、经典的普朗特-普朗特湍流模型:该模型是如今最为广泛应用的湍流模型,使用起来要比经典的热力学方程模型要简单得多,只需要几个基本参数即可描述湍流特性。该模型可以用来准确地模拟管道流动中的湍流,但是它在复杂流动下的表现较差。

2、粘性网格模型:该模型基于均匀网格模型,利用积分方法求解流场中的湍流问题,只要改变网格的粘性系数,就可以模拟出不同湍流程度的流动特性,这对于对不同湍流流动的研究具有重要意义。

3、瞬态湍流模型:该模型使用流体力学中的连续方程组来描述瞬态湍流,可以用来分析复杂的管道流动中的湍流特性,这个模型的优势在于它能够精确地模拟出管道流动中的流动特性。

湍流模型在管道流动阻力计算中应用比较:

经典的普朗特-普朗特湍流模型:该模型只需要几个参

数就可以准确描述湍流特性,因此,在管道流动阻力计算中应用较为广泛,它的计算简单,准确性较高,但是它在复杂流动下的表现较差。

粘性网格模型:该模型可以用来计算管道内湍流流动的阻力,但是由于其计算复杂,需要改变网格的粘性系数,因此在管道流动阻力计算中应用不太广泛。

瞬态湍流模型:该模型能够精确地模拟出管道流动中的流动特性,因此,在计算管道流动中的湍流阻力时,该模型是最为准确的,但是,由于计算复杂,局限性较大,因此,在管道流动阻力计算中的应用也很少。;

三种k—ε湍流方程介绍

三种k—ε湍流方程介绍

三种k—ε湍流方程介绍

k-ε湍流模型是目前应用最广泛的湍流模型之一,它是基于雷诺平均的湍流模型,通过求解两个方程来描述湍流场,即湍动能(k)方程和湍流耗散率(ε)方程。

1. 湍动能(k)方程:湍动能方程描述了湍流场中的动能传递和湍流能量的产生与消耗过程。该方程考虑了湍流能量的输运、湍流扩散和湍流耗散等因素,是描述湍流场中能量转移和分布的重要方程。

2. 湍流耗散率(ε)方程:湍流耗散率方程描述了湍流场中湍流能量的耗散过程。湍流耗散率反映了湍流场中湍流能量转化为内能的速率,是湍流场内部湍流能量分布和传递的关键参数。

3. k-ε湍流模型的优点:相对于其他湍流模型,k-ε湍流模型在工程应用中具有较高的准确性和稳定性,适用于各种流动情况和复杂几何结构。它可以有效地模拟湍流流动的特性,提供可靠的湍流场预测结果。

总的来说,k-ε湍流模型在工程领域的应用非常广泛,特别适用于工程流体力学领域的湍流模拟和流场预测。它为工程设计和优化提供了重要的数值模拟工具,对于改善流体力学问题的理解和解决具有重要意义。

湍流模型 种类

湍流模型 种类

湍流模型的种类:

1. Spalatrt-Allmaras模型:一种一方程模型,通常用于粘性模拟,适用于无分离、可压/不可压流动问题,以及复杂几何的外部流动。

2. k-epsilon模型:广泛应用于粘性模拟,一般问题,适用于无分离、可压/不可压流动问题,复杂几何的外部流动。有realizable k-epsilon,RNG k-epsilon等多种变体模型。

3. k-omega模型:广泛应用于粘性模拟,一般问题,适用于内部流动、射流、大曲率流、分离流。

4. transition k-kl-omega模型:应用于壁面约束流动和自由剪切流,可以应用于尾迹流、混合层流动和平板绕流、圆柱绕流、喷射流。

5. transition SST模型:在近壁区比标准k-w模型具有更好的精度和稳定性。

6. Scale Adaptive Simulation(SAS模型):用于分离区域,航天领域。不稳定流动区域计算类似于LES,稳态区域计算类似于RANS。

7. Detached Eddy Simulation(DES模型):用于外部气动力,气动声学,壁面湍流。

拓展资料

湍流模型是微分方程类型,常用的湍流模型可根据所采用的微分方程数进行分类为:零方程模型、一方程模型、两方程模型、四方程模型、七方程模型等。

常用湍流模型及其在FLUENT软件中的应用

常用湍流模型及其在FLUENT软件中的应用

常用湍流模型及其在FLUENT软件中的应用

常用湍流模型及其在FLUENT软件中的应用

湍流是流体运动中不可避免的现象,它具有无规则、随机和混沌等特点,对于流体力学研究和工程应用具有重要影响。为了更好地模拟流体运动中的湍流现象,并进行相关的工程计算和优化设计,科学家们提出了许多湍流模型。本文将介绍一些常用的湍流模型,并探讨它们在流体动力学软件FLUENT中

的应用。

1. 动力学湍流模型(k-ε模型)

动力学湍流模型是最为经典和常用的湍流模型之一,主要通过求解湍流动能k和湍流耗散率ε来模拟湍流运动。这一模型

主要适用于较为简单的湍流流动,如外部流场和平稳湍流流动。在FLUENT软件中,用户可以选择不同的k-ε模型进行计算,并对模型参数进行调整,以获得更准确的湍流模拟结果。

2. Reynolds应力传输方程模型(RSM模型)

RSM模型是基于雷诺应力传输方程的湍流模型,它通过求解雷

诺应力分量来描述湍流的速度脉动特性。相比于动力学湍流模型,RSM模型适用于复杂的湍流流动,如边界层分离流动和不

可压缩流动。在FLUENT软件中,用户可以选择RSM模型,并

对模型参数进行优化,以实现对湍流流动的更精确模拟。

3. 混合湍流模型

混合湍流模型是将多个湍流模型相结合,以更好地模拟不同湍流流动。常见的混合湍流模型有k-ε和k-ω模型的组合(k-ε/k-ω模型)和k-ε模型和RSM模型的组合(k-ε/RSM模型)等。在FLUENT软件中,用户可以选择不同的混合模型,

并根据具体的流动特征进行模型参数调整,以实现更准确的湍

湍流模型介绍

湍流模型介绍

湍流模型

目前计算流体力学常用的湍流的数值模拟方法主要有以下三种:

直接模拟(direct numerical simulation, DNS)直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。

大涡模拟(large eddy simulation, LES)

大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。大尺度的涡通过相互

作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。这些对涡旋的认识基础就导致了大涡模拟方法的产生。Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。

fluent中常见的湍流模型及各自应用场合

fluent中常见的湍流模型及各自应用场合

标题:深入探讨fluent中常见的湍流模型及各自应用场合

在fluent中,湍流模型是模拟复杂湍流流动的重要工具,不同的湍流模型适用于不同的流动情况。本文将深入探讨fluent中常见的湍流模型及它们各自的应用场合,以帮助读者更深入地理解这一主题。

1. 简介

湍流模型是对湍流流动进行数值模拟的数学模型,通过对湍流运动的平均值和湍流运动的涡旋进行描述,以求解湍流运动的平均流场。在fluent中,常见的湍流模型包括k-ε模型、k-ω模型、LES模型和DNS模型。

2. k-ε模型

k-ε模型是最常用的湍流模型之一,在工程领域有着广泛的应用。它通过求解两个方程来描述湍流场,即湍流能量方程和湍流耗散率方程。k-ε模型适用于对流动场变化较为平缓的情况,如外流场和边界层内流动。

3. k-ω模型

k-ω模型是另一种常见的湍流模型,在边界层内流动和逆压力梯度流动情况下有着良好的适用性。与k-ε模型相比,k-ω模型对于边界层的模拟更加准确,能够更好地描述壁面效应和逆压力梯度情况下的流动。

4. LES模型

LES(Large Ey Simulation)模型是一种计算密集型的湍流模拟方法,适用于对湍流细节结构和湍流的大尺度结构进行同时模拟的情况。在fluent中,LES模型通常用于对湍流尾流、湍流燃烧和湍流涡流等复

杂湍流流动进行模拟。

5. DNS模型

DNS(Direct Numerical Simulation)模型是一种对湍流流动进行直接数值模拟的方法,适用于小尺度湍流结构的研究。在fluent中,DNS模型常用于对湍流的微观结构和湍流的小尺度特征进行研究,如湍流能量谱和湍流的空间分布特性等。

四种湍流模型介绍

四种湍流模型介绍

四种湍流模型介绍

湍流是一种自然界中的非常普遍的现象,它的产生非常复杂且难以完全理解。

然而,对于一些科学领域来说,湍流是非常重要的,比如气象学、海洋学、工程学等。湍流的模拟对于这些领域中的许多问题都是至关重要的。本文将介绍四种湍流模型的基本概念及其应用。

1. DNS(直接数值模拟)

DNS模型是把流体问题看做一组微分方程的解,对流体流动的每个细节都进行

了计算。这种模型的重要性在于它能够提供非常详细的流场信息,而且可以完全地描述流体力学问题,因此它也被称为“参考模型”。

然而,DNS模型也有一些局限性。由于湍流的分子尺度是非常小的,因此在模

型计算时需要高分辨率的计算网格,这使得计算时间和存储空间要求非常高。此外,由于瞬时的湍流性质非常不稳定,因此DNS模型的计算过程也非常复杂。因此,

在实际应用中,DNS模型的应用受到了很大的限制。

2. LES(大涡模拟)

LES模型是将湍流分解成大尺度的大涡和小尺度的小涡,并通过计算大涡的运

动来获得流场的信息。相比于DNS模型,LES模型计算的时间和存储空间要求比

较低。但是,这种模型仍然需要计算小涡的贡献,因此计算时仍然需要很高的分辨率。

在工程学中,这种模型常用于模拟湍流流动问题,比如气动噪声、汽车的气动

流动、空气污染等问题,因为模型能够更好地反映流场的基本特性,提供比较准确的结果。

3. RANS(雷诺平均纳维-斯托克斯方程模型)

RANS模型通过对湍流流场的平均速度和压力场进行求解,以获得平均情况下

的流动情况。该模型在计算湍流流场时,只需要考虑平均的流态,不需要计算流动中的小且不稳定的涡旋,因此计算效率比较高。

湍流模型和用法

湍流模型和用法

本文内容摘自《精通CFD工程仿真与案例实战》。实际上也是帮助文档的翻译,英文好的可直接参阅帮助文档。

FLUENT中的湍流模型很多,有单方程模型,双方程模型,雷诺应力模型,转捩模型等等。这里只针对最常用的模型。

1、湍流模型描述

湍流模型介绍

湍流模型介绍

湍流模型介绍

因为湍流现象是高度复杂的,所以至今还没有一种方法能够全面、准确地对所有流动问题中的湍流现象进行模拟。在涉及湍流的计算中,都要对湍流模型的模拟能力以及计算所需系统资源进行综合考虑后,再选择合适的湍流模型进行模拟。FLUENT 中采用的湍流模拟方法

包括Spalart-Allmaras模型、standard(标准)k −ε模型、RNG(重整化群)k −ε模型、

Realizable(现实)k −ε模型、v2 −f 模型、RSM(Reynolds Stress Model,雷诺应力模型)模型和LES(Large Eddy Simulation,大涡模拟)方法。

7.2.1 雷诺平均与大涡模拟的对比

因为直接求解NS 方程非常困难,所以通常用两种办法对湍流进行模拟,即对NS 方程进行雷诺平均和滤波处理。这两种方法都会增加新的未知量,因此需要相应增加控制方程的数量,以便保证未知数的数量与方程数量相同,达到封闭方程组的目的。雷诺平均NS 方程是流场平均变量的控制方程,其相关的模拟理论被称为湍流模式理论。湍流模式理论假定湍流中的流场变量由一个时均量和一个脉动量组成,以此观点处理NS 方程可以得出雷诺平均NS 方程(简称RNS 方程)。在引入Boussinesq 假设,即认为湍流雷诺应力与应变成正比之后,湍流计算就归结为对雷诺应力与应变之间的比例系数(即湍流粘性系数)的计算。根据计算中使用的变量数目和方程数目的不同,湍流模式理论中所包含的湍流模型又被分为二方程模型、一方程模型和零方程模型(代数模型)等大类。

流体力学中的湍流模型及其应用

流体力学中的湍流模型及其应用

流体力学中的湍流模型及其应用流体力学是研究流体运动规律的学科,涉及到许多重要的现象和问题。其中,湍流是自然界中普遍存在的一种流动状态。湍流的不可预

测性和复杂性使其成为流体力学中的难点之一。为了研究和解决湍流

问题,湍流模型被广泛使用。本文将介绍流体力学中常见的湍流模型

以及它们的应用。

一、湍流模型的分类

湍流模型可以分为两大类:直接数值模拟(DNS)和湍流模型。DNS采用非常细致的网格来直接求解三维恒定非定常Navier-Stokes方程,可以获得极高的精度,但由于计算量巨大,只能用于小尺度的问题。湍流模型则通过对湍流中的宏观特征进行统计建模,近似求解一

部分湍流统计平均方程,从而降低计算量。

二、湍流模型的种类

1. RANS模型(雷诺平均Navier-Stokes方程)

RANS模型是湍流模型中应用最广泛的一类模型。在RANS模型中,将湍流场分解为时间平均部分和涨落部分,并通过对时间平均部分进

行求解,来求解流动的平均行为。其中,最常用的RANS模型是k-ε模型和k-ω模型,它们通过求解湍流能量和湍流速度脉动能方程,来模

拟湍流的影响。

2. LES模型(大涡模拟)

LES模型是一种介于DNS和RANS之间的模型,它通过在空间或

时间上过滤涡旋,并模拟它们对流动的影响。LES模型可以提供更高

的精度,同时计算代价相对较小,适用于中等尺度的湍流问题。

三、湍流模型的应用

湍流模型在各个领域中的应用十分广泛,以下列举几个典型的应用

案例。

1. 工程领域

湍流模型在航空、汽车、能源等工程领域的应用非常重要。例如,

在飞机机翼的设计中,湍流模型可以模拟机翼表面的压力分布和阻力,提供对气动性能的预测。在汽车设计中,湍流模型可以分析车身的流

几种湍流模型

几种湍流模型

解决湍流的模型总计就是那几个方程,Fluent 又从工程和数值的角度进行了整理,下面就是这些湍流模型的详细说明。 FLUENT 提供了以下湍流模型: ·Spalart-Allmaras 模型 ·k-e 模型 -标准k-e 模型 -Renormalization-group (RNG) k -e 模型 -带旋流修正k -e 模型 ·k-ω模型 -标准k-ω模型 -压力修正k-ω模型 雷诺兹压力模型 大漩涡模拟模型

几个湍流模型的比较:

从计算的角度看Spalart-Allmaras 模型在FLUENT 中是最经济的湍流模型,虽然只有一种方程可以解。由于要解额外的方程,标准k -e 模型比Spalart-Allmaras 模型耗费更多的计算机资源。带旋流修正的k -e 模型比标准k -e 模型稍微多一点。由于控制方程中额外的功能和非线性,RNG k -e 模型比标准k -e 模型多消耗10~15%的CPU 时间。就像k -e 模型,k -ω模型也是两个方程的模型,所以计算时间相同。

比较一下k -e 模型和k -ω模型,RSM 模型因为考虑了雷诺压力而需要更多的CPU 时间。然而高效的程序大大的节约了CPU 时间。RSM 模型比k -e 模型和k -ω模型要多耗费50~60%的CPU 时间,还有15~20%的内存。

除了时间,湍流模型的选择也影响FLUENT 的计算。比如标准k -e 模型是专为轻微的扩散设计的,然而RNG k -e 模型是为高张力引起的湍流粘度降低而设计的。这就是RNG 模型的缺点。 同样的,RSM 模型需要比k -e 模型和k -ω模型更多的时间因为它要联合雷诺压力和层流。

6. 湍流模型

6. 湍流模型

——涡粘模型: 低Re数k-ε模型
——涡粘模型: 低Re数k-ε模型
为体现分子粘性的影响,控制方程的扩散系数项 包括了湍流扩散系数与分子扩散系数两部分。
控制方程的有关系数必须考虑不同流态的影响,
即在系数计算中引入湍流雷诺数Ret。
在k方程中壁面附近湍动能的耗散不是各向同性。
据文献建议,当局部湍流的Ret小于150时,就应该
22
涡粘模型
依据确定t 的微分方程数目的多少,涡粘 模型包括: 零方程模型 一方程模型 两方程模型
一、 “雷诺平均”模式(RANS) ——涡粘模型
混合长度模型
混合长度lm由经验公式或实验确定; 直观简单,对于如射流、混合层、扰动和边界层
等带有薄的剪切层的流动有效,对于复杂流动则 很难确定lm,且不能用于带有分离及回流的流动。
uk
(uiuj ) xk
uiuk
u j xk
u juk
ui xk
1
(u
j
p xi
ui
p ) x j
(u
j
2ui xk xk
ui
2u
j
xk xk
)
(uiu juk ) xk
一、 “雷诺平均”模式(RANS) 雷诺应力输运方程
u
j
p xi
ui
p x j
u
j

四种湍流模型介绍

四种湍流模型介绍

由于航发燃烧室中的流动特性极其复杂,要想提高数值计算的预测能力,必须要慎重选择湍流模型。用四种不同的湍流模型对带双径向旋流杯的下游流场进行数值模拟,将计算结果与实验结果作对比,比较各湍流模型的原理和物理基础,优劣,并分析流场速度分布和回流区特性。

涉及的湍流模型:

标准k-ε湍流模型(SKE)

1标准k-ε湍流模型有较高的稳定性,经济性和计算精度,应用广泛,适合高雷诺数湍流,但不适合旋流等各向异性较强的流动。

2简单的湍流模型是两个方程的模型,需要解两个变量,即速度和长度。在fluent中,标准

k-ε湍流模型自从被Launder and Spalding 提出之后,就变成流场计算中的主要工具。其在工业上被普遍应用,其计算收敛性和准确性都非常符合工程计算的要求。

3但其也有某些限制,如ε方程包含不能在壁面计算的项,因此必须使用壁面函数。另外,其预测强分离流,包含大曲率的流动和强压力梯度流动的结果较弱。

它是个半经验的公式,是从实验现象中总结出来的。

动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。

应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。

可实现的k-ε模型是才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。

·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。

术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。

工程流体力学中的湍流模型比较与分析

工程流体力学中的湍流模型比较与分析

工程流体力学中的湍流模型比较与分析

引言:

湍流是流体力学中一种复杂的流动现象,它广泛存在于自然界和工程应用中。

研究和模拟湍流流动是工程流体力学中的一个重要课题。湍流模型是用来描述湍流流动的数学模型,对于工程实践中的湍流模拟有着重要的影响。本文将比较和分析几种常用的湍流模型,包括雷诺平均Navier-Stokes方程(RANS)模型、大涡模拟(LES)和直接数值模拟(DNS)。

1. 雷诺平均Navier-Stokes方程(RANS)模型

雷诺平均Navier-Stokes方程是湍流模拟中最常用的模型之一。它基于雷诺平均的假设,将流动场分解为平均流动和湍流脉动两部分。RANS模型通过求解平均流动方程和湍流脉动方程来描述流场的平均状态和湍流效应。经典的RANS模型包

括k-ε模型和k-ω模型,它们通过引入湍流能量和正应力来描述湍流的传输和衰减。

2. 大涡模拟(LES)

大涡模拟是一种介于RANS模型和DNS模型之间的模型。在LES模拟中,较

大的湍流涡旋被直接模拟,而较小的涡旋则通过子网格模型(subgrid model)来描述。LES模型可以较好地模拟湍流的空间变化特性,对于流动中的尺度较大的湍流结构有着较好的描述能力。然而,由于需要模拟较小的湍流结构,LES模拟通常需要更高的计算资源和更复杂的数值算法。

3. 直接数值模拟(DNS)

直接数值模拟是一种最为精确的湍流模拟方法,它通过直接求解包含所有空间

和时间尺度的Navier-Stokes方程来模拟湍流流动。DNS模拟可以精确地捕捉湍流

流动中的所有涡旋和尺度结构,提供最为详细的湍流统计信息。然而,由于湍流流

流体力学中的流体流动的湍流模型

流体力学中的流体流动的湍流模型

流体力学中的流体流动的湍流模型在流体力学中,流体流动是一个复杂而广泛的研究领域。湍流作为

流体流动的一种重要模型,具有不可忽视的影响。本文将讨论湍流模

型在流体力学中的应用和意义。

一、湍流的概念和特点

湍流是指在流体中存在不规则、混乱的流动现象。与之相对的是层流,层流是指流体以平行且有序的路径运动。湍流的主要特点包括:

不规则性、三维性、旋转性和不可预测性。湍流具有广泛的应用领域,如气象学、航空航天、工程流体力学等。

二、湍流模型的分类

湍流模型主要用于描述湍流流动的数学和物理特性,有多种分类方法。根据直接数值模拟(DNS)、雷诺平均模拟(RANS)和大涡模拟(LES)等,湍流模型可分为直接模拟模型、统计模型和动态模型等。

1. 直接模拟模型

直接模拟模型是基于流体力学方程的解析解,通过数值方法模拟流

体流动的全过程。这种模型能够精确描述湍流的数学和物理特性,但

计算量大,适用范围有限。

2. 统计模型

统计模型是通过对湍流流动的统计数据进行建模,以得到平均场变

量的表达式。常见的统计模型包括雷诺平均模型(RANS)、湍动能方

程模型和湍流动能理论模型等。这些模型适用于工程实际,计算量相对较小。

3. 动态模型

动态模型是指结合统计模型和直接模拟模型的模型。它能够根据流动状态自适应地调整模型参数,以提高模型的准确性。动态模型适用于大尺度流动和高雷诺数流动的模拟。

三、湍流模型的应用

湍流模型在流体力学研究和工程实践中有着广泛的应用。以下是一些典型的应用案例:

1. 空气动力学

湍流模型在飞行器气动性能研究中起到了重要作用。通过模拟湍流的生成和演化过程,可以预测飞行器在不同工况下的气动特性。这对于飞机设计、空气动力学优化和飞行安全都具有重要意义。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解决湍流的模型总计就是那几个方程,Flue nt又从工程和数值的角度进行了整理,下面就是这些湍流模型的详细说明。

FLUENT提供了以下湍流模型:

•Spalart-Allmaras 模型

•k-e模型

—标准k-e模型

—Ren ormalizatio n-group (RNG^e 模型

—带旋流修正k-e模型

•k-3模型

—标准k- 3模型

—压力修正k- 3模型雷诺兹压力模型大漩涡模拟模型

几个湍流模型的比较:

从计算的角度看Spalart-Allmaras模型在FLUENT中是最经济的湍流模型,虽然只有一种方程可以解。由于要解额外的方程,标准ke模型比Spalart-Allmaras模型耗费更多的计算机资

源。带旋流修正的k-e模型比标准ke模型稍微多一点。由于控制方程中额外的功能和非线性,RN&七模型比标准k-e模型多消耗10〜15%的CPU时间。就像k七模型,k-3模型也是两个方程的模型,所以计算时间相同。

比较一下k◎莫型和k-3模型,RSM模型因为考虑了雷诺压力而需要更多的CPU时间。然而高效的程序大大的节约了CPU时间。RSM模型比k-e模型和k-3模型要多耗费50〜60%的CPU

时间,还有15〜20%的内存。

除了时间,湍流模型的选择也影响FLUENT勺计算。比如标准k-e模型是专为轻微的扩散

设计的,然而RNGk-e模型是为高张力引起的湍流粘度降低而设计的。这就是RNG莫型的缺点。同样的,RSM模型需要比k-e模型和k-3模型更多的时间因为它要联合雷诺压力和层流。

概念:1•雷诺平均:在雷诺平均中,在瞬态N-S方程中要求的变量已经分解为时均常量和变量。

相似的,像压力和其它的标量

;(10.2-2)

i「

这里••表示一个标量如压力,动能,或粒子浓度。

2. Boussinesq逼近从雷诺压力转化模型:禾U用Bouss in esq假设把雷诺压力和平均速度梯度

联系起来:

+茁飞(肚+川亦)也(10 2-O)

Boussinesq假设使用在Spalart-Allmaras模型、k-e模型和k- 3模型中。这种逼近方法好处是对计算机的要求不高。在Spalart-Allmaras模型中只有一个额外的方程要解。k-e模型和k-3模型

中又两个方程要解。Bouss inesq假设的不足之处是假设u t是个等方性标量,这是不严格的。

1. Spalart-Allmaras 模型(1equ):

方程是:

这里G v是湍流粘度生成的,Y v是被湍流粘度消去,发生在近壁区域。5~是用户定义的。

注意到湍流动能在Spalart-Allmara没有被计算,但估计雷诺压力时没有被考虑。

特点:

1). Spalart-Allmaras模型是设计用于航空领域的,主要是墙壁束缚流动,而且已经显示出和好的效果。

2)。在原始形式中Spalart-Allmaras模型对于低雷诺数模型是十分有效的,要求边界层中粘性影响的区域被适当的解决。

3)。不能依靠它去预测均匀衰退,各向同性湍流。还有要注意的是,单方程的模型经常因为对长度的不敏感而受到批评,例如当流动墙壁束缚变为自由剪切流。

2. k-e模型(2equ):

2.1、标准k-e模型的方程

湍流动能方程k,和扩散方程e:

+ f *+ Gb —X —1.V I S&

Gs牛■十£ (10.4-2)

方程中G表示由层流速度梯度而产生的湍流动能,计算方法在10.4.4中有介绍。G是由浮力产生的湍流动能,10.4.5中有介绍,Y M由于在可压缩湍流中,过渡的扩散产生的波动,10.4.6中有介绍,G, C2, G,是常量,d k和b e是k方程和e方程的湍流Prandt数,

S k 和S e 是用户定义的。

特点:

标准2模型自从被Launder and Spaldin g 出之后,就变成工程流场计算中主要的工 具了。适用范围广、经济、合理的精度,这就是为什么它在工业流场和热交换模拟中有 如此广泛的应用了。它是个半经验的公式,是从实验现象中总结出来的。

2.2、RNG k-e 模型(2equ ):

RNG k-e 模型的方程

d y d -- I H --------- Ut u 7

On

(

'\€— i Gjt +

5U 一 C M —亿 + £ K k

G 是由层流速度梯度而产生的湍流动能,

1044介绍了计算方法,G 是由浮力而产

生的湍流动能,10.4.5介绍了计算方法,Y M 由于在可压缩湍流中,过渡的扩散产生的波 动,10.4.6中有介绍,G, C 2, G,是常量,a k 和a e 是k 方程和e 方程的湍流Prandt 数,S k 和S e 是用户定义的。

RNG 口标准k-e 模型的区别在于:

这里迅

|

■ I

特点:

RNGk-e 模型来源于严格的统计技术。它和标准

k-e 模型很相似,但是有以下改进:

• RNG 模型在e 方程中加了一个条件,有效的改善了精度。

•考虑到了湍流漩涡,提高了在这方面的精度。 •

RNG 理论为湍流Prandt 数提供了一个解析公式,然而标准 k-e 模型使用的是用户提

供的常数。

•然而标准k 七模型是一种高雷诺数的模型,RNG 理论提供了一个考虑低雷诺数流动 粘性的解析公式。这些公式的效用依靠正确的对待近壁区域

这些特点使得RNGk-e 模型比标准k-e 模型在更广泛的流动中有更高的可信度和精度。

(10.4-5)

C 沖用(1 一卩

/"0)Q

(1O.4-U ))

相关文档
最新文档