Word clustering Smaller models Faster training.ppt
朴素贝叶斯英文文本分类流程
朴素贝叶斯英文文本分类流程
朴素贝叶斯分类器是一种常用的基于概率统计的文本分类方法。
其英文文本分类流程如下:
1. 收集和准备数据集:准备用于训练和测试的英文文本数据集。
这些文本数据应该经过标记或分类,以便作为训练样本。
2. 数据预处理:对收集到的英文文本数据进行预处理,包括去除停用词(如a, an, the等),标点符号,数字和特殊字符等。
还可以进行词干提取或词形还原,将单词转换成其基本形式。
3. 特征提取:将每个文本样本转化为特征向量表示,常用的方法有词袋模型(bag-of-words model)或者TF-IDF(Term Frequency-Inverse Document Frequency)。
4. 训练模型:使用训练数据集,利用朴素贝叶斯分类算法进行模型训练。
该算法假设所有特征都是条件独立的,利用贝叶斯定理计算每个类别的概率分布。
5. 预测和评估:使用训练好的模型对新的未知文本进行分类预测。
根据预测结果与实际类别的比较,评估模型的性能,常用的评估指标包括精确度(Precision)、召回率(Recall)和F1值。
6. 模型调优:根据评估结果,根据需要调整模型的参数,如平滑参数(smoothing parameter)等,重新进行训练和评估。
7. 应用模型:根据经过调优的模型,可以对新的未知文本进行实时分类预测,例如对新闻文章进行分类,垃圾邮件过滤等。
总结:朴素贝叶斯分类器通过计算文本中每个特征的概率,利用贝叶斯公式进行分类预测。
其流程包括数据收集和准备,数据预处理,特征提取,模型训练,预测和评估,模型调优以及应用模型等步骤。
skip-gram通俗理解
Skip-gram 是一种用于训练词向量(Word Embeddings)的模型,属于自然语言处理(NLP)领域。
该模型的目标是从大量的文本数据中学习单词之间的语义关系,将单词表示为向量。
背景:在自然语言处理中,为了让计算机能够理解和处理文本,我们通常需要将单词转换为向量形式,这被称为词嵌入(Word Embedding)。
词向量的目标是捕捉单词之间的语义关系,使得具有相似语义的单词在向量空间中更加接近。
Skip-gram 模型:Skip-gram 模型的基本思想是从一个给定的单词中,尝试预测它周围的上下文单词。
具体来说,对于给定的一个中心单词,Skip-gram 模型试图通过训练学习到一个能够预测该中心单词周围上下文单词的条件概率分布。
简单示例:假设我们有以下句子:以及我们选择一个中心单词作为输入,比如选择 "sat"。
Skip-gram 模型的目标是预测 "sat" 周围的上下文单词,比如 "The", "cat", "on", "the", "mat"。
训练过程:1.数据准备:将文本数据转换为训练样本,其中每个样本由一个中心单词和其周围的上下文单词组成。
2.模型结构: Skip-gram 模型包含一个输入层和一个输出层。
输入层接收中心单词的独热编码(one-hot encoding),输出层产生上下文单词的条件概率分布。
3.训练目标:通过最大化给定中心单词时预测其周围上下文单词的条件概率,来调整模型参数。
4.学习词向量:训练完成后,输入层的权重矩阵即可作为学得的词向量,将单词映射到向量空间中。
结果:Skip-gram 模型通过这样的训练过程,得到的词向量使得具有相似语义的单词在向量空间中更加接近。
这样,我们可以使用这些词向量来表示单词,同时保留它们的语义关系。
词汇复杂度的测量指标
词汇复杂度的测量指标词汇复杂度是衡量文本中词汇选择和使用的难度程度的一种指标。
词汇复杂度高的文章往往使用了较为生僻、专业性较强或多样化的词汇,能够提升文章的表达力和阅读体验。
本文将以《人工智能:现实与未来》为题,从人类视角出发,对人工智能的现状和未来发展进行探讨。
一、引言人工智能(Artificial Intelligence,简称AI)作为一门跨学科的研究领域,旨在开发智能机器,使其能够模拟人类的思维和行为。
如今,AI已经广泛应用于各个领域,从自动驾驶汽车到智能家居,从机器人辅助手术到智能语音助手,其应用场景不断拓展,影响着人类的生活。
二、现实应用1. 机器学习机器学习是AI的核心技术之一,通过让机器学习大量数据并从中提取规律,使其能够自动进行任务执行和决策。
例如,搜索引擎通过机器学习算法不断优化搜索结果的准确性和相关性,为用户提供更好的搜索体验。
2. 自然语言处理自然语言处理是让计算机理解和处理人类语言的技术,包括语音识别、语义分析、机器翻译等。
随着语音助手的普及,如苹果的Siri 和亚马逊的Alexa,自然语言处理技术得到了广泛应用,为人们提供了更加便捷的交互方式。
三、未来发展1. 强人工智能强人工智能是指具有与人类智能相媲美甚至超越人类智能的机器。
尽管目前的人工智能在特定领域已经表现出了惊人的能力,但要实现强人工智能仍面临诸多挑战,如通用人工智能的设计、伦理道德问题的考量等。
2. 人机融合人机融合是指人类与机器之间的深度合作和互补关系。
随着机器学习和自然语言处理等技术的进一步发展,人与机器的交互将更加紧密和自然,人们将能够更好地利用机器的辅助来完成各种任务。
四、结语人工智能作为一种科技革命的驱动力量,正深刻地改变着人类的生活方式和社会结构。
尽管人工智能也面临着伦理、隐私和就业等诸多问题,但只要能够正确应对,我们相信人工智能将为人类带来更加美好的未来。
通过以上对人工智能的现实应用和未来发展的阐述,我们可以看到人工智能在不断进步和演变中,为人类带来了更多便利和机遇。
基于词向量的短文本分类技术研究
基于词向量的短文本分类技术研究随着社交媒体、微博、微信等流量的爆发,短文本成为我们日常生活和工作中的重要组成部分。
很多时候,我们需要对这些短文本进行分析和分类。
然而,由于短文本本身的特殊性,传统分类算法在短文本分类中常常面临效果不佳的问题。
在这种情况下,基于词向量的短文本分类技术应运而生。
一、词向量的基本概念词向量(Word Vector)是指把单词映射到一个实数向量上的过程。
每个单词被表示成一个向量,这个向量在空间上有一个位置,不同的单词向量之间的distances(距离)可以通过欧式距离或余弦相似度来度量。
词向量有很强的语义表达能力,许多常用的自然语言处理技术,比如机器翻译、语言识别和文本分类都要用到词向量。
语言模型技术能够将单词精准地表示为向量,使得每个单词的向量之间在空间上的距离可以表达出词语之间的相近程度。
具体来说,词向量应包含两方面的信息:语种信息和语义信息。
语种信息是指单词所属的语言信息,是构建词向量的基础;语义信息则是指单词在语义空间上的位置信息,往往需要通过深度学习等现代人工智能技术来获取。
语义信息对于短文本分类技术的实现至关重要。
二、基于词向量的短文本分类技术文本分类是将一篇文本归为某一个或多个指定类别的任务。
传统的文本分类方法在面对短文本时,通常存在分类效果不佳的问题。
对此,基于词向量的短文本分类技术在很大程度上解决了这一问题。
基于词向量的短文本分类技术通常包含以下几个步骤:1.构建词向量库词向量库是基于语料库进行训练得到的。
可以使用多种方法构建词向量库,比较常用的有基于Word2Vec和基于GloVe的两种方法。
这里我们以Word2Vec为例进行说明。
Word2Vec是一种基于神经网络的词嵌入技术。
它的基本思想是对每个单词赋予一个向量,使得在该向量空间中,相近意义的单词距离比较近。
Word2Vec在推理类任务和短文本分类任务上都取得了不错的效果。
2.分词在构建词向量库之后,需要将待分类的短文本进行分词。
技术服务机器学习算法考核试卷
4.以下哪些是深度学习中的常见激活函数?()
A. Sigmoid
B. ReLU
C. Softmax
D. MSE
5.以下哪些损失函数常用于分类问题?()
A.交叉熵损失
B. Hinge损失
C.均方误差(MSE)
D.平均绝对误差(MAE)
6.以下哪些方法可以用于特征选择?()
A.过滤式
B.包裹式
1. ABD
2. ABD
3. ACD
4. ABC
5. AB
6. ABC
7. ABCD
8. ABC
9. ABC
10. ABC
11. ABC
12. ABCD
13. ABC
14. ABC
15. ABCD
16. ABC
17. ABCD
18. ABC
19. ABC
20. ABC
三、填空题
1.过拟合
2. ReLU
A.矩阵分解
B.决策树
C.支持向量机
D. K近邻算法
18.在强化学习中,以下哪个概念指的是智能体在某一状态采取某一动作后,获得的奖励与状态转移的概率?()
A.策略
B.值函数
C.动作值函数
D.状态值函数
19.以下哪个算法通常用于图像识别?()
A.卷积神经网络(CNN)
B.循环神经网络(RNN)
C.支持向量机
A.线性激活函数
B. Sigmoid激活函数
C. ReLU激活函数
D. Softmax激活函数
7.以下哪个概念用于描述模型在训练过程中,模型在训练集上的表现越来越好,但在测试集上的表现越来越差的现象?()
A.欠拟合
使用大语言模型进行文本分类
使用大语言模型进行文本分类:从预处理到部署的完整指南一、数据预处理在使用大语言模型进行文本分类之前,数据预处理是不可或缺的一步。
数据预处理主要包括以下步骤:数据清洗:去除无关信息、错误数据、重复数据等,确保数据质量。
文本分词:将文本分割成单独的词语或子词。
特征提取:从文本中提取出与分类任务相关的特征,如n-gram、TF-IDF等。
编码转换:将文本转换为模型可理解的数字格式。
二、模型选择与训练选择适合的模型对于文本分类任务至关重要。
以下是一些常见的大语言模型和训练方法:Transformer模型:使用自注意力机制处理序列数据,具有强大的表示能力。
BERT模型:基于Transformer的双向预训练语言模型,在多个NLP任务中表现出色。
GPT系列模型:基于Transformer的单向语言模型,适用于生成任务。
RoBERTa模型:BERT的改进版,通过更广泛的训练数据和训练策略获得更好的性能。
确定模型后,需要进行训练以获得分类能力。
训练过程中,可以通过调整超参数、使用不同的学习率策略等方法来优化模型性能。
三、特征提取在训练过程中,大语言模型可以自动学习文本特征。
此外,还可以使用额外的特征工程方法来增强模型的表示能力,例如使用word embeddings(如Word2Vec、GloVe等)或使用预训练的词向量作为输入。
四、分类器训练完成训练后,可以使用大语言模型作为特征提取器,将文本转换为固定维度的向量表示。
然后,可以使用分类器(如逻辑回归、支持向量机或神经网络)对这些向量进行分类。
训练分类器时,可以通过交叉验证等技术来评估其性能。
五、分类结果评估评估分类器的性能对于改进模型至关重要。
常用的评估指标包括准确率、精确率、召回率和F1分数等。
此外,还可以使用混淆矩阵、ROC曲线和AUC值等工具来全面了解分类器的性能。
六、优化与调整通过调整超参数、使用不同的优化器和学习率策略等方法来优化分类器的性能。
此外,还可以尝试使用集成学习等技术将多个分类器组合在一起,以提高整体性能。
中英文语义向量模型
中英文语义向量模型Language is a fundamental aspect of human communication and cognition, allowing us to express our thoughts, ideas, and experiences. As the world becomes increasingly interconnected, the need to understand and navigate different languages has become more crucial than ever. One area of language research that has gained significant attention in recent years is the study of semantic vector models, which aim to capture the meaning and relationships between words in a language.Semantic vector models are a class of computational models that represent words or phrases as high-dimensional vectors, where the relative positions of these vectors in the vector space reflect the semantic similarities and differences between the corresponding words or phrases. These models are based on the distributional hypothesis, which states that words with similar meanings tend to appear in similar contexts. By analyzing the patterns of word co-occurrence in large text corpora, semantic vector models can learn the underlying semantic relationships between words and represent them in a compact and efficient manner.One of the most well-known and widely used semantic vector models is the Word2Vec model, developed by researchers at Google in 2013. Word2Vec takes a large corpus of text as input and learns a vector representation for each word, such that words with similar meanings are positioned closer together in the vector space. This allows for the exploration of semantic relationships, such as analogies (e.g., "king" is to "queen" as "man" is to "woman") and clustering of semantically related words.While the Word2Vec model has been successfully applied to a wide range of natural language processing tasks, it was primarily developed and trained on English language data. As the world becomes more multilingual, there is a growing need to extend these semantic vector models to other languages, including Chinese, which is one of the most widely spoken languages in the world.Developing semantic vector models for the Chinese language presents several unique challenges. Unlike English, which is an alphabetic language, Chinese is a logographic language, where each character represents a distinct word or concept. This means that the underlying semantic relationships in Chinese may be more complex and nuanced than in English, requiring different approaches to capture the linguistic nuances.One approach to developing semantic vector models for Chinese is to leverage the rich linguistic information inherent in Chinese characters. Each Chinese character can be decomposed into smaller components, known as radicals, which often carry semantic or phonetic information. By incorporating these character-level features into the vector representation, researchers have been able to improve the performance of Chinese semantic vector models on a variety of tasks, such as word similarity, analogy, and text classification.Another challenge in developing Chinese semantic vector models is the lack of large, high-quality text corpora that are readily available for training. Unlike English, which has a wealth of online resources and digital text, the availability of Chinese language data can be more limited, particularly for specialized domains or regional variations. To address this, researchers have explored techniques such as cross-lingual transfer learning, where pre-trained English models are adapted and fine-tuned to the Chinese language, leveraging the similarities and differences between the two languages.Despite these challenges, the development of Chinese semantic vector models has seen significant progress in recent years. Researchers have proposed various approaches, such as incorporating character-level information, leveraging multilingualcorpora, and exploring transfer learning techniques, to create more accurate and robust Chinese semantic vector models.One notable example is the Chinese Glove (C-GloVe) model, developed by researchers at Tsinghua University. C-GloVe builds upon the successful GloVe (Global Vectors for Word Representation) model, which was originally developed for English, and adapts it to the Chinese language. By incorporating character-level information and leveraging a large-scale Chinese text corpus, C-GloVe has been shown to outperform other Chinese semantic vector models on a range of language tasks, including word similarity, analogy, and text classification.Another example is the Tencent AI Lab Embedding (TenSENT) model, developed by researchers at Tencent, one of the largest technology companies in China. TenSENT is a multilingual semantic vector model that covers a wide range of languages, including Chinese, English, and several other languages. By leveraging a large multilingual corpus and advanced training techniques, TenSENT has demonstrated impressive performance on cross-lingual tasks, such as machine translation and cross-lingual information retrieval.The development of Chinese semantic vector models has not only contributed to the advancement of natural language processing for the Chinese language but has also had broader implications for thefield of computational linguistics. By exploring the unique challenges and opportunities presented by the Chinese language, researchers have gained valuable insights into the nature of language and the underlying principles of semantic representation.Furthermore, the availability of accurate and robust Chinese semantic vector models has opened up new possibilities for cross-cultural collaboration and understanding. As the world becomes increasingly interconnected, the ability to effectively communicate and collaborate across language barriers is crucial. Semantic vector models can serve as a bridge, allowing researchers, businesses, and individuals to better understand and navigate the linguistic and cultural differences between Chinese and other languages.In conclusion, the development of Chinese semantic vector models is an important and ongoing area of research that has significant implications for the field of natural language processing and beyond. By leveraging the unique characteristics of the Chinese language and exploring novel approaches to semantic representation, researchers have made significant strides in creating more accurate and robust models that can enhance our understanding and use of language in a globalized world.。
莱文斯坦 聚类算法-概述说明以及解释
莱文斯坦聚类算法-概述说明以及解释1.引言1.1 概述莱文斯坦聚类算法是一种基于字符串相似度的聚类方法,通过计算字符串之间的莱文斯坦距离来确定它们的相似程度,进而将相似的字符串聚合在一起。
与传统的基于欧氏距离或余弦相似度的聚类方法不同,莱文斯坦距离考虑了字符串之间的编辑操作数量,使得算法在处理拼写错误或简单文本转换时具有更好的鲁棒性。
本文将介绍莱文斯坦聚类算法的原理及其应用场景,探讨其优缺点,并展望未来在文本数据处理和信息检索领域的潜在发展。
通过深入了解和研究莱文斯坦聚类算法,读者将能够更好地理解文本数据处理中的聚类技术,为实际应用提供有益的参考和指导。
1.2 文章结构本文主要分为引言、正文和结论三个部分。
在引言部分中,将介绍莱文斯坦聚类算法的概述、文章结构和目的。
在正文部分将详细介绍什么是莱文斯坦聚类算法、莱文斯坦距离的概念以及莱文斯坦聚类算法的应用。
最后,结论部分将对整篇文章进行总结,评述算法的优缺点,并展望未来在该领域的发展方向。
通过这样的结构,读者可以全面了解莱文斯坦聚类算法的原理、应用以及未来发展前景。
1.3 目的莱文斯坦聚类算法是一种基于编辑距离的聚类方法,旨在利用文本、字符串等数据之间的相似度来实现有效的聚类。
本文旨在介绍莱文斯坦聚类算法的原理、应用和优缺点,帮助读者了解该算法在数据挖掘和文本处理领域的重要性和应用价值。
通过深入探讨莱文斯坦距离的概念和莱文斯坦聚类算法的实际应用案例,读者可以更加全面地了解该算法的工作原理和效果。
同时,本文还将评述莱文斯坦聚类算法的优缺点,并展望未来该算法在数据处理和信息检索领域的发展方向和潜力,为读者提供对该算法的全面认识和深入理解。
2.正文2.1 什么是莱文斯坦聚类算法:莱文斯坦聚类算法是一种基于字符串相似度的聚类算法。
在传统的聚类算法中,通常是通过计算样本之间的距离来进行聚类,而莱文斯坦聚类算法则是通过计算字符串之间的相似度来进行聚类。
莱文斯坦距离是用来衡量两个字符串之间的相似度的一种指标。
自然语言处理中的文本聚类模型
自然语言处理中的文本聚类模型自然语言处理(Natural Language Processing,NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解和处理人类语言。
在NLP中,文本聚类模型是一个关键的技术,它可以将相似的文本分组在一起,从而帮助我们更好地理解和处理大量的文本数据。
文本聚类模型的目标是将具有相似主题、内容或语义的文本归为一类。
这种聚类可以帮助我们发现文本数据中的模式、趋势和关联性,从而为信息提取、知识发现和文本分类等任务提供支持。
在文本聚类模型中,常用的方法之一是基于词袋模型的聚类算法。
词袋模型将文本表示为一个词汇表中的词语集合,忽略了词语的顺序和语法结构,只关注词语的频率。
通过计算词语之间的相似度,可以将文本聚类为不同的类别。
另一个常用的文本聚类方法是基于主题模型的聚类算法。
主题模型可以从文本中提取潜在的主题,并将文本聚类为具有相似主题的类别。
例如,Latent Dirichlet Allocation(LDA)是一种常用的主题模型算法,它可以将文本聚类为具有相似主题分布的类别。
除了传统的聚类方法,近年来,深度学习技术在文本聚类中也取得了显著的进展。
深度学习模型通过构建多层神经网络,可以从大规模的文本数据中学习到更丰富的语义表示。
例如,基于卷积神经网络(Convolutional Neural Network,CNN)和循环神经网络(Recurrent Neural Network,RNN)的文本聚类模型,可以在不同层次上捕捉文本的局部和全局信息,从而提高聚类的准确性和效果。
然而,文本聚类模型也面临着一些挑战和限制。
首先,由于文本数据的高维性和复杂性,聚类算法往往需要处理大量的特征和样本,导致计算复杂度较高。
其次,文本数据的语义和上下文信息往往难以准确地表示和捕捉,这可能导致聚类结果的不准确性。
此外,文本数据中存在着词义消歧、语义漂移等问题,这也给文本聚类带来了一定的困难。
文本聚类方法
文本聚类方法文本聚类是一种将大量文本数据划分为若干个类别或群组的技术方法。
它可以帮助我们发现文本数据中的模式和隐藏的结构,从而更好地理解数据并进行进一步的分析和应用。
本文将介绍一些常用的文本聚类方法,包括传统方法和基于深度学习的方法。
传统的文本聚类方法主要有以下几种:1.基于词袋模型的聚类方法:这是最常见的文本聚类方法之一。
它将文本数据转化为词向量的表示,然后使用聚类算法,如K-means算法或层次聚类算法,将文本数据划分为不同的类别。
这种方法简单有效,但对于文本中的语义信息和上下文信息无视较多。
2.基于主题模型的聚类方法:主题模型是一种用于发现文本数据中隐藏主题的统计模型。
其中最著名的一种是LDA(Latent Dirichlet Allocation)模型。
基于主题模型的聚类方法将文本数据转化为主题分布的表示,然后使用聚类算法将文本数据划分为类别。
主题模型考虑了文本中词的分布和上下文关联,因此在一定程度上能更好地捕捉文本数据的语义信息。
3.基于谱聚类的聚类方法:谱聚类是一种通过图论的方法来进行聚类的技术。
将文本数据中的词或短语作为节点,考虑它们之间的相似度构建图,然后利用谱聚类算法将文本数据划分为不同的类别。
谱聚类在处理高维数据和复杂结构数据时具有很好的效果。
基于深度学习的文本聚类方法在最近几年得到了广泛的关注和应用。
这些方法利用深度神经网络来抽取文本数据中的语义信息,从而实现更准确和高效的文本聚类。
1.基于Word2Vec的文本聚类方法:Word2Vec是一种通过神经网络学习词的分布式表示的技术。
基于Word2Vec的文本聚类方法将文本数据中的词转化为词向量后,使用聚类算法将文本数据划分为不同的类别。
相比传统的基于词袋模型的方法,基于Word2Vec的方法能更好地捕捉词之间的语义关系。
2.基于卷积神经网络的文本聚类方法:卷积神经网络在图像处理中取得了很好的效果,而在处理文本数据中的局部结构时同样具有优势。
英文文本聚类
英文文本聚类
英文文本聚类是一种常用的自然语言处理技术,旨在将大量的英文文本数据按照它们的主题或语义相似性进行分类。
以下是英文文本聚类的基本步骤:
1. 数据预处理:这是任何文本分析项目的第一步,包括清理(删除停用词、标点符号等)、标准化(例如,将文本转换为小写)和分词(将文本分解为单独的单词或n-grams)。
2. 特征提取:这一步涉及从文本数据中提取有用的特征。
这可以通过各种方法完成,例如词袋模型、TF-IDF(词频-逆文档频率)或Word2Vec等。
3. 聚类算法:一旦有了特征向量,就可以使用各种聚类算法来对文本进行分组。
常见的聚类算法包括K-means、层次聚类、DBSCAN等。
4. 评估和解释:最后,需要评估聚类的质量,并解释每个聚类的含义。
这可以通过各种方法完成,例如轮廓系数、Davies-Bouldin指数或人类评估。
英文文本聚类的应用非常广泛,包括信息检索、社交媒体分析、情感分析、推荐系统等。
例如,在信息检索中,可以用来组织和检索相关的文档;在社交媒体分析中,可以用来识别和跟踪流行话题或趋势;在情感分析中,可以用来检测和分类文本中的情绪;在推荐系统中,可以用来为用户推荐与其兴趣相关的内容。
WordEmbedding理解
WordEmbedding理解⼀直以来感觉好多地⽅都吧Word Embedding和word2vec混起来⼀起说,所以导致对这俩的区别不是很清楚。
其实简单说来就是word embedding包含了word2vec,word2vec是word embedding的⼀种,将词⽤向量表⽰。
1.最简单的word embedding是把词进⾏基于词袋(BOW)的One-Hot表⽰。
这种⽅法,没有语义上的理解。
把词汇表中的词排成⼀列,对于某个单词 A,如果它出现在上述词汇序列中的位置为 k,那么它的向量表⽰就是“第 k 位为1,其他位置都为0 ”的⼀个向量。
但是这种表⽰⽅法学习不到单词之间的关系(位置、语义),并且如果⽂档中有很多词,词向量可能会很长。
对于这两个问题,第⼀个问题的解决⽅式是ngram,但是计算量很⼤,第⼆个问题可以通过共现矩阵(Cocurrence matrix)解决,但还是⾯临维度灾难,所以还需降维。
2.现在较常⽤的⽅法就是通过word2vec训练词汇,将词汇⽤向量表⽰。
该模型涉及两种算法:CBOW和Skip-Gram。
cbow是给定上下⽂来预测中⼼词,skip-gram是通过中⼼词预测上下⽂,两者所⽤的神经⽹络都只需要⼀层hidden layer.他们的做法是:cbow:将⼀个词所在的上下⽂中的词作为输⼊,⽽那个词本⾝作为输出,也就是说,看到⼀个上下⽂,希望⼤概能猜出这个词和它的意思。
通过在⼀个⼤的语料库训练,得到⼀个从输⼊层到隐含层的权重模型。
如下图所⽰,第l个词的上下⽂词是i,j,k,那么i,j,k作为输⼊,它们所在的词汇表中的位置的值置为1。
然后,输出是l,把它所在的词汇表中的位置的值置为1。
训练完成后,就得到了每个词到隐含层的每个维度的权重,就是每个词的向量。
skip-gram将⼀个词所在的上下⽂中的词作为输出,⽽那个词本⾝作为输⼊,也就是说,给出⼀个词,希望预测可能出现的上下⽂的词。
大模型用到的词向量
大模型用到的词向量
大模型使用的词向量可以分为两类:预训练的通用词向量和针对特定任务进行微调的词向量。
1. 预训练的通用词向量:这些词向量是在大规模语料上预训练得到的,可以用于各种自然语言处理任务。
其中最著名的预训练模型是Word2Vec、GloVe和FastText。
这些模型将词语映
射到低维向量空间中,使得具有相似语义的词在向量空间中距离较近。
2. 微调的词向量:在一些特定任务中,由于语境的不同或者词语含义的变化,通用的预训练词向量可能无法完全满足需求。
因此,可以使用微调的方法来对预训练词向量进行调整,以适应特定任务的特殊需求。
微调的方法通常基于具体任务的数据,通过继续训练预训练模型或更新词向量的方式来优化词向量的质量。
词向量是自然语言处理领域中很重要的一类特征表示方法,可以作为模型的输入或者作为特征用于其他任务。
大模型使用的词向量不仅可以提供对词语的语义信息,还可以通过向量空间中的距离计算词语的相似度等信息,从而提高模型在各种自然语言处理任务中的性能。
分类特征稀疏的文本
分类特征稀疏的文本
对于分类特征稀疏的文本,可以采取以下方法进行处理:
1. 特征选择:由于文本特征通常来自于单词、词组、文档等单元,可能存在大量冗余或无用的特征,影响分类效果。
因此,可以通过统计特征的信息熵或互信息等指标,筛选出与分类有关的关键特征。
2. 特征转换:对于分类特征稀疏的文本,可以采取词袋模型或TF-IDF模型进行特征表示。
词袋模型将文本表示为单词频率
向量,而TF-IDF模型则将单词频率与文本频率进行综合考虑,以降低高频单词对分类的干扰。
3. 特征嵌入:特征嵌入是将原始文本特征映射到低维稠密向量空间中的方法。
通过良好的特征嵌入,可以提高分类器的泛化能力和性能。
常用的特征嵌入方法包括Word2Vec、ELMo、BERT等。
4. 处理长文本:长文本往往包含大量的冗余信息,影响分类效果。
可以采取分块、截断等方式对长文本进行处理,以降低模型复杂度和提高分类效果。
同时,也可以采用循环神经网络等模型对长文本进行建模。
自然语言处理中的文本聚类方法评估指标
自然语言处理中的文本聚类方法评估指标自然语言处理(Natural Language Processing,简称NLP)是人工智能领域中一项重要的技术,它致力于使计算机能够理解和处理人类语言。
在NLP中,文本聚类是一种常见的任务,它将相似的文本归为一类,以便更好地理解和分析大量的文本数据。
然而,评估文本聚类方法的效果并不容易,需要考虑多个指标。
一、聚类准确性指标聚类准确性是评估文本聚类方法的重要指标之一。
它衡量了聚类结果与人工标注结果之间的相似度。
常用的聚类准确性指标包括调整兰德指数(Adjusted Rand Index,简称ARI)、互信息(Mutual Information,简称MI)和Fowlkes-Mallows 指数(Fowlkes-Mallows Index,简称FMI)等。
调整兰德指数是一种度量聚类结果与标准结果之间相似性的指标。
它考虑了聚类结果中的真阳性、真阴性、假阳性和假阴性等因素,通过计算所有样本对之间的相似度来评估聚类结果的准确性。
互信息则是一种度量聚类结果和标准结果之间的互信息量的指标,它衡量了聚类结果和标准结果之间的相关性。
Fowlkes-Mallows 指数是一种结合了精确度和召回率的指标,它考虑了聚类结果中的真阳性、假阳性和假阴性等因素。
二、聚类稳定性指标聚类稳定性是评估文本聚类方法的另一个重要指标。
它衡量了聚类结果对于不同的采样数据或参数设置的稳定性。
常用的聚类稳定性指标包括Jaccard系数(Jaccard Coefficient)和兰德指数(Rand Index)等。
Jaccard系数是一种度量两个聚类结果之间相似性的指标。
它通过计算两个聚类结果之间的交集和并集的比值来评估它们的相似程度。
兰德指数则是一种度量两个聚类结果之间一致性的指标,它通过计算两个聚类结果中样本对的一致性数量来评估它们的相似性。
三、聚类效率指标聚类效率是评估文本聚类方法的另一个重要指标。
使用马尔科夫随机场进行文本分类的性能评估策略分享(Ⅲ)
文本分类是自然语言处理领域的一个重要研究方向,其在信息检索、情感分析、新闻分类等领域都有着广泛的应用。
随着大数据和机器学习技术的不断发展,马尔科夫随机场(Markov Random Fields, MRF)作为一种强大的概率图模型,也逐渐成为文本分类任务中的一种重要工具。
在本文中,我们将分享在使用马尔科夫随机场进行文本分类时的性能评估策略,并讨论其优缺点。
首先,我们需要明确文本分类任务的基本流程。
文本分类的目标是将输入的文本分为不同的类别,这一过程通常包括数据预处理、特征提取和模型训练等步骤。
在使用马尔科夫随机场进行文本分类时,我们需要将文本表示成一种图结构,并利用概率图模型进行建模和推断。
接下来,我们将从数据集选择、特征工程、模型评估等方面进行讨论。
首先,数据集的选择对于文本分类任务至关重要。
在使用马尔科夫随机场进行文本分类时,我们通常需要大规模的标注数据集来训练模型。
因此,数据集的质量和规模直接影响了模型的性能。
在选择数据集时,我们应该考虑数据的多样性、标注的准确性以及数据的平衡性,以确保模型具有良好的泛化能力。
其次,特征工程是文本分类任务中的关键步骤。
在使用马尔科夫随机场进行文本分类时,我们需要将文本表示成一种图结构,然后提取有效的特征用于模型训练。
常用的文本特征包括词袋模型、TF-IDF特征、词嵌入等。
在进行特征工程时,我们应该选择适合模型的特征,并进行合理的特征组合和降维处理,以提高模型的性能和效率。
接着,模型评估是文本分类任务中不可忽视的一环。
在使用马尔科夫随机场进行文本分类时,我们需要选择合适的评估指标来衡量模型的性能。
常用的评估指标包括准确率、召回率、F1值等,我们应该综合考虑这些指标来评估模型的性能。
此外,我们还可以利用交叉验证、留出集、混淆矩阵等方法来评估模型的泛化能力和稳定性。
最后,我们需要讨论使用马尔科夫随机场进行文本分类的优缺点。
马尔科夫随机场作为一种强大的概率图模型,在文本分类任务中具有一定的优势。
Algorithms for bigram and trigram word clustering
Speech Communication24199819–37Algorithms for bigram and trigram word clustering1¨Sven Martin),Jorg Liermann,Hermann Ney2¨Lehrstuhl fur Informatik VI,RWTH Aachen,UniÕersity of Technology,Ahornstraße55,,D-52056Aachen,GermanyReceived5June1996;revised15January1997;accepted23September1997AbstractIn this paper,we describe an efficient method for obtaining word classes for class language models.The method employs an exchange algorithm using the criterion of perplexity improvement.The novel contributions of this paper are the extension of the class bigram perplexity criterion to the class trigram perplexity criterion,the description of an efficient implementation for speeding up the clustering process,the detailed computational complexity analysis of the clustering algorithm,and, finally,experimental results on large text corpora of about1,4,39and241million words including examples of word classes,test corpus perplexities in comparison to word language models,and speech recognition results.q1998Elsevier Science B.V.All rights reserved.Zusammenfassung¨In diesem Bericht beschreiben wir eine effiziente Methode zur Erzeugung von Wortklassen fur klassenbasierte Sprachmodelle.Die Methode beruht auf einem Austauschalgorithmus unter Verwendung des Kriteriums der Perplexi-¨¨tatsverbesserung.Die neuen Beitrage dieser Arbeit sind die Erweiterung des Kriteriums der Klassenbigramm-Perplexitat zum¨Kriterium der Klassentrigramm-Perplexitat,die Beschreibung einer effizienten Implementierung zur Beschleunigung des¨Klassenbildungsprozesses,die detaillierte Komplexitatsanalyse dieser Implementierung,und schließlich experimentelle¨¨¨Ergebnisse auf großen Textkorpora mit ungefahr1,4,39und241Millionen Wortern,einschließlich Beispielen fur erzeugte¨Wortklassen,Test Korpus Perplexitaten im Vergleich zu wortbasierten Sprachmodellen und Erkennungsergebnissen auf Sprachdaten.q1998Elsevier Science B.V.All rights reserved.´´Resume´´` Dans cet article,nous decrivons une methode efficace d’obtention des classes de mots pour des modeles de langage.´´`´´Cette methode emploie un algorithme d’echange qui utilise le critere d’amelioration de la perplexite.Les contributions ´`´nouvelles apportees par ce travail concernent l’extension aux trigrammes du critere de perplexite de bigrammes de classes,la ´´´´´´description d’une implementation efficace pour accelerer le processus de regroupement,l’analyse detaillee de la complexite´´calculatoire,et,finalement,des resultats experimentaux sur de grands corpus de textes de1,4,39et241millions de mots,)Corresponding author.Email:martin@informatik.rwth-aachen.de.1This paper is based on a communication presented at the ESCA Conference EUROSPEECH’95and has been recommended by the EUROSPEECH’95Scientific Committee.2Email:ney@informatik.rwth-aachen.de.0167-6393r98r$19.00q1998Elsevier Science B.V.All rights reserved.Ž.PII S0167-63939700062-9()S.Martin et al.r Speech Communication 24199819–3720incluant des exemples de classes de mots produites,de perplexites de corpus de test comparees aux modeles de langage de ´´`mots,et des resultats de reconnaissance de parole.q 1998Elsevier Science B.V.All rights reserved.´Keywords:Stochastic language modeling;Statistical clustering;Word equivalence classes;Wall Street Journal corpus1.IntroductionThe need for a stochastic language model in speech recognition arises from Bayes’decision rule Ž.for minimum error rate Bahl et al.,1983.The word sequence w ...w to be recognized from the se-1N quence of acoustic observations x ...x is deter-1T mined as that word sequence w ...w for which the 1N Ž<.posterior probability Pr w ...w x ...x attains 1N 1T its maximum.This rule can be rewritten in the form <arg max Pr w ...w P Pr x ...x w ...w ,4Ž.Ž1N 1T 1N w ...w 1NŽ<.where Pr x ...x w ...w is the conditional 1T 1N probability of,given the word sequence w ...w ,1N observing the sequence of acoustic measurements Ž.x ...x and where Pr w ...w is the prior proba-1T 1N bility of producing the word sequence w ...w .1N The task of the stochastic language model is to provide estimates of these prior probabilities Ž.Pr w ...w .Using the definition of conditional 1N probabilities,we obtain the decomposition:N<Pr w ...w sPr w w ...w .Ž.Ž.Ł1N n 1n y 1n s 1For large vocabulary speech recognition,these conditional probabilities are typically used in the Ž.following way Bahl et al.,1983.The dependence of the conditional probability of observing a word w n at a position n is assumed to be restricted to its Ž.immediate m y 1predecessor words w q n y m 1...w .The resulting model is that of a Markov n y 1chain and is referred to as m -gram model.For m s 2and m s 3,we obtain the widely used bigram and trigram models,respectively.These bigram and tri-gram models are estimated from a text corpus during a training phase.But even for these restricted mod-els,most of the possible events,i.e.,word pairs and word triples,are never seen in training because there are so many of them.Therefore in order to allow for events not seen in training,the probability distribu-tions obtained in these m -gram approaches are smoothed with more general ually,Ž.these are also m -grams with a smaller value for m or a more sophisticated approach like a singleton Ždistribution Jelinek,1991;Ney et al.,1994;Ney et .al.,1997.In this paper,we try a different approach for smoothing by using word equivalence classes,or word classes for short.Here,each word belongs to exactly one word class.If a certain word m -gram did not appear in the training corpus,it is still possible that the m -gram of the word classes corresponding to these words did occur and thus a word class based m -gram language model,or class m -gram model for short,can be estimated.More general,as the number of word classes is smaller than the number of words,the number of model parameters is reduced so that each parameter can be estimated more reliably.On the other hand,reducing the number of model pa-rameters makes the model coarser and thus the pre-diction of the next word less precise.So there has to be a tradeoff between these two extremes.Typically,word classes are based on syntactic semantic concepts and are defined by linguistic ex-perts.In this case,they are called parts of speech Ž.POS .Generalizing the concept of word similarities,we can also define word classes by using a statistical criterion,which in most cases,but not necessarily,is maximum likelihood or,equivalently,perplexity ŽJelinek,1991;Brown et al.,1992;Kneser and Ney,.1993;Ney et al.,1994.With the latter two ap-proaches,word classes are defined using a clustering algorithm based on minimizing the perplexity of a class bigram language model on the training corpus,which we will call bigram clustering for short.The contributions of this paper are:Øthe extension of the clustering algorithm from the bigram criterion to the trigram criterion;Øthe detailed analysis of the computational com-plexity of both bigram and trigram clustering algorithms;Øthe design and discussion of an efficient imple-mentation of both clustering algorithms;Øsystematic tests using the 39-million word Wall Street Journal corpus concerning perplexity and()S.Martin et al.r Speech Communication24199819–3721Table1List of symbolsW vocabulary sizeu,Õ,w,x words in a running text;usually w is the word under discussion,r its successor,y its predecessor and u the predecessor toÕw word in text corpus position nnŽ.S w set of successor words to word w in the training corpusŽ.P w set of predecessor words to word w in the training corpusŽ.Ž.SÕ,w set of successor words to bigramÕ,w in the training corpusŽ.Ž.PÕ,w set of predecessor words to bigramÕ,w in the training corpusG number of word classesG:w™g class mapping functionwg,k word classesŽ.N training corpus sizeB number of distinct word bigrams in the training corpusT number of distinct word trigrams in the training corpusŽ.N P number of occurrences in the training corpus of the event in parenthesesŽ.F G log-likelihood for a class bigram modelbiŽ.F G log-likelihood for a class trigram modeltriPP perplexityI number of iterations of the clustering algorithmŽ.Ž.G P,wÝ1i.e.,number of seen predecessor word classes to word wg:NŽg,w.)0Ž.Ž.G w,PÝ1i.e.,number of seen successor word classes to word wg:NŽw,g.)0y1Ž.Ž.W PÝG P,w i.e.,average number of seen predecessor word classesP w wy1Ž.Ž.W PÝG w,P i.e.,average number of seen successor word classesw P wŽ.Ž.G P,P,wÝ1i.e.,number of seen word class bigrams preceding word wg,g:NŽg,g,w.)01212Ž.Ž.G P,w,PÝ1i.e.,number of seen word class pairs embracing word wg,g:NŽg,w,g.)01212Ž.Ž.G w,P,PÝ1i.e.,number of seen word class bigrams succeeding word wg,g:NŽw,g,g.)01212b absolute discounting value for smoothingŽ.N g number of distinct words appearing r times in word class grŽ.G g,P number of distinct word classes seen r times right after word class grÕÕŽ.G P,g number of distinct word classes seen r times right beforeword class gr w wŽ.G P,P number of distinct word class bigrams seen r timesrŽ.b g generalized distribution for smoothingwclustering times for various numbers of word classes and initialization methods;Øspeech recognition results using the North Ameri-can Business corpus.The original exchange algorithm presented in thisŽ. paper was published in Kneser and Ney,1993with good results on the LOB corpus.There is a differentŽ. approach described in Brown et al.,1992employ-ing a bottom-up algorithm.There are also ap-Žproaches based on simulated annealing Jardino and .Adda,1994.Word classes can also be derived fromŽan automated semantic analysis Bellegarda et al., .Ž1996,or by morphological features Lafferty and.Mercer,1993.The organization of this paper is as follows: Section2gives a definition of class models,explains the outline of the clustering algorithm and the exten-sion to a trigram based statistical clustering criterion.Section3presents an efficient implementation of the clustering algorithm.Section4analyses the computa-tional complexity of this efficient implementation. Section5reports on text corpus experiments con-cerning the performance of the clustering algorithm in terms of CPU time,resulting word classes and training and test perplexities.Section6shows the results for the speech recognition experiments.Sec-tion7discusses the results and their usefulness to language models.In this paper,we introduce a large number of symbols and quantities;they are summa-rized in Table1.2.Class models and clustering algorithmIn this section,we will present our class bigram and trigram models and we will derive their log()S.Martin et al.r Speech Communication 24199819–3722likelihood function,which serves as our statistical criterion for obtaining word classes.With our ap-proach,word classes result from a clustering algo-rithm,which exchanges a word between a fixed number of word classes and assigns it to the word class where it optimizes the log likelihood.We will discuss alternative strategies for finding word classes.We will also describe smoothing methods for the class models trained,which are necessary to avoid zero probabilities on test corpora.2.1.Class bigram modelsWe partition the vocabulary of size W into a fixed number G of word classes.The partition is repre-sented by the so-calledclass or category mapping function G :w ™g Ž.w mapping each word w of the vocabulary to its word class g .Assigning a word to only one word class is w a possible drawback which is justified by the sim-plicity and efficiency of the clustering process.For the rest of this paper,we will use the letters g and k Ž.for arbitrary word classes.For a word bigram Õ,w Ž.we use g ,g to denote the corresponding class Õw bigram.For class models,we have two types of probabil-ity distributions:Ž<.Øa transition probability function p g g which 1w Õrepresents the first-order Markov chain probabil-ity for predicting the word class g from its w predecessor word class g ;ÕŽ<.Øa membership probability function p w g esti-0mating the word w from word class g .Since a word belongs to exactly one word class,we have )0if g s g ,w <p w g Ž.0½s 0if g /g .w Therefore,we can use the somewhat sloppy notation Ž<.p w g .0w For a class bigram model,we have then:<<<p w Õs p w g P p q g .1Ž.Ž.Ž.Ž.0w 1w ÕNote that this model is a proper probability function,and that we make an independency assumption be-tween the prediction of a word from its word class and the prediction of a word class from its predeces-sor word classes.Such a model leads to a drastic Žreduction in the number of free parameters:G P G y .Ž<.Ž.1probabilities for the table p g g ,W y G 1w ÕŽ<.probabilities for the table p w g ,and W indices 0w for the mapping G :w y g .w For maximum likelihood estimation,we construct Ž.the log likelihood function using Eq.1:N<F G slog Pr w w ...w Ž.Ž.Ýbi n 1n y 1n s f<s N Õ,w P log p w ÕŽ.Ž.ÝÕ,w<s N w P log p w g Ž.Ž.Ý0w w<qN g ,g P log p g g 2Ž.Ž.Ž.ÝÕw 1w Õg ,g ÕwŽ.with N P being the number of occurrences of the event given in the parentheses in the training data.To construct a class bigram model,we first hypothe-size a mapping function G .Then,for this hypothe-sized mapping function G ,the probabilities Ž<.Ž<.Ž.p w g and p g g in Eq.2can be estimated 0w 1w Õby adding the Lagrange multipliers for the normal-ization constraints and taking the derivatives.This Ž.results in relative frequencies Ney et al.,1994:N w Ž.<p w g s ,3Ž.Ž.0w N g Ž.w N g ,g Ž.Õw <p g g s.4Ž.Ž.1w ÕN g Ž.ÕŽ.Ž.Using the estimates given by Eqs.3and 4,we Ž.can now express the log likelihood function F G bi for a mapping G in terms of the counts:<F G s N Õ,w P log p w ÕŽ.Ž.Ž.Ýbi Õ,wN w Ž.s N w P logŽ.ÝN g Ž.w wN g ,g Ž.Õw q N g ,g P logŽ.ÝÕw N g Ž.Õg ,g ÕwsN g ,g P log N g ,g Ž.Ž.ÝÕw Õw g ,g Õwy 2P N g P log N g Ž.Ž.Ýgq N w P log N w 5Ž.Ž.Ž.Ýw()S.Martin et al.r Speech Communication 24199819–3723s N w log N w Ž.Ž.ÝwN g ,g Ž.Õw qN g ,g log .6Ž.Ž.ÝÕw N g N g Ž.Ž.Õw g ,gÕwŽ.Ž.In Brown et al.,1992the second sum of Eq.6isinterpreted as the mutual information between the word classes g and g .Note,however,that the Õw derivation given here is based on the maximum likelihood criterion only.2.2.Class trigram modelsConstructing the log likelihood function for the class trigram model<<<p w u ,Õs p w g P p g g ,g 7Ž.Ž.Ž.Ž.0w 2w u Õresults in<F G s N w P log p w g Ž.Ž.Ž.Ýtri 0w wqN g ,g ,g Ž.Ýu Õw g ,g ,g u Õw<P log p g g ,g .8Ž.Ž.2w u ÕŽ.Taking the derivatives of Eq.8for maximum likelihood parameter estimation also results in rela-tive frequencies N g ,g ,g Ž.u Õw <p g g ,g s9Ž.Ž.2w u ÕN g ,g Ž.u ÕŽ.Ž.Ž.and,using Eqs.3,7–9:<F G sN u ,Õ,w P log p w u ,ÕŽ.Ž.Ž.Ýtri u ,Õ,wN w Ž.s N w P logŽ.ÝN g Ž.w wN g ,g ,g Ž.u Õw q N g ,g ,g P logŽ.Ýu Õw N g ,g Ž.u Õg ,g ,g u ÕwsN g ,g ,g P log N g ,g ,g Ž.Ž.Ýu Õw u Õw g ,g ,g u ÕwyN g ,g P log N g ,g Ž.Ž.Ýu Õu Õg ,g u Õy N g P log N g q N w P log N w Ž.Ž.Ž.Ž.ÝÝw w g wws N w log N w Ž.Ž.ÝwN g ,g ,g Ž.u Õw qN g ,g ,g log.Ž.Ýu Õw N g ,g N g Ž.Ž.u Õw g ,g ,g u Õw10Ž.2.3.Exchange algorithmTo find the unknown mapping G :w y g ,we w will show now how to apply a clustering algorithm.The goal of this algorithm is to find a class mapping function G such that the perplexity of the class model is minimized over the training corpus.We use an exchange algorithm similar to the exchange algo-Žrithms used in conventional clustering ISODATA Ž..Duda and Hart,1973,pp.227–228,where an observation vector is exchanged from one cluster to another cluster in order to improve the criterion.In the case of language modeling,the optimization Ž.criterion is the log-likelihood,i.e.,Eq.5for the Ž.class bigram model and Eq.10for the class trigram model.The algorithm employs a technique of local optimization by looping through each element of the set,moving it tentatively to each of the G word classes and assigning it to that word class resulting in the lowest perplexity.The whole procedure is repeated until a stopping criterion is met.The outline of our algorithm is depicted in Fig.1.We will use the term to remo Õe for taking a word out of the word class to which it has been assigned in the previous iteration,the term to mo Õe for insert-ing a word into a word class,and the term to exchange for a combination of a removal followed by a move.For initialization,we use the following method:Ž.we consider the most frequent G y 1words,and each of these words defines its own word class.The remaining words are assigned to an additional word class.As a side effect,all the words with a zero Ž.unigram count N w are assigned to this word class and remain there,because exchanging them has no effect on the training corpus perplexity.The stopping criterion is a prespecified number of iterations.In addition,the algorithm stops if no words are ex-changed any more.()S.Martin et al.r Speech Communication 24199819–3724Fig.1.Outline of the exchange algorithm for word clustering.Thus,in this method,we exploit the training corpus in two ways:1.in order to find the optimal partitioning;2.in order to evaluate the perplexity.An alternative approach would be to use two different data sets for these two tasks,or to simulate unseen events using leaving-one-out.That would result in an upper bound and possibly in more robust word classes,but at the cost of higher mathematical Ž.and computational expenses.Kneser and Ney,1993employs leaving one out for clustering.However,the improvement was not very significant,and so we will use the simpler original method here.An effi-cient implementation of this clustering algorithm will be presented in Section 3.parison with alternati Õe optimization strate -giesIt is interesting to compare the exchange algo-rithm for word clustering with two other approaches described in the literature,namely simulated anneal -Ž.ing Jardino and Adda,1993and bottom-up cluster -Ž.ing Brown et al.,1992.In simulated annealing ,the baseline optimization strategy is similar to the strategy of the exchange algorithm.The important difference is according to the simulated annealing concept that we accept tem-porary degradations of the optimization criterion.The decision of whether to accept a degradation or not is made dependent on the so called cooling parameter.This approach is usually referred to as Metropolis algorithm.Another difference is that the words to be exchanged from one word class to another and the target word classes are selected by the so-called Monte Carlo ing the correct cooling parameter,simulated annealing converges to the global optimum.In our own experimental tests Ž.unpublished results ,we made the experience that there was only a marginal improvement in the per-plexity criterion at dramatically increased computa-Ž.tional costs.In Jardino,1996,simulated annealing is applied to a large training corpus from the Wall Street Journal,but no CPU times are given.In Ž.addition in Jardino and Adda,1994,the authors introduce a modification of the clustering model allowing several word classes for each word,at least in principle.This modification,however,is more related to the definition of the clustering model and not that much to the optimization strategy.In this paper,we do not consider such types of stochastic class mappings.The other optimization strategy,bottom-up clus -Ž.tering ,as presented in Brown et al.,1992,is also Ž.based on the perplexity criterion given by Eq.6.However,instead of the exchange algorithm,the authors use the well-known hierarchical bottom-up Žclustering algorithm as described in Duda and Hart,.1973,pp.230and 235.The typical iteration step here is to reduce the number of word classes by one.This is achieved by merging that pair of word classes for which the perplexity degradation is the smallest.This process is repeated until the desired number of word classes has been obtained.The iteration process is initialized by defining a separate word class for Ž.each word.In Brown et al.,1992,the authors describe special methods to keep the computational complexity of the algorithm as small as possible.Obviously,like the exchange algorithm,this bottom up clustering strategy achieves only a local optimum.Ž.As reported in Brown et al.,1992,the exchange algorithm can be used to improve the results ob-tained by bottom-up clustering.From this result and our own experimental results for the various initial-Žization methods of the exchange algorithm see Sec-.tion 5.4,we may conclude that there is no basic performance difference between bottom-up cluster-ing and exchange clustering.()S.Martin et al.r Speech Communication 24199819–37252.5.Smoothing methodsŽ.Ž.Ž.On the training corpus,Eqs.3,4and 9are well-defined.However,even though the parameter estimation for class models is more robust than for word models,some of the class bigrams or trigrams in a test corpus may have zero frequencies in the training corpus,resulting in zero probabilities.To avoid this,smoothing must be used on the test corpus.However,for the clustering process on the training corpus,the unsmoothed relative frequencies Ž.Ž.Ž.of Eqs.3,4and 9are still used.To smooth the transition probability,we use the method of absolute interpolation with a singleton Ž.generalized distribution Ney et al.,1995,1997:N g ,g y bŽ.Õw <p g g s max 0,Ž.1w Õž/N g Ž.Õbq G y G g ,P PP b g ,Ž.Ž.Ž.0Õw N g Ž.ÕG P ,P Ž.1b s,G P ,P q 2P G P ,P Ž.Ž.12G P ,g Ž.1w b g s,Ž.w G P ,P Ž.1with b standing for the history-independent discount-Ž.ing value,g g ,P for the number of word classes r ÕŽ.seen r times right after word class g ,g P ,g for Õr w the number of word classes seen r times right before Ž.word class g ,and g P ,P for the number of w r distinct word class bigrams seen r times in the Ž.training corpus.b g is the so-called singleton w Ž.generalized distribution Ney et al.,1995,1997.The same method is used for the class trigram model.To smooth the membership distribution,we use the method of absolute discounting with backing off Ž.Ney et al.,1995,1997:N w y b Ž.°g Õif N w )0,Ž.N g Ž.w ~<p w g sŽ.0w b 1g w N g PPif N w s 0,Ž.Ž.Ýr w ¢N g N g Ž.Ž.w 0w r )0N G Ž.1w b s,g w N g q 2P N g Ž.Ž.1w 2w N g [1,Ž.Ýr w XXŽ.w :g s g ,N w s rw w with b standing for the word class dependent g w Ž.discounting value and N g for the number of r w words appearing r times and belonging to word class g .The reason for a different smoothing w method for the membership distribution is that no singleton generalized distribution can be constructed from unigram counts.Without singletons,backing Ž.off works better than interpolation Ney et al.,1997.However,no smoothing is applied to word classes with no unseen words.With our clustering algo-rithm,there is only one word class containing unseen words.Therefore,the effect of the kind of smoothing used for the membership distribution is negligible.Thus,for the sake of consistency,absolute interpola-tion could be used to smooth both distributions.3.Efficient clustering implementationA straightforward implementation of our cluster-ing algorithm presented in Section 2.3is time con-suming and prohibitive even for a small number of word classes G .In this section,we will present our techniques to improve computational performance in order to obtain word classes for large numbers of word classes.A detailed complexity analysis of the resulting algorithm will be presented in Section 4.3.1.Bigram clusteringŽ.We will use the log-likelihood Eq.5as the criterion for bigram clustering,which is equivalent to the perplexity criterion.The exchange of a word between word classes is entirely described by alter-ing the affected counts of this formula.3.1.1.Efficient method for count generationŽ.All the counts of Eq.5are computed once,stored in tables and updated after a word exchange.As we will see later,we need additional counts N w ,g s N w ,x ,11Ž.Ž.Ž.Ýx :g s gx N g ,w sN Õ,w 12Ž.Ž.Ž.ÝÕ:g s gÕ()S.Martin et al.r Speech Communication 24199819–3726Fig.2.Efficient procedure for count generation.describing how often a word class g appears right after and right before,respectively,a word w .These counts are recounted anew for each word currently under consideration,because updating them,if nec-essary,would require the same effort as recounting,and would require more memory because of the large tables.Ž.Ž.For a fixed word w in Eqs.11and 12,we need to know the predecessor and the successor words,which are stored as lists for each word w ,and the corresponding bigram counts.However,we ob-serve that if word Õprecedes w ,then w succeeds Õ.Ž.Consequently,the bigram Õ,w is stored twice,once in the list of successors to Õ,and once in the list of predecessors to w ,thus resulting in high memory consumption.However,dropping one type of list would result in a high search effort.Therefore we keep both lists,but with bigram counts stored only in the list of ing four bytes for the counts and two bytes for the word indexes,we reduce the memory requirements by 1r 3at the cost of a minor Ž.search effort for obtaining the count N Õ,w from the list of successors to Õby binary search.The Ž.Ž.count generation procedure for Eqs.11and 12is depicted in Fig.2.3.1.2.Baseline perplexity recomputationŽ.We will examine how the counts in Eq.5must be updated in a word exchange.We observe that removing a word w from word class g and moving w it to a word class k only affects those counts of Eq.Ž.5that involve g or k ;all the other counts,and,w consequently,their contributions to the perplexity remain unchanged.Thus,to compute the change in Ž.perplexity,we recompute only those terms in Eq.5which involve the affected counts.We consider in detail how to remove a word from word class g .Moving a word to a word class k isw similar.First,we have to reduce the word class unigram count:N g [N g y N w .Ž.Ž.Ž.w w Then,we have to decrement the transition counts from g to a word class g /g and from an w w arbitrary word class g /g by the number of times w w appears right before or right after g ,respectively:;g /g :N g ,g [N g ,g y N g ,w ,13Ž.Ž.Ž.Ž.w w w ;g /g :N g ,g [N g ,g y N w ,g .14Ž.Ž.Ž.Ž.w w w Ž.Changing the self-transition count N g ,g is a bit w w more complicated.We have to reduce this count by the number of times w appears right before or right after another word of g .However,if w follows w Ž.itself in the corpus,N w ,w is considered in both Ž.Ž.Eqs.11and 12.Therefore,it is subtracted twice from the transition count and must be added once for compensation:N g ,g [N g ,g y N g ,w Ž.Ž.Ž.w w w w w y N w ,g q N w ,w .15Ž.Ž.Ž.w Ž.Finally,we have to update the counts N g ,w and w Ž.N w ,g :w N g ,w [N g ,w y N w ,w ,Ž.Ž.Ž.w w N w ,g [N w ,g y N w ,w .Ž.Ž.Ž.w w Ž.We can view Eq.15as an application of the inclusion r exclusion principle from combinatorics Ž.Takacs,1984.If two subsets A and B of a set C ´are to be removed from C ,the intersection of A and B can only be removed once.Fig.3gives an inter-pretation of this principle applied to our problem of count updating.Viewing these updates in terms of the inclusion r exclusion principle will help to under-stand the mathematically more complicated update formulae for trigram clustering.。
中文nlp聚类模型
中文nlp聚类模型
中文NLP聚类模型
自然语言处理(NLP)是一种将人类语言数据转化为有用表示形式并执行所需任务的技术。
聚类是一种无监督的机器学习技术,旨在将相似的数据点分组到同一个簇或集群中。
在NLP领域,聚类模型可以用于文本聚类、主题挖掘、文档分类等任务。
常见的中文NLP聚类模型包括:
1. K-Means聚类
K-Means是最简单和最流行的聚类算法之一。
它将数据划分为K个簇,每个数据点被分配到与其最近的簇中心的簇。
对于文本数据,通常使用TF-IDF向量或Word Embedding作为输入特征。
2. 层次聚类
层次聚类可以构建一个层次聚类树,将相似的文本归为同一个簇。
常用的算法包括凝聚层次聚类和分裂层次聚类。
3. 基于密度的聚类
基于密度的聚类算法(如DBSCAN)可以发现任意形状的簇,并过滤掉噪声数据。
它在文本数据中的应用需要合适的距离度量。
4. 主题模型
主题模型(如LDA)是一种无监督的文本聚类技术,可以自动发现文本
语料库中的潜在主题。
每个文档被表示为一组主题的混合,每个主题又由一组单词概率分布来表示。
5. 神经网络聚类
近年来,基于深度学习的聚类技术也受到关注,如自编码器、生成对抗网络等。
这些模型能够学习数据的深层表示,并在此基础上进行聚类。
在实际应用中,需要根据数据集的特点和任务需求,选择合适的中文NLP聚类模型。
数据预处理、特征工程、参数调优等步骤也十分重要。
聚类结果的评估通常需要人工标注数据,检查簇的质量和一致性。
embedding 评测方法
embedding 评测方法Embedding评测方法引言在自然语言处理(Natural Language Processing, NLP)领域中,embedding是指将文本或词语映射为连续向量的技术。
这种技术在NLP任务中起到了至关重要的作用,如词义相似度计算、文本分类、机器翻译等。
然而,如何评测embedding的质量成为了一个具有挑战性的问题。
本文将介绍一些常用的embedding评测方法,并分析其优缺点。
一、人类评估(Human Evaluation)人类评估是最直观也是最可信的embedding评测方法之一。
这种方法通过请专家对生成的embedding进行主观评估,从而得出embedding的质量。
例如,可以要求专家对一组词语的相似度进行评估,然后与embedding模型计算的相似度进行对比。
然而,人类评估需要耗费大量的时间和人力资源,并且评估结果可能会受到个体主观因素的影响,因此不适合大规模应用。
二、内部评估(Intrinsic Evaluation)内部评估是一种基于任务的评估方法,通过将embedding应用于特定的NLP任务,如词性标注、命名实体识别等,来评估其在该任务上的性能。
这种方法可以直接衡量embedding在特定任务上的效果,但其缺点是需要依赖于任务的标注数据和评估指标,且不能全面评估embedding的质量。
三、外部评估(Extrinsic Evaluation)外部评估是一种基于上下文的评估方法,通过将embedding应用于更高级的NLP任务,如文本分类、机器翻译等,来评估其在这些任务上的性能。
与内部评估相比,外部评估更能反映embedding 在实际应用中的实际效果。
然而,由于外部评估需要依赖于具体的任务和数据集,因此在不同的任务和数据集上,评估结果可能会有所不同。
四、词类比任务(Word Analogy Task)词类比任务是一种常用的embedding评测方法,其目标是通过给出一组类比问题,如"man:woman::king:?",来评估embedding 对词语之间的语义关系的理解程度。
WRM 一种基于单词相关度的文档聚类新方法
WRM:一种基于单词相关度的文档聚类新方法伍赛*杨冬青*韩近强*张铭*王文清+冯英+(*北京大学信息与科学技术学院北京100871)(+北京大学图书馆中国高等教育文献保障系统管理中心北京 100871)(wsai@)摘要目前大多数的搜索引擎如Google、百度等,查询的结果都是按照重要度排序然后分页地显示给用户。
但是有时候这样显示并不能很好地服务于用户,用户经常要浏览了很多页面才找到自己所需要的内容。
如果将返回的结果再进行分类,就可以很好的解决这一问题。
不同于传统的向量空间模型的方法,本文提出了一种基于单词相关度的聚类方法。
实验的结果表明该方法具有较高的准确性和很高的效率。
关键字文档聚类,单词相关度,单词向量空间模型WVM,向量空间模型VSM,TF/IDF,聚类引擎中图法分类号TP311WRM: A Novel Document Clustering Method Based on Word RelationWu Sai* Yang Dong-Qing* Han Jin-Qiang*Zhang Ming* Wang Wen-Qing+ Feng Ying+ (*School of Electronics Engineering and Computer Science, Peking University, Beijing, China, 100871) (+Administrative Center for China Academic Library & Information System Room 607, Peking University LibraryBeijing, China, 100871)Abstract The most popular search engines, such as Google and Baidu, answer users’ queries as lists of ranked results according to importance. But in some cases the most “important” is not the most useful for the user. A user has to look through several pages to get what he wants. Trying to classify the results is a good idea to solve this problem. In this paper, we propose a novel clustering method based on the word relation WRM, which is different from the traditional VSM method. Experiment results show that our method WRM is not only very effective but also efficient.Keywords Document Clustering, Word Relation, Word Vector Model (WVM), Vector Space Model (VSM) , TF/IDF, Clustering Engine1. 引言*面对网络资源爆炸式的激增,越来越多的人选择使用搜索引擎来帮助他们找到所需资源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14
Clustering: how to get them
Models are potentially huge – similar in size to training data
• Largest part of commercial recognizers
Sophisticated variations can be slow to learn
• Maximum entropy could take weeks, months, or years!
7
The Trigram Approximation
Assume each word depends only on the previous two words
P(“the|… whole truth and nothing but”) P(“the|nothing but”)
8
Trigrams, continued
Find probabilities by counting in real text: P(“the | nothing but”)
C(“nothing but the”) / C(“nothing but”)
Smoothing: need to combine trigram P(the | nothing but) with bigram P(the | nothing) with unigram P(the) – otherwise, too many things you’ve never seen
11
Overview: Word clusters solve problems -- Smaller, faster
Background: What are word clusters
Word clusters for smaller models
• Use a clustering technique that leads to larger models, then prune
12
What are word clusters?
CLUSTERING = CLASSES (same thing) What is P(“Tuesday | party on”) Similar to P(“Monday | party on”) Similar to P(“Tuesday | celebration on”) Put words in clusters:
Word clustering: Smaller models, Faster training
Joshua Goodman Microsoft / Microsoft Research
9/29/2020
1
Quick Overview
What are language models What are word clusters How word clusters make language models
• Up to 3 times smaller at same perplexity
Word clusters for faster training of maximum entropy models
• Train two models, each of which predicts half
as much. Up to 35 times faster training
15
Clustering: automatic
Build them by hand
• Works ok when almost no data
Part of Speech (POS) tags
• Tends not to work as well as automatic
Automatic Clustering
• Swap wo minimize perplexity
• WEEKDAY = Sunday, Monday, Tuesday, … • EVENT=party, celebration, birthday, …
13
Putting words into clusters
One cluster per word: hard clustering
• WEEKDAY = Sunday, Monday, Tuesday, … • MONTH = January, February, April, May, June, …
• Smaller • Faster
2
A bad language model
3
A bad language model
4
A bad language model
5
A bad language model
6
What’s a Language Model
For our purposes today, a language model gives the probability of a word given its context P(truth | and nothing but the) 0.2 P(roof | and nuts sing on the) 0.00000001 Useful for speech recognition, hand writing, OCR, etc.
9
Perplexity
Perplexity: standard measure of language model accuracy – lower is better
• Corresponds to average branching factor of model
10
Trigram Problems