IXDP20N60B;IXDP20N60BD1;中文规格书,Datasheet资料

合集下载

SuperMicro X7SPA-HF Motherboard 产品介绍说明书

SuperMicro X7SPA-HF Motherboard 产品介绍说明书
+ 1 Type A connector 8. Integrated Matrox G200eW Video 9. Integrated IPMI 2.0
English
Links & Resources Tested Memory List Motherboard Manual Update Your BIOS IPMI Firmware Download the Latest Drivers and Utilities
ACPI/APM Power Management Main Switch Override Mechanism Suspend to RAM (STR) Power­on mode control for AC power recovery Internal / External modem remote ring­on
OS Compatibility
• Please see our OS Compatibility Chart
LED
Other Features
CPU / System Overheat LED
Chassis intrusion Detection Chassis intrusion Header SDDC Support
Temperature
Monitoring for CPU and chassis environment CPU thermal trip support Thermal Control for 2 x Fan Connectors I2C temperature sensing logic Thermal Monitor 2 (TM2) Support
2. Intel® ICH9R Chipset 3. Up to 4GB single channel unbuffered,

MX620B芯片手册中文版

MX620B芯片手册中文版

概述该产品为电池供电的玩具、低压或者电池供电的运动控制应用提供了一种集成的有刷直流马达驱动解决方案。

电路内部集成了采用N沟和P沟功率MOSFET设计的H桥驱动电路,适合于驱动有刷直流马达或者驱动步进马达的一个绕组。

该电路具备较宽的工作电压范围(从2V到9.6V),最大持续输出电流达到2A,最大峰值输出电流达到 3.5A。

该驱动电路内置过热保护电路。

通过驱动电路的负载电流远大于电路的最大持续电流时,受封装散热能力限制,电路内部芯片的结温将会迅速升高,一旦超过设定值(典型值150℃),内部电路将立即关断输出功率管,切断负载电流,避免温度持续升高造成塑料封装冒烟、起火等安全隐患。

内置的温度迟滞电路,确保电路恢复到安全温度后,才允许重新对电路进行控制。

该驱动电路内置限流保护电路。

当流过功率管的电流超过设定值时,内部电路限流保护电路启动,功率管最大输出电流将被限制在设定值。

该功能可确保电路输出端口与地短路、输出端口之间短路时,电路不烧毁。

特性●低待机电流(小于0.1uA);●低静态工作电流;●集成的H桥驱动电路;●内置防共态导通电路;●低导通内阻的功率MOSFET管;●内置带迟滞效应的过热保护电路(TSD);●内置限流保护电路,输出对地短路,输出与输出短路,不烧电路;●抗静电等级:3KV(HBM)。

典型应用●2-6节AA/AAA干电池供电的玩具马达驱动;●2-6节镍-氢/镍-镉充电电池供电的玩具马达驱动;●1-2节锂电池供电的马达驱动订购信息应用说明1、基本工作模式a)待机模式在待机模式下,INA=INB=L。

包括驱动功率管在内的所有内部电路都处于关断状态。

电路消耗极低极低的电流。

此时马达输出端OUTA和OUTB 都为高阻状态。

b)正转模式正转模式的定义为:INA=H,INB=L,此时马达驱动端OUTA输出高电平,马达驱动端OUTB输出低电平时,马达驱动电流从OUTA流入马达,从OUTB流到地端,此时马达的转动定义为正转模式。

IXYB82N120C3H1;中文规格书,Datasheet资料

IXYB82N120C3H1;中文规格书,Datasheet资料

CES I C110= 82A V CE(sat) ≤ 3.2V t fi(typ)= 93nsHigh-Speed IGBTfor 20-50 kHz SwitchingFeaturesz Optimized for Low Switching Losses zSquare RBSOA zAnti-Parallel Ultra Fast Diode zPositive Thermal Coefficient of Vce(sat)zAvalanche Rated zHigh Current Handling Capability zInternational Standard PackageAdvantagesz High Power DensityzLow Gate Drive RequirementApplicationsz High Frequency Power Inverters z UPSz Motor Drives z SMPSz PFC Circuits z Battery Chargers z Welding Machines zLamp BallastsSymbol Test Conditions Characteristic Values (T J = 25°C, Unless Otherwise Specified) Min. Typ. Max.BV CES I C = 250μA, V GE = 0V 1200 VV GE(th)I C= 250μA, V CE = V GE3.05.0VI CES V CE = V CES , V GE = 0V50μA T J = 125°C 3 mA I GES V CE = 0V, V GE = ±20V±100 nAV CE(sat)I C = 82A, V GE = 15V, Note 12.753.20 V T J = 125°C3.50 VSymbol Test ConditionsMaximum Ratings V CES T J = 25°C to 150°C1200V V CGR T J = 25°C to 150°C, R GE = 1M Ω 1200V V GES Continuous ±20V V GEM Transient ±30V I C25T C = 25°C 160A I C110T C = 110°C 82A I F110T C = 110°C 42A I CM T C= 25°C, 1ms 320AI A T C = 25°C 41 A E AST C = 25°C 800 mJSSOA V GE = 15V, T VJ = 125°C, RG = 2Ω I CM = 164A (RBSOA) Clamped Inductive Load @V CE ≤ V CES P C T C = 25°C1040W T J -55 ... +150°C T JM 150°C T stg -55 ... +150°CT LMaximum Lead Temperature for Soldering 300°CT SOLD 1.6 mm (0.062in.) from Case for 10s 260°CF C Mounting Force 30..120 / 6.7..27N/lb.Weight10g1200V XPT TM IGBT GenX3TM w/ DiodeG = Gate C = Collector E = EmitterTab = CollectorEPLUS264TMG CIXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.Symbol Test Conditions (T J = 25°C Unless Otherwise Specified)fs I C = 60A, V CE = 10V, Note 1 30 50C ie sC oes V CE = 25V, V GE C resQ g(on)Q ge I C = 82A, V GE = 15V, V Q gc d(on)Pin 1 = Gate Pin 2,4 = Emitter Pin 3 = CollectorNotes:1. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%.2. Switching times & energy losses may increase for higher V CE (clamp), T J or R G .Reverse Diode (FRED)Symbol Test ConditionsCharacteristic ValuesFig. 1. Output Characteristics @ T 6080100120140160I C - A m p e r e sIXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.Fig. 7. Transconductance304050607080g f s - S i e m e n sFig. 12. Inductive Switching Energy Loss vs.Gate Resistance345678E o f f - M i l l i J o u l e sE off E on - - - - T J = 125ºC , V GE = 15V V CE = 600VIXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.Fig. 18. Inductive Turn-on Switching Times vs.Gate Resistance6080100120140160r i - N a n o s e c o n d st r i t d(on) - - - -T J = 125ºC, V GE = 15V V CE = 600VI CFig. 21.Fig. 22.Fig. 23.Fig. 24.Fig. 25.Fig. 26. transient thermal impedance分销商库存信息: IXYSIXYB82N120C3H1。

BSN20 PDF规格书

BSN20 PDF规格书

Features TrenchMOS™ technology Very fast switchingLogic level compatibleSubminiature surface mount package. Absolute Maximum Ratings Ta = 25℃gBSN201.Gate2.Source3.DrainUnit:mmSOT-23■ Fe● ● ● ●■N-Channel MOSFETElectrical Characteristics Ta = 25℃Marking■ FeBSN20N-Channel MOSFETTypical CharacteristicsV GS ≥5VFig 1.Normalized total power dissipation as afunction of solder point temperature.Fig 2.Normalized continuous drain current as afunction of solder point temperature.T sp =25°C; I DM is single pulse.Fig 3.Safe operating area; continuous and peak drain currents as a function of drain-source voltage.020406080100120255075100125150175P derT sp (o C)(%)204060801001200255075100125150175I der (%)T sp (o C)P derP totPtot 25C°----------------------100%×=I der I D ID 25C°------------------100%×=10101010112V DS (V)I D (A)Mounted on a metal clad substrate.Fig 4.Transient thermal impedance from junction to solder point as a function ofpulse duration.Z ( )( )BSN20N-Channel MOSFETT j =25°T C j =25°C and 150°C; V DS ≥I D ×R DSonFig 5.Output characteristics: drain current as afunction of drain-source voltage;typical values.Fig 6.Transfer characteristics: drain current as afunction of gate-source voltage; typical values.T j =25°CFig 7.Drain-source on-state resistance as a functionof drain current; typical values.Fig 8.Normalized drain-source on-state resistancefactor as a function of junction temperature.I D(A)00.10.20.30.40.50.60.70.8012345678910V GS (V)I D(A)0123456789100.10.20.30.40.50.60.7I D (A)R DSon(Ω)00.20.40.60.811.21.41.61.822.2-60-202060100140180T j(o C)a a R DSonR DSon 25C°---------------------------=I D =1mA; V DS =V GS T j =25°C; V DS =5VFig 9.Gate-source threshold voltage as a function ofjunction temperature.Fig 10.Sub-threshold drain current as a function ofgate-source voltage.00.20.40.60.811.21.41.61.82-60-202060100140180T j (o C)V GS(th)(V)00.20.40.60.811.2 1.4 1.6 1.82V GS (V)I D (A)101010101010■ Typical Characterisitics( )BSN20N-Channel MOSFETT j =25°C and 150°C; V DS ≥I D ×R DSon V GS =0V; f =1MHzFig 11.Forward transconductance as a function ofdrain current; typical values.Fig 12.Input,output and reverse transfer capacitancesas a function of drain-source voltage; typical values.g fs(S)11010210-1110102V DS (V)C iss , C ossC rss (pF)T j =25°C and 150°C; V GS =0VFig 13.Source (diode forward) current as a function of source-drain (diode forward)voltage; typical values.I S(A)■ Typical CharacterisiticsBSN20N-Channel MOSFET。

HGTP20N60A4;中文规格书,Datasheet资料

HGTP20N60A4;中文规格书,Datasheet资料

HGTG20N60A4, HGTP20N60A4600V, SMPS Series N-Channel IGBTsThe HGTG20N60A4 and HGTP20N60A4 are MOS gated high voltage switching devices combining the best features of MOSFETs and bipolar transistors. These devices have the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much loweron-state voltage drop varies only moderately between 25o C and 150o C.This IGBT is ideal for many high voltage switching applications operating at high frequencies where low conduction losses are essential. This device has been optimized for high frequency switch mode power supplies.Formerly Developmental Type TA49339.Symbol Features•>100kHz Operation at 390V, 20A•200kHz Operation at 390V, 12A•600V Switching SOA Capability•Typical Fall Time. . . . . . . . . . . . . . . . . 55ns at T J = 125o C •Low Conduction Loss•Temperature Compensating SABER™ Model•Related Literature-TB334 “Guidelines for Soldering Surface MountComponents to PC BoardsPackagingJEDEC TO-220AB ALTERNATE VERSIONJEDEC STYLE TO-247Ordering InformationPART NUMBER PACKAGE BRAND HGTP20N60A4TO-220AB20N60A4HGTG20N60A4TO-24720N60A4 NOTE:When ordering, use the entire part number.CEGGCE COLLECTOR(FLANGE)COLLECTOR(FLANGE)CEGAbsolute Maximum Ratings T C = 25o C, Unless Otherwise SpecifiedHGTG20N60A4, HGTP20N60A4UNITS Collector to Emitter Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV CES600V Collector Current ContinuousAt T C = 25o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I C2570A At T C = 110o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I C11040A Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I CM280A Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V GES±20V Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V GEM±30V Switching Safe Operating Area at T J = 150o C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . SSOA100A at 600VPower Dissipation Total at T C = 25o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P D290W Power Dissipation Derating T C > 25o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.32W/o C Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T J, T STG-55 to 150o C Maximum Lead Temperature for SolderingLeads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T L Package Body for 10s, See Tech Brief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T PKG 300260o Co CCAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.NOTE:1.Pulse width limited by maximum junction temperature.Electrical Specifications T J = 25o C, Unless Otherwise SpecifiedPARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Collector to Emitter Breakdown Voltage BV CES I C = 250µA, V GE = 0V600--V Emitter to Collector Breakdown Voltage BV ECS I C = 10mA, V GE = 0V15--V Collector to Emitter Leakage Current I CES V CE = 600V T J = 25o C--250µAT J = 125o C-- 2.0mACollector to Emitter Saturation Voltage V CE(SAT)I C = 20A,V GE = 15V T J = 25o C- 1.8 2.7V T J = 125o C- 1.6 2.0VGate to Emitter Threshold Voltage V GE(TH)I C = 250µA, V CE = 600V 4.5 5.57.0V Gate to Emitter Leakage Current I GES V GE = ±20V--±250nA Switching SOA SSOA T J = 150o C, R G = 3Ω, V GE = 15VL = 100µH, V CE = 600V100--A Gate to Emitter Plateau Voltage V GEP I C = 20A, V CE = 300V-8.6-VOn-State Gate Charge Q g(ON)I C = 20A,V CE = 300V V GE = 15V-142162nC V GE = 20V-182210nCCurrent Turn-On Delay Time t d(ON)I IGBT and Diode at T J = 25o CI CE = 20AV CE = 390VV GE =15VR G = 3ΩL = 500µHTest Circuit (Figure 20)-15-nsCurrent Rise Time t rI-12-ns Current Turn-Off Delay Time t d(OFF)I-73-ns Current Fall Time t fI-32-ns Turn-On Energy (Note 3)E ON1-105-µJ Turn-On Energy (Note 3)E ON2-280350µJ Turn-Off Energy (Note 2)E OFF-150200µJCurrent Turn-On Delay Time t d(ON)I IGBT and Diode at T J = 125o C I CE = 20A V CE = 390V V GE = 15V R G = 3ΩL = 500µHTest Circuit (Figure 20)-1521ns Current Rise Timet rI -1318ns Current Turn-Off Delay Time t d(OFF)I -105135ns Current Fall Time t fI -5573ns Turn-On Energy (Note 3)E ON1-115-µJ Turn-On Energy (Note 3)E ON2-510600µJ Turn-Off Energy (Note 2)E OFF -330500µJThermal Resistance Junction To Case R θJC--0.43o C/WNOTES:2.Turn-Off Energy Loss (E OFF ) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I CE = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.3.Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E ON1 is the turn-on loss of the IGBT only. E ON2 is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T J as the IGBT. The diode type is specified in Figure 20.Electrical SpecificationsT J = 25o C, Unless Otherwise Specified (Continued)PARAMETERSYMBOL TEST CONDITIONSMIN TYP MAX UNITS Typical Performance CurvesUnless Otherwise SpecifiedFIGURE 1.DC COLLECTOR CURRENT vs CASETEMPERATUREFIGURE 2.MINIMUM SWITCHING SAFE OPERATING AREAFIGURE 3.OPERATING FREQUENCY vs COLLECTOR TOEMITTER CURRENTFIGURE 4.SHORT CIRCUIT WITHSTAND TIMET C , CASE TEMPERATURE (o C)I C E , D C C O L L E C T O R C U R R E N T (A )502008040602575100125150100V GE = 15VPACKAGE LIMITDIE CAPABILITYV CE , COLLECTOR TO EMITTER VOLTAGE (V)700600I C E , C O L L E C T O R T O E M I T T E R C U R R E N T (A )2030040020010050060008010040120T J = 150o C, R G = 3Ω, V GE = 15V, L = 100µHf M A X , O P E R A T I N G F R E Q U E N C Y (k H z )5I CE , COLLECTOR TO EMITTER CURRENT (A)40300501020500T J = 125o C, R G = 3Ω, L = 500µH, V CE = 390V 1004030f MAX1 = 0.05 / (t d(OFF)I + t d(ON)I )R ØJC = 0.43o C/W, SEE NOTES P C = CONDUCTION DISSIPATION(DUTY FACTOR = 50%)f MAX2 = (P D - P C ) / (E ON2 + E OFF )T C V GE 15V75o CV GE , GATE TO EMITTER VOLTAGE (V)I S C , P E A K S H O R T C I R C U I T C U R R E N T (A )t S C , S H O R T C I R C U I T W I T H S T A N D T I M E (µs )10111215021010025035045014131446812150200300400V CE = 390V, R G = 3Ω, T J = 125o Ct SCI SCFIGURE 5.COLLECTOR TO EMITTER ON-STATE VOLTAGEFIGURE 6.COLLECTOR TO EMITTER ON-STATE VOLTAGEFIGURE 7.TURN-ON ENERGY LOSS vs COLLECTOR TOEMITTER CURRENT FIGURE 8.TURN-OFF ENERGY LOSS vs COLLECTOR TOEMITTER CURRENTFIGURE 9.TURN-ON DELAY TIME vs COLLECTOR TOEMITTER CURRENT FIGURE 10.TURN-ON RISE TIME vs COLLECTOR TOEMITTER CURRENT0.8 1.2V CE , COLLECTOR TO EMITTER VOLTAGE (V)I C E , C O L L E C T O R T O E M I T T E R C U R R E N T (A )20401.62.03.28060T J = 125o C T J = 150o CPULSE DURATION = 250µsDUTY CYCLE < 0.5%, V GE = 12V 100T J = 25o C0.4 2.4 2.8I C E , C O L L E C T O R T O E M I T T E R C U R R E N T (A )V CE , COLLECTOR TO EMITTER VOLTAGE (V)DUTY CYCLE < 0.5%, V GE = 15V PULSE DURATION = 250µs T J = 150o CT J = 25o CT J = 125o C204080601000.8 1.2 1.6 2.00.4 2.4 2.8E O N 2, T U R N -O N E N E R G Y L O S S (µJ )1000600I CE , COLLECTOR TO EMITTER CURRENT (A)8004001200015102025303540T J = 125o C, V GE = 12V, V GE = 15VR G = 3Ω, L = 500µH, V CE = 390VT J = 25o C, V GE = 12V , V GE = 15V20051400600I CE , COLLECTOR TO EMITTER CURRENT (A)E OF F , T U R N -O F F E N E RG Y L O S S (µJ )100400200500700800T J = 25o C, V GE = 12V OR 15VT J = 125o C, V GE = 12V OR 15V300 R G = 3Ω, L = 500µH, V CE = 390V 151020253035405I CE , COLLECTOR TO EMITTER CURRENT (A)t d (O N )I ,T U R N -O N D E L A Y T I M E (n s )81416182022151020253035405T J = 25o C, T J = 125o C, V GE = 15VT J = 25o C, T J = 125o C, V GE = 12VR G = 3Ω, L = 500µH, V CE = 390V 1210I CE , COLLECTOR TO EMITTER CURRENT (A)t r I ,R I S E T I M E (n s )4820161224363228R G = 3Ω, L = 500µH, V CE = 390VT J = 25o C, T J = 125o C, V GE = 12VT J = 25o C OR T J = 125o C, V GE = 15V151020253035405FIGURE 11.TURN-OFF DELAY TIME vs COLLECTOR TOEMITTER CURRENT FIGURE 12.FALL TIME vs COLLECTOR TO EMITTERCURRENTFIGURE 13.TRANSFER CHARACTERISTICFIGURE 14.GATE CHARGE WAVEFORMSFIGURE 15.TOTAL SWITCHING LOSS vs CASETEMPERATUREFIGURE 16.TOTAL SWITCHING LOSS vs GATE RESISTANCE806070I CE , COLLECTOR TO EMITTER CURRENT (A)t d (O F F )I , T U R N -O F F D E L A Y T I M E (n s )12010011090V GE = 12V, V GE = 15V , T J = 25o CV GE = 12V, V GE = 15V , T J = 125o CR G = 3Ω, L = 500µH, V CE = 390V151020253035405I CE , COLLECTOR TO EMITTER CURRENT (A)t f I , F A L L T I M E (n s )16322448644056R G = 3Ω, L = 500µH, V CE = 390V7280151020253035405T J = 125o C, V GE = 12V OR 15VT J = 25o C, V GE = 12V OR 15V I C E , C O L L E C T O R T O E M I T T E R C U R R E N T (A )801207891012V GE , GATE TO EMITTER VOLTAGE (V)111602002406PULSE DURATION = 250µsDUTY CYCLE < 0.5%, V CE = 10V T J = 125o CT J = -55o CT J = 25o C40V G E , G A T E T O E M I T T E R V O L T A G E (V )Q G , GATE CHARGE (nC)2140410I G(REF) = 1mA, R L = 15Ω, T J = 25o CV CE = 200V V CE = 400V681216V CE = 600V20406080120100140160I CE = 10A00.20.45075100T C , CASE TEMPERATURE (o C)0.61.0125251501.80.8E T O T A L , T O T A L S W I T C H I N G E N E R G Y L O S S (m J )E TOTAL = E ON2 + E OFFR G = 3Ω, L = 500µH, V CE = 390V, V GE = 15V 1.41.21.6I CE = 30AI CE = 20A0.110100R G , GATE RESISTANCE (Ω)131000E T O T A L , T O T A L S W I T C H I N G E N E R G Y L O S S (m J )10T J = 125o C, L = 500µH, V CE = 390V, V GE = 15V E TOTAL = E ON2 + E OFF I CE = 10AI CE = 20A I CE = 30AFIGURE 17.CAPACITANCE vs COLLECTOR TO EMITTERVOLTAGE FIGURE 18.COLLECTOR TO EMITTER ON-STATE VOLTAGEvs GATE TO EMITTER VOLTAGEFIGURE 19.IGBT NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASETest Circuit and WaveformsFIGURE 20.INDUCTIVE SWITCHING TEST CIRCUIT FIGURE 21.SWITCHING TEST WAVEFORMSV CE , COLLECTOR TO EMITTER VOLTAGE (V)C , C A P A C I T A N C E (n F )2040608010013452FREQUENCY = 1MHzC IESC OES C RES V GE , GATE TO EMITTER VOLTAGE (V)891.710121.82.01.911131415162.12.2V C E , C O L L E C T O R T O E M I T T E R V O L T A G E (V )I CE = 30A I CE = 20AI CE = 10ADUTY CYCLE < 0.5%, T J = 25o C PULSE DURATION = 250µs,t 1,RECTANGULAR PULSE DURATION (s)Z θJ C ,N O R M A L I Z E D T H E R M A L R E S P O N S E10-210-110010-510-310-210-110010-4t 1t 2P DDUTY FACTOR, D = t 1 / t 2PEAK T J = (P D X Z θJC X R θJC ) + T CSINGLE PULSE0.10.20.50.050.010.02R G = 3ΩL = 500µHV DD = 390V+-HGTG20N60A4D DUTDIODE TA49372t fIt d(OFF)It rI t d(ON)I10%90%10%90%V CEI CEV GEE OFFE ON2Handling Precautions for IGBTsInsulated Gate Bipolar T ransistors are susceptible togate-insulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler’s body capacitance is not discharged through the device. With proper handling and application procedures, however, IGBTs are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBTs can be handled safely if the following basic precautions are taken:1.Prior to assembly into a circuit, all leads should be keptshorted together either by the use of metal shortingsprings or by the insertion into conductive material such as “ECCOSORBD™ LD26” or equivalent.2.When devices are removed by hand from their carriers,the hand being used should be grounded by any suitable means - for example, with a metallic wristband.3.Tips of soldering irons should be grounded.4.Devices should never be inserted into or removed fromcircuits with power on.5.Gate Voltage Rating - Never exceed the gate-voltagerating of V GEM. Exceeding the rated V GE can result in permanent damage to the oxide layer in the gate region.6.Gate Termination - The gates of these devices areessentially capacitors. Circuits that leave the gateopen-circuited or floating should be avoided. Theseconditions can result in turn-on of the device due tovoltage buildup on the input capacitor due to leakagecurrents or pickup.7.Gate Protection - These devices do not have an internalmonolithic Zener diode from gate to emitter. If gateprotection is required an external Zener is recommended.Operating Frequency InformationOperating frequency information for a typical device (Figure3) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I CE) plots are possible using the information shown for a typical unit in Figures 6, 7, 8, 9 and 11. The operating frequency plot (Figure 3) of a typical device shows f MAX1 or f MAX2; whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.f MAX1 is defined by f MAX1 = 0.05/(t d(OFF)I+ t d(ON)I). Deadtime (the denominator) has been arbitrarily held to 10% of the on-state time for a 50% duty factor. Other definitions are possible. t d(OFF)I and t d(ON)I are defined in Figure 21. Device turn-off delay can establish an additional frequency limiting condition for an application other than T JM.f MAX2 is defined by f MAX2 = (P D - P C)/(E OFF + E ON2). The allowable dissipation (P D) is defined by P D = (T JM - T C)/RθJC. The sum of device switching and conduction losses must not exceed P D. A 50% duty factor was used (Figure 3) and the conduction losses (P C) are approximated byP C=(V CE x I CE)/2.E ON2 and E OFF are defined in the switching waveforms shown in Figure 21. E ON2 is the integral of the instantaneous power loss (I CE x V CE) during turn-on andE OFF is the integral of the instantaneous power loss(I CE x V CE) during turn-off. All tail losses are included in the calculation for E OFF; i.e., the collector current equals zero (I CE = 0).分销商库存信息: FAIRCHILD HGTP20N60A4。

DSEI60-06A;中文规格书,Datasheet资料

DSEI60-06A;中文规格书,Datasheet资料

166 W
0.8...1.2 Nm
6
g
Symbol
IR
VF
VT0 rT RthJC RthCH trr IRM
Conditions
Characteristic Values typ. max.
VR = VRRM VR = 0.8·VRRM VR = 0.8·VRRM
TVJ = 25°C TVJ = 25°C TVJ = 125°C
IXYS reserves the right to change limits, test conditions and dimensions
© 2007 IXYS All rights reserved
/
0549
2-2
Dimensions TO-247 AD
C
D
t = 8.3 ms (60 Hz), sine
TC = 25°C mounting torque typical
Maximum Ratings
100 A 60 A
550 A 600
480 A 520Biblioteka 1510 A2s 1490
1150 A2s 1120
-55...+150 °C 150 °C
-55...+150 °C
Fast Recovery Epitaxial Diode (FRED)
DSEI60-06A DSEI60-06AT
IFAV = 60 A VRRM = 600 V trr = 35 ms
VRSM V
600 600
VRRM V
600 600
Type
DSEI 60-06A DSEI 60-06AT
A

Targus DVHD-SV2K Universal USB 3.0 Docking Station

Targus DVHD-SV2K Universal USB 3.0 Docking Station

QUICK START GUIDE410-3569-001A / DOCK171USZPower Setup1. Connect all peripheral devices to the docking station.2. Connect the T3. Windows will start installing the DisplayLink Driver automatically.4. Follow the on-screen instructions until the installation is complete.5. Identify the correct power tip (see chart above right), connect to the DC power cable and then to the laptop.NOTE: If your power tip is not included, contact T argus to order the correct version.+Features and specifications are subject to change without notice. Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and/or other countries. All trademarks and registered trademarks are the property of their respective owners. ©2017 Targus, 1211 North Miller Street, Anaheim, CA 92806• Targus Universal USB 3.0 DVHD-SV2K Docking Station with Power • USB 3.0 Cable • AC Power adapter • DC output cable • Power tipSpecifications• DVI-I / HDMI Port (HDMI 2.0)• 4 x USB 3.0 downstream ports (port marked with supports BC 1.2 and iOS device charging at 2.4A max)• 1 x USB-C port (USB 3.0) • Gigabit Ethernet• Audio In/Out ports (3.5mm headset connector)• Security lock slot • USB 3.0 cable• DC Power In: 19.5V, 6.15A• DC Power Out: 19.5V 90W maxLAPTOP BRANDPOWER TIP(S)3APOWER TIP(S)1.Locate the correct power tip 2. Connect to the power cord 3. Connect to your laptopWindows SetupTo ensure the best Windows performance, please be sure to update your host PC Display Adaptor and USB 3.0 Drivers. These updates are often available from your IT department or from the PC manufacturer if you have Administrator rights to download and install drivers for your PC.Welcome to your Targus Universal Docking Station DisplayLink Manager. The DisplayLink Manager software, if not already installed, can be downloaded from a Windows Update server or from . It is represented by the icon in the Windows Task Tray and allows you to easily connect additional monitors to your laptop or desktop via the Targus Docking Station. Using the Windows Control Panel Display Screen Resolution window, the connected monitors can be configured to either mirror your main screen, or extend the Windows desktop allowing visibility of more applications at the same time. The DisplayLink USB Graphics devices can also be configured to be the main display.The DisplayLink Manager allows full configuration of alladditional USB displays, including:• Support for addition USB Displays in Windows 7, 8, 8.1, 10and later• Resolution up to 2560 X 1440 for HDMI and 2048 x 1152 forDVI-I• Display orientation and location modification• Layout of displaysDisplayLink software also provides drivers for Sound andEthernet built-in. These can also be selected in the WindowsControl Panel.OS-X SetupThree Y ear WarrantyRegulatory ComplianceUpon installation of the DisplayLink software for OS-Xavailable at , Macbook users can use theSystem Preferences for Displays to adjust the externalmonitors. OS-X allows configuration of all additional USBdisplays, including:• Support for additional USB Displays in OS-X 10.9 or later• Resolution up to 2560 X 1440 for HDMI and 2048 x 1152for DVI-I• Display orientation and location modification• Layout of displaysDisplayLink software also provides drivers for Sound andEthernet built-in.Android SetupInstall the DisplayLink Desktop application for Android 5.0and later from the Google Play Store. Enable USBDebugging/Host mode on your Android device.1. Targus warrants to the original purchaser that its productsare free from defects in materials and workmanship for threeyears. This warranty is limited to defects, materials andworkmanship. 2. The benefits to the consumer given by thewarranty are in addition to other rights and remedies of theconsumer under law in relation to the goods to which thewarranty relates. 3. The warranty is given by (i) Targus Australia,(ii) Targus Australia’s business address is: Suite 2, Level 8, 5Rider Boulevard, Rhodes NSW 2138 Australia, (iii) TargusAustralia’s telephone number is 1800 641 645, Email:*******************(iv)Tomakeawarrantyclaimforgoodspurchased in New Zealand, the telephone number is: 0800633 222, or the goods may be returned to the supplier in NewZealand. 4. What the purchaser must do to entitle thepurchaser to claim warranty:- (i) The purchaser must call thetelephone number for Australia or New Zealand set out above,(ii) The purchaser must provide the purchaser’s name, daytimecontact number, business hours delivery address, the Targusmodel number on the product, date and place of purchase withreceipt for purchase if required, and describe the faultcondition. 5. What Targus must do:- (i) Targus will provide thepurchaser with store return information or a return authorisationso that the purchaser may return the product for warrantyinspection, (ii) If after inspection Targus finds the product isdefective in materials or workmanship, Targus shall replace (orrepair) the defective product at the discretion of Targus andship the product from Targus warehouse at its expense withinthree business days (Monday to Friday excluding publicholidays) of receiving the returned goods. If the product is nolonger available Targus reserves the right to replace with thenearest corresponding product of no lesser quality, (iii) Targuswill bear the cost of return delivery to the purchaser regardlessof the inspection test result. The purchaser must bear the costof the delivery to Targus. There is no charge for inspection. 6.Our goods come with guarantees that cannot be excludedunder the Australian Consumer Law. Y ou are entitled to areplacement or refund for a major failure and for compensationfor any other reasonable foreseeable loss or damage. Y ou arealso entitled to have the goods repaired or replaced if thegoods fail to be of acceptable quality and the failure does notamount to a major failure. 7. Please note: (i) Features andspecifications of all Targus products are subject to changewithout notification, (ii) In some instances: Goods presented forrepair may be replaced by refurbished goods of the same typerather than being repaired. Refurbished parts may be used torepair the goods, (iii) If goods accepted for repair retainuser-generated data: During the process of repair some or allof your stored data may be lost. Please ensure that you havesaved this data elsewhere prior to repair.This device complies with Part 15 of the FCC Rules.Operation is subject to the following two conditions: (1) Thisdevice may not cause harmful interference, and (2) This devicemust accept any interference received, including interferencethat may cause undesired operations.System RequirementsHardware• USB Port (USB 3.0 recommended)Operating System (any of the following)• Microsoft Windows® 7, Windows® 8, Windows® 8.1, or Windows® 10 (32/64-bit)• Mac OS® X v10.8 or later• Android 5.0 or later (*with Host Mode enabled, with support limitations applies, refer to HYPERLINK"" for details)• Chromebooks (*selected device only, refer to HYPERLINK "" for device compatibility)• Ubuntu 14.04.x L TS and 16.04 L TS on x86 platform (*refer to HYPERLINK "" for compatibility and limitations)This equipment has been tested and found to comply with thelimits of a Class B digital device, pursuant to Part 15 of theFCC Rules. These limits are designed to provide reasonableprotection against harmful interference in a residentialinstallation. This equipment generates, uses, and can radiateradio frequency energy and if not installed and used inaccordance with the instructions, may cause harmfulinterference to radio communications. However, there is noguarantee that interference will not occur in a particularinstallation. If this equipment does cause harmful interference toradio or television reception, which can be determined byturning the equipment off and on, the user is encouraged to tryto correct the interference by one or more of the followingmeasures:• Reorient or relocate the receiving antenna• Increase the separation between the equipment and receiver• Connect the equipment into an outlet on a circuit differentfrom the one that the receiver is connected• Consult the dealer or an experienced radio/TV technician forhelpChanges or modifications not authorized by the partyresponsible for compliance could void the user’s authority tooperate this product.US Technical Support• /support • • 877-482-7487 Visit for a list of the latest compatible operating systemsEthernetHeadset Connector(supports charging)。

APT60DQ120SG商品说明书

APT60DQ120SG商品说明书

APT60DQ120SGDatasheet Ultrafast Soft Recovery Rectifier DiodeFinalApril 2018Contents1Revision History (1)1.1Revision A (1)2Product Overview (2)2.1Benefits (2)2.2Applications (2)3Electrical Specifications (3)3.1Absolute Maximum Ratings (3)3.2Electrical Performance (3)3.3Dynamic Characteristics (4)3.4Typical Performance Curves (4)3.5Reverse Recovery Overview (6)4Package Specification (7)4.1Package Outline Drawing (7)1Revision HistoryThe revision history describes the changes that were implemented in the document. The changes arelisted by revision, starting with the most current publication.1.1Revision ARevision A was published in April 2018. It is the first publication of this document.2Product OverviewFeaturesThe following are key features of the APT60DQ120SG device:Ultrafast recovery timesSoft recovery characteristicsLow forward voltageLow leakage currentAvalanche energy ratedRoHS compliant2.1BenefitsThe following are benefits of the APT60DQ120SG device:Higher switching frequencyLow switching lossesLow noise (EMI) switchingHigher reliability systemsIncreased system power density2.2ApplicationsThe APT60DQ120SG device is designed for the following applications: Power Factor Correction (PFC)Anti-parallel diodeSwitch-mode power supplyInverters/convertersMotor controllersFreewheeling diodeSwitch-mode power supplyInverters/convertersSnubber/clamp diode3Electrical SpecificationsThis section shows the electrical specifications for the APT60DQ120SG device.3.1Absolute Maximum RatingsThe following table shows the absolute maximum ratings for the APT60DQ120SG device.All ratings: T = 25 °C unless otherwise specified.CTable 1 • Absolute Maximum RatingsSymbol Parameter Ratings UnitV R Maximum DC reverse voltage1200VV RRM Maximum peak repetitive reverse voltage1200V RWM Maximum working peak reverse voltage1200I F(AV)Maximum average forward current (T = 103 °C, duty cycle = 0.5)C60AI F(RMS)RMS forward current87I FSM Non-repetitive forward surge current (T = 45 °C, 8.3 ms)J540E AVL Avalanche energy (1 A, 40 mH)20mJT , TJ STG Operating and storage temperature range–55 to 175°CT L Lead temperature for 10 seconds300The following table shows the thermal and mechanical characteristics of the APT60DQ120SG device.Table 2 • Thermal and Mechanical CharacteristicsSymbol Characteristic Min Typ Max UnitRθJC Junction-to-case thermal resistance0.40°C/WW T Package weight0.14oz4.0g 3.2Electrical PerformanceThe following table shows the static characteristics of the APT60DQ120SG device.Table 3 • Static CharacteristicsSymbol Characteristic Test Conditions Min Typ Max UnitV F Forward Voltage I = 60 AF 2.8 3.3VI = 120 AF 3.35I = 60 A, T = 125 °CF J 2.11I RM Maximum reverse leakage current V = 1200 VR100μAV = 1200 V, T = 125 °CR J500C J Junction capacitance V = 200 VR37pF3.3Dynamic CharacteristicsThe following table shows the dynamic characteristics of the APT60DQ120SG device.Table 4 • Dynamic CharacteristicsSymbol Characteristic Test ConditionsMin Typ Max Unit t rrReverse recovery timeI = 1 A, di /dt = –100 A/µs F F V = 30 V R T = 25 °CJ30nst rr Reverse recovery time I = 60 A, di /dt = –200 A/µs F F V = 800 V R T = 25 °CC 320 Q rr Reverse recovery change 630 nC I RRM Maximum reverse recovery current 5 A t rr Reverse recovery time I = 60 A, di /dt = –200 A/µs F F V = 800 V R T = 125 °CC 420 ns Q rr Reverse recovery charge 2810 nC I RRM Maximum reverse recovery current 12 A t rr Reverse recovery time I = 60 A, di /dt = –1000 A/µs F F V = 800 V R T = 125 °CC 190 ns Q rr Reverse recovery change 4415 nC I RRMMaximum reverse recovery current38A3.4Typical Performance CurvesThis section shows the typical performance curves for the APT60DQ120SG device.Figure 1 • Maximum Transient Thermal ImpedanceFigure 2 • Forward Current vs. Forward Voltage Figure 3 • trr vs. Current Rate of ChangeFigure 2 • Forward Current vs. Forward Voltage Figure 3 • trr vs. Current Rate of ChangeFigure 4 • Qrr vs. Current Rate of Change Figure 5 • IRRM vs. Current Rate of ChangeFigure 6 • Dynamic Parameters vs. Junction TemperatureFigure 7 • Maximum Average Forward Current vs. Case TemperatureFigure 8 • Junction Capacitance vs. Reverse Voltage1. 2. 3. 4. 5.Figure 8 • Junction Capacitance vs. Reverse Voltage3.5Reverse Recovery OverviewThe following illustration shows the reverse recovery testing and measurement information for the APT60DQ120SG device.Figure 9 • Diode Reverse Recovery Waveform and DefinitionsI —Forward conduction current.F di /dt—Rate of diode current change through zero crossing.F I —Maximum reverse recovery current.RRM t —Reverse recovery time, measured from zero crossing where diode current goes from positive to rr negative, to the point at which the straight line through I and 0.25 × I passes through zero.RRM RRM Q —Area under the curve defined by I and t .rr RRM rr4Package SpecificationThis section outlines the package specification for the APT60DQ120SG device.4.1Package Outline DrawingThis section details the D PAK package drawing of the APT60DQ120SG device. Dimensions are in3millimeters and (inches).Figure 10 • Package Outline DrawingMicrosemi Corporate HeadquartersOne Enterprise, Aliso Viejo,CA 92656 USAWithin the USA: +1 (800) 713-4113Outside the USA: +1 (949) 380-6100Fax: +1 (949) 215-4996Email:***************************© 2018 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at .053-4250。

NCE20N60T data sheet 规格书

NCE20N60T data sheet 规格书

NCE N-Channel Enhancement Mode Power MOSFETV DS @T jmax 650 V R DS(ON)190m ΩI D 20 AGeneral DescriptionThe series of devices use advanced super junction technology and design to provide excellent R DS(ON) with low gate charge. This super junction MOSFET fits the industry’s AC-DC SMPS requirements for PFC, AC/DC power conversion, and industrial power applications.Features●New technology for high voltage device ●Low on-resistance and low conduction losses●Ultra Low Gate Charge cause lower driving requirements ●100% Avalanche TestedApplication● Power factor correction (PFC ) ● Switched mode power supplies(SMPS) ● Uninterruptible Power Supply (UPS )Package Marking And Ordering InformationDeviceDevice PackageMarkingNCE20N60T TO-247 NCE20N60Table 1.Absolute Maximum Ratings (TC =25℃)Parameter Symbol NCE20N60T UnitDrain-Source Voltage (V GS=0V ) V DS600 V Gate-Source Voltage (V DS=0V) V GS±30 V Continuous Drain Current at Tc=25°C I D (DC) 20 A Continuous Drain Current at Tc=100°C I D (DC)12.5 A Pulsed drain current (Note 1)I DM (pluse) 60 A Drain Source voltage slope, VDS = 480 V, ID = 20 A, Tj = 125 °Cdv/dt 50 V/nsMaximum Power Dissipation(Tc=25℃) Derate above 25°CP D208 1.67 WW/°CSingle pulse avalanche energy (Note 2)E AS 690mJAvalanche current(Note 1)I AR20 ASchematic diagramTO-247Parameter Symbol NCE20N60T UnitRepetitive Avalanche energy ,t AR limited by T jmax(Note 1)E AR 1 mJ Operating Junction and Storage Temperature Range T J ,T STG-55...+150 °C * limited by maximum junction temperatureTable 2. Thermal CharacteristicParameter Symbol NCE20N60T UnitThermal Resistance ,Junction-to-Case (Maximum ) R thJC 0.6 °C /WThermal Resistance ,Junction-to-Ambient (Maximum )R thJA62 °C /WTable 3. Electrical Characteristics (TA=25℃unless otherwise noted)Parameter Symbol ConditionMin Typ Max UnitOn/off statesDrain-Source Breakdown VoltageBV DSSV GS =0V I D =250μA 600 V Zero Gate Voltage Drain Current(Tc=25℃) I DSS V DS =600V,V GS =0V 0.05 1 μAZero Gate Voltage Drain Current(Tc=125℃) I DSS V DS =600V,V GS =0V 100 μA Gate-Body Leakage Current I GSS V GS =±30V,V DS =0V ±100nA Gate Threshold VoltageV GS(th) V DS =V GS ,I D =250μA 2.5 3 3.5 V Drain-Source On-State Resistance R DS(ON)V GS =10V, I D =10A 155 190 m ΩDynamic CharacteristicsForward Transconductance g FS V DS = 20V, I D = 10A17.5SInput Capacitance C lss 2300 PF Output CapacitanceC oss 95 PFReverse Transfer Capacitance C rssV DS =100V,V GS =0V,F=1.0MHz7 PF Total Gate Charge Q g 55 114 nCGate-Source Charge Q gs 11 nCGate-Drain Charge Q gdV DS =480V,I D =20A,V GS =10V22 nC Switching timesTurn-on Delay Time t d(on) 10 nSTurn-on Rise Time t r 5 nS Turn-Off Delay Time t d(off) 67 100 nSTurn-Off Fall Timet fV DD =380V,I D =20A, R G =3.6Ω,V GS =10V 4 12 nSSource- Drain Diode CharacteristicsSource-drain current(Body Diode) I SD 20 APulsed Source-drain current(Body Diode) I SDM T C =25°C60 A Forward on voltage V SD Tj =25°C,I SD =20A,V GS =0V 0.9 1.3 VReverse Recovery Time t rr 500 nSReverse Recovery ChargeQ rr Tj=25°C,I F =20A,di/dt=100A/μs11 uCNotes 1.Repetitive Rating: Pulse width limited by maximum junction temperature2. Tj=25℃,VDD=50V,VG=10V, R G =25ΩTYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS (curves) Figure1. Safe operating area for NCE20N60T Figure2. Source-Drain Diode Forward VoltageFigure3. Output characteristics Figure4. Transfer characteristicsFigure5. Static drain-source on resistance Figure6. R DS(ON) vs Junction TemperatureFigure7. BV DSS vs Junction Temperature Figure8. Maximum I D vs Junction TemperatureFigure9. Gate charge waveforms Figure10. CapacitanceFigure11. Transient Thermal ImpedanceTest circuit1) Gate charge test circuit & Waveform2)Switch Time Test Circuit:3)Unclamped Inductive Switching Test Circuit & WaveformsTO-247 Package InformationDimensions In Millimeters Dimensions In Inches SymbolMin.Max.Min.Max.A 4.850 5.150 0.191 0.200A1 2.200 2.600 0.087 0.102b 1.000 1.400 0.039 0.055b1 2.800 3.200 0.110 0.126 b2 1.800 2.200 0.071 0.087c 0.500 0.700 0.020 0.028c1 1.900 2.100 0.075 0.083D 15.45015.750 0.608 0.620E1 3.500 REF 0.138 REFE2 3.600 REF 0.142 REF41.300 1.610 1.626L 40.900L1 24.800 25.100 0.976 0.988 L2 20.300 20.600 0.799 0.811 Φ7.100 7.300 0.280 0.287e 5.450 TYP 0.215 TYPH 5.980 REF 0.235 REFPb-Free ProductATTENTION:■ Any and all NCE products described or contained herein do not have specifications that can handle applications that requireextremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your NCE representative nearest you before using any NCE products described or contained herein in such applications.■ NCE assumes no responsibility for equipment failures that result from using products at values thatexceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all NCE products described or contained herein.■ Specifications of any and all NCE products described or contained herein stipulate the performance, characteristics, andfunctions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer’s products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer’s products or equipment.■ NCE Power Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and allsemiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.■ In the event that any or all NCE products(including technical data, services) described or contained herein are controlledunder any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, includingphotocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of NCE Power Semiconductor CO.,LTD.■ Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volumeproduction. NCE believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.■ Any and all information described or contained herein are subject to change without notice due toproduct/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the NCE product that you intend to use.■ This catalog provides information as of Mar. 2010. Specifications and information herein are subject to change without notice.。

戴尔易安信刀片式服务器I O指南说明书

戴尔易安信刀片式服务器I O指南说明书

INFINIBAND
GbE M6220
3032
M6348
M8024 10GbE
FC4
FC4
FC8
M2401G
M3601Q
Pass
3130G
Pass
Pass M4424 M5424
DDR
QDR
DELTLhrCuONFIDENTIAL 3130X
Thru
Thru
Infiniband Infiniband
Cables CX4 cable, InfiniBand 4x connector
10GbE X2 Transceiver
Modules
MMF, dual SC
connector
10GbE X2 Transceiver
Modules
10GBASE-SR X2 Module
10GBASELRM X2 Module
4
POWERCONNECT M6220
PE server blade I/O
card
Uplinks
Uplinks
Transceivers XFP Optical Transceiver 10GBASE-LR, LC Connector XFP Optical Transceiver 10GBASE-SR, LC Connector
4 Copper
I/O bays
Fabric A1 &
A2
Fabric B1 &
B2
Fabric C1 &
C2
5
CISCO BLADE SWITCH
PE server blade I/O
card
Use Broadcom 5709 dual port server blade I/O Mezzanine Cards in PE blade servers for

IXSH35N120A;中文规格书,Datasheet资料

IXSH35N120A;中文规格书,Datasheet资料

1250
18
TJ = 125°C
IC = 35A
1000
17
tfi
750
16
Eoff - millijoules tfi - nanoseconds
500
10
Eoff
250 0
5 10 20 30 40 50 60 70
IC - Amperes
Fig.9 Gate Charge Characteristic Curve
W RG = 2.7
dV/dt < 5V/ns
1
0.1
0.01 0
200 400 600 800 1000 1200 VCE - Volts
Fig.11 Transient Thermal Impedance
1
D=0.5
0.1 D=0.2 D=0.1
D=0.05 D=0.02 0.01 D=0.01
Maximum Ratings
1200
V
1200
V
±20
V
±30
V
70
A
35
A
140
A
ICM = 70
A
@ 0.8 VCES
10
ms
300
W
-55 ... +150
°C
150
°C
-55 ... +150
°C
1.13/10 Nm/lb.in.
6
g
300
°C
Symbol
BVCES V
GE(th)
I
CES
10
9
TJ = 25°C
8
7
6
5
IC = 70A

IXYS IGBT选型参考

IXYS IGBT选型参考

Ic Ic (25益)(90益)
/A /A
Vce (sat) /V
tfi
If
(25益)(110益)
/ns /A
封装形式
IXGC16N60B2D1 600 28 13 2.3 80 10 ISOPLUS220
IXGA16N60B2D1 600 40 16 2.3 80 11 TO-263
IXGH16N60B2D1 600 40 16 2.3 80 11 TO-247 IXGP16N60B2D1 600 40 16 2.3 80 11 TO-220
Ic Ic (25益) (90益)
/A /A
Vce (sat) /V
tfi (25益)
/ns
封装 形式
IXGH60N60 600 75
IXGK60N60 600 75
IXGT60N60
600 75
IXGN60N60 600 100
IXGN200N60A2 600 200
IXGA8N100 1000 16
IXGX35N120B 1200 70 35 3.3 160 PLUS247
PDF created with pdfFactory trial version
3、中速系列集成快恢复二极管的 IGBT 单管
(可适用 15kHz-40kHz 的硬开关)
型号
Vces /V
IXYS IGBT 选型参考
IGBT 是“Insulated Gate Bipolar Transistor”的缩 写,即“绝缘栅双极晶体管”,在结构和性能上都可以把 它等效成一个沟道型场效应管和一个双极性晶体管的 组合,从输入端看,是一个高阻的 VMOS,从输出端看, 是一个大功率的双极型。IGBT 主要用于工业控制,如 电机 驱 动 、 高 频 感 应 电 源 等 。 高 压 供 电 条 件 下,20 ~ 50kHz 的硬开关是 IGBT 的主要应用领域。最常见的应 用是电磁炉。

英特尔Stratix10器件数据表说明书

英特尔Stratix10器件数据表说明书
器件等级
• –E1V (最快) • –E2V • –E2L • –E3V • –E3X
• –I1V • –I2V • –I2L • –I3V • –I3X
支持的速度等级
速度等级的后缀表示 Intel Stratix 10 器件中提供的功耗选项。
• V—标准静态功耗的 SmartVID。对于“V”后缀器件,VCC 和 VCCP 必须共享同一个 SmartVID 调节器。VCCL_HPS 可以共享同一个 SmartVID 调节器,或者使用一个单独的固定电压调节器。
• L—低静态功耗的 0.85 V 固定电压
• X—最低静态功耗的 0.85 V 固定电压
英特尔公司。保留所有权利。英特尔、英特尔徽标和其他英特尔标志是英特尔公司或其子公司的商标。依照英特尔的标准保证条例,英特尔保证其 FPGA 和半导体产品的性能符合当前规
格,但保留随时更改任何产品和服务的权利,恕不另行通知。英特尔概不承担因应用或使用本文中描述的任何信息、产品或服务而产生的任何责任和义务,除非得到英特尔书面上的明确同 意。建议英特尔客户在信赖任何已发布的信息之前以及下单订购产品或服务之前,应先获取最新版本的器件规格。 *其他的名称和品牌可能是其他所有者的资产。
Intel® Stratix® 10 器件数据表........................................................................................................................................................ 3 电气特性.......................................................................

WP2060SRD;中文规格书,Datasheet资料

WP2060SRD;中文规格书,Datasheet资料

Notes: 1. 1/10 Duty Cycle, 0.1ms Pulse Width. 2. 2mm below package base. 3. 5mm below package base.
Super Bright Red 75 30 155 5 -40°C To +85°C 260°C For 3 Seconds 260°C For 5 Seconds
Super Bright Red
WP207 APPROVED: WYNEC
REV NO: V.2 CHECKED: Allen Liu
DATE: DEC/08/2007 DRAWN: R.Chen
PAGE: 3 OF 6 ERP: 1101002693
/
Units mW mA mA V
SPEC NO: DSAH3807 APPROVED: WYNEC
REV NO: V.2 CHECKED: Allen Liu
DATE: DEC/08/2007 DRAWN: R.Chen
PAGE: 2 OF 6 ERP: 1101002693
/
/
SPEC NO: DSAH3807 APPROVED: WYNEC
REV NO: V.2 CHECKED: Allen Liu
DATE: DEC/08/2007 DRAWN: R.Chen
PAGE: 5 OF 6 ERP: 1101002693
/
SPEC NO: DSAH3807 APPROVED: WYNEC
REV NO: V.2 CHECKED: Allen Liu
DATE: DEC/08/2007 DRAWN: R.Chen
PAGE: 1 OF 6 ERP: 1101002693

士兰微电子 SDM15G60FB 说明书

士兰微电子 SDM15G60FB 说明书

SDM15G60FB说明书智能功率模块(IPM),600V/15A 三相全桥驱动描述SDM15G60FB是高度集成、高可靠性的三相无刷直流电机驱动电路,主要应用于较低功率的变频驱动,如空调、电冰箱、洗衣机等。

其内置了3相全桥高压栅极驱动电路和6个低损耗IGBT管。

SDM15G60FB内部集成了欠压、短路、过温等各种保护功能,提供了优异的保护和宽泛的安全工作范围。

由于每一相都有一个独立的负直流端,其电流可以分别单独检测。

SDM15G60FB采用了高绝缘和易导热设计,提供了非常紧凑的封装体,使用非常方便,尤其适合要求紧凑安装的场合。

主要特点♦内置6个低损耗600V/15A IGBT;♦内置高压栅极驱动电路(HVIC);♦内置欠压保护和过温、过流保护和温度输出;♦内置带限流电阻的自举二极管;♦完全兼容3.3V和5V的MCU的接口,高电平有效;♦3个独立的负直流端用于变频器电流检测的应用;♦报警信号:对应于低侧欠压保护和短路保护;♦封装体采用Al2O3 DBC设计,热阻极低;♦绝缘级别:1500V rms/min。

应用♦空调压缩机♦冰箱压缩机♦低功率变频器产品规格分类产品名称封装形式打印名称环保等级包装SDM15G60FB DIP-24H SDM15G60FB 无铅料管内部框图极限参数参数符号参数范围单位逆变部分加在PN之间的直流母线电压V PN450 V 加在PN之间的直流母线电压(浪涌)V PN(Surge)500 V 集电极-发射极电压V CES600 V单个IGBT的集电极持续电流,T C=25°C,Tj<150°C I C15 A 单个IGBT的集电极峰值电流,T C=25°C,Tj<150°CI CP30 A 脉冲宽度<1ms每个模块集电极最大耗散功率,T C=25°C P C35 W 控制部分控制电源电压V CC20 V 高侧控制电压V BS20 V 输入信号电压V IN-0.5~ V CC+0.5 V 故障输出电源电压V FO-0.5~V CC+0.5 V 故障输出电流,V FO端灌电流I FO 1 mA 电流检测端输入电压V SC-0.5~V CC+0.5 V 整机短路保护限压V CC=V BS=13.5~16.5V, T J=150°C, 单V PN(PROT)400 V 次且小于2μs工作壳温范围,-40°C≤T J≤150°C(备注1)T C-20~100 °C 存储温度范围T STG-40~125 °C IGBT结壳热阻RθJC Q 3.0 °C/W FRD结壳热阻RθJC F 3.9 °C/W 绝缘电压60Hz, 正弦波, 1 分钟连接管脚到散热片V ISO1500 V rms 安装扭矩安装螺丝:-M3,推荐值0.62N.m T 0.5~0.8 N.m 备注1:功率芯片的最大结温是150°C,为了保证IPM能安全工作,建议平均结温Tj≤125°C(@Tc≤100°C)推荐工作条件电气特性参数 (除非特殊说明,T amb =25°C, V CC =V BS =15V)逆变部分(a)开启(b)关闭CE图1. 开关时间定义控制部分备注2:短路保护或欠压保护工作时故障信号FO 输出。

N32G452xB xC xE 数据手册说明书

N32G452xB xC xE 数据手册说明书

N32G452xB/xC/xE数据手册N32G452系列采用32 bit ARM Cortex-M4F内核,最高工作主频144MHz,支持浮点运算和DSP指令,集成多达512KB Flash,144KB SRAM,2x12bit 5Msps ADC,2x1Msps 12bit DAC,集成多路U(S)ART、I2C、SPI、QSPI、USB、CAN、1x SDIO通信接口,内置密码算法硬件加速引擎关键特性●内核CPU―32位ARM Cortex-M4 内核+ FPU,单周期硬件乘除法指令,支持DSP指令和MPU―内置8KB 指令Cache缓存,支持Flash加速单元执行程序0 等待―最高主频144MHz,180DMIPS●加密存储器―高达512KByte片内Flash,支持加密存储、多用户分区管理及数据保护,支持硬件ECC校验,10万次擦写次数,10年数据保持―144KByte片内SRAM(包含16KByte Retention RAM),Retention RAM支持硬件奇偶校验●时钟―HSE:4MHz~32MHz外部高速晶体―LSE:32.768KHz外部低速晶体―HSI:内部高速RC OSC 8MHz―LSI:内部低速RC OSC 40KHz―内置高速PLL―支持1路时钟输出,可配置为可配置系统时钟、HSE、HSI或PLL后分频输出●复位―支持上电/掉电/外部引脚复位―支持可编程的低电压检测及复位―支持看门狗复位●通信接口―7个U(S)ART接口, 最高速率达4.5 Mbps,其中3个USART接口(支持1xISO7816,1xIrDA,LIN),4个UART接口―3个SPI接口,速度高达36 MHz,其中2个支持I2S―1个QSPI接口,速率高达144 Mbps―4个I2C接口,速率高达1 MHz,主从模式可配,从机模式下支持双地址响应―1个USB2.0 Full speed Device接口―2个CAN 2.0A/B总线接口―1个SDIO接口,支持SD/MMC格式●高性能模拟接口―2个12bit 5Msps高速ADC,多种精度可配置,6bit 模式下采样率高达9Msps,多达18路外部单端输入通道,支持差分模式―2个12bit DAC,采样率1Msps―支持外部输入独立参考电压源―所有模拟接口支持1.8~3.6V全电压工作●最大支持97个支持复用功能的GPIOs,大多数GPIO支持5V耐压.●2个高速DMA控制器,每个控制器支持8通道,通道源地址及目的地址任意可配●RTC实时时钟,支持闰年万年历,闹钟事件,周期性唤醒,支持内外部时钟校准●定时计数器― 2 个16bit高级定时计数器,支持输入捕获、输出比较、PWM输出以及正交编码输入等功能,最高控制精度6.9nS。

XEV20D 快速参考手册说明书

XEV20D 快速参考手册说明书

oPrevent the device from being dropped, knocked or shaken as either can cause irreparable damage.o Do not clean the device with corrosive chemical products, solvents or aggressive detergents.oThe device must not be used in applications that differ from that specified in the following material.Separate the power supply of the device from the rest of the electrical devices connected inside the electrical panel. The secondary circuit of the transformer must never be connected to the earth.With reference to Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 and to the relative national legislation, please note that: • There lies the obligation not to dispose of electrical and electronic waste asmunicipal waste but to separate the waste. • Public or private collection points must be used for disposal, in accordance withlocal laws. Furthermore, at the end of the product's life, it is also possible to return this to the retailer when a new purchase is made. • This equipment may contain hazardous substances. Improper use or incorrectdisposal can have adverse effects on human health and the environment. • The symbol shown on the product or the package indicates that the productwas placed on the market after 13th August 2005 and must be disposed of as separated waste. • Should the product be disposed of incorrectly, sanctions may be applied asstipulated in applicable local regulations regarding waste disposal.2. COMPATIBILITY OF USEvalves. This driver is developed for use in combination with the ISaGRAF® environment and programmable devices in the iPRO series.The main features are:• controlling one or two electronic expansion valves: • compatibility with various valve models • compatibility with various types of refrigerant • manual adjustment (PID) or self-adaptive overheating • 4 analogue inputs • Can Bus for ipro connectionIn case of 2 expansion valves they MUST HAVE the same STEP RATE.present:➢ Temperature and humidity out of the range stipulated in the instrumentlabel. Frequent and sudden changes in temperature and/or humidity. ➢ Direct sunlight and weathering in general ➢ High mechanical stress (vibrations and/or impact) ➢ Sulphur and ammonia gas, smoke and salt spray that can causecorrosion and/or oxidation ➢ Presence of flammable or explosive gas ➢ Dust ➢ Devices that generate electromagnetic interferencePlace the device inside the electrical panels, paying attention to the following:➢ the distance between the device and the electrical power components ➢ the distance between the device and the power cables ➢ sufficient space for the cooling airAlways comply with the laws and regulations applicable in the country where the device is installed.Always protect the device for it to always be accessible solely by authorized personnel.In case of malfunctions, always contact the relative distributor for the device to be repaired.3. GENERAL RULESComply with the following recommendations during the installation process in order to prevent the device from malfunctioning. ➢ Separate the signal cables from the power cables (it is recommended to useBELDEN 8772-type shielded cables). ➢ Separate the cables of the analogue inputs from those of the digital inputs andthe serial line cables from the power cables (resistive as well as inductive), in order to prevent malfunction due to electromagnetic interference. ➢ Separate the power of the device from that of the other electrical components. ➢ Never connect the secondary of the supply transformer to the earth. ➢ The low voltage connections must have reinforced insulation.4. INSTALLATION AND MAINTENANCEXEV20D is a slave device, which means that it receives commands from another “master” device; in particular , instructions are given by an iPro controller through a CANBUS (10DIN version) or LAN (4DIN version) connection.Operating parameters are sent by an iPro and then they are stored in a special retentive memory area inside the driver.The necessary parameters for operation are:This memory stores the values of the following parameters:1) valve type (0= disabled valves; 1= both unipolar valves / 2= both bipolarvalves and Wavemode type of command; 18 = both bipolar valves and Normal mode type of command)2) valve 1 step rate (expressed in tens of ms 16-10000) 3) valve 2 step rate (expressed in tens of ms 16-10000) 4) valve 1 maximum number of steps (0-8500) 5) valve 2 maximum number of steps (0-8500) 6) valve 1 movement current (0-100 *10mA) 7) valve 2 movement current (0-100 *10mA) 8) valve 1 maintenance current (1-100 *10mA) 9) valve 2 maintenance current (1-100 *10mA)10) unipolar valve 1 configuration (Current/ no current with valve in position– adjustment steps expressed in whole steps/half steps)11) unipolar valve 2 configuration (Current/ no current with valve in position– adjustment steps expressed in whole steps/half steps)Whenever the master device (iPro) tells the driver a new value for one of the aforementioned parameters, the driver itself proceeds with thecomplete closure of the valve.The XEV20D drivers issued by Dixell are tested but not configured: this means that the parameters in the fla sh memory are set to a default value (specifically, the “valve type” parameter = 0).Read carefully the table below to learn how to connect valves produced by different OEMs:5-WIRE VALVES (UNIPOLAR)The maximum distance between a XEV valve driver and the valve must not exceed 10 meters ; shielded cables with a section greater than or equal to 0.325 mm² (AWG22) must be used.At power-on XEV20D reads the parameters in the flash memory. At this point: • If “valve type” = 0, no action is taken on the val ve and both “PWR ON” and“ALARM” leds remain on steady.• If “valve type” ≠ 0, the driver itself commands the complete closure of the valve. During this phase the “Close” led blinks .Once the valve has been closed (the “Close” led remains on steady), the driver waits to receive instructions from iPro.During the first connection, the replacement of a valve body or the first test of a unit, it is necessary to follow the procedure below:1. Disable any unit adjustment;2. Cut off power to the whole unit;3. Disconnect the connector dedicated to valve wiring.4.In case the connection of the valve body involves the modification of its operating parameters, proceed as follows:a. Power the unit, disconnecting the body valve from XEV20D.b. Set the new parameters of the valve using the iPro application.c. Remove power from the unit.5. Connect the body valve to XEV20D driver.6. Power the unit.Valve wires must not be connected or disconnected, whenever the driver is powered. This action may damage the driver and the valve windings.“PWR ON” and “ALARM” leds“Open” and “Close” ledsValve 1 and 2 terminals5. MAXIMUM POWERS ALLOWEDXEV20D can control a large variety of motorized valves. The table below shows the maximum current values that the valve windings can absorb. Select the transformer that is suitable for the application on the basis of that shown in the table. The type of DIXELL transformer to use is indicated for every operating mode.NOTE: carefully read the technical manual supplied by the manufacturer of the valve body before using the driver in order to prevent changing the data provided by the manufacturers of the valves, and verify that the required currents are lower than those shown in the table below in order to prevent damaging the control module. CONFIGURATION ONE VALVE TWO VALVES DRIVE MODE Entire step Entire stepT Y P E O F V A L V EBIPOLAR Valves(4 wires) Current 0.9A max → TF20DCurrent 0.9A maxper valve → TF40DUNIPOLAR valves(5-6 wires) Current 0.33A max → TF20DCurrent 0.33A maxper valve → TF20D6. SPECIFICATIONS6.1 ANALOGUE INPUTSNumber of inputs:4Type of analogue input: (configurable via software parameter)Inputs 1 and 2:NTC (-50T110°C; 10KΩ at 25°C) PTC (-55T115°C; 990Ω at 25°C) PT1000 (-50T100°C ; 1K Ω at 0°C) Inputs 3 and 4:NTC (-50T110°C; 10KΩ at 25°C) PTC (-55T115°C; 990Ω at 25°C) PT1000 (-50T100°C ; 1K Ω at 0°C)In voltage: 0 to 5V (input resistance 3.7KΩ) In curren t: 4 to 20 mA (input resistance 100Ω) Precision (at 25°C): NTC, PTC, PT1000: ±1°C 0-5V: ±100mV 4-20mA ±0.30mAMeasurement and adjustment field: -50°C ÷ 110°C (-58 °F ÷ 230°F) NTC probe -50°C ÷ 150°C (32 °F ÷ 302°F) PTC probe -50°C ÷ 100°C (32 °F ÷ 212°F) PT1000 probe -0 bar ÷ 50 bar (0 psi ÷ 302 psi) pressure probe Resolution0.1 °C 1 °F 0.1 bar6.2 DIGITAL INPUTSDigital inputs can be configured via software as digital inputs:Type:(configurable via softwareparameter)Non opto-insulated potential free contactMax cable length 10mNumber of inputs: 4 Notes: Do not use live contacts in order to prevent theinstrument from being damaged.6.3 ELECTRICAL SPECIFICATIONSPower Supply: 24Vac/dc -10% ÷ 10%, 50/60Hz Consumption: Max. 10VA Connectors: Molex connectors with wiring for low voltage (powersupply, probes, digital inputs, analogue outputs) STELVIO quick coupling screw connectors for low voltage (LAN)STELVIO quick coupling screw connectors for relay outputs (250Vac, 6A max)6.4 PLASTIC CONTAINERAssembly:On a DIN rail (EN 50022, DIN 43880)Fastened with screws via the removable plastic flaps.Material:PC-ABS Thermoplastic Self-extinguishing: V0 (UL94) Comparative Tracking Index (CTI): 300V Colour:Black Frontal protection: IP206.5 OPERATING CONDITIONSOperating temperature: -10°C ÷ 60°C Storage temperature: -30°C ÷ 85°C Relative humidity: 20% ÷ 85%7. WIRING DIAGRAMS7.1 VERSION FOR ONE VALVE7.2 VERSION FOR TWO VALVES16 17 Battery +In gnd16 17 Battery +In gndIf the power supply is Vdc, follow the polarity as shown below:Pin 1 = + Pin 7 = -If the power supply is Vdc, follow the polarity as shown below:Pin 1 = + Pin 7 = -7.4.1 Temperature probes (NTC and PTC)2-row sensors that do not require polarity to be respected.Each sensor must be connected through one of the inputs (from Pb1 to Pb10) and the common (PbC) as shown in the diagram below.7.4.2 Pressure transducers and current probes (4 - 20 mA)2-row sensors that require +12Vdc power supply.Each sensor must be connected through one of the inputs (from Pb1 to Pb10) and the power supply (+12V) as shown in the diagram below.3-row sensors that require +5Vdc power supply.8.2 CONNECTION TO THE XEV20D DRIVER WITH TWO CONNECTED VALVES9.SERIAL -- CAN BUS LINEThe device can communicate via CAN Bus serial only once an appropriate module address has been set. The address is set by the dip-switch, named Address, according to the following drawing:The address is set in binary mode. Eachselector has an increasing weight, in thefigure the set address is:1 x 1 = 12 x 0 = 04 x 1 = 48 x 1 = 8➔1+4+8=13NOTE: To set properly the ISaGRAF® software, refer to the documentation on https://www.ipro.academy website.10.MEANING OF THE LED LIGHTSThe following table illustrates LED light operation.LED MODE MEANINGPWR ON On The instrument is powered correctlyALARM On There is an alarmTX/RX Blinking CAN Bus or LAN activity, communication enabledTX/RX On No linkOPEN V1 Blinking Valve 1 in opening mode OPEN V1 On Valve 1 fully open CLOSE V1 Blinking Valve 1 in closing mode CLOSE V1 On Valve 1 fully closed OPEN V2 Blinking Valve 2 in opening mode OPEN V2 On Valve 2 fully open CLOSE V2 Blinking Valve 2 in closing mode CLOSE V2 On Valve 2 fully closed。

Z515中文资料(Intel)中文数据手册「EasyDatasheet - 矽搜」

Z515中文资料(Intel)中文数据手册「EasyDatasheet - 矽搜」
Intel m ay m ak e changes to specifications and product descriptions at any tim e, without notice. Designers m ust not rely on the absence or characteristics of any features or instructions m ark ed “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incom patibilities arising from future changes to them . The inform ation here is subject to change without notice. Do not finalize a design with this inform ation.
UNLESS O THERW ISE AGREED IN W RITING BY INTEL, THE INTEL PRO DUCTS ARE NO T DESIGNED NO R INTENDED FO R ANY APPLICATIO N IN W HICH THE FAILURE O F THE INTEL PRO DUCT CO ULD CREATE A SITUATIO N W HERE PERSO NAL INJURY O R DEATH MAY O CCUR.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copie s of docum ents which have an orde r num be r and are re fere nce d in this docum ent, or othe r Inte l lite rature , m ay be obtaine d

E1UAA20-16.257M中文资料(ECLIPTEK)中文数据手册「EasyDatasheet - 矽搜」

E1UAA20-16.257M中文资料(ECLIPTEK)中文数据手册「EasyDatasheet - 矽搜」

E1U列•符合RoHS(无铅)•HC-49 / US短包•AT或BT切提供•电阻焊接密封•紧公差/稳定性•磁带和卷轴,绝缘片,和自定义引线长度可供选择NOTES H 2.50L 11.18W 4.70水晶_____________________________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________________________________________________________________________________ _____________________________________________________________________________________________________________________________________________________________________________________________电气特性频率范围频率公差/稳定性在工作温度范围温度范围工作温度范围老化(25°C)存储温度范围并联电容绝缘电阻驱动电平负载电容(C)3.579545MHz为50.000MHz为±50ppm /±100ppm(标准),±30ppm/为±50ppm(AT切割只),±15ppm/±30ppm(AT切割只),±15ppm/±20ppm(AT切割只),或±10ppm/±15ppm(AT切割专用)0°C到70°C,-20°C至70°C(AT切割只),或-40°C至85°C(AT切割专用)±5ppm/年最大-40°C至125°C7pF最大500兆欧最低在100V1 mWatt最大18pF之(标准),自定义C 10pF,或串联谐振等效串联电阻(ESR),运作模式(MODE),切频率范围3.579545MHz到4.999MHz5.000MHz到5.999MHz6.000MHz到7.999MHz8.000MHz到8.999MHz9.000MHz到9.999MHz10.000MHz到14.999MHz ESR (Ω)200最大150最大120最大90马克斯80马克斯70马克斯模式/剪切基本/ AT基本/ AT基本/ AT基本/ AT基本/ AT基本/ AT频率范围15.000MHz到15.999MHz16.000MHz到23.999MHz24.000MHz到30.000MHz24.000MHz到40.000MHz24.576MHz为29.999MHz30.000MHz到50.000MHzESR (Ω)60马克斯50马克斯40马克斯40马克斯150最大100最大模式/剪切基本/ AT基本/ AT基本/ AT基本/ BT三次泛音/ AT三次泛音/ AT.ECLIPTEK CORP.CRYSTAL E1U HC-49/US Short CR4111/07零件编码指南E1U A A 18 - 20.000M - I2 TR频率公差/稳定性A =±50PPM 25°C时,±0℃至100ppm70℃B =±50PPM,在25°C,±100ppm-20℃至70℃C =±50PPM,在25°C,±100ppm温度范围为-40°C至85°CD =±30ppm25°C时,±0℃50PPM至70℃E =±30ppm25°C时,为±50ppm -20℃至70℃F =±30ppm25°C时,为±50ppm -40°C至85°CG =±15ppm25°C时,±0℃为30ppm至70℃H =±15ppm25°C时,±30ppm-20℃至70℃J =±15ppm25°C时,±30ppm温度范围为-40°C至85°C K =±15ppm25°C时,±0℃为20ppm至70℃L =±15ppm25°C时,±20ppm-20℃至70℃M =±15ppm25°C时,±20ppm温度范围为-40°C至85°C N =±10ppm25°C时,±0℃为15ppm至70℃P =±10ppm25°C时,±15ppm-20℃至70℃包装选择空白=散装,A =盘,TR =卷带式可选项空白=无(标准)CX =自定义引线长度I2 =绝缘子标签频率负载电容S =系列X X = X X pF(自定义)动作模式/水晶切割A =基本/ A TB =三次泛音/ A TD =基本/ BT外形尺寸ALL DIM ENSIONS IN M ILLIM ET ERS 卷带尺寸ALL DIM ENSIONS IN M ILLIM ET ERS环境/机械特性PARAMET ER SPECIFICAT ION 标记规格1000 Pieces per ReelCompliant to EIA-468B精细泄漏测试总泄漏测试铅完整铅端接机械冲击耐焊接热抗溶剂可焊性温度循环振荡M IL-STD-883,方法1014,条件AM IL-STD-883,方法1014,条件CM IL-STD-883 2004方法锡2微米 - 6微米M IL-STD-202,方法213,条件CM IL-STD-202,方法210M IL-STD-202,方法215M IL-STD-883,2002年法M IL-STD-883,法1010M IL-STD-883,方法2007,条件A1号线:电子X X.X X X中号Frequency in MHz(5 Digits Maximum + Decimal).ECLIPTEK CORP.CRYSTAL E1U HC-49/US Short CR4111/07。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J 0.64 1.01 K 2.54 BSC
M 4.32 4.82 N 1.14 1.39
Q 0.35 0.56 R 2.29 2.79
Inches Min. Max.
0.500 0.550 0.580 0.630
0.390 0.420 0.139 0.161
0.230 0.270 0.100 0.125
High Voltage IGBT with optional Diode
High Speed, Low Saturation Voltage
IXDP 20N60 B VCES = 600 V
IXDP 20N60 BD1 IC25
= 32 A
V = CE(sat) typ 2.2 V
C
C
TO-220 AB
1-4
/
IXDP 20N60 B IXDP 20N60 BD1
Symbol
Cies C
oes
Cres Qg td(on) tr td(off) tf Eon Eoff RthJC RthCH
Conditions
Characteristic Values
(TJ = 25°C, unless otherwise specified) min. typ. max.
easy paralleling q MOS input, voltage controlled q optional ultra fast diode q International standard package
Advantages
q Space savings q High power density
80
RG = 22W
A TJ = 125°C ICM 60
40
20
0 0 100 200 300 400 500 600 700 V VCE
Fig. 11 Reverse biased safe operating area RBSOA
IXDP 20N60 B IXDP 20N60 BD1
0.8 mJ Eoff 0.6
ns
30
ns
260
ns
55
ns
0.9
mJ
0.4
mJ
Package with heatsink compound
0.5
0.9 K/W K/W
Reverse Diode (FRED) [D1 version only]
Symbol
Conditions
Characteristic Values
(TJ = 25°C, unless otherwise specified) min. typ. max.
G
G
E
E
IXDP 20N60B IXDP 20N60B D1
G C E
G = Gate, C = Collector ,
C (TAB)
E = Emitter TAB = Collector
Symbol
Conditions
VCES VCGR VGES VGEM IC25 IC90 ICM RBSOA
TJ = 25°C to 150°C TJ = 25°C to 150°C; RGE = 20 kW
±20
V
±30
V
32
A
20
A
40
A
ICM = 60
A
VCEK < VCES
10
µs
140
W
50
W
-55 ... +150
°C
-40 ... +150
°C
300
°C
0.4 - 0.6
Nm
2
g
Features
q NPT IGBT technology q low switching losses q low tail current q no latch up q short circuit capability q positive temperature coefficient for
V = 25 V, V = 0 V, f = 1 MHz
CE
GE
800
pF
85
pF
50
pF
IC = 20 A, VGE = 15 V, VCE = 480 V
Inductive load, TJ = 125°C
IC = 20 A, VGE = ±15 V,
V CE
=
300
V,
R G
=
22
W
70
nC
25
11
A
80
ns
40
ns2.5 K/W来自TO-220 AB Outline
Dim. Millimeter Min. Max.
A 12.70 13.97 B 14.73 16.00
C 9.91 10.66 D 3.54 4.08
E 5.85 6.85 F 2.54 3.18
G 1.15 1.65 H 2.79 5.84
VF
IF = 20 A, VGE = 0 V
IF = 20 A, VGE = 0 V, TJ = 125°C
2.1 2.4 V
1.6
V
IF
TC = 25°C
TC = 90°C
25 A 15 A
IRM trr trr RthJC
IF = 10 A, -diF/dt = 400 A/µs, VR = 300 V VGE = 0 V, TJ = 125°C IF = 1 A, -diF/dt = 100 A/µs, VR = 30 V, VGE = 0 V
15 V 12 VGE
9
6
3
VCE = 480V
IC = 15A
0
0
20
40
60
80 nC 100
QG
Fig. 5 Typ. turn on gate charge
© 2002 IXYS All rights reserved /
IXDP 20N60 B IXDP 20N60 BD1
Continuous Transient
TC = 25°C TC = 90°C TC = 90°C, tp =1 ms
VGE= ±15 V, TJ = 125°C, RG = 22 W Clamped inductive load, L = 30 µH
tSC (SCSOA)
PC
VGE= ±15 V, VCE = 600 V, TJ = 125°C RG = 22 W, non repetitive
20
VGE= 17V 15V 13V
11V 9V
10
TJ = 25°C
0
0
1
2
3
4 V5
VCE
Fig. 1 Typ. output characteristics
40 A 30 IC
20
10
0 3
TJ = 125°C
TJ = 25°C
VCE = 20V
4 5 6 7 8 9 V 10 VGE
Fig. 3 Typ. transfer characteristics
© 2002 IXYS All rights reserved /
4-4
分销商库存信息:
IXYS IXDP20N60B
IXDP20N60BD1
td(off)
400
ns
300 t
0.4
200
Eoff VCE = 300V
VGE = ±15V
0.2
RG = 22W 100
tf
TJ = 125°C
0.0 0
0
10
20
30 A
IC
Fig. 8 Typ. turn off energy and switching times versus collector current
1.2 mJ Eon 1.0
0.8
td(on) tr
40
ns
30
Eon
t
20
0.6
0.4 0
VCE = 300V VGE = ±15V 10 IC = 20A TJ = 125°C
W0
10 20 30 40 50 60 70
RG
Fig. 9 Typ. turn on energy and switching times versus gate resistor
times versus gate resistor
5 K/W
1 ZthJC
0.1
diode IGBT
0.01
single pulse
0.001 10-5
10-4
10-3
10-2
10-1 t
IXDP20N06B
100 s 101
Fig. 12 Typ. transient thermal impedance
0.045 0.065 0.110 0.230
0.025 0.040 0.100 BSC
0.170 0.190 0.045 0.055
0.014 0.022 0.090 0.110
© 2002 IXYS All rights reserved /
2-4
40 A IC 30
3-4
1.5 mJ Eon 1.0
VCE = 300V VGE = ±15V
RG = 22W
TJ = 125°C
0.5
75 Eon
ns
td(on)
50 t
tr 25
0.0 0
0
10
相关文档
最新文档