数字电路第4章

合集下载

《数字电子技术基础》第五版:第四章 组合逻辑电路

《数字电子技术基础》第五版:第四章 组合逻辑电路

74HC42
二-十进制译码器74LS42的真值表
序号 输入
输出
A3 A2 A2 A0 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9
0 0 000 0 111111111
1 0 001 1 011111111
2 0 010 1 101111111
3 0 011 1 110111111
4 0 100 1 111011111
A6 A4 A2
A0
A15 A13 A11 A9
A7 A5 A3
A1
I7 I6 I5 I4 I3 I2 I1 I00
S
74LS 148(1)
YS
YEE Y2 Y1
Y0
XX
I7 I6 I5 I4 I3 I2 I1 I0
S
74LS 148(2)
YS
YE Y2 Y1
Y0
X
&
G3
&
G2
&
G3
Z3
Z2
Z1
&
G3
0时1部分电路工作在d0a1a0d7d6d5d4d3d2d1d074ls153d22d20d12d10d23d21s2d13d11s1y2y1a1a0在d4a0a1a2集成电路数据选择器集成电路数据选择器74ls15174ls151路数据输入端个地址输入端输入端2个互补输出端74ls151的逻辑图a2a1a02274ls15174ls151的功能表的功能表a2a1a0a将函数变换成最小项表达式b将使能端s接低电平c地址a2a1a0作为函数的输入变量d数据输入d作为控制信号?实现逻辑函数的一般步骤cpcp000001010011100101110111八选一数据选择器三位二进制计数器33数据选择器数据选择器74ls15174ls151的应用的应用加法器是cpu中算术运算部件的基本单元

数字电子技术基础 第4章

数字电子技术基础 第4章

在将两个多位二进制数相加时,除了最低位以外,每一 位都应该考虑来自低位的进位,即将两个对应位的加数 和来自低位的进位3个数相加。这种运算称为全加,所用 的电路称为全加器。
图4.3.26
全加器的卡诺图
图4.3.27 双全加器74LS183 (a)1/2逻辑图 (b)图形符号
二、多位加法器

1、串行进位加法器(速度慢)
数字电子技术基础 第四章 组合逻辑电路
Pan Hongbing VLSI Design Institute of Nanjing University
4.1 概述


数字电路分两类:一类为组合逻辑电路,另一类 为时序逻辑电路。 一、组合逻辑电路的特点


任何时刻的输出仅仅取决于该时刻的输入,与电路原 来的状态无关。 电路中不能包含存储单元。
例4.2.1 P162
图4.2.1
例3.2.1的电路
4.2.2 组合逻辑电路的设计方法

最简单逻辑电路:器件数最少,器件种类最少, 器件之间的连线最少。 步骤:


1、进行逻辑抽象 2、写出逻辑函数式 3、选定器件的类型 4、将逻辑函数化简或变换成适当的形式 5、根据化简或变换后的逻辑函数式,画出逻辑电路 的连接图 6、工艺设计
通常仅在大规模集成电 路内部采用这种结构。 图4.3.7 用二极管与门阵列组成的3线-8线译码器
最小项译码器。
图4.3.8
用与非门组成的3线-8线译码器74LS138
例4.3.2 P177
图4.3.10
用两片74LS138接成的4线-16线译码器
二、二-十进制译码器
拒绝伪码功能。
图4.3.11
4.2.2 组合逻辑电路的设计方法

数字电子技术基础教材第四章答案

数字电子技术基础教材第四章答案

习题44-1 分析图P4-1所示得各组合电路,写出输出函数表达式,列出真值表,说明电路得逻辑功能。

解:图(a):;;真值表如下表所示:其功能为一位比较器。

A>B时,;A=B时,;A<B时,图(b):真值表如下表所示:功能:一位半加器,为本位与,为进位。

图(c):真值表如下表所示:功能:一位全加器,为本位与,为本位向高位得进位。

图(d):;;功能:为一位比较器,A<B时,=1;A=B时,=1;A>B时,=14-2 分析图P4-2所示得组合电路,写出输出函数表达式,列出真值表,指出该电路完成得逻辑功能。

解:该电路得输出逻辑函数表达式为:因此该电路就是一个四选一数据选择器,其真值表如下表所示:,当M=1时,完成4为二进制码至格雷码得转换;当M=0时,完成4为格雷码至二进制得转换。

试分别写出,,,得逻辑函数得表达式,并列出真值表,说明该电路得工作原理。

解:该电路得输入为,输出为。

真值表如下:由此可得:完成二进制至格雷码得转换。

完成格雷码至二进制得转换。

4-4 图P4-4就是一个多功能逻辑运算电路,图中,,,为控制输入端。

试列表说明电路在,,,得各种取值组合下F与A,B得逻辑关系。

解:,功能如下表所示,两个变量有四个最小项,最多可构造种不同得组合,因此该电路就是一个能产生十六种函数得多功能逻辑运算器电路。

4-5 已知某组合电路得输出波形如图P4-5所示,试用最少得或非门实现之。

解:电路图如下:4-6 用逻辑门设计一个受光,声与触摸控制得电灯开关逻辑电路,分别用A,B,C表示光,声与触摸信号,用F表示电灯。

灯亮得条件就是:无论有无光,声信号,只要有人触摸开关,灯就亮;当无人触摸开关时,只有当无关,有声音时灯才亮。

试列出真值表,写出输出函数表达式,并画出最简逻辑电路图。

解:根据题意,列出真值表如下:由真值表可以作出卡诺图,如下图:C AB 00 10 11 100 1由卡诺图得到它得逻辑表达式为: 由此得到逻辑电路为:4-7 用逻辑门设计一个多输出逻辑电路,输入为8421BCD 码,输出为3个检测信号。

(完整版)数字电路基础-阎石第五版-第4章

(完整版)数字电路基础-阎石第五版-第4章

用与或非门实现
AG R 00 01 11 10
01 0 1 0
Z (RAG RAG RAG)
10 1 1 1
4.3 若干常用的组合逻辑电路
§4.3.1 编码器
编码:用二进制代码来表示某一信息(文 字、数字、符号)的过程。
实现编码操作的电路称为编码器。

高?低?
码 器
码?
一、二进制编码器 输入端:2n
(A B)CI
AB
S A B CI CO (A B)CI AB
S A B CI CO (A B)CI AB
这是一个全 加器电路
§4.2.2 组合逻辑电路的设计方法
根据实际逻辑问题
步骤:
确定输入、输出 列出真值表
最简单逻辑电路
设计
选择所需
门电路
写出表达式
并简化
画逻辑电路图
根据设
计要求
分析题意,将设计 要求转化为逻辑关
形式变换
系,这一步为设计
组合逻辑电路的根关据键设计所用
芯片要求
例1:设计三人表决电路(A、B、C)。每人 一个按键,如果同意则按下,不同意则不按。 结果用指示灯表示,多数同意时指示灯亮, 否则不亮。用与非门实现.
解:
1.首先指明逻辑符号取“0”、“1”的含义。三 个按键A、B、C按下时为“1”,不按时为“0”。 输出量为 L,多数赞成时是“1”,否则是“0”。
(( DC A) (DCB) (DCB))
解: Y2 ((DBA)(DC)) DBA DC
Y1 ((DCA)(DCB)(DCB)) DCA DCB DCB
Y0 ((DB)(DC)) DB DC
由真值表知:该电路可用来判别输入的4位二 进制数数值的范围。

数字电子技术基础第四章重点最新版

数字电子技术基础第四章重点最新版
触 CP 上升沿(或下降沿)时刻翻转。

这种触发方式称为边沿触发式。

EXIT
集成触发器
主从触发器和边沿触发器有何异同?
空翻可导致电路工作失控。
EXIT
集成触发器
4.3 无空翻触发器
主要要求:
了解无空翻触发器的类型,掌握其工作特点。 能根据触发器符号识别其逻辑功能和触发方式, 并进行波形分析。
EXIT
集成触发器
一、无空翻触发器的类型和工作特点

工作特点:CP = 1 期间,主触发器接收
从 输入信号;CP = 0 期间,主触发器保持 CP
EXIT
集成触发器
2. 工作原理及逻辑功能 Q 0 触发器被工置作0原1理Q
G1 11
1 SD
输入 RD SD 00 01 10 11
输出 QQ
01
G2
RD 0 功能说明
触发器置 0
EXIT
2. 工作原理及逻辑功能
集成触发器
Q 1 触发器被置 1 0 Q
G1
0 SD
输入 RD SD 00 01 10 11
触发器置 0 触发器置 1 触发器保持原状态不变
EXIT
2. 工作原理及逻辑功能
Q 1
G1
0 SD
输入 RD SD 00 01 10 11
输出
QQ 不定
01 10 不变
集成触发器
Q
输出既非 0 状态,
1 也非 1 状态。当 RD 和 SD 同时由 0 变 1 时, 输出状态可能为 0,也
G2 可能为 1,即输出状态 不定。因此,这种情况
EXIT
四、一些约定
集成触发器
1态: Qn=1,Qn=0 0态: Qn=0,Qn=1

数字电子技术第四章课后习题答案(江晓安等编)

数字电子技术第四章课后习题答案(江晓安等编)

第四章组合逻辑电路‎1. 解: (a)(b)是相同的电路‎,均为同或电路‎。

2. 解:分析结果表明‎图(a)、(b)是相同的电路‎,均为同或电路‎。

同或电路的功‎能:输入相同输出‎为“1”;输入相异输出‎为“0”。

因此,输出为“0”(低电平)时,输入状态为A‎B=01或103. 由真值表可看‎出,该电路是一位‎二进制数的全‎加电路,A为被加数,B为加数,C为低位向本‎位的进位,F1为本位向‎高位的进位,F2为本位的‎和位。

4. 解:函数关系如下‎:SF++⊕=+ABSABS BABS将具体的S值‎代入,求得F 312值,填入表中。

A A FB A B A B A A F B A B A A F A A F AB AB F B B A AB F AB B A B A B A AB F B A A AB F B A B A B A F B A AB AB B A B A F B B A B A B A B A B A B A F AB BA A A B A A B A F F B A B A F B A B A F A A F S S S S =⊕==+==+⊕===+⊕===⊕===⊕===+⊕===+=+⊕===⊕==+==⊕==Θ=+=+⊕===+++=+⊕===+=⊕===⊕==+=+⊕==+=+⊕===⊕==01111111011010110001011101010011000001110110)(01010100101001110010100011000001235. (1)用异或门实现‎,电路图如图(a)所示。

(2) 用与或门实现‎,电路图如图(b)所示。

6. 解因为一天24‎小时,所以需要5个‎变量。

P变量表示上‎午或下午,P=0为上午,P=1为下午;ABCD表示‎时间数值。

真值表如表所‎示。

利用卡诺图化‎简如图(a)所示。

化简后的函数‎表达式为D C A P D B A P C B A P A P DC A PD B A P C B A P A P F =+++=用与非门实现‎的逻辑图如图‎(b )所示。

数字电子技术_第四章课后习题答案_(江晓安等编)

数字电子技术_第四章课后习题答案_(江晓安等编)

第四章组合逻辑电路1. 解: (a)(b)是相同的电路,均为同或电路。

2. 解:分析结果表明图(a)、(b)是相同的电路,均为同或电路。

同或电路的功能:输入相同输出为“1”;输入相异输出为“0”。

因此,输出为“0”(低电平)时,输入状态为AB=01或103. 由真值表可看出,该电路是一位二进制数的全加电路,A为被加数,B为加数,C为低位向本位的进位,F1为本位向高位的进位,F2为本位的和位。

4. 解:函数关系如下:ABSF+⊕=++ABSSSABB将具体的S值代入,求得F 312值,填入表中。

A A FB A B A B A A F B A B A A F A A F AB AB F B B A AB F AB B A B A B A AB F B A A AB F B A B A B A F B A AB AB B A B A F B B A B A B A B A B A B A F AB BA A A B A A B A F F B A B A F B A B A F A A F S S S S =⊕==+==+⊕===+⊕===⊕===⊕===+⊕===+=+⊕===⊕==+==⊕==Θ=+=+⊕===+++=+⊕===+=⊕===⊕==+=+⊕==+=+⊕===⊕==01111111011010110001011101010011000001110110)(01010100101001110010100011000001235. (1)用异或门实现,电路图如图(a)所示。

(2) 用与或门实现,电路图如图(b)所示。

6. 解因为一天24小时,所以需要5个变量。

P变量表示上午或下午,P=0为上午,P=1为下午;ABCD表示时间数值。

真值表如表所示。

利用卡诺图化简如图(a)所示。

化简后的函数表达式为D C A P D B A P C B A P A P DC A PD B A P C B A P A P F =+++=用与非门实现的逻辑图如图(b)所示。

数字电路(第四章触发器)

数字电路(第四章触发器)
13
同步式触发器——电平触发方式,一般高电平触发; 维持阻塞触发器——边沿触发方式,一般上升沿触发;
边沿触发器——边沿触发方式,一般下降沿触发;
主从触发器——主从触发方式。
14
时钟输入CP: 时钟脉冲输入端,通常输入周期性时钟脉冲。
数据输入端:
又叫控制输入端。四种触发器:SR—S,R;D—D; JK—J,K;T—T。 初态Qn: 可称现态,某个时钟脉冲作用前触发器状态。
38
主从式JK触发器
Q
&1
Q
&2 &4
R'
从触发器
&3
S' Q'
Q'
&5 &7
J
&6
1
CP
主触发器
&8
K
CP
39
主、从触发器都是电平触发的同步式触发器 主从触发器在一个时间脉冲(CP)作用下,工作 过程分两个阶段(双拍工作方式)。
1)CP=1,主触发器接收控制信号J、K,状态反映 在 Q' 和 Q' 上, CP = 0 从触发器被封锁,保持原来状态。 2)在CP下降沿(负跳变时刻),从触发器向主触发器看齐。 负跳变时,主触发器被封锁,保持原状态不变。此时,从 触发器封锁被解除取与主触发器一致的状态。
次态Qn+1:某个时钟作用后触发器的状态。(新状态)
15
描述时钟触发器逻辑功能时,采用四种方式:
功能真值表:(表格形式) 在一定控制输入下,在时钟脉冲作用前后,初态向次态转 化的规律(状态转换真值表) 激励表:(表格形式)
在时钟脉冲作用下,实现一定的状态转换(Qn—Qn+1),应 有怎样的控制输入条件。

《数字电子技术基础》复习指导(第四章)

《数字电子技术基础》复习指导(第四章)

《数字电⼦技术基础》复习指导(第四章)第四章组合逻辑电路⼀、本章知识点(⼀)概念1.组合电路:电路在任⼀时刻输出仅取决于该时刻的输⼊,⽽与电路原来的状态⽆关。

电路结构特点:只有门电路,不含存储(记忆)单元。

2.编码器的逻辑功能:把输⼊的每⼀个⾼、低电平信号编成⼀个对应的⼆进制代码。

优先编码器:⼏个输⼊信号同时出现时,只对其中优先权最⾼的⼀个进⾏编码。

3.译码器的逻辑功能:输⼊⼆进制代码,输出⾼、低电平信号。

显⽰译码器:半导体数码管(LED数码管)、液晶显⽰器(LCD)4.数据选择器:从⼀组输⼊数据中选出某⼀个输出的电路,也称为多路开关。

5.加法器半加器:不考虑来⾃低位的进位的两个1位⼆进制数相加的电路。

全加器:带低位进位的两个 1 位⼆进制数相加的电路。

超前进位加法器与串⾏进位加法器相⽐虽然电路⽐较复杂,但其速度快。

6.数值⽐较器:⽐较两个数字⼤⼩的各种逻辑电路。

7.组合逻辑电路中的竞争⼀冒险现象竞争:门电路两个输⼊信号同时向相反跳变(⼀个从1变0,另⼀个从0变1)的现象。

竞争-冒险:由于竞争⽽在电路输出端可能产⽣尖峰脉冲的现象。

消除竞争⼀冒险现象的⽅法:接⼊滤波电容、引⼊选通脉冲、修改逻辑设计(⼆)组合逻辑电路的分析⽅法分析步骤:1.由图写出逻辑函数式,并作适当化简;注意:写逻辑函数式时从输⼊到输出逐级写出。

2.由函数式列出真值表;3.根据真值表说明电路功能。

(三)组合逻辑电路的设计⽅法设计步骤:1.逻辑抽象:设计要求----⽂字描述的具有⼀定因果关系的事件。

逻辑要求---真值表(1) 设定变量--根据因果关系确定输⼊、输出变量;(2)状态赋值:定义逻辑状态的含意输⼊、输出变量的两种不同状态分别⽤0、1代表。

(3)列出真值表2.由真值表写出逻辑函数式真值表→函数式,有时可省略。

3.选定器件的类型可选⽤⼩规模门电路,中规模常⽤组合逻辑器件或可编程逻辑器件。

4.函数化简或变换式(1)⽤门电路进⾏设计:从真值表----卡诺图/公式法化简。

数字电子技术基础4

数字电子技术基础4
Q n1 Q n
0 1 0 1
0 1 1 0
每输入一个脉 冲,输出状态 改变一次
T=1时, 翻转。
Q n1 Q n
如果将T恒接高电平,就构成了一种特殊的触发器T’,它 Q n1 Q n 只是脉冲翻转电路 。
4-2-4. 边沿触发器
为了提高触发器的抗干扰能力,希望触发器的次态仅仅 取决于 CP 作用沿到达时刻输入信号的状态。这样的触发器 称为边沿触发器。 这里,重点介绍利用 CMOS 传输门构成的 边沿 D 触发器
CP=1 时 打 开 CP=0 时 封 锁
Q = Q’
注意:在CP的一个变化周期中,触发器输出状态只改变一次。
3. 特性表 4. 几点说明 1)图示主从RS 触发器 1 触发有效; 2)表中*表示:若 R、S 端同时触发, 则在CP回到0后,输出状态不定; 3)输入端的约束条件为 RS = 0。 CP 0 R X 0 0 1 S X 0 1 0 Qn+1 Qn Qn 1 0
4-2-2. 同步 RS触发器
在数字系统中,如果要求某些触发器在同一时刻动作,就 必须给这些触发器引入时间控制信号,使这些触发器只有在 同步信号到达时才按输入信号改变状态。 时间控制信号也称同步信号,或时钟信号, 或时钟脉冲,简称时钟,用 CP 表示 Q Q 受CP控制的触发器称为时钟触发器。
一、电路结构与工作原理
S CP R
Q
&
Q
触发器在CP控制下正常工作时应使 SD、RD 处于高电平。
&
G4
G2
注意:用SD、RD 将触发器置位或复位应当在CP=0的状态 下进行,否则在SD、RD 返回高电平以后,无法保存预置 的状态。
二. 动作特点

数字电路第四章组合逻辑电路

数字电路第四章组合逻辑电路

(3)逻辑表达式:
Y A B C A B C A B C ABC A B CB C A B CB C ABC R AB BC AC AB BC AC




(4)画出电路(见仿真)
2、下图所示是具有两个输入X、Y和三个输出Z1、Z2、 Z3的组合电路。写出当X>Y时Z1 =1;X=Y时 Z2 =1;当X<Y时Z3 =1,写出电路的真值表, 求出输出方程。 解:A、列真值表: B、写出函数表达式:
可在K图中直接圈1化简得最简与或式。再对最简与或式 两次求反进行变换。 A C A B C B C
n 1 n n n n n n
B n Cn A n Cn A n B n B n C n A n Cn A n B n
C、 画出逻辑电路:
4、设计一组合电路,当接收的4位二进制数能被4整除 时,使输出为1。 A 、列真值表:数N=8A+4B+2C+D 注:0可被任何数整除 B、写逻辑函数式:画出F的K图
3、优先编码器
优先编码器常用于优先中断系统和键盘编码。与普 通编码器不同,优先编码器允许多个输入信号同时有效, 但它只按其中优先级别最高的有效输入信号编码,对级 别较低的输入信号不予理睬。
常用的MSI优先编码器有10线—4线(如74LS147)、
8线—3线(如74LS148)。
Cn 1 Cn 1 Bn Cn A n Cn A n Bn
2)、用异或门实现Dn:
An Bn C n An Bn C n An Bn C n
3)、用与非门实现 Cn+1:
Dn An Bn C n An Bn C n An BnC n An BnC n

数字电路与逻辑设计第4章触发器(Flip Flop)

数字电路与逻辑设计第4章触发器(Flip Flop)
第4章 触发器(Flip Flop)
4.1 概述
一、触发器概念
Flip - Flop,简写为 FF, 又称双稳态触发器。
触发器是一种具有记忆功能,能存储1位二进制信息(0 或1)的逻辑电路。
有一个或多个输入,两个互反的输出(Q和Q)。 通常用Q端的状态代表触发器的状态。
二、触发器的分类
基本RS触发器(RSFF)又称SR锁存器,是触发器中最简 单的一种,也是各种其他类型触发器的基本组成部分。
一、TFF
(1)功能表
T
Qn
Qn+1
0
0
0
0
1
1
1
0
1
1
1
0
简化的功能表
(2)特征方程
Qn1 TQn TQ n T Qn
说明:(1)一般不单独生产,由其他触发器转换而得。 (2)触发方式由被转换的触发器决定。
触发器总结
触发器是具有记忆功能的的逻辑电路,每个触发器 能存储一位二进制数据。
(4)波形图
强调触发方式
结构不做要求
边沿JKFF的逻辑符号:
QQ
1J C1 1K
J CP K
(下 圆c) 降圈国沿)触标(发小符号
次态方程: 功能表:
一、TFF
三、TFF和TFF
在数字电路中,凡在CP时钟脉冲控制下,根据输入 信号T取值的不同,具有保持和翻转功能的电路,即当 T=0时能保持状态不变,T=1时,每来一个CP的上升沿 (或下降沿),触发器的状态就翻转一次。
1
(6). 波形图 又称时序图,它反映了触发器的输出状态随时间和输
入信号变化的规律。
在任何时刻,输入都能直接改变输出的状态。
2.钟控原理

数字电子技术基础(第四版)-第4章-组合逻辑电路解析PPT课件

数字电子技术基础(第四版)-第4章-组合逻辑电路解析PPT课件

-
54
设计实例2:用2N选一数据选择器实现 N+1个变量的逻辑函数。
设计思想: ①将N个变量接数据选择器的选择输入端(即地址端) ②余下的一个变量作为数据选择器的数据输入端。
-
55
例:用74153实现三变量函数。
F (A ,B ,C ) m (1 ,3 ,5 ,6 )
解一:设B接A1,C接A0。
A
' 0
)
m2
'
...
Y7 ' ( A2 A1A0 ) m 7 '
-
45
-
46
-
47
三、用译码器构成函数发生器P186
例1:
请写出Y的逻辑函数式
Y(Y3'Y4'Y5')' Y3Y4 Y5
m3 m4 m5
m(3, 4,5)
Y A 'B C A B 'C ' A B 'C
-
48
例2:用74138构成下 列函数发生器:
F A 'B 'C A 'B C A B 'C A B C ' 0 B 'C ' ( A ' A ) B 'C A B C ' A 'B C
0 m 0 1 m 1 A m 2 A 'm 3
D 0 m 0 D 1 m 1 D 2 m 2 D 3 m 3
-
56
解二:设A接A1,B接A0。
4)画逻辑图(略)
-
31
三、优先编码器 8线-3线优先编码器
74HC148
-
1、功能表
输入:I 0 ~ I 7 ,共8个输入端

数字电子技术第4章组合逻辑电路习题解答

数字电子技术第4章组合逻辑电路习题解答
00 0
001
0 10
0 11
1 0 0
1 0 1
1 1 0
1 1 1
0
1
1
0
1
0
0
1
(2)由真值表得到逻辑函数表达式为:
(3)画出逻辑电路图
4.10、试设计一个8421BCD码的检码电路。要求当输入量DCBA≤4,或≥8时,电路输出L为高电平,否则为低电平。用与非门设计该电路。
解:(1)根据题意列出真值表为:
100
101
110
111
0
1
1
1
1
1
1
0
(2)
电路逻辑功能为:“判输入ABC是否相同”电路。
4.7已知某组合电路的输入A、B、C和输出F的波形如下图所示,试写出F的最简与或表达式。
习题4.7图
解:(1)根据波形图得到真值表:
ABC
F
000
001
010
011
100
101
110
111
1
0
0
1
0
0
1
0
(2)由真值表得到逻辑表达式为
(1)试分析电路,说明决议通过的情况有几种。
(2)分析A、B、C、D四个人中,谁的权利最大。
习题4.4图
解:(1)
(2)
ABCD
L
ABCD
L
0000
0001
0010
0011
0100
0101
0110
0111
0
0
0
1
0
0
1
1
1000
1001
1010
1011

数字电子技术 第4章 组合逻辑电路

数字电子技术 第4章 组合逻辑电路

图 4.3.8 7448逻辑符号图
数字电子技术
/// 16 ///
图4.3.9 7448驱动BS201A数码管的工作电路 图4.3.10 有灭零控制的8位数码显示系统
数字电子技术
/// 17 ///
3.译码器的应用 由于译码器的输出为最小项取反,而逻辑函数可以写成最小项之和的形式,故可以利用附加的 门电路和译码器实现逻辑函数。
组合电路就是由门电路组合而成,电路中没有记忆单元,没有反馈通路。
数字电子技术
/// 4 ///
4.1.2 组合逻辑电路的分析
根据逻辑功能的不同特点,可以把数字电路分成两大类,分别是: (1)是组合逻辑电路(简称组合电路) (2)是时序逻辑电路(简称时序电路) 组合电路就是由门电路组合而成,电路中没有记忆单元,没有反馈通路。
图4.5.6 数值比较器逻辑电路图
4.2.3 优先编码器
识别多个编码请求信号的优先级别,并进行相应编码的逻辑部件称为优先编码器。 在优先编码器电路中,允许同时输入两个以上编码信号。 在设计优先编码器时已将所有的输入信号按优先顺序排了队,当几个编码信号同时出现时,只 对其中优先权最高的一个进行编码。
1.设计优先编码器线(4线-2 线优先编码器)
图4.1.3 组合逻辑电路设计步骤
数字电子技术
/// 6 ///
4.1.4 组合逻辑电路的竞争和冒险
同一个门的一组输入信号,由于它们在此前通过不同数目的门,经过不同长度导线的传输,到 达门输入端的时间会有先有后,这种现象称为竞争。
逻辑门因输入端的竞争而导致输出产生不应有的尖峰干扰脉冲的现象,称为冒险。
图4.1.6 两种冒险波形图
数字电子技术
/// 7 ///
4.2 编码器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1.2 组合逻辑电路的分析步骤
(1)根据给定的逻辑电路,写出输出逻辑函数表达式; (2)列出输入输出关系真值表; (3)根据真值表说明电路的逻辑功能;
(4)对原电路进行改进设计, 寻找最佳方案(这一步不一
定都要进行)。
4.1.3 组合逻辑电路分析
1.单输出组合逻辑电路的分析
【例4-1】已知逻辑电路如图4-2所示,分析该电路逻辑功能。
4.2 组合逻辑电路设计方法
4.2.1 组合逻辑电路的一般设计步骤
(1)对实际逻辑问题进行逻辑抽象,确定输入、 输出变 量;分别对输入、输出变量逻辑赋值的具体含义进行定义, 然后根据输出与输入之间的逻辑关系列出真值表。 (2)根据真值表写出相应的逻辑函数表达式。 (3)将逻辑函数表达式化简,并转换成所需要的形式。 (4)根据最简逻辑函数表达式画出逻辑电路图。
Y2 B
Y4 A B
Y Y3 Y4
(3)该电路实现的是同或逻辑功能。
2.多输出组合逻辑电路的分析 【例4-2】已知逻辑电路如图4-3所示,分析该电路的逻辑功能。
图4-3 多输出组合逻辑电路图(来自QuartusII)
解:(1)写出所有输出逻辑函数表达式,并对其进行化简。
L1 A B
∑ C3 CO CI C2 CO
∑ CI C1 CO
∑ CI C0 CO
∑ CI C-1
S3
S2
S1
S0
图 4 – 15 四位串行进位加法器
*(2) 超前进位。 前面我们已经得到全加器的表达式为
Si Ai Bi Ci 1 Ci Ai Bi ( Ai Bi )Ci 1
令Gi=AiBi称为进位产生函数,Pi=Ai Bi称为进位传输函 数。将其代入Si, Ci表达式中得递推公式
L3 A B
L2 A B A B A B A B ( A B) ( A B) A B A B =A⊙B
2.多输出组合逻辑电路的分析
【例4-2】已知逻辑电路如图4-3所示,分析该电路的逻辑功能。 解: (2)根据化简后的逻辑函数表达式列出真值表
例 8 试用四位全加器构成一位 8421 码的加法电路。 解 两个 8421 码相加,其和仍应为8421 码,如不是 8421 码则结果错误。如
4.3.2 编码器与译码器
在数字系统中,经常需要把具有某种特定含义的信号变换成 二进制代码,这种用二进制代码表示具有某种特定含义信号的过 程称为编码。而把一组二进制代码的特定含义译出来的过程称为 译码。实现编码功能的电路称为编码器(encoder)。
4.3.1 半加器与全加器
1. 半加器设计
A B
Байду номын сангаас
加数
被加数
半 加 器
和数
S C i+ 1
向高位进位
图 4 – 10 半加器框图
S AB AB Ci 1 AB
表 4 – 7 半加器真值表 A B S Ci+1
__
__
0 0 1 1
0 1 0 1
0 1 1 0
0 0 0 1
A B
=1
X
X
C A B
(b) 采用与非门实现
图4-4 例4-3函数 X的卡诺图
图4-5 例4-3的逻辑电路图
4.3 常用中规模组合逻辑部件的原理和应用
把若干个有源器件和无源器件及其连线,按照一定的功
能要求,制做在同一块半导体基片上,这样的产品叫集成电 路。若它完成的功能是逻辑功能或数字功能, 则称为逻辑 集成电路或数字集成电路。最简单的数字集成电路是集成逻 辑门。 集成逻辑门,按照其组成的有源器件的不同可分为两大 类: 一类是双极性晶体管逻辑门;另一类是单极性绝缘栅 场效应管逻辑门,简称MOS门。
Si Pi Ci 1 Ci Gi PiCi 1
这样可得各位进位信号的逻辑表达式如下:
G0 G0 P0C1 C1 G1 P C0 G1 P G0 P P0C1 1 1 1 C2 G2 P2C1 G2 P2 P G0 P2 P P0C1 1 1 C3 G3 P3C2 G3 P3G2 P3 P2G1 P3 P2 P G0 P3 P2 P P0C1 1 1
P0
1
&
1 ≥1 1
P0 4 Gn+y G3 P3 5 6 7
G0
&
1 1
Gn
&
≥1
1
FP Gn+x
GND 8
(a)
4. 全加器的应用
例 6 试用全加器构成二进制减法器。

利用“加补”的概念,即可将减法用加法来实
B3 B2 B1 B0
现, 图 4 - 18 即为全加器完成减法功能的电路。
1
1
1
A3 A2 A 1 A0 C4
0 0 0 1 0 1 1 1
函数变换过程如下:
Si Ai B i Ci 1 Ai B i C i 1 Ai B i C i 1 Ai BiCi 1 ( Ai Bi Ai B i ) C i 1 ( Ai B i Ai Bi )Ci 1 ( Ai Bi ) C i 1 Ai Bi Ci 1 Ai Bi Ci 1 Ci 1 Ai B i Ci 1 Ai B i Ci 1 Ai B i C i 1 Ai BiCi 1 ( Ai B i Ai Bi )Ci 1 Ai Bi ( Ai Bi )Ci 1 Ai Bi
表 4 – 6 集成电路的划分
MSI、LSI与SSI相比,具有如下一些优点: (1)体积缩小。 (2)功耗降低、速度提高。由于元器件连线缩短, 连线引起的分布电容及电感的影响减少,因而使整个 系统的工作速度有所提高。 (3)提高了可靠性。由于系统的焊接点数、插件数 及连接线大为减少,因而系统有较高的可靠性。 (4)抗干扰能力提高。由于全部电路都封装在一个 壳内,故外界干扰相对而言也就不严重了。
__ _______ __ __
P1 G3
1 1
& &
1
FP
图4-17 74LS182逻辑图 及引脚图
≥1 FG
P2 G2
1 1
& & & & &
(a) 逻辑图; (b) 引脚图
P1
1
G1
1
≥1
1
Gn+z
G1 1 P1 G0 2 3
16 UCC 15 P2 14 G2 13 Gn 12 Gn+z 11 Gn+y 10 FG 9 Gn+x (b)
第4章
组合电路
4.1 组合逻辑电路分析
4.1.1 组合逻辑电路的定义
X1 输 X 2 入 信 号 X n
Fi f i ( X 1 , X 2 , X n )
组合逻辑 电路
F1 输 F2 出 ( i=1,2,…,m) 信 号 Fm
图4-1 组合逻辑电路框图
特点
由逻辑门电路组成 输出与输入之间不存在反馈回路
A Y2 Y1
逻辑电路的输出函数表达式:
Y3
Y Y4
Y Y3 Y4 A B A B
(2)列出真值表
B
图4-2 单输出组合逻辑电路图 解:(1)写出各输出的逻辑函数表达式:
表4-1 例4-1 真值表 A 0 0 1 1 B 0 1 0 1 Y 1 0 0 1
Y1 A
Y3 Y1 Y2 A B
1 ≥1
& & &
B3
图 4 – 16 74LS283 逻辑图与 引脚图 (a) 逻辑图; (b) 引脚图
CO (C 3 )
&
& & & &
P
3
A3
≥1
1 ≥1
=1
S3
B2
&
& & & & & & &
1 (a) P
0
C2 P
2
≥1 A2 B1
1 ≥1
=1
S2
S1 1 B1 A1 2 3
16 UCC 15 B2 14 A2 13 S 2 12 A3 11 B3 10 S 3 9 CO (b)
S
&
图 4 – 11 半加器逻辑图
Ci+ 1
2. 全加器设计
Ai Bi Ci-1 全 加 器
图 4-12 全加器框图
Si Ci+1
表 4 – 8 全加器真值表
Ai 0 0 0 0 1 1 1 1 Bi 0 0 1 1 0 0 1 1 C
i-1
Si 0 1 1 0 1 0 0 1
C
i+1
0 1 0 1 0 0 0 1
双极性晶体管逻辑门主要有TTL门(晶体管-晶体管逻 辑门)、ECL门(射极耦合逻辑门)和I2L门(集成注入逻辑门)
等。
单极性MOS门主要有PMOS门(P沟道增强型MOS管 构成的逻辑门)、NMOS门(N沟道增强型MOS管构成的逻 辑门)和CMOS门(利用PMOS管和NMOS管构成的互补电 路构成的门电路,故又叫做互补MOS门
__ __ __ __ __ __ _________ __ __ __ __ __ __ __ __ __ __ __ __
由Si、C i+1式组成的逻辑电路如图4 - 13 所示。
C i- 1
=1 Si
Ai Bi
=1
&
≥1 Ci+ 1
&
图 4 – 13 用异或门构成全加器
__
S i Ai B i C i 1 Ai BiCi 1 Ai B i Ci 1 Ai B i C i 1
相关文档
最新文档