全球著名IT公司CEO在中国做演讲的录音-IBM公司(1)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Today we are applying these systems to challenges that are far more vital than chess. Let me talk about two important application areas, starting with simulation.
Now it is certainly easy to see why raw technology dominates these events. It is adoptive; it is breathtaking; and it is penetrating every aspect of our lives. Today there are more PCs sold annually in the world than TVs or cars. The typical luxury automobile today has 20 to 30 microprocessors in it, more computing power by far than was inside the landing-craft that took the first astronauts to the moon. Last year there were five times more E-mail messages sent than the number of pieces of paper mail delivered worldwide, 2.7 trillion E-mails. And I got more than my share. There is another way to look at what is going on. In the mid-1970s, the first super computers appeared. They were capable of about 100 million calculations per second. And they cost about one million dollars. Today the laptop computer that college students carry in their bags, packs, is twice as fast as that first super computer, and it costs less than 3000 dollars. The trend in data storage is even more impressive. In the early 80s, the standard unit of computer storage, one mega-byte, or one million bytes of information, cost about 100 dollars. Today, it is 10 cents. In two years, it will cost 2 cents. These gains are driven by continuous advances in how we pack information into smaller and smaller spaces. If the US Library of Congress could shrink its collections of 17 million books by the same factor we just discussed, it could replace 800 kilometers of shelf space with less than 40 meters of space. These advances are going to continue and accelerate the rate microprocessors, storage, communications, memory, and all the other engines that are propelling this industry or continue to lead to the products of the faster, smaller, and less expensive, just as they have for 30 years. But as we stand here today, the opening of CeBIT, we are on the threshold of a very important change and the evolution of this industry. In many ways, this industry, a very emitory industry, is about to play out in its most important dimension. That is because the technology has become so powerful and so pervasive that its future impact on people and governments and all institutions will dwarf what has happened today.
Simulation is about replacing physical things with digital things, recreating reality inside these powerful computer systems. In the farmer suitacle industry, the ability to simulate the interaction of chemicals, and do it in the computer rather than in test-tubes and Petri dishes, can speed up by years the discovery and testing of new farmer suitacle. Mercedes, BMW, Fiat, Volvo, SAAM all design cars today on computers, no physical markups, no models. And aviation does so, pioneer many of these techniques, and Boeing broke new ground when it designed the 777 airplane entirely on computers. It was a very bold move, and even some of Boeing's engineers had trepidations. I had trepidations because three month after I joined IBM I went out to Boeing to see my good friend Frank SCHURZ , who was the CEO. And Frank said to me, "Since this new airplane was built on your computers, maybe you should go on the first flight." And I said, "It is my wife's birthday." And he said, "I did not even tell you the date yet. Coward!" Computer simulation saves time, saves money, and it gives customers a competitive advantage, and it can do more than that. Recently the US department of energy asked IBM to build a gigantic super computer to simulate nuclear weapons so that they will never have to be exploded for test purposes, ever again.
I have been looking forward to this evening for a long time, because I have known for many years how important CeBIT is to the global Information Technology industry. So before I go any further I want to thank you very much for inviting me to participate in this important forum.
Now I have given a lot of thought as to what I would say to you this evening. On the one hand, I am here as a representative of the Information Technology industry on the event that is bigger by orders of magnitude than any other technology exhibit. That is quite a statement in a industry that is good at many things, especially celebrating its own creations. On the other hand, like most of you, I have spent most of my professional life as a customer of this industry. So I know that after the splash and promises comes the harsh light of morning and often the customer is left standing alone wondering what happened, or as the head of one of our most important German customers put it, "Yours is an industry that is very good at weddings and not so good at marriages." So tonight, while I will talk about the power and potential of Information Technology, I hope the temper of my remarks with the perspective I had when I came to IBM five years ago, the perspective of a customer.
全球著名IT公司CEO在中国做演讲的录音-IBM公司(1)
Good evening! It is a great honor for me to share this stage with the Lord Mayor, chief executive of Hannover, with Mr. Yang, and in a few minutes with Chancellor Kohl.
I believe there are two trends that are most significant here, and bare the closest watching.
The first is what we call deep computing. The term is inspired by our chess-playing super computer Deep Blue, which I believe many of you know competed with the Grand Master Gary Kasparov ห้องสมุดไป่ตู้ast year. Deep Blue is an amazing machine, capable of 200 million moves per second. But speed, while essential, is not enough. After all, Deep Blue's predecessor was quite fast, but it loss to Gary Kasparov two years ago. The difference in second time around was an infusion of knowledge, human chess knowledge, thousands and thousands of chess moves, games and outcomes, captured as mathematical algorithms. This is what led Deep Blue to mimic the workings of the human mind, and race through millions of possible chess positions and extract the best one. And it worked rather well. But Deep Blue is emblematic of a whole class of emerging computer systems that combine ultra-fast processing with sophisticated analytical software.
Now it is certainly easy to see why raw technology dominates these events. It is adoptive; it is breathtaking; and it is penetrating every aspect of our lives. Today there are more PCs sold annually in the world than TVs or cars. The typical luxury automobile today has 20 to 30 microprocessors in it, more computing power by far than was inside the landing-craft that took the first astronauts to the moon. Last year there were five times more E-mail messages sent than the number of pieces of paper mail delivered worldwide, 2.7 trillion E-mails. And I got more than my share. There is another way to look at what is going on. In the mid-1970s, the first super computers appeared. They were capable of about 100 million calculations per second. And they cost about one million dollars. Today the laptop computer that college students carry in their bags, packs, is twice as fast as that first super computer, and it costs less than 3000 dollars. The trend in data storage is even more impressive. In the early 80s, the standard unit of computer storage, one mega-byte, or one million bytes of information, cost about 100 dollars. Today, it is 10 cents. In two years, it will cost 2 cents. These gains are driven by continuous advances in how we pack information into smaller and smaller spaces. If the US Library of Congress could shrink its collections of 17 million books by the same factor we just discussed, it could replace 800 kilometers of shelf space with less than 40 meters of space. These advances are going to continue and accelerate the rate microprocessors, storage, communications, memory, and all the other engines that are propelling this industry or continue to lead to the products of the faster, smaller, and less expensive, just as they have for 30 years. But as we stand here today, the opening of CeBIT, we are on the threshold of a very important change and the evolution of this industry. In many ways, this industry, a very emitory industry, is about to play out in its most important dimension. That is because the technology has become so powerful and so pervasive that its future impact on people and governments and all institutions will dwarf what has happened today.
Simulation is about replacing physical things with digital things, recreating reality inside these powerful computer systems. In the farmer suitacle industry, the ability to simulate the interaction of chemicals, and do it in the computer rather than in test-tubes and Petri dishes, can speed up by years the discovery and testing of new farmer suitacle. Mercedes, BMW, Fiat, Volvo, SAAM all design cars today on computers, no physical markups, no models. And aviation does so, pioneer many of these techniques, and Boeing broke new ground when it designed the 777 airplane entirely on computers. It was a very bold move, and even some of Boeing's engineers had trepidations. I had trepidations because three month after I joined IBM I went out to Boeing to see my good friend Frank SCHURZ , who was the CEO. And Frank said to me, "Since this new airplane was built on your computers, maybe you should go on the first flight." And I said, "It is my wife's birthday." And he said, "I did not even tell you the date yet. Coward!" Computer simulation saves time, saves money, and it gives customers a competitive advantage, and it can do more than that. Recently the US department of energy asked IBM to build a gigantic super computer to simulate nuclear weapons so that they will never have to be exploded for test purposes, ever again.
I have been looking forward to this evening for a long time, because I have known for many years how important CeBIT is to the global Information Technology industry. So before I go any further I want to thank you very much for inviting me to participate in this important forum.
Now I have given a lot of thought as to what I would say to you this evening. On the one hand, I am here as a representative of the Information Technology industry on the event that is bigger by orders of magnitude than any other technology exhibit. That is quite a statement in a industry that is good at many things, especially celebrating its own creations. On the other hand, like most of you, I have spent most of my professional life as a customer of this industry. So I know that after the splash and promises comes the harsh light of morning and often the customer is left standing alone wondering what happened, or as the head of one of our most important German customers put it, "Yours is an industry that is very good at weddings and not so good at marriages." So tonight, while I will talk about the power and potential of Information Technology, I hope the temper of my remarks with the perspective I had when I came to IBM five years ago, the perspective of a customer.
全球著名IT公司CEO在中国做演讲的录音-IBM公司(1)
Good evening! It is a great honor for me to share this stage with the Lord Mayor, chief executive of Hannover, with Mr. Yang, and in a few minutes with Chancellor Kohl.
I believe there are two trends that are most significant here, and bare the closest watching.
The first is what we call deep computing. The term is inspired by our chess-playing super computer Deep Blue, which I believe many of you know competed with the Grand Master Gary Kasparov ห้องสมุดไป่ตู้ast year. Deep Blue is an amazing machine, capable of 200 million moves per second. But speed, while essential, is not enough. After all, Deep Blue's predecessor was quite fast, but it loss to Gary Kasparov two years ago. The difference in second time around was an infusion of knowledge, human chess knowledge, thousands and thousands of chess moves, games and outcomes, captured as mathematical algorithms. This is what led Deep Blue to mimic the workings of the human mind, and race through millions of possible chess positions and extract the best one. And it worked rather well. But Deep Blue is emblematic of a whole class of emerging computer systems that combine ultra-fast processing with sophisticated analytical software.