中考数学试卷分类汇编专题17点、线、面、角

合集下载

初中数学中考模拟数学模拟考试题汇编专题17:点、线、面、角.docx

初中数学中考模拟数学模拟考试题汇编专题17:点、线、面、角.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:若∠α=42°,则∠α的余角的度数是。

试题2:一个角的余角比这个角的补角的一半小40°,则这个角为度.试题3:如图,Rt△ABC中∠A=90°,∠C=30°,BD平分∠ABC且与AC边交于点D,AD=2,则点D到边BC的距离是.试题4:下列四个命题,其中真命题有()(1)有理数乘以无理数一定是无理数;(2)顺次联结等腰梯形各边中点所得的四边形是菱形;(3)在同圆中,相等的弦所对的弧也相等;(4)如果正九边形的半径为a,那么边心距为a•sin20°.A.1个 B.2个 C.3个 D.4个试题5:如图△ABC是直角三角形,AB⊥CD,图中与∠CAB互余的角有()评卷人得分A.1个 B.2个 C.3个 D.4个试题1答案:48°试题2答案:80【考点】余角和补角.【分析】设这个角为x,根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°表示出它的余角和补角,然后列出方程求解即可.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),由题意得,(180°﹣x)﹣(90°﹣x)=40°,解得x=80°.故答案为:80.【点评】本题考查了余角和补角的概念,是基础题,熟记概念并列出方程是解题的关键.试题3答案:2【考点】角平分线的性质.【分析】首先过点D作DE⊥BC于点E,根据角平分线的性质,即可求得点D到BC的距离.【解答】解:过D作DE⊥BC于E,∵BD平分∠ABC,∠A=90°,∴DE=AD=2,故答案为:2.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记各性质是解题的关键.试题4答案:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.二.填空题试题5答案::B。

2022年全国中考数学真题分类汇编专题17:尺规作图

2022年全国中考数学真题分类汇编专题17:尺规作图

2022年全国中考数学真题分类汇编专题17:尺规作图一.选择题(共13小题)1.如图,线段AB是半圆O的直径.分别以点A和点O为圆心,大于 的长为半径作弧,两弧交于M,N两点,作直线MN,交半圆O于点C,交AB于点E,连接AC,BC,若AE=1,则BC的长是()A. B.4C.6D.2.如图,在△ABC中,根据尺规作图痕迹,下列说法不一定正确的是()A.AF=BF B.AE ACC.∠DBF+∠DFB=90°D.∠BAF=∠EBC3.如图,△ABC中,若∠BAC=80°,∠ACB=70°,根据图中尺规作图的痕迹推断,以下结论错误的是()A.∠BAQ=40°B.DE BD C.AF=AC D.∠EQF=25°4.如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC交于点D,则以下推断错误的是()A.BD=BC B.AD=BD C.∠ADB=108°D.CD AD 5.如图,OG平分∠MON,点A,B是射线OM,ON上的点,连接AB.按以下步骤作图:①以点B为圆心,任意长为半径作弧,交AB于点C,交BN于点D;②分别以点C和点D为圆心,大于 CD长为半径作弧,两弧相交于点E;③作射线BE,交OG于点P.若∠ABN=140°,∠MON=50°,则∠OPB的度数为()A.35°B.45°C.55°D.65°6.如图,是求作线段AB中点的作图痕迹,则下列结论不一定成立的是()A.∠B=45°B.AE=EB C.AC=BC D.AB⊥CD 7.如图,在矩形ABCD中,连接BD,分别以B、D为圆心,大于 BD的长为半径画弧,两弧交于P、Q两点,作直线PQ,分别与AD、BC交于点M、N,连接BM、DN.若AD =4,AB=2.则四边形MBND的周长为()A. B.5C.10D.208.如图,在△ABC中,AB=AC,以点B为圆心,适当长为半径画弧,交BA于点M,交BC于点N,分别以点M、N为圆心,大于 MN的长为半径画弧,两弧在∠ABC的内部相交于点P,画射线BP,交AC于点D,若AD=BD,则∠A的度数是()A.36°B.54°C.72°D.108°9.过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是()A.B.C.D.10.在△ABC中,用尺规作图,分别以点A和C为圆心,以大于 AC的长为半径作弧,两弧相交于点M和N.作直线MN交AC于点D,交BC于点E,连接AE.则下列结论不一定正确的是()A.AB=AE B.AD=CD C.AE=CE D.∠ADE=∠CDE 11.如图,直线l1∥l2,点C、A分别在l1、l2上,以点C为圆心,CA长为半径画弧,交l1于点B,连接AB.若∠BCA=150°,则∠1的度数为()A.10°B.15°C.20°D.30°12.要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行13.用尺规作一个角的角平分线,下列作法中错误的是()A.B.C.D.二.多选题(共1小题)(多选)14.如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:①作线段AB =2,分别以点A、B为圆心,以AB长为半径画弧,两弧相交于点C、D;②连接AC、BC,作直线CD,且CD与AB相交于点H.则下列说法正确的是()A.△ABC是等边三角形B.AB⊥CDC.AH=BH D.∠ACD=45°三.填空题(共8小题)15.如图,依据尺规作图的痕迹,求∠α的度数°.16.如图,在△ABC中,∠C=90°,AC=BC.以点A为圆心,以任意长为半径作弧交AB,AC于D,E两点;分别以点D,E为圆心,以大于 DE长为半径作弧,在∠BAC内两弧相交于点P;作射线AP交BC于点F,过点F作FG⊥AB,垂足为G.若AB=8cm,则△BFG的周长等于cm.17.如图,在△ABC中,AB=AC,∠B=54°,以点C为圆心,CA长为半径作弧交AB于点D,分别以点A和点D为圆心,大于 AD长为半径作弧,两弧相交于点E,作直线CE,交AB于点F,则∠ACF的度数是.18.如图,在△ABC中,分别以点A和点B为圆心,大于 AB的长为半径作圆弧,两弧相交于点M和点N,作直线MN交CB于点D,连接AD.若AC=8,BC=15,则△ACD 的周长为.19.如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及∠DPF的一边上的点E,F均在格点上.(Ⅰ)线段EF的长等于;(Ⅱ)若点M,N分别在射线PD,PF上,满足∠MBN=90°且BM=BN.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明).20.如图,在△ABC中,∠ABC=40°,∠BAC=80°,以点A为圆心,AC长为半径作弧,交射线BA于点D,连结CD,则∠BCD的度数是.21.如图,在▱ABCD中,∠ABC=150°.利用尺规在BC、BA上分别截取BE、BF,使BE=BF;分别以E、F为圆心,大于 EF的长为半径作弧,两弧在∠CBA内交于点G;作射线BG交DC于点H.若AD 1,则BH的长为.22.如图,在Rt△ABC中,∠C=90°,∠B=20°,分别以点A,B为圆心,大于 AB的长为半径作弧,两弧分别相交于点M,N,作直线MN,交BC于点D,连接AD,则∠CAD的度数为.四.解答题(共19小题)23.在菱形ABCD中,对角线AC和BD的长分别是6和8,以AD为直角边向菱形外作等腰直角三角形ADE,连接CE.请用尺规或三角板作出图形,并直接写出线段CE的长.24.图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.25.如图,⊙O是△ABC的外接圆,∠ABC=45°.(1)请用尺规作出⊙O的切线AD(保留作图痕迹,不写作法);(2)在(1)的条件下,若AB与切线AD所夹的锐角为75°,⊙O的半径为2,求BC 的长.26.尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.27.已知:Rt△ABC,∠B=90°.求作:点P,使点P在△ABC内部.且PB=PC,∠PBC=45°.28.如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.29.已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.30.已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.31.如图,△ABC为锐角三角形.(1)请在图1中用无刻度的直尺和圆规作图:在AC右上方确定点D,使∠DAC=∠ACB,且CD⊥AD;(不写作法,保留作图痕迹)(2)在(1)的条件下,若∠B=60°,AB=2,BC=3,则四边形ABCD的面积为.32.如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC 有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.33.如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP∥AB.(保留作图痕迹,不写作法)34.图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.35.【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)36.中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:原文释义甲乙丙为定直角.如图2,∠ABC为直角,以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线.以点B为圆心,以任意长为半径画弧,交射线BA,BC分别于点D,E;以点D为圆心,以BD长为半径画弧与交于点F;再以点E为圆心,仍以BD长为半径画弧与交于点G;作射线BF,BG.(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出∠DBG,∠GBF,∠FBE的大小关系.37.课本再现(1)在⊙O中,∠AOB是所对的圆心角,∠C是 所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与∠C的位置关系进行分类.图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明∠C ∠AOB;知识应用(2)如图4,若⊙O的半径为2,PA,PB分别与⊙O相切于点A,B,∠C=60°,求PA的长.38.如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作∠ABC的角平分线;(2)在图2中过点C作一条直线l,使点A,B到直线l的距离相等.39.如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.40.我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为S ah.想法是:以BC为边作矩形BCFE,点A在边FE上,再过点A作BC的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作BC的垂线AD交BC于点D.(只保留作图痕迹)在△ADC和△CFA中,∵AD⊥BC,∴∠ADC=90°.∵∠F=90°,∴①.∵EF∥BC,∴②.又∵③,∴△ADC≌△CFA(AAS).同理可得:④.S△ABC=S△ADC+S△ABD S矩形ADCF S矩形AEBD S矩形BCFE ah.41.在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD中,E是AD边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E作BC 的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴①∵AD∥BC,∴②又③∴△BAE≌△EFB(AAS).同理可得④=S△EFB+S△EFC S矩形ABFE S矩形EFCD S矩形ABCD.∴S△BCE。

中考数学真题分类汇编:点、线、面、体、角

中考数学真题分类汇编:点、线、面、体、角

点、线、面、体、角一.选择题1.(2012南通)已知∠α=32º,则∠α的补角为【C】A.58º B.68º C.148º D.168º【考点】余角和补角.【专题】常规题型.【分析】根据互为补角的和等于180°列式计算即可得解.【解答】解:∵∠a=32°,∴∠a的补角为180°-32°=148°.故选C.【点评】本题考查了余角与补角的定义,熟记互为补角的和等于180°是解题的关键.2.(2012中考)如图,直线a与直线c相交于点O,∠1的度数是(D)A.60° B.50°C.40° D.30°3.(2012长沙)下列四个角中,最有可能与70°角互补的是()4. (2012嘉兴)已知△ABC中,∠B是∠A的2倍, ∠C比∠A大20° ,则∠A等于( )A. 40°B. 60°C. 80°D. 90°【解析】∵∠B=2∠A, ∠C=∠A+20°,∠A+∠B+∠C=180°,∴∠A+2∠A+(∠A+20°)=180°, ∴∠A=40°. 故选A.【答案】A.【点评】本题考查三角形内角和的应用.送分题.5.(2012滨州)借助一副三角尺,你能画出下面哪个度数的角()A.65°B.75°C.85°D.95°【解析】利用一副三角板可以画出75°角,用45°和30°的组合即可,【答案】选B.【点评】本题考查角的计算。

解答此题的关键是知道一副三角板的特殊角有30°,45°,90°,60°.6.(2012•丽水)如图,小明在操场上从A点出发,先沿南偏东30°方向走到B点,再沿南偏东60°方向走到C点.这时,∠ABC的度数是( )A.120°B.135°C.150°D.160°考点:方向角。

中考数学专题复习之 17 点、线、面、角(含解析)1 精编

中考数学专题复习之 17 点、线、面、角(含解析)1 精编

17 点、线、面、角(含解析)一、选择题1.(3分)(2016•包头)如图,点O 在△ABC 内,且到三边的距离相等.若∠BOC=120°,则tan A 的值为( )A B .3 C .2 D .2【考点】角平分线的性质;特殊角的三角函数值.【分析】由条件可知BO 、CO 平分∠ABC 和∠ACB ,利用三角形内角和可求得∠A ,再由特殊角的三角函数的定义求得结论.【解答】解:∵点O 到△ABC 三边的距离相等,∴BO 平分∠ABC ,CO 平分∠ACB ,∴∠A=180°﹣(∠ABC+∠ACB )=180°﹣2(∠OBC+∠OCB )=180°﹣2×(180°﹣∠BOC )=180°﹣2×(180°﹣120°)=60°,∴tan A=tan60°故选A .【点评】本题主要考查角平分线的性质,三角形内角和定理,正切三角函数的定义,掌握角平分线的交点到三角形三边的距离相等是解题的关键.2.(3分)(2016•济南)如图,在□ABCD 中,AB=12,AD=8,∠ABC 的平分线交CD 于点F ,交AD 的延长线于点E ,CG ⊥BE ,垂足为G ,若EF=2,则线段CG 的长为( )A .152B .C .D 【考点】平行四边形的性质.【专题】计算题.【分析】先由平行四边形的性质和角平分线的定义,判断出∠CBE=∠CFB=∠ABE=∠E ,从而得到CF=BC=8,AE=AB=12,再用平行线分线段成比例定理求出BE ,然后用等腰三角形的三线合一求出BG ,最后用勾股定理即可.【解答】解:∵∠ABC 的平分线交CD 于点F ,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴DE EF AE EB=,∴4212EB=,∴EB=6,∵CF=CB,CG⊥BF,∴BG=12BF=3,在Rt△BCG中,BC=8,BG=3,根据勾股定理得,==,故:选D.【点评】此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.3.(3分)(2016•广州)如图所示的几何体左视图是()A.B.C. D.【考点】简单组合体的三视图.【分析】根据几何体的左视图的定义判断即可.【解答】解:如图所示的几何体左视图是A,故选A.【点评】本题考查了由几何体来判断三视图,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.4.(3分)(2016•茂名)如图是某几何体的三视图,该几何体是()A.球B.三棱柱C.圆柱D.圆锥【考点】由三视图判断几何体.【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【解答】解:根据主视图是三角形,圆柱和球不符合要求,A、C错误;根据俯视图是圆,三棱柱不符合要求,A错误;根据几何体的三视图,圆锥符合要求.故选:D.【点评】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.5.(3分)(2016•梅州)如图,几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的视图是俯视图,可得答案.【解答】解:从上面看,几何体的俯视图是.故选:D.【点评】本题考查了简单组合体的三视图,从上面看得到的视图是俯视图.6.(3分)(2016•百色)下列关系式正确的是()A.35.5°=35°5′B.35.5°=35°50′C.35.5°<35°5′D.35.5°>35°5′【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:A、35.5°=35°30′,35°30′>35°5′,故A错误;B、35.5°=35°30′,35°30′<35°50′,故B错误;C、35.5°=35°30′,35°30′>35°5′,故C错误;D、35.5°=35°30′,35°30′>35°5′,故D正确;故选:D.【点评】本题考查了度分秒的换算,大单位化成效单位乘以进率是解题关键.7.(3分)(2016•宜昌)已知M、N、P、Q四点的位置如图所示,下列结论中,正确的是()A.∠NOQ=42°B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补【考点】余角和补角.【分析】根据已知量角器上各点的位置,得出各角的度数,进而得出答案.【解答】解:如图所示:∠NOQ=138°,故选项A错误;∠NOP=48°,故选项B错误;如图可得:∠PON=48°,∠MOQ=42°,故∠PON比∠MOQ大,故选项C正确;由以上可得,∠MOQ与∠MOP不互补,故选项D错误.故选:C.【点评】此题主要考查了余角和补角,正确得出各角的度数是解题关键.8.(3分)(2016•宜昌)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【考点】线段的性质:两点之间线段最短.【分析】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.【解答】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选D.【点评】本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.9.(3分)(2016•常德)如图,已知直线a∥b,∠1=100°,则∠2等于()A.80°B.60°C.100°D.70°【考点】平行线的性质.【分析】先根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:如图,∵∠1与∠3是对顶角,∴∠3=∠1=100°,∵a∥b,∴∠2=180°﹣∠3=180°﹣100°=80°.故选A.【点评】本题考查了平行线的性质,对顶角相等的性质,是基础题,熟记性质是解题的关键.10.(4分)(2016•永州)对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【考点】圆的认识;线段的性质:两点之间线段最短;垂线段最短;三角形的稳定性.【分析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.【解答】解:A、把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理,正确;B、木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“两点确定一条直线”的原理,故错误;C、将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理,正确;D、将车轮设计为圆形是运用了“圆的旋转对称性”的原理,正确,故选B.【点评】本题考查了圆的认识、三角形的稳定性、确定直线的条件等知识,解题的关键是熟练掌握这些定理,难度不大.11.(3分)(2016•金华)足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()A.点C B.点D或点EC.线段DE(异于端点)上一点D.线段CD(异于端点)上一点【考点】角的大小比较.【专题】网格型.【分析】连接BC,AC,BD,AD,AE,BE,构造与圆有关的角来比较∠ACB,∠ADB,∠AEB的大小即可.【解答】解:连接BC,AC,BD,AD,AE,BE,由计算和推理可知A,B,D,E四点共圆(BE为直径),同弧所对的圆周角相等,因而∠ADB=∠AEB,然后圆同弧对应的“圆内角”大于圆周角,“圆外角”小于圆周角,因而射门点在DE上时角最大,射门点在D点右上方或点E左下方时角度则会更小.故选C.【点评】本题考查了比较角的大小,一般情况下比较角的大小有两种方法:①测量法,即用量角器量角的度数,角的度数越大,角越大.②叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置.除此一般方法外,还可以如本题一样构造成与圆有关的角,借助圆有关的性质来比较大小.12.(3分)(2016•丽水)下列图形中,属于立体图形的是()A.B.C.D.【考点】认识立体图形.【分析】根据平面图形所表示的各个部分都在同一平面内,立体图形是各部分不在同一平面内的几何,由一个或多个面围成的可以存在于现实生活中的三维图形,可得答案.【解答】解:A、角是平面图形,故A错误;B、圆是平面图形,故B错误;C、圆锥是立体图形,故C正确;D、三角形是平面图形,故D错误.故选:C.【点评】本题考查了认识立体图形,立体图形是各部分不在同一平面内的几何,由一个或多个面围成的可以存在于现实生活中的三维图形.13.(3分)(2016•无锡)已知圆锥的底面半径为4cm ,母线长为6cm ,则它的侧面展开图的面积等于( )A .24cm 2B .48cm 2C .24πcm 2D .12πcm 2【考点】圆锥的计算.【分析】根据圆锥的侧面积=12×底面圆的周长×母线长即可求解. 【解答】解:底面半径为4cm ,则底面周长=8πcm ,侧面面积=12×8π×6=24π(cm 2). 故选:C .【点评】本题考查了圆锥的有关计算,解题的关键是了解圆锥的有关元素与扇形的有关元素的对应关系.14.(3分)(2016•枣庄)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是( )A .白B .红C .黄D .黑【分析】根据图形可得涂有绿色一面的邻边是白,黑,红,蓝,即可得到结论.【解答】解:∵涂有绿色一面的邻边是白,黑,红,蓝,∴涂成绿色一面的对面的颜色是黄色,故选C .【点评】本题考查了正方体相对两个面上的文字问题,此类问题可以制作一个正方体,根据题意在各个面上标上图案,再确定对面上的图案,可以培养动手操作能力和空间想象能力.15.(3分)(2016•威海)如图,在△ABC 中,∠B =∠C =36°,AB 的垂直平分线交BC 于点D ,交AB 于点H ,AC 的垂直平分线交BC 于点E ,交AC 于点G ,连接AD ,AE ,则下列结论错误的是( )A .BD BC =B .AD ,AE 将∠BAC 三等分C .△ABE ≌△ACD D .S △ADH =S △CEG【考点】黄金分割;全等三角形的判定;线段垂直平分线的性质.【分析】由题意知AB =AC 、∠BAC =108°,根据中垂线性质得∠B =∠DAB =∠C =∠CAE =36°,从而知△BDA ∽△BAC ,得BD BA =BA BC,由∠ADC =∠ =72°得CD=CA=BA ,进而根据黄金分割定义知BD BA =BA BC A ;根据∠DAB=∠CAE=36°知∠DAE=36°可判断B ;根据∠BAD+∠DAE=∠CAE+∠DAE=72°可得∠BAE=∠CAD ,可证△BAE ≌△CAD ,即可判断C;由△BAE≌△CAD知S△BAD=S△CAE,根据DH垂直平分AB,EG垂直平分AC可得S△ADH=S△CEG,可判断D.【解答】解:∵∠B=∠C=36°,∴AB=AC,∠BAC=108°,∵DH垂直平分AB,EG垂直平分AC,∴DB=DA,EA=EC,∴∠B=∠DAB=∠C=∠CAE=36°,∴△BDA∽△BAC,∴BDBA=BABC,又∵∠ADC=∠B+∠BAD=72°,∠DAC=∠BAC﹣∠BAD=72°,∴∠ADC=∠DAC,∴CD=CA=BA,∴BD=BC﹣CD=BC﹣AB,则BC BA BABA BC-=BDBA=BABCA错误;∵∠BAC=108°,∠B=∠DAB=∠C=∠CAE=36°,∴∠DAE=∠BAC﹣∠DAB﹣∠CAE=36°,即∠DAB=∠DAE=∠CAE=36°,∴AD,AE将∠BAC三等分,故B正确;∵∠BAE=∠BAD+∠DAE=72°,∠CAD=∠CAE+∠DAE=72°,∴∠BAE=∠CAD,在△BAE和△CAD中,∵CBAB ACBAE CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAE≌△CAD,故C正确;由△BAE≌△CAD可得S△BAE=S△CAD,即S△BAD+S△ADE=S△CAE+S△ADE,∴S△BAD=S△CAE,又∵DH垂直平分AB,EG垂直平分AC,∴S△ADH=12S△ABD,S△CEG=12S△CAE,∴S△ADH=S△CEG,故D正确.故选:A.【点评】本题主要考查黄金分割、全等三角形的判定与性质及线段的垂直平分线的综合运用,掌握其性质、判定并灵活应用是解题的关键.二、填空题1.(3分)(2016•衡阳)如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为10.【考点】点、线、面、体.【专题】规律型.【分析】n条直线最多可将平面分成S=1+1+2+3…+n=12n(n+1)+1,依此可得等量关系:n条直线最多可将平面分成56个部分,列出方程求解即可.【解答】解:依题意有12n(n+1)+1=56,解得n1=﹣11(不合题意舍去),n2=10.答:n的值为10.故答案为:10.【点评】考查了点、线、面、体,规律性问题及一元二次方程的应用;得到分成的最多平面数的规律是解决本题的难点.1.(3分)(2016•常德)如图,OP为∠AOB的平分线,PC⊥OB 于点C,且PC=3,点P到OA的距离为3.【考点】角平分线的性质.【分析】过P作PD⊥OA于D,根据角平分线上的点到角的两边的距离相等可得PD=PC,从而得解.【解答】解:如图,过P作PD⊥OA于D,∵OP为∠AOB的平分线,PC⊥OB,∴PD=PC,∵PC=3,∴PD=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.2.(3分)(2016•连云港)如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB 为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD边扫过的面积为9π.【考点】扇形面积的计算;点、线、面、体;垂径定理.【分析】连接PA、PD,过点P作PE垂直AB于点E,延长AE交CD于点F,根据垂径定理可得出AE=BE=12AB,利用勾股定理即可求出PE的长度,再根据平行线的性质结合正方形的性质即可得出EF=BC=AB,DF=AE,再通过勾股定理即可求出线段PD的长度,根据边与边的关系可找出PF的长度,分析AB旋转的过程可知CD边扫过的区域为以PF为内圆半径、以PD为外圆半径的圆环,根据圆环的面积公式即可得出结论.【解答】解:连接PA、PD,过点P作PE垂直AB于点E,延长AE交CD于点F,如图所示.∵AB是⊙P上一弦,且PE⊥AB,∴AE=BE=12AB=3.在Rt△AEP中,AE=3,PA=5,∠AEP=90°,∴=4.∵四边形ABCD为正方形,∴AB∥CD,AB=BC=6,又∵PE⊥AB,∴PF⊥CD,∴EF=BC=6,DF=AE=3,PF=PE+EF=4+6=10.在Rt△PFD中,PF=10,DF=3,∠PFE=90°,∴∵若AB边绕点P旋转一周,则CD边扫过的图形为以PF为内圆半径、以PD为外圆半径的圆环.∴S=π•PD2﹣πPF2=109π﹣100π=9π.故答案为:9π.【点评】本题考查了垂径定理、勾股定理、平行线的性质以及圆环的面积公式,解题的关键是分析出CD边扫过的区域的形状.本题属于中档题,难度不大,但稍显繁琐,解决该题型题目时,结合AB边的旋转,找出CD边旋转过程中扫过区域的形状是关键.3.(3分)(2016•泰安)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为758.【考点】矩形的性质;线段垂直平分线的性质;勾股定理.【分析】根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出BF,根据勾股定理求出OF,根据三角形的面积公式计算即可.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴,∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,∴BOBC=BFBD,即58=10BF,解得,BF=254,则154,则△BOF的面积=12×OF×OB=758,故答案为:758.【点评】本题考查的是矩形的性质、线段垂直平分线的性质以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.三、解答题1.(8分)(2016•南京)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进【分析】(1)根据平移的性质即可得到结论;(2)根据轴对称的性质即可得到结论;(3)同(2);(4)由旋转的性质即可得到结论.【解答】解:(1)平移的性质:平移前后的对应线段相等且平行.所以与对应线段有关的结论为:AB=A′B′,AB ∥A′B′;(2)轴对称的性质:AA′=BB′;对应线段AB 和A′B′所在的直线如果相交,交点在对称轴l 上.(3)轴对称的性质:轴对称图形对称轴是任何一对对应点所连线段的垂直平分线.所以与对应点有关的结论为:l 垂直平分AA′.(4)OA=OA′,∠AOA′=∠BOB′.故答案为:(1)AB=A′B′,AB ∥A′B′;(2)AB=A′B′;对应线段AB 和A′B′所在的直线如果相交,交点在对称轴l 上.;(3)l 垂直平分AA′;(4)OA=OA′,∠AOA′=∠BOB′.【点评】本题考查了旋转的性质,平移的性质,轴对称的性质,余角和补角的性质,熟练掌握各性质是解题的关键.2.(8分)(2016•南京)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE 、∠CBF 、∠ACD 是△ABC 的三个外角.求证:∠BAE+∠CBF+∠ACD=360°.【考点】平角的定义、内角和定理和外角性质.【分析】证法1:根据平角的定义得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根据三角形内角和定理和角的和差关系即可得到结论;证法2:要求证∠BAE+∠CBF+∠ACD=360°,根据三角形外角性质得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,则∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根据三角形内角和定理即可得到结论.【解答】证明:证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.证法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.故答案为:平角等于180°,∠1+∠2+∠3=180°.【点评】本题考查了多边形的外角和:n边形的外角和为360°.也考查了三角形内角和定理和外角性质.3.(10分)(2016•苏州)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<85).(1)如图1,连接DQ平分∠BDC时,t的值为43;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.【分析】(1)先利用△PBQ∽△CBD求出PQ、BQ,再根据角平分线性质,列出方程解决问题.(2)由△QTM∽△BCD,得QM TQBD BC=列出方程即可解决.(3)①如图2中,由此QM交CD于E,求出DE、DO利用差值比较即可解决问题.②如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.由△OHE∽△BCD,得OH OEBC BD=,列出方程即可解决问题.利用反证法证明直线PM不可能由⊙O相切.【解答】(1)解:如图1中,∵四边形ABCD是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴,∵PQ⊥BD,∴∠BPQ=90°=∠C,∵∠PBQ=∠DBC,∴△PBQ∽△CBD,∴PB PQ BQ BC DC BD==,∴48610t PQ BQ==,∴PQ=3t,BQ=5t,∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,∴3t=8﹣5t,∴t=1,故答案为:1.(2)解:如图2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,由(1)可知TQ=12(8﹣5t),QM=3t,∵MQ∥BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90°,∴△QTM∽△BCD,∴QM TQ BD BC=,∴1(85) 32108tt-=,∴t=4049(s),∴t=4049s时,△CMQ是以CQ为底的等腰三角形.(3)①证明:如图2中,由此QM交CD于E,∵EQ∥BD,∴EC CQ CD CB=,∴EC=34(8﹣5t),ED=DC﹣EC=6﹣34(8﹣5t)=154t,∵DO=3t,∴DE﹣DO=154t﹣3t=34t>0,∴点O在直线QM左侧.②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.∵EC=34(8﹣5t),DO=3t,∴OE=6﹣3t﹣34(8﹣5t)=34t,∵OH⊥MQ,∴∠OHE=90°,∵∠HEO=∠CEQ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴OH OE BC BD=,∴3 0.84 810t=,∴t=43.∴t=43s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=12PMQ=22.5°,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=0.8,∴MH=0.8),由OH HEBC DC=得到HE=35,由EC CQBD CB=得到EQ=53,∴MH=MQ﹣HE﹣EQ=4﹣35﹣53=2615,∴0.8)≠2615,矛盾,∴假设不成立.∴直线PM与⊙O不相切.【点评】本题考查圆综合题、正方形的性质、相似三角形的判定和性质、切线的判定和性质、勾股定理、角平分线的性质等知识,解题的关键灵活运用这些知识解决问题,学会利用方程的思想思考问题,充分利用相似三角形的性质构建方程,在最后一个问题证明中利用了反证法,属于中考压轴题.4.(10分)(2016•泰州)如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.【考点】相似三角形的判定与性质;角平分线的定义.【分析】(1)由AB=AC ,AD 平分∠CAE ,易证得∠B=∠DAG=21∠CAG ,继而证得结论; (2)由CG ⊥AD ,AD 平分∠CAE ,易得CF=GF ,然后由AD ∥BC ,证得△AGF ∽△BGC ,再由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵AD 平分∠CAE ,∴∠DAG=21∠CAG , ∵AB=AC ,∴∠B=∠ACB ,∵∠CAG=∠B+∠ACB ,∴∠B=21∠CAG , ∴∠B=∠CAG ,∴AD ∥BC ;(2)解:∵CG ⊥AD ,∴∠AFC=∠AFG=90°,在△AFC 和△AFG 中,⎪⎩⎪⎨⎧∠=∠=∠=∠AFG AFC AFAF GAF CAF , ∴△AFC ≌△AFG (ASA ),∴CF=GF ,∵AD ∥BC ,∴△AGF ∽△BGC ,∴GF :GC=AF :BC=1:2,∴BC=2AF=2×4=8.【点评】此题考查了等腰三角形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意证得△AGF ∽△BGC 是关键.1.(12分)(2016•青岛)已知:如图,在矩形ABCD 中,Ab=6cm ,BC=8cm ,对角线AC ,BD 交于点0.点P 从点A 出发,沿方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm/s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF ∥AC ,交BD 于点F .设运动时间为t (s )(0<t <6),解答下列问题:(1)当t 为何值时,△AOP 是等腰三角形?(2)设五边形OECQF 的面积为S (cm 2),试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使S 五边形S 五边形OECQF :S △ACD =9:16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP ?若存在,求出t 的值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,根据相似三角形的性质得到AP=t 258,②当AP=AO=t=5,于是得到结论;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,根据全等三角形的性质得到CE=AP=t,根据相似三角形的性质得到EH 35t,根据相似三角形的性质得到QM=2454t-,FQ=56t,根据图形的面积即可得到结论,(3)根据题意列方程得到t=92,t=0,(不合题意,舍去),于是得到结论;(4)由角平分线的性质得到DM=DN=245,根据勾股定理得到75,由三角形的面积公式得到OP=5﹣58t,根据勾股定理列方程即可得到结论.【解答】解:(1)∵在矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=12AO=52,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ADC,∴AP AMAC AD=,∴AP=t=258,②当AP=AO=t=5,∴当t为258或5时,△AOP是等腰三角形;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,在△APO与△CEO中,PAO ECO AO OCAOP COE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOP ≌△COE ,∴CE=AP=t ,∵△CEH ∽△ABC , ∴EH CE AB AC=, ∴EH=35t , ∵DN=AD CD AC ∙=245, ∵QM ∥DN ,∴△CQM ∽△CDN , ∴QM CQ DN CD =,即62465QM t -=, ∴QM=2445t -, ∴DG=245﹣2445t -=45t , ∵FQ ∥AC ,∴△DFQ ∽△DOC , ∴FQ DG DC DN=, ∴FQ=56t , ∴S 五边形OECQF =S △OEC +S 四边形OCQF =12×5×35t +12(56t +5)•2445t -=﹣13t 2+32t+12, ∴S 与t 的函数关系式为S=﹣13t 2+32t+12;(3)存在,∵S △ACD =12×6×8=24, ∴S 五边形OECQF :S △ACD =(﹣13t 2+32t+12):24=9:16, 解得t=92,t=0,(不合题意,舍去), ∴t=92时,S 五边形S 五边形OECQF :S △ACD =9:16;(4)如图3,过D 作DM ⊥AC 于M ,DN ⊥AC 于N ,∵∠POD=∠COD,∴DM=DN=245,∴75,∵OP•DM=3PD,∴OP=5﹣58t,∴PM=185﹣58t,∵PD2=PM2+DM2,∴(8﹣t)2=(185﹣58t)2+(245)2,解得:t≈15(不合题意,舍去),t≈2.88,∴当t=2.88时,OD平分∠COP.【点评】本题考查了矩形的性质,角平分线的性质,相似三角形的判定和性质,图形面积的计算,全等三角形的判定和性质,正确的识别图形是解题的关键.5.(10分)(2016•衡阳)在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A 从东部接近△OBC 海域,在某一时刻军舰B 测得A 位于北偏东60°方向上,同时军舰C 测得A 位于南偏东30°方向上,求此时敌舰A 离△OBC 海域的最短距离为多少海里?(3)若敌舰A 沿最短距离的路线以/小时的速度靠近△OBC 海域,我军军舰B 沿北偏东15°的方向行进拦截,问B 军舰速度至少为多少才能在此方向上拦截到敌舰A ?【考点】解直角三角形的应用-方向角问题.【分析】(1)求出OC ,由题意r≥12OC ,由此即可解决问题. (2)作AM ⊥BC 于M ,求出AM 即可解决问题.(3)假设B 军舰在点N 处拦截到敌舰.在BM 上取一点H ,使得HB=HN ,设MN=x ,先列出方程求出x ,再求出BN 、AN 利用不等式解决问题.【解答】解:(1)在RT △OBC 中,∵BO=80,BC=60,∠OBC=90°,∴=100, ∵12OC=12×100=50 ∴雷达的有效探测半径r 至少为50海里.(2)作AM ⊥BC 于M ,∵∠ACB=30°,∠CBA=60°,∴∠CAB=90°,∴AB=12BC=30, 在RT △ABM 中,∵∠AMB=90°,AB=30,∠BAM=30°,∴BM=12AB=15,∴此时敌舰A 离△OBC 海域的最短距离为(3)假设B 军舰在点N 处拦截到敌舰.在BM 上取一点H ,使得HB=HN ,设MN=x , ∵∠HBN=∠HNB=15°,∴∠MHN=∠HBN+∠HNB=30°,∴HN=HB=2x ,,∵BM=15,∴,x=30﹣∴30,=15,设B军舰速度为a海里/小时,由题意a,∴a≥20.∴B军舰速度至少为20海里/小时.【点评】本题考查解直角三角形的应用、方位角、直角三角形30°角性质等知识,解题的关键是理解题意,学会添加常用辅助线,属于中考常考题型.6.(8分)(2016•孝感)如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①作∠ACB的平分线,交斜边AB于点D;②过点D作AC的垂线,垂足为点E.(2)在(1)作出的图形中,若CB=4,CA=6,则DE=125.【考点】作图—基本作图.【分析】(1)以C为圆心,任意长为半径画弧,交BC,AC两点,再以这两点为圆心,大于这两点的线段的一半为半径画弧,过这两弧的交点与C在直线交AB于D即可,根据过直线外一点作已知直线的垂线的方法可作出垂线即可;(2)根据平行线的性质和角平分线的性质推出∠ECD=∠EDC,进而证得DE=CE,由DE∥BC,推出△ADE∽△ABC,根据相似三角形的性质即可推得结论.【解答】解:(1)如图所示;(2)解:∵DC是∠ACB的平分线,∴∠BCD=∠ACD,∵DE⊥AC,BC⊥AC,∴DE∥BC,∴∠EDC=∠BCD,∴∠ECD=∠EDC,∴DE=CE,∵DE∥BC,∴△ADE∽△ABC,∴DE AE BC AC=,设DE=CE=x,则AE=6﹣x,∴646x x-=,解得:x=125,即DE=125,故答案为:125.【点评】本题考查了角的平分线的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,基本作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.。

2020年中考数学试题分类汇编之十七 尺规作图 含解析

2020年中考数学试题分类汇编之十七 尺规作图 含解析

2020年中考数学试题分类汇编之十七尺规作图一、选择题1.(2020河北)如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ; 第三步:画射线BP .射线BP 即为所求.下列正确的是( )A. a ,b 均无限制B. 0a >,12b DE >的长 C. a 有最小限制,b 无限制D. 0a ≥,12b DE <的长 【答案】B 【详解】第一步:以B 为圆心,适当长为半径画弧,分别交射线BA ,BC 于点D ,E ; ∴0a >;第二步:分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧在ABC ∠内部交于点P ; ∴12b DE >的长; 第三步:画射线BP .射线BP 即为所求.综上,答案为:0a >;12b DE >的长, 故选:B .2.(2020河南).如图,在ABC ∆中,30AB BC BAC ==∠=︒ ,分别以点,A C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接,,DA DC 则四边形ABCD 的面积为( )A. B. 9 C. 6 D.【答案】D【解析】【分析】 连接BD 交AC 于O ,由已知得△ACD 为等边三角形且BD 是AC 的垂直平分线,然后解直角三角形解得AC 、BO 、BD 的值,进而代入三角形面积公式即可求解.【详解】连接BD 交AC 于O ,由作图过程知,AD=AC=CD ,∴△ACD 为等边三角形,∴∠DAC=60º,∵AB=BC,AD=CD ,∴BD 垂直平分AC 即:BD ⊥AC ,AO=OC ,在Rt △AOB 中,30AB BAC =∠=︒∴BO=AB ·sin30º AO=AB ·cos30º=32,AC=2AO=3, 在Rt △AOD 中,AD=AC=3,∠DAC=60º,∴DO=AD ·sin60º,∴ABC ADC ABCD S S S ∆∆=+四边形=113322⨯⨯= 故选:D .3.(2020贵阳)如图,Rt ABC ∆中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 为长的半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于点G ,若1CG =,P 为AB 上一动点,则GP 的最小值为( )A. 无法确定B. 12C. 1D. 2【答案】C【详解】解:由题意可知,当GP⊥AB时,GP的值最小,根据尺规作图的方法可知,GB是∠ABC的角平分线,∵∠C=90°,∴当GP⊥AB时,GP=CG=1,故答案为:C.4.(2020广西南宁)(3分)如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A.60°B.65°C.70°D.75°【分析】根据等腰三角形的性质可得∠ACB的度数,观察作图过程可得,进而可得∠DCE 的度数.【解答】解:∵BA=BC,∠B=80°,∴∠A=∠ACB=(180°﹣80°)=50°,∴∠ACD=180°﹣∠ACB=130°,观察作图过程可知:CE平分∠ACD,∴∠DCE=ACD=65°,∴∠DCE的度数为65°故选:B.二、填空题∆的顶点A,C均落在格5.(2020天津)如图,在每个小正方形的边长为1的网格中,ABC点上,点B在网格线上,且5AB=.3(I )线段AC 的长等于______;(II )以BC 为直径的半圆与边AC 相交于点D ,若P ,Q 分别为边AC ,BC 上的动点,当BP PQ +取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点P ,Q ,并简要说明点P ,Q 的位置是如何找到的(不要求证明)_______.答案)如图,取格点M ,N ,连接MN ,连接BD 并延长,与MN 相交于点B ';连接B C ',与半圆相交于点E ,连接BE ,与AC 相交于点P ,连接B P '并延长,与BC 相交于点Q ,则点P ,Q 即为所求.6.(2020苏州).如图,已知MON ∠是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作AD ON ,交射线OC 于点D ,过点D 作DE OC ⊥,交ON 于点E .设10OA =,12DE =,则sin MON ∠=________.【详解】连接AB 交OD 于点H ,过点A 作AG ⊥ON 于点G ,由尺规作图步骤,可得:OD 是∠MON 的平分线,OA=OB ,∴OH ⊥AB ,AH=BH ,∵DE OC ⊥,∴DE ∥AB ,∵AD ON ,∴四边形ABED 是平行四边形,∴AB=DE=12,∴AH=6,∴8==,∵OB ·AG=AB ·OH ,∴AG=AB OH OB ⋅=12810⨯=485, ∴sin MON ∠=AG OA =2425. 故答案是:2425.7.(2020新疆生产建设兵团)(5分)如图,在x 轴,y 轴上分别截取OA ,OB ,使OA =OB ,再分别以点A ,B 为圆心,以大于12AB 长为半径画弧,两弧交于点P .若点P 的坐标为(a ,2a ﹣3),则a 的值为 3 .【分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x轴和y轴的距离相等,结合点P在第一象限,可得关于a的方程,求解即可.AB长为半径画弧,两弧交于【解答】解:∵OA=OB,分别以点A,B为圆心,以大于12点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P在第一象限,点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.8.(2020辽宁抚顺)(3分)如图,在Rt△ABC中,∠ACB=90°,AC=2BC,分别以点A 和B为圆心,以大于AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC 于点E,连接BE,若CE=3,则BE的长为 5 .9.(2020宁夏)(3分)如图,在△ABC中,∠C=84°,分别以点A、B为圆心,以大于AB的长为半径画弧,两弧分别交于点M、N,作直线MN交AC点D;以点B为圆心,适当长为半径画弧,分别交BA、BC于点E、F,再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线BP,此时射线BP恰好经过点D,则∠A=32 度.三、解答题10.(2020北京)已知:如图,△ABC为锐角三角形,AB=BC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=12BAC .作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP 就是所求作线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP= .∵AB=AC,∴点B在⊙A上.又∵∠BPC=12∠BAC()(填推理依据)∴∠ABP=12∠BAC【解析】(1)如图所示(2)∠BPC ;在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半。

中考数学真题分类解析汇编17点、线、面、角

中考数学真题分类解析汇编17点、线、面、角
点、线、面、角
一、选择题
1.(2014•广西贺州,第3题3分)如图,OA⊥OB,若∠1=55°,则∠2的度数是( )
A.
35°
B.
40°
C.
45°
D.
60°
考点:
余角和补角
分析:
根据两个角的和为90°,可得两角互余,可得答案.
解答:
解:∵OA⊥OB,若∠1=55°,
∴∠AO∠=90°,
即∠2+∠1=90°,
A.
所有的实数都可用数轴上的点表示
B.
等角的补角相等
C.
ቤተ መጻሕፍቲ ባይዱ无理数包括正无理数,0,负无理数
D.
两点之间,线段最短
考点:
命题与定理.
专题:
计算题.
分析:
根据实数与数轴上的点一一对应对A进行判断;
根据补角的定义对B进行判断;
根据无理数的分类对C进行判断;
根据线段公理对D进行判断.
解答:
解:A、所有的实数都可用数轴上的点表示,所以A选项的说法正确;
解答:
解:如图,∵BC⊥AE,
∴∠ACB=90°.
∴∠A+∠B=90°.
又∵∠B=55°,
∴∠A=35°.
又CD∥AB,
∴∠1=∠B=35°.
故选:A.
点评:
本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.
3.(2014•襄阳,第7题3分)下列命题错误的是( )
故选C.
点评:
本题考查了线段的性质,牢记线段的性质是解题关键.
7.(2014年山东泰安,第5题3分)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是( )

全国各地中考数学真题分类解析汇编:17 点、线、面、角

全国各地中考数学真题分类解析汇编:17 点、线、面、角

点线面角一、选择题1. (2014•广西贺州,第3题3分)如图,OA⊥OB,若∠1=55°,则∠2的度数是()A.35°B.40°C.45°D.60°考点:余角和补角分析:根据两个角的和为90°,可得两角互余,可得答案.解答:解:∵OA⊥OB,若∠1=55°,∴∠AO∠=90°,即∠2+∠1=90°,∴∠2=35°,故选:A.点评:本题考查了余角和补角,两个角的和为90°,这两个角互余.2.(2014•襄阳,第5题3分)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°考点:平行线的性质;直角三角形的性质分析:利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠B=35°.解解:如图,∵BC⊥AE,答:∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠B=35°.故选:A.点评:本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.3.(2014•襄阳,第7题3分)下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短考命题与定理.点:专题:计算题.分析:根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.解答:解:A、所有的实数都可用数轴上的点表示,所以A选项的说法正确;B、等角的补角相等,所以B选项的说法正确;C、无理数包括正无理数和负无理,所以C选项的说法错误;D、两点之间,线段最短,所以D选项的说法正确.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.4.(2014·浙江金华,第2题4分)如图,经过刨平的木析上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线. 能解释这一实际问题的数学知识是【】A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直5.(2014•滨州,第5题3分)如图,OB是∠AOC的角平分线,OD是∠COE 的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()A.50 B.60 C.65 D.70。

中考数学考前必做专题试题:点、线、面、角

中考数学考前必做专题试题:点、线、面、角

中考数学考前必做专题试题:点、线、面、角面对中考,考生对待数学这一科目需保持平常心态,复习数学时仍要按知识点、题型、易混易错的问题进行梳理,不断总结,不断反思,进一步提高解题能力。

下文准备了中考数学考前必做专题试题的相关内容。

一、选择题1.(2019山东济南,第2题,3分)如图,点O在直线AB上,若A=30,则ABC 的度数是A. 45B. 30C. 25D.60【解析】因为,所以,故选C.2.(2019四川凉山州,第2题,4分)下列图形中,1与2是对顶角的是( )A.1、2没有公共顶点B.1、2两边不互为反向延长线C.1、2有公共顶点,两边互为反向延长线D.1、2两边不互为反向延长线考点:对顶角、邻补角分析:根据对顶角的特征,有公共顶点,且两边互为反向延长线,对各选项分析判断后利用排除法求解.解答:解:A.1、2没有公共顶点,不是对顶角,故本选项错误;B.1、2两边不互为反向延长线,不是对顶角,故本选项错误;C.1、2有公共顶点,两边互为反向延长线,是对顶角,故本选项正确;D.1、2两边不互为反向延长线,不是对顶角,故本选项错误;3.(2019襄阳,第7题3分)下列命题错误的是()A. 所有的实数都可用数轴上的点表示B. 等角的补角相等C. 无理数包括正无理数,0,负无理数D. 两点之间,线段最短考点:命题与定理.专题:计算题.分析:根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.解答:解:A、所有的实数都可用数轴上的点表示,所以A 选项的说法正确;B、等角的补角相等,所以B选项的说法正确;C、无理数包括正无理数和负无理,所以C选项的说法错误;D、两点之间,线段最短,所以D选项的说法正确.4.(2019浙江金华,第2题4分)如图,经过刨平的木析上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线. 能解释这一实际问题的数学知识是【】A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直5.(2019滨州,第5题3分)如图,OB是AOC的角平分线,OD是COE的角平分线,如果AOB=40,COE=60,则BOD 的度数为( )A. 50B. 60C. 65D. 70考点:角的计算;角平分线的定义分析:先根据OB是AOC的角平分线,OD是COE的角平分线,AOB=40,COE=60求出BOC与COD的度数,再根据BOD=BOC+COD即可得出结论.解答:解:∵OB是AOC的角平分线,OD是COE的角平分线,AOB=40,COE=60,BOC=AOB=40,COD= COE= 60=30,6.(2019济宁,第3题3分)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A. 两点确定一条直线B. 垂线段最短C. 两点之间线段最短D. 三角形两边之和大于第三边考点:线段的性质:两点之间线段最短.专题:应用题.分析:此题为数学知识的应用,由题意把一条弯曲的公路改成直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.解答:解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.7.(2019年山东泰安,第5题3分)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()A.6B.5C. 4D. 7分析:根据平行线的性质推出4=180,7,根据三角形的内角和定理得出3=180A,推出结果后判断各个选项即可.解:A、∵DG∥EF,4=180,∵4,1,1,故本选项错误;B、∵DG∥EF,3,5=3=(180﹣1)+(180﹣ALH)=360﹣(ALH)=360﹣(180﹣A)=180A,故本选项错误;C、∵DG∥EF,4=180,故本选项错误;8. ( 2019广西贺州,第3题3分)如图,OAOB,若1=55,则2的度数是()A. 35B. 40C. 45D. 60考点:余角和补角分析:根据两个角的和为90,可得两角互余,可得答案. 解答:解:∵OAOB,若1=55,9.(2019襄阳,第5题3分)如图,BCAE于点C,CD∥AB,B=55,则1等于()A. 35B. 45C. 55D. 65考点:平行线的性质;直角三角形的性质分析:利用直角三角形的两个锐角互余的性质求得A=35,然后利用平行线的性质得到B=35.解答:解:如图,∵BCAE,ACB=90.B=90.又∵B=55,10. (2019湖北黄冈,第2题3分)如果与互为余角,则()A. +=180B. ﹣=180C. ﹣=90D. +=90要练说,得练听。

全国中考数学试卷解析分类汇编 专题17 点、线、面、角第二期

全国中考数学试卷解析分类汇编 专题17 点、线、面、角第二期
解答:
解:A.∠1、∠2没有公共顶点,不是对顶角,故本选项错误;
B.∠1、∠2两边不互为反向延长线,不是对顶角,故本选项错误;
C.∠1、∠2有公共顶点,两边互为反向延长线,是对顶角,故本选项正确;
D.∠1、∠2两边不互为反向延长线,不是对顶角,故本选项错误;
故选:C.
点评:
本题主要考查了对顶角的定义,熟记对顶角的图形特征是解题的关键,是基础题,比较简单.
解答:
解:如图所示:
△BCD是等腰直角三角形,△ACD是等边三角形,
在Rt△BCD中,CD= =6 cm,
∴BE= CD=3 cm,
在Rt△ACE中,AE= =3 cm,
∴从顶点A爬行到顶点B的最短距离为(3 +3 )cm.
故答案为:(3 +3 ).
点评:
考查了平面展开﹣最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.
点线面角
一、选择题
1.(2014山东济南,第2题,3分)如图,点O在直线AB上,若 ,则 的度数是
A. B. C. D.
【解析】因为 ,所以 ,故选C.
2.(2014•四川凉山州,第2题,4分)下列图形中,∠1与∠2是对顶角的是()
A.
B.
C.
D.
考点:
对顶角、邻补角
分析:
根据对顶角的特征,有公共顶点,且两边互为反向延长线,对各选项分析第18题4分)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3 +3 )cm.
考点:
平面展开-最短路径问题;截一个几何体

中考数学专题复习之 17 点、线、面、角(含解析)2 精编

中考数学专题复习之 17 点、线、面、角(含解析)2 精编

17 点、线、面、角(含解析)一、选择题1.(3分)(2016•十堰)如图,AB ∥EF ,CD ⊥EF 于点D ,若∠ABC =40°,则∠BCD =( )A .140°B .130°C .120°D .110°【分析】直接利用平行线的性质得出∠B =∠BCD ,∠ECD =90°,进而得出答案.【解答】解:过点C 作EC ∥AB ,由题意可得:AB ∥EF ∥EC ,故∠B =∠BCD ,∠ECD =90°,则∠BCD =40°+90°=130°.故选:B .【点评】此题主要考查了平行线的判定与性质,作出正确辅助线是解题关键.2.(2016•随州)如图是某工件的三视图,则此工件的表面积为( )A .15πcm 2B .51πcm 2C .66πcm 2D .24πcm2 【考点】由三视图判断几何体.【分析】根据三视图,可得几何体是圆锥,根据勾股定理,可得圆锥的母线长,根据扇形的面积公式,可得圆锥的侧面积,根据圆的面积公式,可得圆锥的底面积,可得答案.【解答】解:由三视图,得,OB =3cm ,OA =4cm , 由勾股定理,得54322=+=AB 圆锥的侧面积21×6π×5=15πcm 2,圆锥的底面积π×(26)2=9πcm , 圆锥的表面积15π+9π=24π(cm 2),故选:D .【点评】本题考查了由三视图判断几何体,利用三视图得出圆锥是解题关键,注意圆锥的侧面积等于圆锥的底面周长与母线长乘积的一半.2.(2016•武汉)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )A .B .C .D .【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面一个长方形.故选:A .【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.一个几何体的三视图如图所示,则这个几何体是( )A .球体B .圆锥C .棱柱D .圆柱【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选D .【点评】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了空间想象能力.4. 如图,在□ABCD 中,AB >AD ,按以下步骤作图:以点A 为圆心,小于AD 的长为半径画弧,分别交AB 、AD 于点E 、F ;再分别以点E 、F 为圆心,大于21EF 的长为半径画弧,两弧交于点G ;作射线AG 交CD 于点H ,则下列结论中不能由条件推理得出的是( )A .AG 平分∠DAB B .AD=DHC .DH=BCD .CH=DH【分析】根据作图过程可得得AG 平分∠DAB ,再根据角平分线的性质和平行四边形的性质可证明∠DAH=∠DHA ,进而得到AD=DH ,【解答】解:根据作图的方法可得AG 平分∠DAB ,∵AG 平分∠DAB ,∴∠DAH=∠BAH ,∵CD ∥AB ,∴∠DHA=∠BAH ,∴∠DAH=∠DHA ,∴AD=DH ,∴BC=DH,故选D.【点评】此题主要考查了平行四边形的性质、角平分线的作法、平行线的性质;熟记平行四边形的性质是解决问题的关键关键.5.1.1.(3分)(2016•北京)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.125°D.135°【分析】由图形可直接得出.【解答】解:由图形所示,∠AOB的度数为55°,故选B.【点评】本题主要考查了角的度量,量角器的使用方法,正确使用量角器是解题的关键.1.(3分)(2016•德州)图中三视图对应的正三棱柱是()A.B.C.D.【考点】由三视图判断几何体.【分析】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A选项正确.【解答】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选A.【点评】本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;从实线和虚线想象几何体看得见部分和看不见部分的轮廓线.2.3.1.1.(3分)(2016•陕西)如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据已知几何体,确定出左视图即可.【解答】解:根据题意得到几何体的左视图为,故选C【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.2.(3分)(2016•巴中)如图是一个由4个相同的长方体组成的立体图形,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形.故选A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.1.(2016•长沙)下列各图中,∠1与∠2互为余角的是()A.B.C.D.【考点】余角和补角.【分析】如果两个角的和等于90°(直角),就说这两个角互为余角.依此定义结合图形即可求解.【解答】解:∵三角形的内角和为180°,∴选项B中,∠1+∠2=90°,即∠1与∠2互为余角,故选B.【点评】本题考查了余角的定义,掌握定义并且准确识图是解题的关键.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.二、填空题1.(4分)(2016•怀化)旋转不改变图形的形状和大小.【考点】旋转的性质.【分析】根据旋转的性质(旋转不改变图形的大小与形状,只改变图形的位置.也就是旋转前后图形全等,对应点与旋转中心所连线段间的夹角为旋转角)即可得出答案.【解答】解:旋转不改变图形的形状和大小,只改变图形的位置,故答案为:形状,大小.【点评】本题考查了有关旋转的性质的应用,注意:(1)旋转是指一个图形绕一点沿一定方向旋转一定的角度,它有三要素:①旋转中心(绕着转的那个点),②旋转方向(顺时针还是逆时针)③旋转的角度;(2)旋转的性质是:①旋转不改变图形的大小与形状,只改变图形的位置,也就是旋转前后图形全等;②对应点与旋转中心所连线段间的夹角为旋转角.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.三、解答题1.(3分)(2016•台湾)如图(一),OP为一条拉直的细线,A、B两点在OP上,且OA:AP=1:3,OB:BP=3:5.若先固定B点,将OB折向BP,使得OB重迭在BP上,如图(二),再从图(二)的A点及与A点重迭处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比为何?()A.1:1:1 B.1:1:2 C.1:2:2 D.1:2:5【分析】根据题意可以设出线段OP的长度,从而根据比值可以得到图一中各线段的长,根据题意可以求出折叠后,再剪开各线段的长度,从而可以求得三段细线由小到大的长度比,本题得以解决.【解答】解:设OP的长度为8a,∵OA:AP=1:3,OB:BP=3:5,∴OA=2a,AP=6a,OB=3a,BP=5a,又∵先固定B点,将OB折向BP,使得OB重迭在BP上,如图(二),再从图(二)的A 点及与A点重迭处一起剪开,使得细线分成三段,∴这三段从小到大的长度分别是:2a、2a、4a,∴此三段细线由小到大的长度比为:2a:2a:4a=1:1:2,故选B.【点评】本题考查比较线段的长短,解题的关键是理解题意,求出各线段的长度.2.1.1.(10分)(2016•荆门)如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB交⊙O于点C,过点C作CE⊥DF,垂足为点E.(1)求证:CE是⊙O的切线;(2)若AE=1,CE=2,求⊙O的半径.【考点】切线的判定;角平分线的性质.【分析】(1)证明:连接CO,证得∠OCA=∠CAE,由平行线的判定得到OC∥FD,再证得OC⊥CE,即可证得结论;(2)证明:连接BC,由圆周角定理得到∠BCA=90°,再证得△ABC∽△ACE,根据相似三角形的性质即可证得结论.【解答】(1)证明:连接CO,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠FAB,∴∠OCA=∠CAE,∴OC∥FD,∵CE⊥DF,∴OC⊥CE,∴CE是⊙O的切线;(2)证明:连接BC,在Rt△ACE中,==∵AB是⊙O的直径,∴∠BCA=90°,∴∠BCA=∠CEA,∵∠CAE=∠CAB,∴△ABC∽△ACE,∴CA AE AB AC=,1=∴AB=5,∴AO=2.5,即⊙O的半径为2.5.【点评】本题主要考查了圆周角定理,切线的判定,平行线的性质和判定,勾股定理,相似三角形的判定和性质,熟练掌握切线的判定定理是解决问题的关键.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.。

2014年全国中考数学试题分类汇编17 点、线、面、角

2014年全国中考数学试题分类汇编17 点、线、面、角

点线面角一、选择题1. (2014•广西贺州,第3题3分)如图,OA⊥OB,若∠1=55°,则∠2的度数是( ) A.35°B.40°C.45°D.60°考点:余角和补角分析:根据两个角的和为90°,可得两角互余,可得答案.解答:解:∵OA⊥OB,若∠1=55°,∴∠AO∠=90°,即∠2+∠1=90°,∴∠2=35°,故选:A.点评:本题考查了余角和补角,两个角的和为90°,这两个角互余.2.(2014•襄阳,第5题3分)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于( ) A.35°B.45°C.55°D.65°考点:平行线的性质;直角三角形的性质分析:利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠B=35°.解答:解:如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠B=35°.故选:A.点评:本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.3.(2014•襄阳,第7题3分)下列命题错误的是( ) A.所有的实数都可用数轴上的点表示B.等角的补角相等 C.无理数包括正无理数,0,负无理数D.两点之间,线段最短考点:命题与定理.专题:计算题.分析:根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.解答:解:A、所有的实数都可用数轴上的点表示,所以A选项的说法正确;B、等角的补角相等,所以B选项的说法正确;C、无理数包括正无理数和负无理,所以C选项的说法错误;D、两点之间,线段最短,所以D选项的说法正确.故选C .点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.4.(2014·浙江金华,第2题4分)如图,经过刨平的木析上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线. 能解释这一实际问题的数学知识是【】A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .在同一平面内,过一点有且只有一条直线与已知直线垂直5.(2014•滨州,第5题3分)如图,OB 是∠AOC 的角平分线,OD 是∠COE 的角平分线,如果∠AOB =40°,∠COE =60°,则∠BOD 的度数为( ) A .50B .60C .65D .70考点:角的计算;角平分线的定义分析:先根据OB 是∠AOC 的角平分线,OD 是∠COE 的角平分线,∠AOB =40°,∠COE =60°求出∠BOC 与∠COD 的度数,再根据∠BOD =∠BOC +∠COD 即可得出结论.解答:解:∵OB 是∠AOC 的角平分线,OD 是∠COE 的角平分线,∠AOB =40°,∠COE =60°,∴∠BOC =∠AOB =40°,∠COD =∠COE =×60°=30°,∴∠BOD =∠BOC +∠COD =40°+30°=70°.故选D .点评:本题考查的是角的计算,熟知角平分线的定义是解答此题的关键.6.(2014•济宁,第3题3分)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是( ) A .两点确定一条直线B .垂线段最短 C .两点之间线段最短D.三角形两边之和大于第三边考点:线段的性质:两点之间线段最短.专题:应用题.分析:此题为数学知识的应用,由题意把一条弯曲的公路改成直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.解答:解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.故选C .点评:本题考查了线段的性质,牢记线段的性质是解题关键.7.(2014年山东泰安,第5题3分)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是( ) A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180°D.∠3+∠7>180°分析:根据平行线的性质推出∠3+∠4=180°,∠2=∠7,根据三角形的内角和定理得出∠2+∠3=180°+∠A,推出结果后判断各个选项即可.解:A、∵DG∥EF,∴∠3+∠4=180°,∵∠6=∠4,∠3>∠1,∴∠6+∠1<180°,故本选项错误;B、∵DG∥EF,∴∠5=∠3,∴∠2+∠5=∠2+∠3=(180°﹣∠1)+(180°﹣∠ALH)=360°﹣(∠1+∠ALH)=360°﹣(180°﹣∠A)=180°+∠A>180°,故本选项错误;C、∵DG∥EF,∴∠3+∠4=180°,故本选项错误;D、∵DG∥EF,∴∠2=∠7,∵∠3+∠2=180°+∠A>180°,∴∠3+∠7>180°,故本选项正确;故选D.点评:本题考查了平行线的性质,三角形的内角和定理的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.二.填空题1. (2014•福建泉州,第9题4分)如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC= 50 °.考点:对顶角、邻补角.分析:根据对顶角相等,可得答案.解答:解;∵∠BOC与∠AOD是对顶角,∴∠BOC=∠AOD=50°,故答案为:50.点评:本题考查了对顶角与邻补角,对顶角相等是解题关键.2. (2014•福建泉州,第13题4分)如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2= 65 °.考点:平行线的性质.分析:根据平行线的性质得出∠1=∠2,代入求出即可.解答:解:∵直线a∥b,∴∠1=∠2,∵∠1=65°,∴∠2=65°,故答案为:65.点评:本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.3. (2014•福建泉州,第15题4分)如图,在△ABC中,∠C=40°,CA=CB,则△ABC 的外角∠ABD= 110 °.考点:等腰三角形的性质.分析:先根据等腰三角形的性质和三角形的内角和定理求出∠A,再根据三角形的外角等于等于与它不相邻的两个内角的和,进行计算即可.解答:解:∵CA=CB,∴∠A=∠ABC,∵∠C=40°,∴∠A=70°∴∠ABD=∠A+∠C=110°.故答案为:110.点评:此题考查了等腰三角形的性质,用到的知识点是等腰三角形的性质、三角形的外角等于等于与它不相邻的两个内角的和.4.(2014•邵阳,第11题3分)已知∠α=13°,则∠α的余角大小是77° .考点:余角和补角.分析:根据互为余角的两个角的和等于90°列式计算即可得解.解答:解:∵∠α=13°,∴∠α的余角=90°﹣13°=77°.故答案为:77°.点评:本题考查了余角的定义,是基础题,熟记概念是解题的关键.5.(2014•浙江湖州,第13题4分)计算:50°﹣15°30′= .分析:根据度化成分乘以60,可得度分的表示方法,根据同单位的相减,可得答案.解:原式=49°60′﹣15°30′=34°30′,故答案为:34°30′.点评:此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.。

2021全国中考数学试卷分类-17 点、线、面、角(含解析)

2021全国中考数学试卷分类-17 点、线、面、角(含解析)

17 点、线、面、角(含解析)一、选择题1.(2021浙江台州,1,4分)小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.三角形两边之和大于第三边D.两点确定一条直线【考点】直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;垂线段最短.【专题】线段、角、相交线与平行线;几何直观.【分析】根据线段的性质,可得答案.【解答】解:从A地去往B地,打开导航、显示两地距离为37.7km,理由是两点之间线段最短,故选:A.【点评】本题考查了线段的性质,熟记线段的性质并应用是解题的关键.2.(3分)(2021•河北)如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m 在同一直线上,请借助直尺判断该线段是()A.a B.b C.c D.d【考点】直线、射线、线段.【专题】作图题;几何直观.【分析】利用直尺画出遮挡的部分即可得出结论.【解答】解:利用直尺画出图形如下:可以看出线段a与m在一条直线上.故答案为:a.故选:A.【点评】本题主要考查了线段,射线,直线,利用直尺动手画出图形是解题的关键3.(2021辽宁营口,12,3分若∠A=34°,则∠A的补角为146°.【考点】余角和补角.【分析】根据互为补角的两个角的和等于180°列式计算即可得解.【解答】解:∠A的补角=180°﹣∠A=180°﹣34°=146°.故答案为:146°.【点评】本题考查了余角和补角,是基础题,熟记补角的概念是解题的关键.二、填空题1.(2021•益阳,16,4分)如图,AB与CD相交于点O,OE是∠AOC的平分线,且OC 恰好平分∠EOB,则∠AOD=60度.【考点】角平分线的定义;对顶角、邻补角.【专题】线段、角、相交线与平行线;运算能力.【分析】根据角平分线的定义得出∠AOE=∠COE,∠COE=∠BOC,求出∠AOE=∠COE=∠BOC,根据∠AOE+∠COE+∠BOC=180°求出∠BOC,再根据对顶角相等求出答案即可.【解答】解:∵OE是∠AOC的平分线,OC恰好平分∠EOB,∴∠AOE=∠COE,∠COE=∠BOC,∴∠AOE=∠COE=∠BOC,∵∠AOE+∠COE+∠BOC=180°,∴∠BOC=60°,∴∠AOD=∠BOC=60°,故答案为:60.【点评】本题考查了邻补角、对顶角,角平分线的定义等知识点,注意:①邻补角互补,②从角的顶点出发的一条射线,如果把这个角分成相等的两个角,那么这条射线叫这个角的平分线,③对顶角相等.2.(2021•常州,13,2分)数轴上的点A、B分别表示﹣3、2,则点离原点的距离较近(填“A”或“B”).【考点】数轴.【专题】实数;数感.【分析】利用数轴,我们把数和点对应起来,根据绝对值越小离原点越近解题即可.【解答】解:数轴上的点A、B分别表示﹣3、2,∵|﹣3|=3,|2|=2,3>2,∴则点B离原点的距离较近.故答案为:B.【点评】本题考查了有理数大小比较,理解绝对值的含义,利用数形结合思想解题是关键.3.(2021•常州,14,2分)如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,其中点A在x轴正半轴上.若BC=3,则点A的坐标是(3,0).【考点】坐标与图形性质;平行四边形的性质.【专题】多边形与平行四边形;推理能力.【分析】根据平行四边形的性质得到OA=BC,然后根据BC的长求得OA的长,从而确定点A的坐标即可.【解答】解:∵四边形OABC是平行四边形,BC=3,∴OA=BC=3,∵点A在x轴上,∴点A的坐标为(3,0),故答案为:(3,0).【点评】考查了平行四边形的性质,解题的关键是能够根据平行四边形的对边相等得到OA的长,难度不大.三、解答题1.2.3.4.5.6.7.。

中考数学真题分类汇编:17 点、线、面、角

中考数学真题分类汇编:17 点、线、面、角

点线面角一、选择题1. (2014•广西贺州,第3题3分)如图,OA⊥OB,若∠1=55°,则∠2的度数是()A.35°B.40°C.45°D.60°考点:余角和补角分析:根据两个角的和为90°,可得两角互余,可得答案.解答:解:∵OA⊥OB,若∠1=55°,∴∠AO∠=90°,即∠2+∠1=90°,∴∠2=35°,故选:A.点评:本题考查了余角和补角,两个角的和为90°,这两个角互余.2.(2014•襄阳,第5题3分)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°考点:平行线的性质;直角三角形的性质分析:利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠B=35°.解答:解:如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠B=35°.故选:A.点评:本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.3.(2014•襄阳,第7题3分)下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短考点:命题与定理.专题:计算题.分析:根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.解答:解:A、所有的实数都可用数轴上的点表示,所以A选项的说法正确;B、等角的补角相等,所以B选项的说法正确;C、无理数包括正无理数和负无理,所以C选项的说法错误;D、两点之间,线段最短,所以D选项的说法正确.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.4.(2014·浙江金华,第2题4分)如图,经过刨平的木析上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线. 能解释这一实际问题的数学知识是【】A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直5.(2014•滨州,第5题3分)如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()A.50 B.60 C.65 D.70考点:角的计算;角平分线的定义分析:先根据OB是∠AOC的角平分线,OD是∠COE的角平分线,∠AOB=40°,∠COE=60°求出∠BOC与∠COD的度数,再根据∠BOD=∠BOC+∠COD即可得出结论.解答:解:∵OB是∠AOC的角平分线,OD是∠COE的角平分线,∠AOB=40°,∠COE=60°,∴∠BOC=∠AOB=40°,∠COD=∠COE=×60°=30°,∴∠BOD=∠BOC+∠COD=40°+30°=70°.故选D.点评:本题考查的是角的计算,熟知角平分线的定义是解答此题的关键.6.(2014•济宁,第3题3分)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.三角形两边之和大于第三边考点:线段的性质:两点之间线段最短.专题:应用题.分析:此题为数学知识的应用,由题意把一条弯曲的公路改成直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.解答:解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.故选C.点评:本题考查了线段的性质,牢记线段的性质是解题关键.7.(2014年山东泰安,第5题3分)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180°D.∠3+∠7>180°分析:根据平行线的性质推出∠3+∠4=180°,∠2=∠7,根据三角形的内角和定理得出∠2+∠3=180°+∠A,推出结果后判断各个选项即可.解:A、∵DG∥EF,∴∠3+∠4=180°,∵∠6=∠4,∠3>∠1,∴∠6+∠1<180°,故本选项错误;B、∵DG∥EF,∴∠5=∠3,∴∠2+∠5=∠2+∠3=(180°﹣∠1)+(180°﹣∠ALH)=360°﹣(∠1+∠ALH)=360°﹣(180°﹣∠A)=180°+∠A>180°,故本选项错误;C、∵DG∥EF,∴∠3+∠4=180°,故本选项错误;D、∵DG∥EF,∴∠2=∠7,∵∠3+∠2=180°+∠A>180°,∴∠3+∠7>180°,故本选项正确;故选D.点评:本题考查了平行线的性质,三角形的内角和定理的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.二.填空题1. (2014•福建泉州,第9题4分)如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC= 50°.考点:对顶角、邻补角.分析:根据对顶角相等,可得答案.解答:解;∵∠BOC与∠AOD是对顶角,∴∠BOC=∠AOD=50°,故答案为:50.点评:本题考查了对顶角与邻补角,对顶角相等是解题关键.2. (2014•福建泉州,第13题4分)如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2=65°.考点:平行线的性质.分析:根据平行线的性质得出∠1=∠2,代入求出即可.解答:解:∵直线a∥b,∴∠1=∠2,∵∠1=65°,∴∠2=65°,故答案为:65.点评:本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.3. (2014•福建泉州,第15题4分)如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD=110°.考点:等腰三角形的性质.分析:先根据等腰三角形的性质和三角形的内角和定理求出∠A,再根据三角形的外角等于等于与它不相邻的两个内角的和,进行计算即可.解答:解:∵CA=CB,∴∠A=∠ABC,∵∠C=40°,∴∠A=70°∴∠ABD=∠A+∠C=110°.故答案为:110.点评:此题考查了等腰三角形的性质,用到的知识点是等腰三角形的性质、三角形的外角等于等于与它不相邻的两个内角的和.4.(2014•邵阳,第11题3分)已知∠α=13°,则∠α的余角大小是77°.考点:余角和补角.分析:根据互为余角的两个角的和等于90°列式计算即可得解.解答:解:∵∠α=13°,∴∠α的余角=90°﹣13°=77°.故答案为:77°.点评:本题考查了余角的定义,是基础题,熟记概念是解题的关键.5.(2014•浙江湖州,第13题4分)计算:50°﹣15°30′=.分析:根据度化成分乘以60,可得度分的表示方法,根据同单位的相减,可得答案.解:原式=49°60′﹣15°30′=34°30′,故答案为:34°30′.点评:此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.。

2014年全国各地中考数学真题分类解析汇编:17 点、线、面、角

2014年全国各地中考数学真题分类解析汇编:17 点、线、面、角

点线面角一、选择题1. (2014•广西贺州,第3题3分)如图,OA⊥OB,若∠1=55°,则∠2的度数是()A.35°B.40°C.45°D.60°考点:余角和补角分析:根据两个角的和为90°,可得两角互余,可得答案.解答:解:∵OA⊥OB,若∠1=55°,∴∠AO∠=90°,即∠2+∠1=90°,∴∠2=35°,故选:A.点评:本题考查了余角和补角,两个角的和为90°,这两个角互余.2.(2014•襄阳,第5题3分)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()3.(2014•襄阳,第7题3分)下列命题错误的是()4.(2014·浙江金华,第2题4分)如图,经过刨平的木析上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线. 能解释这一实际问题的数学知识是【】A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直5.(2014•滨州,第5题3分)如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为()×6.(2014•济宁,第3题3分)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()7.(2014年山东泰安,第5题3分)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()A.∠1+∠6>180°B.∠2+∠5<180°C.∠3+∠4<180°D.∠3+∠7>180°分析:根据平行线的性质推出∠3+∠4=180°,∠2=∠7,根据三角形的内角和定理得出∠2+∠3=180°+∠A,推出结果后判断各个选项即可.解:A、∵DG∥EF,∴∠3+∠4=180°,∵∠6=∠4,∠3>∠1,∴∠6+∠1<180°,故本选项错误;B、∵DG∥EF,∴∠5=∠3,∴∠2+∠5=∠2+∠3=(180°﹣∠1)+(180°﹣∠ALH)=360°﹣(∠1+∠ALH)=360°﹣(180°﹣∠A)=180°+∠A>180°,故本选项错误;C、∵DG∥EF,∴∠3+∠4=180°,故本选项错误;D、∵DG∥EF,∴∠2=∠7,∵∠3+∠2=180°+∠A>180°,∴∠3+∠7>180°,故本选项正确;故选D.点评:本题考查了平行线的性质,三角形的内角和定理的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.二.填空题1. (2014•福建泉州,第9题4分)如图,直线AB与CD相交于点O,∠AOD=50°,则∠BOC= 50°.[来源:学科网ZXXK]2.( 2014•福建泉州,第13题4分)如图,直线a ∥b ,直线c 与直线a ,b 都相交,∠1=65°,则∠2= 65 °.3. ( 2014•福建泉州,第15题4分)如图,在△ABC 中,∠C =40°,CA =CB ,则△ABC 的外角∠ABD = 110 °.4.(2014•邵阳,第11题3分)已知∠α=13°,则∠α的余角大小是77°.5.(2014•浙江湖州,第13题4分)计算:50°﹣15°30′=.分析:根据度化成分乘以60,可得度分的表示方法,根据同单位的相减,可得答案.解:原式=49°60′﹣15°30′=34°30′,故答案为:34°30′.点评:此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.。

2019年全国各地中考数学试题分类汇编(第三期) 专题17 点、线、面、角(含解析)

2019年全国各地中考数学试题分类汇编(第三期) 专题17 点、线、面、角(含解析)

点、线、面、角
一.选择题
1. (2019•广西北部湾•3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()
【答案】D
【解析】
解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.
故选:D.
根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.
此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.
2. (2019·贵州贵阳·3分)数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB
的中点,则a的值是()
A.3 B.4.5 C.6 D.18
【分析】根据题意列方程即可得到结论.
【解答】解:∵数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,∴9﹣a=2a﹣9,
解得:a=6,
故选:C.
【点评】本题考查了两点间的距离:两点间的连线段长叫这两点间的距离.也考查了数轴.
二.填空题
1. (2019•广东广州•3分)如图,点A,B,C在直线l上,PB⊥l,P A=6cm,PB=5cm,
PC=7cm,则点P到直线l的距离是5cm.
【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.
【解答】解:∵PB⊥l,PB=5cm,
∴P到l的距离是垂线段PB的长度5cm,
故答案为:5.
【点评】本题考查了点到直线的距离,点到直线的距离是直线外的点到这条直线的垂线段的长度.。

中考数学考前必做专题试题:点、线、面、角

中考数学考前必做专题试题:点、线、面、角

中考数学考前必做专题试题:点、线、面、角面对中考,考生看待数学这一科目需坚持往常心态,温习数学时仍要按知识点、题型、易混易错的效果停止梳理,不时总结,不时反思,进一步提高解题才干。

下文预备了中考数学考前必做专题试题的相关内容。

一、选择题1.(2021山东济南,第2题,3分)如图,点O在直线AB上,假定 A=30,那么ABC 的度数是A. 45B. 30C. 25D.60【解析】由于,所以,应选C.2.(2021四川凉山州,第2题,4分)以下图形中,1与2是对顶角的是( )A.1、2没有公共顶点B.1、2两边不互为反向延伸线C.1、2有公共顶点,两边互为反向延伸线D.1、2两边不互为反向延伸线考点:对顶角、邻补角剖析:依据对顶角的特征,有公共顶点,且两边互为反向延伸线,对各选项剖析判别后应用扫除法求解.解答:解:A.1、2没有公共顶点,不是对顶角,故本选项错误;B.1、2两边不互为反向延伸线,不是对顶角,故本选项错误;C.1、2有公共顶点,两边互为反向延伸线,是对顶角,故本选项正确;D.1、2两边不互为反向延伸线,不是对顶角,故本选项错误;3.(2021襄阳,第7题3分)以下命题错误的选项是()A. 一切的实数都可用数轴上的点表示B. 等角的补角相等C. 在理数包括正在理数,0,负在理数D. 两点之间,线段最短考点:命题与定理.专题:计算题.剖析:依据实数与数轴上的点逐一对应对A停止判别;依据补角的定义对B停止判别;依据在理数的分类对C停止判别;依据线段公理对D停止判别.解答:解:A、一切的实数都可用数轴上的点表示,所以A 选项的说法正确;B、等角的补角相等,所以B选项的说法正确;C、在理数包括正在理数和负在理,所以C选项的说法错误;D、两点之间,线段最短,所以D选项的说法正确.4.(2021浙江金华,第2题4分)如图,经过刨平的木析上的两个点,能弹出一条蜿蜒的墨线,而且只能弹出一条墨线. 能解释这一实践效果的数学知识是【】A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只要一条直线与直线垂直5.(2021滨州,第5题3分)如图,OB是AOC的角平分线,OD是COE的角平分线,假设AOB=40,COE=60,那么BOD的度数为( )A. 50B. 60C. 65D. 70考点:角的计算;角平分线的定义剖析:先依据OB是AOC的角平分线,OD是COE的角平分线,AOB=40,COE=60求出BOC与COD的度数,再依据BOD=BOC+COD 即可得出结论.解答:解:∵OB是AOC的角平分线,OD是COE的角平分线,AOB=40,COE=60,BOC=AOB=40,COD= COE= 60=30,6.(2021济宁,第3题3分)把一条弯曲的公路改成直道,可以延长路程.用几何知识解释其道理正确的选项是()A. 两点确定一条直线B. 垂线段最短C. 两点之间线段最短D. 三角形两边之和大于第三边考点:线段的性质:两点之间线段最短.专题:运用题.剖析:此题为数学知识的运用,由题意把一条弯曲的公路改成直道,一定要尽量延长两地之间的里程,就用到两点间线段最短定理.解答:解:要想延长两地之间的里程,就尽量是两地在一条直线上,由于两点间线段最短.7.(2021年山东泰安,第5题3分)如图,把不时尺放置在一个三角形纸片上,那么以下结论正确的选项是()A.6B.5C. 4D. 7剖析:依据平行线的性质推出4=180,7,依据三角形的内角和定理得出3=180A,推出结果后判别各个选项即可.解:A、∵DG∥EF,4=180,∵4,1,1,故本选项错误;B、∵DG∥EF,3,5=3=(180﹣1)+(180﹣ALH)=360﹣(ALH)=360﹣(180﹣A)=180A,故本选项错误;C、∵DG∥EF,4=180,故本选项错误;8. ( 2021广西贺州,第3题3分)如图,OAOB,假定1=55,那么2的度数是()A. 35B. 40C. 45D. 60考点:余角和补角剖析:依据两个角的和为90,可得两角互余,可得答案. 解答:解:∵OAOB,假定1=55,9.(2021襄阳,第5题3分)如图,BCAE于点C,CD∥AB,B=55,那么1等于()A. 35B. 45C. 55D. 65考点:平行线的性质;直角三角形的性质剖析:应用直角三角形的两个锐角互余的性质求得A=35,然后应用平行线的性质失掉B=35.解答:解:如图,∵BCAE,ACB=90.B=90.又∵B=55,10. (2021湖北黄冈,第2题3分)假设与互为余角,那么()A. +=180B. ﹣=180C. ﹣=90D. +=90考点:余角和补角.剖析:依据互为余角的定义,可以失掉答案.为大家引荐的中考数学考前必做专题试题的内容,还满意吗?置信大家都会细心阅读,加油哦!。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点线面角
一、选择题
1. (2016·湖北荆州·3分)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()
A.1 B.2 C.3 D.4
【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,
【解答】解:∵DE垂直平分AB,
∴DA=DB,
∴∠B=∠DAB,
∵AD平分∠CAB,
∴∠CAD=∠DAB,[来源学科网ZXXK]
∵∠C=90°,
∴3∠CAD=90°,
∴∠CAD=30°,
∵AD平分∠CAB,DE⊥AB,CD⊥AC,
∴CD=DE=BD,
∵BC=3,
∴CD=DE=1,
故选A.
【点评】本题主要考查线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的
距离相等是解题的关键.
2.(2016·广西百色·3分)下列关系式正确的是()
A.35.5°=35°5′ B
.35.5°<35°5′ D
.35.5°>35°5′
.35.5°=35°50′ C
【考点】度分秒的换算.
【分析】根据大单位化小单位乘以进率,可得答案.
,故A错误;
>35°5′
,35°30′
【解答】解:A、35.5°=35°30′
B、35.5°=35°30′
,故B错误;
<35°50′
,35°30′
C、35.5°=35°30′,35°30′>35°5′
,故C错误;
D、35.5°=35°30′
,故D正确;
>35°5′
,35°30′
故选:D.[来源:]
3.(2016·浙江省湖州市·3分)如图,AB∥CD,BP和CP分别平分∠A BC和∠DCB,AD 过点P,且与AB垂直.若AD=8,则点P到BC的距离是()
A.8 B.6 C.4 D.2
【考点】角平分线的性质.
【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.
【解答】解:过点P作PE⊥BC于E,
∵AB∥CD,PA⊥AB,[来源学科网ZXXK]
∴PD⊥CD,
∵BP和CP分别平分∠ABC和∠DCB,
∴PA=PE,PD=PE,
∴PE=PA=PD,[来源学科网][来源学科网]
∵PA+PD=AD=8,
∴PA=PD=4,
∴PE=4.
故选C.。

相关文档
最新文档