高考物理计算题复习《追及相遇问题》(解析版)
(完整版)高中物理相遇和追及问题(完整版)
、考点、热点回顾一、追及问题1. 类型图象 说明匀加速追匀速①t=t 0 以前,后面物体与 前面物体间距离增大②t=t 0 时,两物体相距最 远为 x 0+Δx③t=t 0 以后,后面物体与前面物体间距离减小④能追及且只能相遇一 次匀速追匀减速匀加速追匀减速2. 速度大者追速度小者度大者追速度小者 开始追及时, 后面物体与 前面物体间的距离在减小, 当 两物体速度相等时,即 t=t0 时刻:① 若Δ x=x0, 则恰能追 及,两物体只能相遇一次, 这相遇追及问题匀减速追匀速也是避免相撞的临界条件② 若Δ x<x0, 则不能追 及,此时两物体最小距离为x0- Δ x③ 若Δ x>x0, 则相遇两次,设t1 时刻Δ x1=x0, 两物体第一次相遇 ,则 t2 时刻两物体第 二次相遇① 表中的Δ x 是开始追及以后,后面物体因速度大而比前面物体多运动的位移; ② x 0是开始追及以前两物体之间的距离; ③ t 2-t 0=t 0-t 1;④ v 1 是前面物 体的速度, v 2是后面物体的速度 . 二、相遇问题这一类 : 同向运动的两物体的相遇问题 , 即追及问题 .第二类 : 相向运动的物体 , 当各自移动的位移大小之和等于开始时两物体的距离时相遇 . 解此类问题首先应注意先画示意图 , 标明数值及物理量 ; 然后注意当被追赶的物体做匀 减速运动时 , 还要注意该物体是否停止运动了 .求解追及问题的分析思路(1) 根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物 体运动时间之间的关系.(2) 通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追 及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等 时有最大距离; 速度大者减速追赶速度小者, 在两物体速度相等时有最小距离,等等. 利用 这些临界条件常能简化解题 过程.(4)求解此类问题的方法, 除了以上所述根据追及的主要条件和临界条件解联立方程外, 还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:匀速追匀加速匀减速追匀加速相遇问题分为追及相遇和相向运动相遇两种情形, 其主要条件是两物体在相遇处的位置 坐标相同.(1) 列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2) 利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4) 与追及中的解题方法相同.【例 1】物体 A 、B 同时从同一地点, 沿同一方向运动, A 以 10m/s 的速度匀速前进, B 以2m/s 2 的加速度从静止开始做匀加速直线运动,求 A 、 B 再次相遇前两物体间的最大距离.【 解析一 】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度 a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内, A 的速度大于 B 的速度,它们间的距离逐渐变大,当 B 的速度加速到大于 A 的速度后,它们间的距离又逐渐变小; A 、B 间距离有最大值的临界条 件是 υA = υB .①设两物体经历时间 t 相距最远,则 υA = at ② 把已知数据代入①②两式联立得 t =5 s 在时间 t 内, A 、B 两物体前进的距离分别为 s A = υA t =10×5 m = 50 m1 2 1 2s B = at 2= ×2×52 m = 25 m22A 、B 再次相遇前两物体间的最大距离为Δ s m = s A - s B = 50 m -25 m = 25 m解析二 】 相对运动法因为本题求解的是 A 、B 间的最大距离,所以可利用相对运动求解.选 B 为参考系,则 A2 相对 B 的初速度、末速度、加速度分别是 υ0=10 m/s 、υt =υA -υB =0、a =- 2 m/s .22 根据 υt 2-υ0=2as .有 0- 102=2× (-2) ×s AB 解得A、 B 间的最大距离为 s AB =25 m . 解析三 】 极值法11物体 A 、 B 的位移随时间变化规律分别是 s A =10t ,s B =2at 2=2×2×t 2 =t 5.B 间 的 距 离 Δs =10t -t 2, 可 见 ,4×( -1)×0- 102 4×(-1) m =25 m【解析四 】 图象法根据题意作出 A 、B 两物体的 υ-t 图象,如图 1-5-1 所示.由图可知,B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得 t 1=5 s A 、 B 间 距 离 的 最 大 值 数 值 上 等 于 ΔO υA P 的 面 积 , 1 Δs m = 2×5×10 m = 25 m .【答案 】25 m【点拨 】相遇问题的常用方法(1) 物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,典型例题且最大值为按(解法一)中的思Δ s m = A 、即设甲、乙两车行驶的总路程分别为 s 、 s ′,则有路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3) 极值法:设相遇时间为 t ,根据条件列方程,得到关于 t 的一元二次方程,用判别 式进行讨论,若△> 0,即有两个解,说明可以相遇两次;若△= 0,说明刚好追上或相碰;若△< 0,说明追不上或不能相碰.(4) 图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解.拓展如图 1-5-2 所示是甲、乙两物体从同一地点,沿同一方向做直线运动的 υ- t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是 1s 末和 4s 末B .这两个物体两次相遇的时刻分别是 2s 末和 6s 末C .两物体相距最远的时刻是 2s 末D . 4s 末以后甲在乙的前面【解析 】从图象可知两图线相交点 1s 末和 4s 末是两物速度相等时刻,从 4s 末两物相距最远,到 6s 末追上乙.故选 B . 答案 】 B的加速度大小减小为原来的一半。
追及相遇问题----高中物理模块典型题归纳(含详细答案)
追及相遇问题----高中物理模块典型题归纳(含详细答案)一、单选题1.甲、乙两车从同一地点沿相同方向由静止开始做直线运动,它们运动的加速度随时间变化图象如图所示。
关于两车的运动情况,下列说法正确的是()A.在0~4 s内两车的合力不变B.在t=2 s时两车相遇C.在t=4 s时两车相距最远D.在t=4 s时甲车恰好追上乙车2.某人驾驶一辆质量为m=5×103kg汽车甲正在平直的公路以某一速度匀速运动,突然发现前方50m处停着一辆乙车,立即刹车,刹车后做匀减速直线运动.已知该车刹车后第I个2s 内的位移是24m,第4个2s内的位移是1m.则下列说法正确的是()A.汽车甲刹车后做匀减速直线运动的加速度为B.汽车甲刹车后做匀减速直线运动的加速度为2m/s2C.汽车甲刹车后停止前,可能撞上乙车D.汽车甲刹车前的速度为14m/s3.甲、乙两物体从同一地点同时开始沿同一方向运动,甲物体运动的vt图象为两段直线,乙物体运动的v-t图象为两段半径相同的圆弧曲线,如图所示,图中t4=2t2,则在0~t4时间内,以下说法正确的是()A.甲物体的加速度不变B.乙物体做曲线运动C.甲物体的平均速度等于乙物体的平均速度D.两物体t1时刻相距最远,t4时刻相遇4.甲乙两辆汽车在平直的公路上沿同一方向作直线运动,t=0时刻同时经过公路旁的同一个路标。
在描述两车运动的v-t图中(如图),直线a、b分别描述了甲乙两车在0~20秒的运动情况。
关于两车之间的位置关系,下列说法正确的是()A.在0~10秒内两车逐渐靠近B.在10~20秒内两车逐渐远离C.在5~15秒内两车的位移相等D.在t=10秒时两车在公路上相遇5.甲、乙两质点沿同一方向做直线运动,某时刻经过同一地点.若以该时刻作为计时起点,得到两质点的x﹣t图像如图所示.图像中的OC与AB平行,CB与OA平行.则下列说法中正确的是()A.t1~t2时间内甲和乙的距离越来越远B.0~t2时间内甲的速度和乙的速度始终不相等C.0~t3时间内甲和乙的位移相等.0~t3时间内甲的平均速度大于乙的平均速度6.甲、乙两车同时同地同向出发,在同一水平公路上做直线运动,甲的初速度v甲=16m/s,加速度大小a甲=2m/s2,做匀减速直线运动,乙以初速度v乙=4m/s,加速度大小a乙=1m/s2,做匀加速直线运动,下列叙述正确的是()A.两车再次相遇前二者间的最大距离为20mB.两车再次相遇所需的时间为4sC.两车再次相遇前二者间达到最大距离用时8sD.两车再次相遇在64m处二、多选题7.a、b两车在平直公路上沿同一方向行驶,运动的v﹣t图像如图所示,在t=0时刻,b车在a车前方s0处,在t=t1时间内,a车的位移为s,则()A.若a、b在t1时刻相遇,则B.若a、b在时刻相遇,则下次相遇时刻为2t1C.若a、b在时刻相遇,则D.若a、b在t1时刻相遇,则下次相遇时刻为2t18.物体A以10m/s的速度做匀速直线运动。
专题02 运动学图像 追及、相遇问题(解析版)
2020年高考物理一轮复习热点题型归纳与变式演练专题02 运动学图像 追及、相遇问题【专题导航】目录热点题型一 运动图象的理解 (1)(一)t x -图像的理解 .................................................................................................................................... 3 (二)t v -图像的理解 .................................................................................................................................... 5 (三) t a -图像的理解 .................................................................................................................................. 7 (四) t t x-图像的理解 (8)(五) x a -图像的理解 ................................................................................................................................. 9 (六) 2v x -图像的理解 ................................................................................................................................ 9 热点题型二 运动图象的应用 . (10)(一)图像的选择 ........................................................................................................................................... 10 (二)图像的转换 ........................................................................................................................................... 12 热点题型三 追及、相遇问题 . (14)与运动图象相结合的追及相遇问题 ............................................................................................................... 15 与实际相结合的追及相遇问题 ....................................................................................................................... 16 【题型演练】 .. (17)【题型归纳】热点题型一 运动图象的理解1.运动学图象主要有x -t 、v -t 、a -t 图象,应用图象解题时主要看图象中的“轴”“线”“斜率”“点”“面积”“截距”六要素:一般意义x -t 图象 v -t 图象 a -t 图象 轴图象描述哪两个物理量之间的关系 纵轴—位移横轴—时间 纵轴—速度横轴—时间 纵轴—加速度横轴—时间 线表示物理量y 随物理量x运动物体的位移运动物体的速度运动物体的加速的变化过程和规律与时间的关系与时间的关系度与时间的关系斜率k=ΔyΔx,定性表示y随x变化的快慢某点的斜率表示该点的瞬时速度某点的斜率表示该点的加速度某点的斜率表示该点加速度的变化率点两线交点表示对应纵、横坐标轴物理量相等两线交点表示两物体相遇两线交点表示两物体在该时刻速度相同两线交点表示两物体该时刻加速度相同面积图线和时间轴所围的面积,也往往代表一个物理量,这要看两物理量的乘积有无意义无意义图线和时间轴所围的面积,表示物体运动的位移图线和时间轴所围的面积,表示物体的速度变化量截距图线在坐标轴上的截距一般表示物理过程的“初始”情况在纵轴上的截距表示t=0时的位移在纵轴上的截距表示t=0时的速度在纵轴上的截距表示t=0时的加速度2.图象问题常见的是x-t和v-t图象,在处理特殊图象的相关问题时,可以把处理常见图象的思想以及方法加以迁移,通过物理情境遵循的规律,从图象中提取有用的信息,根据相应的物理规律或物理公式解答相关问题.处理图象问题可参考如下操作流程:3.x-t图象、v-t图象、a-t图象是如何描述物体的运动性质的x-t图象中,若图线平行于横轴,表示物体静止,若图线是一条倾斜的直线,则表示物体做匀速直线运动,图线的斜率表示速度;v-t图象中,若图线平行于横轴,表示物体做匀速直线运动,若图线是一条倾斜的直线,则表示物体做匀变速直线运动,图线的斜率表示加速度;a-t图象中,若图线平行于横轴,表示物体做匀变速直线运动,若图线与横轴重合,则表示物体做匀速直线运动.4.关于运动图象的三点提醒(1)x t图象、v t图象都不是物体运动的轨迹,图象中各点的坐标值x、v与t一一对应.(2)x t图象、v t图象的形状由x与t、v与t的函数关系决定.(3)无论是x t图象还是v t图象,所描述的运动都是直线运动.x 图像的理解(一)t位移图象的基本性质(1)横坐标代表时刻,而纵坐标代表物体所在的位置,纵坐标不变即物体保持静止状态;(2)位移图象描述的是物体位移随时间变化的规律,不是物体的运动轨迹,斜率等于物体运动的速度,斜率的正负表示速度的方向,质点通过的位移等于x的变化量Δx.【例1】(多选)(2019·南京师大附中模拟)如图所示为一个质点运动的位移x随时间t变化的图象,由此可知质点在0~4 s内()A.先沿x轴正方向运动,后沿x轴负方向运动B.一直做匀变速运动C.t=2 s时速度一定最大D.速率为5 m/s的时刻有两个【答案】CD【解析】从图中可知正向位移减小,故质点一直朝着负方向运动,A错误;图象的斜率表示速度大小,故斜率先增大后减小,说明质点速率先增大后减小,即质点先做加速运动后做减速运动,做变速运动,但不是做匀变速直线运动,t=2 s时,斜率最大,速度最大,B错误,C正确;因为斜率先增大后减小,并且平均速度为5 m/s,故增大过程中有一时刻速度为5 m/s,减小过程中有一时刻速度为5 m/s,共有两个时刻速度大小为5 m/s,D正确.【变式1】a、b、c三个物体在同一条直线上运动,它们的位移—时间图象如图所示,其中a是一条顶点坐标为(0,10)的抛物线,下列说法正确的是 ( )A .b 、c 两物体都做匀速直线运动,两个物体的速度相同B .在0~5 s 内,a 、b 两个物体间的距离逐渐变大C .物体c 的速度越来越大D .物体a 的加速度为0.4 m/s 2 【答案】D【解析】 x t 图象的斜率表示速度,b 和c 为直线,斜率恒定,故b 、c 做匀速直线运动,但斜率正负不同,即速度正负不同,即方向不同,A 、C 错误;a 的斜率为正,即速度为正,b 的斜率为负,即速度为负,所以两者反向运动,故两物体间的距离越来越大,B 正确;因为a 是一条抛物线,即满足x =x 0+kt 2,类比从静止开始运动的匀加速直线运动位移时间公式x =12at 2可知物体a 做匀加速直线运动,因为抛物线经过(0,10)点和(5,20)点,故x =10+0.4t 2,所以12a =0.4,解得a =0.8 m/s 2,D 错误.【变式2】(2019·河北石家庄模拟)甲、乙两物体在同一水平地面上做直线运动,其运动的x t 图象如图所示,已知乙物体从静止开始做匀加速直线运动.下列说法正确的是( )A .甲物体先做匀减速直线运动.后做匀速直线运动B .在0~120 s 内,乙物体的平均速度大小大于0.5 m/sC .在0~120 s 内,甲物体运动的位移大小大于乙物体运动的位移大小D .乙物体在M 点所对应的瞬时速度大小一定大于0.5 m/s 【答案】CD【解析】根据位移图象斜率表示速度可知,甲物体先做匀速直线运动,后静止,选项A 错误;在0~120 s 内,乙物体的位移大小为s =60 m ,平均速度大小为v =st =0.5 m/s ,选项B 错误;在0~120 s 内,甲物体运动的位移大小为x 甲=100 m -20 m =80 m ,乙物体运动的位移大小为x 乙=60 m -0 m =60 m ,所以在0~120 s 内,甲物体运动的位移大小大于乙物体运动的位移大小,选项C 正确;根据匀变速直线运动的推论知,乙在t =60 s 时的瞬时速度等于在0~120 s 内的平均速度0.5 m/s ,而乙物体做匀加速直线运动,所以乙物体在M 点所对应的瞬时速度大小一定大于0.5 m/s ,选项D 正确. (二)t v 图像的理解【例2】(2019·广州惠州调研)跳伞运动员从高空悬停的直升机跳下,运动员沿竖直方向运动,其v t 图象如 图所示,下列说法正确的是A .运动员在0~10 s 内的平均速度大小等于10 m/sB .从15 s 末开始运动员处于静止状态C .10 s 末运动员的速度方向改变D .10~15 s 内运动员做加速度逐渐减小的减速运动 【答案】 D【解析】 0~10 s 内,若运动员做匀加速运动,平均速度为v =v 0+v 2=0+202 m/s =10 m/s.根据图象的“面积”等于位移可知,运动员的位移大于匀加速运动的位移,所以由公式v =xt 得知:0~10 s 内的平均速度大于匀加速运动的平均速度10 m/s ,故A 错误.由图知,15 s 末开始运动员做匀速直线运动,故B 错误.由图看出,运动员的速度一直沿正向,速度方向没有改变,故C 错误.10~15 s 图象的斜率减小,则其加速度减小,故10~15 s 运动员做加速度减小的减速运动,故D 正确.【变式1】2017年8月28日,第十三届全运会跳水比赛在天津奥体中心游泳跳水馆进行,重庆选手施廷懋以总成绩409.20分获得跳水女子三米板冠军.某次比赛从施廷懋离开跳板开始计时,在t 2时刻施廷懋以速度v 2入水,取竖直向下为正方向,其速度随时间变化的规律如图所示,下列说法正确的是( )A .在0~t 2时间内,施廷懋运动的加速度大小先减小后增大B .在t 1~t 3时间内,施廷懋先沿正方向运动再沿负方向运动C .在0~t 2时间内,施廷懋的平均速度大小为v 1+v 22D .在t 2~t 3时间内,施廷懋的平均速度大小为v 22【答案】C【解析】选C.v -t 图象的斜率等于加速度,在0~t 2时间内,施廷懋运动的加速度保持不变,A 错误;运动方向由速度的正负决定,横轴下方速度为负值,施廷懋沿负方向运动,横轴上方速度为正值,施廷懋沿正方向运动,在t 1~t 3时间内,施廷懋一直沿正方向运动,B 错误;0~t 2时间内,根据匀变速直线运动的平均速度公式可知,施廷懋运动的平均速度大小为v 1+v 22,C 正确;匀变速直线运动的平均速度大小等于初速度和末速度的平均值,而加速度变化时,平均速度大小应用平均速度的定义式求解.若在t 2~t 3时间内,施廷懋做匀减速运动,则她的平均速度大小为v 22,根据v -t 图线与坐标轴所围面积表示位移可知,在t 2~t 3时间内施廷懋的实际位移小于她在这段时间内做匀减速运动的位移,故在t 2~t 3时间内,施廷懋的平均速度小于v 22,D 错误. 【变式2】甲、乙两汽车在一平直公路上同向行驶.在t =0到t =t 1的时间内,它们的v -t 图象如图所示.在这段时间内( )A .汽车甲的平均速度比乙的大B .汽车乙的平均速度等于v 1+v 22C .甲、乙两汽车的位移相同D .汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 【答案】A【解析】选A.根据v -t 图象下方的面积表示位移,可以看出汽车甲的位移x 甲大于汽车乙的位移x 乙,选项C 错误;根据v =xt 得,汽车甲的平均速度v 甲大于汽车乙的平均速度v 乙,选项A 正确;汽车乙的位移x 乙小于初速度为v 2、末速度为v 1的匀减速直线运动的位移x ,即汽车乙的平均速度小于v 1+v 22,选项B 错误;根据v -t 图象的斜率大小反映了加速度的大小,因此汽车甲、乙的加速度大小都逐渐减小,选项D 错误. 【变式3】如图所示,直线a 与四分之一圆弧b 分别表示两质点A 、B 从同一地点出发,沿同一方向做直线 运动的v t 图,当B 的速度变为0时,A 恰好追上B ,则A 的加速度为( )A.π4 m/s 2 B .2 m/s 2 C.π2 m/s 2 D .π m/s 2 【答案】C【解析】设A 的加速度为a ,两质点A 、B 从同一地点出发,A 追上B 时两者的位移相等,即x a =x b ,根据v t 图象的“面积”表示位移,得12at 2=14×π×22,由题知t =2 s ,解得a =π2 m/s 2,故A 、B 、D 错误,C 正确.(三)t a 图像的理解 a -t 图象面积代表速度变化量【例3】一辆摩托车在t =0时刻由静止开始在平直的公路上行驶,其运动过程的a -t 图象如图所示,根据已知信息,可知( )A .摩托车的最大动能B .摩托车在30 s 末的速度大小C .在0~30 s 的时间内牵引力对摩托车做的功D .10 s 末摩托车开始反向运动 【答案】B【解析】选B.由图可知,摩托车在0~10 s 内做匀加速运动,在10~30 s 内做减速运动,故10 s 末速度最大,动能最大,由v =at 可求出最大速度,但摩托车的质量未知,故不能求出最大动能,A 错误;根据a -t 图线与t 轴所围的面积表示速度变化量,可求出30 s 内速度的变化量,由于初速度为0,则可求出摩托车在30 s 末的速度大小,B 正确;在10~30 s 内牵引力是变力,由于不能求出牵引力,故不能求出牵引力对摩托车做的功,C 错误;由图线与时间轴围成的面积表示速度变化量可知,30 s 内速度变化量为零,所以摩托车一直沿同一方向运动,D 错误.【变式】一质点由静止开始按如图所示的规律运动,下列说法正确的是( )A .质点在2t 0的时间内始终沿正方向运动,且在2t 0时距离出发点最远B .质点做往复运动,且在2t 0时回到出发点C .质点在t 02时的速度最大,且最大的速度为a 0t 04 D .质点在2t 0时的速度最大,且最大的速度为a 0t 0【答案】A【解析】质点在0~t 02时间内做加速度均匀增大的加速运动,在t 02~t 0时间内做加速度均匀减小的加速运动,在t 0~3t 02时间内做加速度均匀增大的减速运动,在3t 02~2t 0时间内做加速度均匀减小的减速运动,根据对称性,在2t 0时刻速度刚好减到零,所以在2t 0时质点离出发点最远,在t 0时刻速度最大,故A 正确,B 、C 错误;根据图象与时间轴所围面积表示速度,可知最大速度为12a 0t 0,故D 错误.(四)t tx图像的理解 【例4.】一质点沿x 轴正方向做直线运动,通过坐标原点时开始计时,其xtt 图象如图所示,则( )A .质点做匀速直线运动,初速度为0.5 m/sB .质点做匀加速直线运动,加速度为0.5 m/s 2C .质点在1 s 末速度为2 m/sD .质点在第1 s 内的位移大小为2 m 【答案】C【解析】由图得x t =1+12t ,即x =t +12t 2,根据x =v 0t +12at 2,对比可得v 0=1 m/s ,12a =12 m/s 2,解得a =1 m/s 2,质点的加速度不变,说明质点做匀加速直线运动,初速度为1 m/s ,加速度为1 m/s 2,A 、B 错误;质点做匀加速直线运动,在1 s 末速度为v =v 0+at =(1+1×1) m/s =2 m/s ,C 正确.质点在第1 s 内的位移大小x =(1+12) m =32m ,D 错误. 【变式】一个物体沿直线运动,从t =0时刻开始,物体的xt -t 的图象如图所示,图线与纵、横坐标轴的交点分别为0.5 m/s 和-1 s ,由此可知( )A .物体做匀加速直线运动B .物体做变加速直线运动C .物体的初速度大小为0.5 m/sD .物体的初速度大小为1 m/s【答案】AC【解析】选AC.图线的斜率为0.5 m/s 2、纵截距为0.5 m/s.由位移公式x =v 0t +12at 2两边除以对应运动时间t为x t =v 0+12at ,可得纵截距的物理意义为物体运动的初速度,斜率的物理意义为物体加速度的一半a 21.所以物体做初速度为v 0=0.5 m/s ,加速度大小为a =1 m/s 2的匀加速直线运动. (五)x a -图像的理解【例5】(2019·青岛质检)一物体由静止开始运动,其加速度a 与位移x 关系图线如图所示.下列说法正确的 是( )A .物体最终静止B .物体的最大速度为2ax 0C .物体的最大速度为3ax 0D .物体的最大速度为32ax 0 【答案】C【解析】物体运动过程中任取一小段,对这一小段v 2-v 20=2a Δx ,一物体由静止开始运动,将表达式对位移累加,可得v 2等于速度a 与位移x 关系图线与坐标轴围成的面积的2倍,则v 2=2(a 0x 0+12a 0x 0),解得物体的最大速度v =3a 0x 0,故C 项正确. (六)2v x -图像的理解【例6】(2019·天水一中模拟)如图甲,一维坐标系中有一质量为m =2 kg 的物块静置于x 轴上的某位置(图 中未画出),从t =0时刻开始,物块在外力作用下沿x 轴做匀变速直线运动,如图乙为其位置坐标和速率平 方关系图象,下列说法正确的是( )A .t =4 s 时物块的速率为2 m/sB .加速度大小为1 m/s 2C .t =4 s 时物块位于x =4 m 处D .在0.4 s 时间内物块运动的位移6 m 【答案】A【解析】由x -x 0=v 22a ,结合图象可知物块做匀加速直线运动,加速度a =0.5 m/s 2,初位置x 0=-2 m ,t =4s 时物块的速率为v =at =0.5×4 m/s =2 m/s ,A 正确,B 错误;由x -x 0=12at 2,得t =4 s 时物块位于x =2 m处,C 错误;由x =12at 2,在0.4 s 时间内物块运动的位移x =12×0.5×0.42 m =0.04 m ,D 错误.【变式】(2019·山东德州模拟)为检测某新能源动力车的刹车性能,现在平直公路上做刹车实验,如图所示是动力车整个刹车过程中位移与速度平方之间的关系图象,下列说法正确的是( )A .动力车的初速度为20 m/sB .刹车过程动力车的加速度大小为5 m/s 2C .刹车过程持续的时间为10 sD .从开始刹车时计时,经过6 s ,动力车的位移为30 m 【答案】AB【解析】选AB.根据v 2-v 20=2ax 得x =12a v 2-12a v 20,结合图象有12a =-110 s 2/m ,-12a v 20=40 m ,解得a =-5 m/s 2,v 0=20 m/s ,选项A 、B 正确;刹车过程持续的时间t =v 0-a =4 s ,选项C 错误;从开始刹车时计时,经过6 s ,动力车的位移等于其在前4 s 内的位移,x 4=v 0+02t =40 m ,选项D 错误.热点题型二 运动图象的应用 (一)图像的选择 分析步骤:(1)认真审题,根据题中所需求解的物理量,结合相应的物理规律确定横、纵坐标所表示的物理量. (2)根据题意,结合具体的物理过程,应用相应的物理规律,将题目中的速度、加速度、位移、时间等物理量的关系通过图象准确直观地反映出来.(3)题目中一般会直接或间接给出速度、加速度、位移、时间四个量中的三个量的关系,作图时要通过这三个量准确确定图象,然后利用图象对第四个量作出判断.【例7】(2019·高密模拟)设物体运动的加速度为a 、速度为v 、位移为x .现有四个不同物体的运动图象如下 列选项所示,假设物体在t =0时的速度均为零,则其中表示物体做单向直线运动的图象是 ( )【解析】由位移—时间图象可知,位移随时间先增大后减小,1 s后反向运动,故A错误;由速度—时间图象可知,物体2 s内沿正方向运动,2~4 s沿负方向运动,方向改变,故B错误;由图象C可知物体在第1 s内做匀加速运动,第2 s内做匀减速运动,2 s末速度减为0,然后重复前面的过程,是单向直线运动,故C正确;由图象D可知物体在第1 s内做匀加速运动,第2 s内做匀减速运动,2 s末速度减为0,第3 s 内沿负方向做匀加速运动,不是单向直线运动,故D错误.【答案】C【变式1】小球从一定高度处由静止下落,与地面碰撞后回到原高度再次下落,重复上述运动.取小球的落地点为原点建立坐标系,竖直向上为正方向.下列速度v和位置x的关系图象中,能描述该过程的是()【答案】A【解析】选A.小球从一定高度处由静止下落,与地面碰撞后能回到原高度,重复原来的过程,以落地点为原点,速度为零时,位移最大,速度最大时位移为零,设高度为h,则速度大小与位移的关系满足v2=2g(h -x),A项正确.【变式2】.A物体从离地面高10 m处做自由落体运动,1 s后B物体从离地面高15 m处做自由落体运动,下面物理图象中对A、B的运动状态描述合理的是()【答案】A【解析】两者都做自由落体运动,速度在增大,C错误;根据公式可得位移是关于时间t的二次函数,D错误;因为A先下落,所以当B开始运动时,A已有了一定的速度,故A正确.(二)图像的转换图象转换时要注意的三点(1)合理划分运动阶段,分阶段进行图象转换;(2)注意相邻运动阶段的衔接,尤其是运动参量的衔接;(3)注意图象转换前后核心物理量间的定量关系,这是图象转换的依据.【例8】某物体做直线运动的v t图象如图所示,据此判断四个选项中(F表示物体所受合力,x表示物体的位移)正确的是()【答案】B【解析】根据v t图象的斜率可知:0~2 s内与6~8 s内物体的加速度大小相等、方向相同,故所受合力相同,A错误.2~6 s内物体的加速度恒定,合力恒定,且大小与0~2 s内的相同,方向与0~2 s内相反,B 正确.根据v t图象可知,0~4 s内物体先沿正方向做匀加速直线运动,然后做匀减速直线运动,4~8 s内先沿负方向做匀加速直线运动,然后做匀减速直线运动,再结合v t图线包围面积的意义可知,0~4 s内物体的位移不断增大,4 s末达到最大值,8 s末返回到出发点,C、D错误.【变式1】(2019·武汉模拟)一物体由静止开始沿直线运动,其加速度随时间变化的规律如图所示,取物体开始运动的方向为正方向,则下列关于物体运动的v t图象正确的是()【答案】 C【解析】 在0~1 s 内,a 1=1 m/s 2,物体从静止开始做正向匀加速运动,速度图象是一条直线,1 s 末速度v 1=a 1t =1 m/s ,在1~2 s 内,a 2=-1 m/s 2,物体将仍沿正方向运动,但要减速,2 s 末时速度v 2=v 1+a 2t =0,2~3 s 内重复0~1 s 内运动情况,3~4 s 内重复1~2 s 内运动情况,则C 正确.【变式2】(2019·济南调研)某同学欲估算飞机着陆时的速度,他假设飞机在平直跑道上做匀减速运动,飞机在跑道上滑行的距离为x ,从着陆到停下来所用的时间为t ,实际上,飞机的速度越大,所受的阻力越大,则飞机着陆时的速度应是( )A .v =x tB .v =2x tC .v >2x tD .x t <v <2x t【答案】 C【解析】选C.由题意知,当飞机的速度减小时,所受的阻力减小,因而它的加速度会逐渐变小,画出相应的v -t 图象大致如图所示.根据图象的意义可知,实线与坐标轴包围的面积为x ,虚线(匀减速运动)下方的“面积”表示的位移为v 2t .应有v 2t >x ,所以v >2x t ,所以选项C 正确.热点题型三 追及、相遇问题1.追及、相遇问题中的一个条件和两个关系(1)一个条件:即两者速度相等,它往往是物体间能够追上、追不上或两者距离最大、最小的临界条件,也是分析判断的切入点.(2)两个关系:即时间关系和位移关系,这两个关系可通过题干或画运动示意图得到.2.追及、相遇问题常见的情况假设物体A追物体B,开始时两个物体相距x0,有三种常见情况:(1)A追上B时,必有x A-x B=x0,且v A≥v B.(2)要使两物体恰好不相撞,两物体同时到达同一位置时速度相同,必有x A-x B=x0,v A=v B.(3)若使两物体保证不相撞,则要求当v A=v B时,x A-x B<x0,且之后v A≤v B.3.解题思路和方法分析两物体的运动过程⇒画运动示意图⇒找两物体位移关系⇒列位移方程与运动图象相结合的追及相遇问题【例9】(多选)(2018·高考全国卷Ⅱ)甲、乙两汽车在同一条平直公路上同向运动,其速度—时间图象分别如图中甲、乙两条曲线所示.已知两车在t2时刻并排行驶.下列说法正确的是()A.两车在t1时刻也并排行驶B.在t1时刻甲车在后,乙车在前C.甲车的加速度大小先增大后减小D.乙车的加速度大小先减小后增大【答案】BD【解析】根据速度—时间图象与时间轴所围面积大小对应物体的位移大小,可知在t1~t2时间内,甲车位移大于乙车位移,又因为t2时刻两车相遇,因此t1时刻甲车在后,乙车在前,选项A错误,B正确;根据图象的斜率对应物体运动的加速度,可知甲、乙的加速度均先减小后增大,选项C错误,D正确.【例10】(多选)(2018·高考全国卷Ⅱ) 甲、乙两车在同一平直公路上同向运动甲做匀加速直线运动,乙做匀速直线运动.甲、乙两车的位置x随时间t的变化如图所示.下列说法正确的是()A.在t1时刻两车速度相等B.从0到t1时间内,两车走过的路程相等C .从t 1到t 2时间内,两车走过的路程相等D .在t 1到t 2时间内的某时刻,两车速度相等【答案】CD【解析】由位移—时间图象的意义可知t 1时刻两车在x 1位置,图线的斜率不同,速度不等,A 错;由于甲车起始位置不在原点,从0到t 1时间内,两车走过的路程不等,B 错;从t 1到t 2时间内,两车都从x 1位置运动到x 2位置,因此走过的路程相等,C 对;从t 1到t 2时间内甲车图线的斜率先小于后大于乙车,因此在t 1到t 2时间内的某时刻,两车速度相等,D 对. 与实际相结合的追及相遇问题【例11】(2019·河南中原名校第三次联考)如图所示,在两车道的公路上有黑白两辆车,黑色车停在A 线位 置,某时刻白色车以速度v 1=40 m/s 通过A 线后,立即以大小为a 1=4 m/s 2的加速度开始制动减速,黑色车 4 s 后以a 2=4 m/s 2的加速度开始向同一方向匀加速运动,经过一定时间,两车都到达B 线位置.两车可看 成质点.从白色车通过A 线位置开始计时,求经过多长时间两车都到达B 线位置及此时黑色车的速度大小.【答案】 14 s 40 m/s【解析】 设白色车停下来所需的时间为t 1,减速过程通过的距离为x 1,则v 1=a 1t 1v 21=2a 1x 1解得x 1=200 m ,t 1=10 s在t 1=10 s 时,设黑色车通过的距离为x 2,则x 2=12a 2(t 1-t 0)2 解得x 2=72 m<x 1=200 m所以白色车停止运动时黑色车没有追上它,则白色车停车位置就是B 线位置.设经过时间t 两车都到达B 线位置,此时黑色车的速度为v 2,则x 1=12a 2(t -t 0)2 v 2=a 2(t -t 0)解得t =14 s ,v 2=40 m/s.【变式1】(2019·济宁模拟)A 、B 两列火车在同一轨道上同向行驶,A 车在前,其速度v A =10 m/s ,B 车在后,其速度v B =30 m/s ,因大雾能见度低,B 车在距A 车x 0=85 m 时才发现前方有A 车,这时B 车立即刹车,但B 车要经过180 m 才能停止,问:B 车刹车时A 车仍按原速率行驶,两车是否会相撞?若会相撞,将在B 车刹车后何时相撞?若不会相撞,则两车最近距离是多少?【答案】不会相撞 5 m【解析】设B 车刹车过程的加速度大小为a B ,由v 2-v 20=2ax可得02-302=2(-a B )×180解得a B =2.5 m/s 2设经过时间t 两车相撞,则有v B t -12a B t 2=x 0+v A t ,即30t -12×2.5t 2=85+10t整理得t 2-16t +68=0由Δ=162-4×68<0可知t 无实数解,即两车不会相撞,速度相等时两车相距最近,此时v A =v B -a B t 1,t 1=8 s此过程中x B =v B t 1-12a B t 21=160 mx A =v A t 1=80 m ,两车的最近距离Δx =x 0+x A -x B =5 m.【题型演练】1.(2019·安徽省四校联考)下列所给的运动图象中能反映做直线运动的物体不会回到初始位置的是()【答案】A【解析】速度—时间图象中与坐标轴围成的面积表示位移,在坐标上方表示正位移,在坐标轴下方表示负位移,所以A 中面积不为零,所以位移不为零,不能回到初始位置;B 、C 中面积为零,位移为零,回到初始位置;D 中,位移—时间图象表示物体的位移随时间变化的图象,在t 0 s 物体的位移为零,即又回到了初始位置.2.(2019·河北衡水中学调研)甲、乙两辆汽车沿同一平直路面行驶,其v t 图象如图所示,下列对汽车运动状况的描述正确的是( )A .在第10 s 末,乙车改变运动方向B .在第10 s 末,甲、乙两车相距150 mC .在第20 s 末,甲、乙两车相遇D .若开始时乙车在前,则两车可能相遇两次【答案】D【解析】由图可知,在20 s 内,乙车一直沿正方向运动,速度方向没有改变,故选项A 错误;由于不知道初始位置甲、乙相距多远,所以无法判断在10 s 末两车相距多远,及在20 s 末能否相遇,故选项B 、C 错误;若刚开始乙车在前,且距离为150 m ,则在10 s 末两车相遇,之后甲在乙的前面,乙的速度增大,在某个时刻与甲再次相遇,故选项D 正确.4.(2019·河南中原名校联考)如图所示为甲、乙两质点做直线运动的v t 图象,若两质点从同一地点出发,到t 1时刻相遇,则下列说法正确的是( )A .v 1=8 m/sB .v 2=12 m/sC .t 1=(3+3)sD .0~t 1时间内,甲、乙相距的最大距离为6 m【答案】CD【解析】由图可知,甲的加速度a 1=2 m/s 2,乙的加速度a 2=6 m/s 2,则12×2t 12=12×6(t 1-2 s)2,求得t 1=(3+3)s ,C 项正确;v 1=a 1t 1=(6+23)m/s ,A 项错误;v 2=a 2(t 1-2 s)=(6+63)m/s ,B 项错误;0~t 1内,甲、乙相距的最大距离为Δx =12×2×6 m =6 m ,D 项正确. 5.(2019·河北石家庄模拟)甲、乙两物体在同一水平地面上做直线运动,其运动的x t 图象如图所示,已知乙。
高考物理备考微专题2.9 双星与天体追及相遇问题(解析版)
高考物理备考微专题精准突破 专题2.9 双星与天体追及相遇问题【专题诠释】 一、双星问题(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L 2=m 2ω22r 2. ②两颗星的周期及角速度都相同,即 T 1=T 2,ω1=ω2.③两颗星的半径与它们之间的距离关系为:r 1+r 2=L . (3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.二、卫星中的“追及相遇”问题某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们的初始位置与中心天体在同一直线上,内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻. 【高考领航】【2018·高考全国卷Ⅰ】2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的 过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈.将两颗 中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一 时刻两颗中子星( )A .质量之积B .质量之和C .速率之和D .各自的自转角速度 【答案】 BC【解析】 两颗中子星运动到某位置的示意图如图所示.每秒转动12圈,角速度已知,中子星运动时,由万有引力提供向心力得 Gm 1m 2l 2=m 1ω2r 1① Gm 1m 2l 2=m 2ω2r 2② l =r 1+r 2③由①②③式得G (m 1+m 2)l 2=ω2l ,所以m 1+m 2=ω2l 3G ,质量之和可以估算.由线速度与角速度的关系v =ωr 得 v 1=ωr 1④ v 2=ωr 2⑤由③④⑤式得v 1+v 2=ω(r 1+r 2)=ωl ,速率之和可以估算. 质量之积和各自自转的角速度无法求解. 【技巧方法】1.双星问题求解思维引导2.对于天体追及问题的处理思路(1)根据GMmr2=mrω2,可判断出谁的角速度大;(2)根据天体相距最近或最远时,满足的角度差关系进行求解. 【最新考向解码】【例1】(2019·山东恒台一中高三上学期诊断考试)2017年8月28日,中科院南极天文中心的巡天望远镜观测到一个由双中子星构成的孤立双星系统产生的引力波。
2024-2025高一物理专题03 追及相遇问题-专项练习解析版
专题03 追及相遇问题1.在某次遥控车挑战赛中,若a b 、两个遥控车从同一地点向同一方向做直线运动,它们的v t -图像如图所示,则下列说法不正确的是( )A .b 车启动时,a 车在其前方2m 处B .运动过程中,b 车落后a 车的最大距离为1.5mC .b 车启动3s 后恰好追上a 车D .b 车超过a 车后,两车不会再相遇【答案】A【详解】A .b 车启动时,a 车在其前方距离121m 1m 2x ∆=⨯⨯=选项A 错误; B .运动过程中,当两车速度相等时,b 车落后a 车的距离最大,最大距离为1311m 11m 1.5m 22m x +∆=⨯-⨯⨯=选项B 正确;C .b 车启动3s 后,a 车的位移121m 31m 4m 2a x =⨯⨯+⨯=,b 车的位移132m 4m 2b x +=⨯=即b 车恰好追上a 车,选项C 正确;D .b 车超过a 车后,因b 车速度大于a 车,则两车还会再相遇,选项D 正确。
此题选择不正确选项, 故选A 。
2.甲、乙两车在一条平直的公路上同向并排行驶,0=t 时刻甲车开始刹车,甲车的速度随时间变化的图像如图甲所示,以0=t 时刻甲车所在位置为坐标原点0,以甲车速度方向为正方向建立x 轴,乙车的位置坐标随时间变化的图像如图乙所示,图像为顶点在30m 处的抛物线。
下列说法正确的是( )A .甲车做匀变速直线运动的加速度大小为22.5m/sB .乙车做匀变速直线运动的加速度大小为26.25m/sC .4s t =时甲、乙两车相距最远D .甲、乙两车只相遇一次 【答案】A【详解】A .甲车做匀变速直线运动的加速度大小为22120m/s 2.5m/s 8v a t ∆===∆故A 正确; B .由题可知,乙的初速为零,在04s t =内的位移为20m ,则有22012x a t =可得,乙车做匀变速直线运动的加速度大小为22 2.5m/s a =故B 错误;D .若甲车和乙车相遇,则有2212113022v t a t a t -=+甲带入数据解得2s 8s t =<或6s 8s t =<则甲、乙两车相遇两次,故D 错误;C .由图可知,8s 后甲车速度为零,乙车速度不为零,且8s 后乙车在前甲车在后,则8s 后两者间距离一直增大,故C 错误。
高中物理相遇和追及问题(完整版)
相遇追及问题一、考点、热点回忆一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①假设Δx=x0,则恰能追及,两物体只能相遇一次,这也是防止相撞的临界条件匀速追匀加速②假设Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③假设Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.〔1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为此题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按〔解法一〕中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,假设△>0,即有两个解,说明可以相遇两次;假设△=0,说明刚好追上或相碰;假设△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 〔 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】〔2011·新课标全国卷〕甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
高一物理相遇和追及问题(含详解)
相遇和追及问题【要点梳理】要点一、机动车的行驶安全问题:1、反应时间:人从发现情况到采取相应措施经过的时间为反应时间。
2、反应距离:在反应时间内机动车仍然以原来的速度v匀速行驶的距离。
3、刹车距离:从刹车开始,到机动车完全停下来,做匀减速运动所通过的距离。
4、停车距离与安全距离:反应距离和刹车距离之和为停车距离。
停车距离的长短由反应距离和刹车距离共同决定。
安全距离大于一定情况下的停车距离。
要点二、追及与相遇问题的概述1、追及问题的两类情况(1)速度小者追速度大者(2)速度大者追速度小者说明:①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.特点归类:(1)若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度. (2)若后者追不上前者,则当后者的速度与前者相等时,两者相距最近. 2、 相遇问题的常见情况(1) 同向运动的两物体的相遇问题,即追及问题.(2) 相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.【典型例题】类型一、机动车的行驶安全问题例1、为了安全,在高速公路上行驶的汽车之间应保持必要的距离。
已知某高速公路的最高限速为v=120km/h 。
假设前方车辆突然停止运动,后面汽车的司机从眼睛发现这一情况,经过大脑反应,指挥手、脚操纵汽车刹车,到汽车真正开始减速,所经历的时间需要0.50s (即反应时间),刹车时汽车所受阻力是车重的0.40倍,为了避免发生追尾事故,在该高速公路上行驶的汽车之间至少应保留多大的距离?【答案】156m【解析】v 120km /h 33.3m /s ==匀减速过程的加速度大小为2a kmg /m 4m /s ==。
2025年高考物理总复习专题03 刹车陷阱 追及相遇(附答案解析)
第1页(共21页)专题03刹车陷阱
追及相遇模型归纳
1.两种匀减速直线运动的比较两种运动
运动特点求解方法刹车类
问题
匀减速到速度为零后停止运动,加速度a 突然消失求解时要注意确定实际运动时间(刹车陷阱)双向可逆
类问题如沿光滑固定斜面上滑的小球,到最高点后仍能以原加速度匀加速下滑,全过程加速度大小、方向均不变求解时可分过程列式,也可对全过程列式,但必须注意x 、v 、a 等矢
量的正负号及物理意义2.追及相遇问题的两种典型情况
(1)速度小者追速度大者
类型
图像说明匀加速追匀速①0~t 0时段,后面物体与前面物体间
距离不断增大
②t =t 0时,两物体相距最远,为x 0+
Δx (x 0为两物体初始距离)
③t >t 0时,后面物体追及前面物体的过
程中,两物体间距离不断减小④能追上且只能相遇一次
匀速追匀减速匀加速追匀减速
(2)速度大者追速度小者
类型图像说明。
高考物理一轮复习专题训练及答案解析—追及相遇问题
高考物理一轮复习专题训练及答案解析—追及相遇问题1.(多选)如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位移-时间(x-t)图线,由图可知()A.在t1时刻,a车追上b车B.在t2时刻,a、b两车运动方向相反C.在t1到t2这段时间内,b车的速率先减小后增大D.在t1到t2这段时间内,b车的速率一直比a车大2.(2023·四川南充市模拟)某车型在红绿灯停启、无保护左转、避让路口车辆、礼让行人、变道等方面都能无干预自动驾驶.某次试乘时,甲、乙两车同时并排出发,沿着同一平直路面行驶,它们的速度v随时间t变化的图像如图所示.则下列说法中正确的是()A.t1~t2时间内,甲、乙两车的加速度不可能相同B.t1~t2时间内,甲、乙两车间的距离始终增大C.t1~t2时间内,甲、乙两车相遇两次D.t1~t2时间内,甲车的平均速度大于乙车的平均速度3.(多选)在2017年匈牙利航海模型帆船项目世界锦标赛上,中国选手获得遥控帆船(F5-10)冠军.若a、b两个遥控帆船从同一位置向同一方向做直线运动,它们的v-t图像如图所示,则下列说法正确的是()A.b船启动时,a船在其前方2 m处B.运动过程中,b船落后a船的最大距离为1.5 mC.b船启动3 s后正好追上a船D.b船超过a船后,两船不会再相遇4.(多选)近期,一段特殊的“飙车”视频红遍网络,视频中,一辆和谐号动车正和一辆复兴号动车互相追赶(如图甲).两车并排做直线运动,其v-t图像如图乙所示,t=0时,两车车头刚好并排,则()A.10 s末和谐号的加速度比复兴号的大B.图乙中复兴号的最大速度为78 m/sC.0到32 s内,在24 s末两车车头相距最远D.两车头在32 s末再次并排5.(多选)(2023·福建省三明一中模拟)甲、乙两车在平直的公路上同时从同一地点同向行驶,两车的速度v随时间t的变化关系如图所示,其中两阴影部分的面积相等(S1=S2),则()A.甲、乙两车均做直线运动B.在0~t2时间内,甲、乙两车相遇两次C.在0~t2时间内,甲的加速度先减小后增大D.在0~t2时间内(不包括t2时刻),甲车一直在乙车前面6.(2023·湖南怀化市模拟)甲、乙两辆汽车同时同地出发,沿同方向做直线运动,两车速度的平方v2随位移x的变化关系图像如图所示,下列说法正确的是()A.汽车甲停止前,甲、乙两车相距最远时,甲车的位移为8 mB.汽车甲的加速度大小为4 m/s2C.汽车甲、乙在t=4 s时相遇D.汽车甲、乙在x=6 m处的速度大小为3 m/s7.(2023·浙江省模拟)甲、乙两名运动员在泳池里训练,t=0时刻从泳池的两端出发,甲、乙的速度-时间图像分别如图甲、乙所示,若不计转向的时间且持续运动,两运动员均可视为质点,下列说法正确的是()A.泳池长50 mB.两运动员一定不会在泳池的两端相遇C.从t=0时刻起经过1 min,两运动员共相遇了3次D.在0~30 s内,甲、乙运动员的平均速度大小之比为8∶58.(2023·广东省华南师大附中模拟)如图甲所示,A车原来临时停在一水平路面上,B车在后面匀速向A车靠近,A车司机发现后启动A车,以A车司机发现B车为计时起点(t=0),A、B两车的v-t图像如图乙所示.已知B车在第1 s内与A车的距离缩短了x1=12 m.(1)求B车运动的速度v B和A车的加速度a的大小.(2)若A、B两车不会相撞,则A车司机发现B车时(t=0)两车的距离x0应满足什么条件?9.(2023·山东省实验中学月考)足球比赛中,经常使用“边路突破,下底传中”的战术,即攻方队员带球沿边线前进,到底线附近进行传中,某标准足球场长105 m,宽68 m.攻方前锋在中线处将足球沿边线向前路踢出,足球的运动可视为在地面上做初速度为12 m/s的匀减速直线运动,加速度大小为2 m/s2,试求:(1)足球从开始做匀减速运动到停下来的位移为多大;(2)足球开始做匀减速直线运动的同时,该前锋队员沿边线向前追赶足球.他的启动过程可以视为初速度为零、加速度为2 m/s2的匀加速直线运动,他能达到的最大速度为8 m/s,该前锋队员至少经过多长时间能追上足球.10.货车A正在该公路上以20 m/s的速度匀速行驶,因疲劳驾驶司机注意力不集中,当司机发现正前方有一辆静止的轿车B时,两车距离仅有64 m.(1)若此时B 车立即以2 m/s 2的加速度启动,通过计算判断:如果A 车司机没有刹车,是否会撞上B 车;若不相撞,求两车相距最近时的距离;若相撞,求出从A 车发现B 车开始到撞上B 车的时间;(2)若A 车司机发现B 车,立即刹车(不计反应时间)做匀减速直线运动,加速度大小为2 m/s 2(两车均视为质点),为避免碰撞,在A 车刹车的同时,B 车立即做匀加速直线运动(不计反应时间),问:B 车加速度a 2至少多大才能避免事故发生.(这段公路很窄,无法靠边让道)答案及解析1.BC [t 1时刻,a 、b 两车的位置相同,此前a 车在前、b 车在后,此后b 车在前、a 车在后,因此是b 车追上a 车.由于x -t 图像的斜率表示速度的大小及方向,因此a 车速度不变,做匀速直线运动,b 车先做减速运动,速度减至零后又开始反方向做加速运动.t 2时刻两图像的斜率一正一负,两车速度方向相反,选项A 、D 错误,B 、C 正确.]2.D [由于v -t 图像的斜率表示加速度,则由题图可看出,图线甲的斜率先减小后反向增大,存在某一时刻图线甲的斜率与图线乙的斜率相同,故在t 1~t 2时间内,存在甲、乙两车加速度相同的时刻,A 错误;由题图可看出在0 ~ t 1时间内,乙的速度一直大于甲的速度,又根据题知甲、乙两车同时从同一位置出发,则二者距离先增大,且在t 1时刻乙在甲前面,t 1后甲的速度大于乙的速度,则二者越来越近,最后相遇,但甲的速度依然大于乙的速度,则二者的距离再增大,到t 2时甲在乙前面,故在t 1~t 2时间内,甲、乙两车间的距离先减小后增大,甲、乙两车相遇一次,B 、C 错误;根据平均速度的计算公式有v =x t,由于v -t 图像与横轴围成的面积表示位移,则在t 1~t 2时间内,x 甲 > x 乙,则甲车的平均速度大于乙车的平均速度,D 正确.]3.BCD [根据v -t 图线与时间轴包围的面积表示位移,可知b 在t =2 s 时启动,此时a 的位移为x =12×2×1 m =1 m ,即a 在b 前方1 m 处,故A 错误;两船的速度相等时相距最远,最大距离为Δx =12×(1+3)×1 m -12×1×1 m =1.5 m ,故B 正确;由于两船从同一地点向同一方向沿直线运动,当位移相等时两船才相遇,由题图可知,b 船启动3 s 后位移x b =12×(1+3)×2 m =4 m ,此时a 的位移x a =12×(5+3)×1 m =4 m ,即b 刚好追上a ,故C 正确;b 船超过a 船后,由于b 的速度大,所以不可能再相遇,故D 正确.]4.BC [v -t 图像的斜率表示加速度,可得和谐号的加速度为a 1=72-6024 m/s 2=12m/s 2,复兴号的加速度为a 2=72-6024-8m/s 2=34 m/s 2,则10 s 末和谐号的加速度比复兴号的小,故A 错误;题图乙中复兴号的最大速度为v m =72 m/s +a 2×(32-24) m/s =78 m/s ,故B 正确;因t =0时两车车头刚好并排,在0到24 s 内和谐号的速度大于复兴号的速度,两者的距离逐渐增大,速度相等后两者的距离缩小,则在24 s 末两车车头相距最远,故C 正确;由v -t 图像中图线与t 轴所围的面积表示位移,则在0~24 s 两者的最大距离为Δx =8×(72-60)2m =48 m ,而在24~32 s 内缩小的距离为Δx ′=(78-72)×(32-24)2m =24 m<Δx ,即32 s 末复兴号还未追上和谐号,故D 错误.]5.AD [甲、乙两车均做直线运动,A 正确;从图像可知,在0~t 2时间内,甲、乙两车图线与t 轴所包围的“面积”相等,即两车的位移相等,所以t 2时刻,甲、乙两车相遇且只相遇一次,B 错误;在0~t 2时间内,甲车的v -t 图线斜率不断增大,所以加速度不断增大,C 错误;在0~t 2时间内(不包括t 2时刻),甲车图线与t 轴所包围的“面积”大于乙车图线与t 轴所包围的“面积”,即甲车的位移大于乙车的位移,且甲、乙两车在平直的公路上同时从同一地点出发,所以甲车一直在乙车前面,D 正确.]6.A [根据v 2-v 02=2ax 并根据题给图像可推知甲、乙两车的初速度大小分别为v 0甲=6 m/s ,v 0乙=0,v 2-x 图像的斜率的绝对值表示汽车加速度大小的2倍,所以甲、乙两车的加速度大小分别为a 甲=2 m/s 2,a 乙=1 m/s 2,且甲做匀减速直线运动,乙做匀加速直线运动,故B 错误;汽车甲停止前,甲、乙两车相距最远时二者速度相同,设共经历时间为t 1,则a 乙t 1=v 0甲-a 甲t 1,解得t 1=2 s ,此时甲车的位移为x 甲=v 0甲t 1-12a 甲t 12=8 m ,故A 正确;甲车总运动时间为t 2=v 0甲a 甲=3 s ,甲停下时位移为9 m ,而此时乙车的位移为x 乙=12a 乙t 22=92 m<9 m ,所以甲、乙两车相遇一定发生在甲车停下之后,设相遇时刻为t ,则有12a 乙t 2=9 m ,解得t =3 2 s ,故C 错误;汽车甲、乙在x =6 m 处的速度大小为v =2a 乙x =v 0甲2-2a 甲x =2 3 m/s ,故D 错误.]7.C [根据v -t 图线与时间轴围成的面积表示位移,可知泳池长度L =1.25×20 m =25 m ,故A 错误;如图所示,由甲、乙的位移-时间图线的交点表示相遇可知,甲、乙在t =100 s 时在泳池的一端相遇,故B 错误;在0~60 s 内甲、乙相遇3次,故C 正确;在0~30 s 内,甲的位移大小为x 1=1.25×20 m -1.25×10 m =12.5 m ,乙的位移大小为x 2=1.0×25 m -1.0×5 m =20 m ,在0~30 s 内,甲、乙运动员的平均速度大小之比为v 1∶v 2=x 1t ′∶x 2t ′=5∶8,故D 错误.]8.(1)12 m/s 3 m/s 2 (2)x 0>36 m解析 (1)在t 1=1 s 时,A 车刚启动,两车间缩短的距离为B 车的位移,可得x 1=v B t 1,解得B 车的速度大小为v B =12 m/s ,图像斜率表示加速度,可得A 车的加速度大小为a =v B t 2-t 1,其中t 2=5 s ,解得A 车的加速度大小为a =3 m/s 2.(2)两车的速度达到相同时,两车的距离达到最小,对应v -t 图像的t 2=5 s 时刻,此时两车已发生的相对位移为梯形的面积,则x =12v B (t 1+t 2),代入数据解得x =36 m ,因此,若A 、B 两车不会相撞,则两车的距离应满足条件为x 0>36 m.9.(1)36 m (2)6.5 s解析 (1)依题意,足球做匀减速运动,到停下来,由速度与时间关系得v 1=a 1t 1,代入数据得t 1=6 s ,根据x 1=v 12t 1,代入数据得x 1=36 m. (2)前锋队员做匀加速直线运动达到最大速度的时间和位移分别为t 2=v 2a 2=4 s ,x 2=v 22t 2=16 m ,之后前锋队员做匀速直线运动,到足球停止运动,其位移为x 3=v 2(t 1-t 2)=16 m ,由于x 2+x 3<x 1,故足球停止运动时,前锋队员没有追上足球,然后前锋队员继续以最大速度匀速运动追赶足球,根据x 1-(x 2+x 3)=v 2t 3,解得t 3=0.5 s ,故前锋队员追上足球的时间为t =t 1+t 3=6.5 s.10.(1)相撞 4 s (2)1.125 m/s 2解析 (1)当两车速度相同时,所用时间为t 0=v A a=10 s ,在此10 s 内A 车的位移为x A =v A t 0=20×10 m =200 m ,B 车的位移为x B =12at 02=12×2×102 m =100 m ,此时A 、B 两车间的位移差为Δx =x A -x B =100 m >64 m ,所以两车必定相撞;设两车相撞的时间为t ,则相撞时有v A t -12at 2=64 m ,代入数据解得t =4 s(另一值不合题意舍去)所以A 车撞上B 车的时间为4 s ;(2)已知A 车的加速度a A =-2 m/s 2,初速度v A =20 m/s ;B 车的加速度为a 2,设B 车运动经过时间为t ′时,两车相遇,则有v A t ′+12a A t ′2=12a 2t ′2+L ,代入数据有⎝⎛⎭⎫1+a 22t ′2-20t ′+64=0,要避免相撞,则上式无实数解,根据数学关系知a 2>1.125 m/s 2,所以B 的加速度的最小值为1.125 m/s 2.。
高中物理追击和相遇问题专题(含详解).doc
v1.0可编辑可修改直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系( 1)时间关系:t A t B t0(2)位移关系:x A x B x0( 3)速度关系:v A=v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法:A. 画出两个物体运动示意图,根据两个物体的运动性质, 选择同一参照物, 列出两个物体的位移方程;B.找出两个物体在运动时间上的关系C.找出两个物体在运动位移上的数量关系D.联立方程求解 .说明 : 追及问题中常用的临界条件:⑴速度小者加速追速度大者, 速度在接近,但距离在变大。
追上前两个物体速度相等时, 有最大距离 ;⑵速度大者减速追赶速度小者 , 速度在接近,但距离在变小。
追上前在两个物体速度相等时 , 有最小距离 . 即必须在此之前追上 , 否则就不能追上 .四、典型例题分析:( 一 ) .匀加速运动追匀速运动的情况(开始时v1< v 2):1.当 v1< v 2时,两者距离变大;2.当 v1= v 2时,两者距离最大;3.v1>v2时,两者距离变小,相遇时满足x1= x 2+x,全程只相遇( 即追上 ) 一次。
【例 1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1) 小汽车从开动到追上自行车之前经过多长时间两者相距最远此时距离是多少(2)小汽车什么时候v1.0可编辑可修改( 二 ) .匀速运动追匀加速运动的情况(开始时v1> v 2):1.当 v1> v 2时,两者距离变小;2.当 v1= v 2时,①若满足x1< x 2+x,则永远追不上,此时两者距离最近;②若满足 x1=x2+x,则恰能追上,全程只相遇一次;③若满足 x1> x2+x,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
高考物理匀变速直线速运动规律应用追及和相遇问题(附答案)
20XX 年高考物理一轮复习第5讲 匀变速直线速运动规律应用2——追及和相遇问题知识点拨:1.匀减速物体追赶同向匀速运动物体时,恰能追上或恰追不上的临界条件是:即将靠近时,追赶者的速度等于或小于被追赶者的速度。
当追赶者的速度大于被追赶者的速度时,能追上;当追赶者的速度小于被追赶者的速度时,不能追上。
2.初速度为零的匀加速运动的物体追赶同向匀速运动物体时,追上前者前两者具有最大的间距的条件是追赶者的速度等于被追赶者的速度。
3.解答问题时常常利用函数判别式和V-t 图像等方法,求极值问题。
备考训练:1.汽车甲沿着平直的公路以速度v 做匀速直线运动.当它路过某处的同时,该处有一辆汽车乙开始做初速度为零的匀加速运动去追赶甲车.根据上述的已知条件 ( )A .可求出乙车追上甲车时乙车的速度B .可求出乙车追上甲车时乙车所走的路程C .可求出乙车从开始起动到追上甲车时所用的时间D .不能求出上述三者中任何一个2.一个步行者以6.0 m/s 的最大速率跑步去追赶被红灯阻停的公共汽车,当它距离公共汽车25m 时,绿灯亮了,汽车以1m/s 2的加速度匀加速起动前进, 则 ( )A .人能追上汽车,追车过程人共跑了36mB .人不能追上汽车,人和车最近距离为7mC .人能追上汽车,追上车前人共跑了43mD .人不能追上汽车,自车子开动后,人和车相距越来越远3.甲、乙两物体从同一地点沿同一方向做直线运动的速度图像如图5-1所示,则 ( ) A .两个物体两次相遇的时间是2s 和6s B .4s 末甲在乙的后面 C .2s 末两物体相距最远D .甲物体一直向前运动而乙物体向前运动2s ,随后向后运动 图5-14.从某一高度相隔1s 释放两个相同的小球甲和乙,不计空气阻力,它在空中任一时刻 ( ) A .甲、乙两球距离越来越大,甲、乙两球速度之差越来越大 B .甲、乙两球距离始终保持不变,甲、乙两球速度之差保持不变 C .甲、乙两球距离越来越大,但甲、乙两球速度之差保持不变 D .甲、乙两球距离越来越小,甲、乙两球速度之差越来越小 5.A 、B 两质点的v -t 图像如图5-2所示,设它们在同一条直线上运动,在t =3s 时它们在中途相遇,由图可知( )A .A 比B 先启程 B .A 比B 后启程C .两质点启程前A 在B 前面4mD .两质点启程前A 在B 后面2m6.甲物体以1 m/s 的速度做匀速直线运动,出发5s 后,另一物体乙从同一地点由静止开始以0.4 m/s 2的加速度向同一方向做匀加速直线运动,求:(1)乙物体出发后经几秒钟才能追上甲物体?(2)甲、乙两物体相遇前它们之间的最大距离是多少?s )7.甲车以10米/秒,乙车以4米/秒的速率在同一直车道中同向前进,若甲车驾驶员在乙车后方距离d处发现乙车,立即踩刹车使其车获得-2米/秒2的加速度,为使两车不致相撞,d的值至少应为多少?8.在一条平直的公路上,乙车以10m/s的速度匀速行驶,甲车在乙车的后面做初速度为15m/s,加速度大小为0.5m/s2的匀减速运动,则两车初始距离L满足什么条件时可以使:(1)两车不相遇;(2)两车只相遇一次;(3)两车能相遇两次。
(完整版)高中物理相遇和追及问题(完整版)
相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件匀速追匀加速②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。
高考物理专题6追及相遇问题练习含解析
专题6 追及相遇问题1.(1)“慢追快”型:v后=v前时,Δx最大.追匀减速运动的机车时,注意要判断追上时前车是否已停下.(2)“快追慢”型:v后=v前时,Δx最小,若此时追上是“恰好不相撞”;若此时还没追上就追不上了;若此之前追上则是撞上.2.v-t图象在已知出发点的前提下,可由图象“面积”判断相距最远、最近及相遇.1.(2020·河南郑州市中原联盟3月联考)如图1所示,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位移-时间(x-t)图象.由图可知( )图1A.在时刻t1,a、b两车相遇,且运动方向相反B.在时刻t2,a车追上b车,且运动方向相同C.在t1到t2这段时间内,b车的速率先增大后减小D.在t1到t2这段时间内,b车的速率一直比a车小答案 A解析在时刻t1,a、b两车到达同一位置而相遇,根据图象切线的斜率表示速度可知两车运动方向相反,故A正确;在t1到t2这段时间内,a在前,b在后,则在时刻t2,b车追上a 车,根据图象切线的斜率表示速度可知两车运动方向相同,故B错误;在t1到t2这段时间内,b车图线斜率大小先减小后增大,则b车的速率先减小后增大,故C错误;在t1到t2这段时间内,b车的速率先大于a后小于a,最后又大于a,故D错误.2.(2020·福建龙岩市质检)如图2所示,直线a和曲线b分别是在平行的平直公路上行驶的汽车a和b的速度—时间(v-t)图线,在t1时刻两车刚好在同一位置(并排行驶),在t1到t3这段时间内,下列说法正确的是( )图2A.在t2时刻,两车相距最远B.在t3时刻,两车相距最远C.a车加速度均匀增大D.b车加速度先增大后减小答案 B解析 在t 1~t 3时间段内,b 车速度都小于a 车速度,两者间距一直增大,所以在t 3时刻,两车相距最远,选项B 正确,选项A 错误.a 车做匀加速直线运动,a 车加速度不变,选项C 错误.根据速度-时间图象的斜率表示加速度可知,b 车加速度一直在增大,选项D 错误.3.(2020·四川成都第七中学月考)自行车和汽车同时驶过平直公路上的同一地点,此后其运动的v -t 图象如图3所示,自行车在t =50 s 时追上汽车,则( )图3A.汽车的位移为100 mB.汽车的运动时间为20 sC.汽车的加速度大小为0.25 m/s 2D.汽车停止运动时,二者间距最大答案 C解析 在t =50 s 时,自行车位移x 1=4×50 m=200 m ,由于自行车追上汽车,所以汽车位移等于自行车位移,即汽车位移为200 m ,选项A 错误;由v -t 图象与t 轴围成的面积表示位移可知,汽车要运动40 s ,位移才能达到200 m ,由此可得汽车运动的加速度大小为a =0.25 m/s 2,选项B 错误,C 正确;两者速度相等时,间距最大,选项D 错误.4.(2020·河南三门峡市11月考试)从同一地点同时开始沿同一直线运动的两个物体Ⅰ、Ⅱ的速度-时间图象如图4所示.在0~t 2时间内,下列说法中正确的是( )图4A.Ⅰ物体所受的合外力不断增大,Ⅱ物体所受的合外力不断减小B.在第一次相遇之前,t 1时刻两物体相距最远C.t 2时刻两物体相遇D.Ⅰ、Ⅱ两个物体的平均速度大小都是v 1+v 22答案 B解析 速度—时间图象的斜率表示加速度,从图中可知Ⅰ曲线的斜率在减小,所以Ⅰ加速度在减小,根据牛顿第二定律可得Ⅰ物体所受的合力在减小,Ⅱ斜率恒定,做匀减速直线运动,合力恒定,A 错误;速度—时间图象与坐标轴围成的面积表示位移,由图可知在t 1时刻两物体面积差最大,相距最远,故B 正确;t 2时刻,物体Ⅰ的位移比物体Ⅱ的位移大,两者又是从同一地点同时开始运动的,所以t 2时刻两物体没有相遇,故C 错误;物体的位移就等于图中两图象与时间轴所围的面积,平均速度就等于位移与时间的比值,由图知物体Ⅰ的位移比物体Ⅱ的位移大,且物体Ⅱ做匀减速运动,其平均速度为v 1+v 22,Ⅰ的平均速度大于v 1+v 22,D 错误.5.(2020·广东深圳市第二次检测)甲、乙两汽车在两条平行且平直的车道上行驶,运动的v -t 图象如图5所示,已知t =0时刻甲、乙第一次并排,则( )图5A.t =4 s 时刻两车第二次并排B.t =6 s 时刻两车第二次并排C.t =10 s 时刻两车第三次并排D.前10 s 内两车间距离的最大值为12 m答案 C解析 由图象可知,在前8 s 内,甲的位移x ′=vt =48 m ,乙的位移x ″=2+62×12 m=48 m ,说明t =8 s 时刻两车第二次并排,选项A 、B 均错误;两车第二次并排后,设经过Δt时间两车第三次并排,有:v ·Δt =v 1·Δt -12a 2·Δt 2,解得Δt =2 s ,两车恰好在乙速度为零时第三次并排,第三次两车并排的时刻为t =10 s ,选项C 正确;由图象可知,前10 s内在t =4 s 时刻两车距离最大(图象上左侧的梯形面积),Δx =2+42×6 m=18 m ,选项D 错误.6.(多选)(2020·河南驻马店市3月模拟)甲、乙两车在相邻的平行车道同向行驶做直线运动,v -t 图象如图6所示,二者最终停在同一斑马线处,则( )图6A.甲车的加速度小于乙车的加速度B.t =0时乙车在甲车前方8.4 m 处C.t =3 s 时甲车在乙车前方0.6 m 处D.前3 s 内甲车始终在乙车后边答案 BC解析 根据v -t 图象的斜率大小表示加速度大小,斜率绝对值越大加速度越大,则知甲车的加速度大于乙车的加速度,故A 错误;设甲车运动的总时间为t ,根据几何关系可得:3 s t =1518,得t =3.6 s ,在0~3.6 s 内,甲的位移x 甲=18×3.62m =32.4 m,0~4 s 内,乙的位移x 乙=12×42m =24 m ,因二者最终停在同一斑马线处,所以,t =0时乙车在甲车前方x 甲-x 乙=8.4 m ,故B 正确;0~3 s 内,甲、乙位移之差Δx =6×32m =9 m ,因t =0时乙车在甲车前方8.4 m 处,所以t =3 s 时甲车在乙车前方0.6 m 处,故C 正确;由上分析知,前3 s 内甲车先在乙车后边,后在乙车的前边,故D 错误.7.(2019·四川德阳市质检)如图7甲所示,A 车原来临时停在一水平路面上,B 车在后面匀速向A 车靠近,A 车司机发现后启动A 车,以A 车司机发现B 车为计时起点(t =0),A 、B 两车的v -t 图象如图乙所示.已知B 车在第1 s 内与A 车的距离缩短了x 1=12 m.图7(1)求B 车运动的速度v B 和A 车的加速度a 的大小.(2)若A 、B 两车不会相撞,则A 车司机发现B 车时(t =0)两车的距离x 0应满足什么条件? 答案 (1)12 m/s 3 m/s 2(2)x 0>36 m解析 (1)在t 1=1 s 时A 车刚启动,两车间缩短的距离 x 1=v B t 1代入数据解得B 车的速度v B =12 m/sA 车的加速度a =vB t 2-t 1将t 2=5 s 和其余数据代入解得A 车的加速度大小a =3 m/s 2(2)两车的速度相等时,两车的距离达到最小,对应于v -t 图象的t 2=5 s 时刻,此时两车已发生的相对位移为梯形的面积,则x =12v B (t 1+t 2)代入数据解得x=36 m因此,若A、B两车不会相撞,则两车的距离x0应满足条件:x0>36 m.。
高中物理追击和相遇问题专题(含详解).
直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
二、 解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A=v B两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
三、追及、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。
追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。
追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2): 1.当v 1< v 2时,两者距离变大; 2.当v 1= v 2时,两者距离最大;3.v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。
【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v 1> v 2): 1.当v 1> v 2时,两者距离变小;2.当v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次; ③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。
01追及与相遇问题:高考物理大题突破(试题含解析)
专题01追及与相遇问题2.5m/s的加速度开始行驶,【例题】(2022·湖南郴州·一模)甲车在十字路口遇红灯,当绿灯亮时甲车以2恰在此时,乙车以10m/s的速度匀速驶来与甲车同向行驶。
从侧后边超过甲车,求:(1)甲车从路口开始加速起。
在追上乙车之前两车相距的最大距离;(2)甲车经过多长时间能追上乙车;(3)甲车追上乙车时甲车速度大小。
1.分析思路可概括为“一个临界条件”“两个等量关系”.(1)一个临界条件:速度相等.它往往是物体间能否追上或两者距离最大、最小的临界条件,也是分析、判断问题的切入点;(2)两个等量关系:时间等量关系和位移等量关系,通过画草图找出两物体的位移关系是解题的突破口.2.能否追上的判断方法(临界条件法)物体B追赶物体A:开始时,两个物体相距x0,当v B=v A时,若x B>x A+x0,则能追上;若x B=x A+x0,则恰好追上;若x B<x A+x0,则不能追上.3.特别提醒若被追赶的物体做匀减速直线运动,一定要注意判断被追上前该物体是否已经停止运动.4.常用分析方法(1)物理分析法:抓住“两物体能否同时到达空间某位置”这一关键,认真审题,挖掘题目中的隐含条件,建立物体运动关系的情境图.(2)二次函数法:设相遇时间为t,根据条件列方程,得到关于位移x与时间t的二次函数关系,由此判断两物体追及或相遇情况.①若Δ>0,即有两个解,说明可以相遇两次;②若Δ=0,说明刚好追上或相遇;③若Δ<0,说明追不上或不能相遇.(3)极值法设经过时间t,分别列出两物体的位移—时间关系式,得位移之差Δx与时间的二次函数,再利用数学极值法求解距离的最大(或最小)值.(4)图像法:将两个物体运动的速度—时间关系图线在同一图像中画出,然后利用图像分析、求解相关问题.【变式训练】(2023·上海徐汇·高三上海市第二中学校考期中)如图表示甲乙两个物体的速度时间图和位移时间图,其中甲物体做匀变速直线运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《追及相遇问题》一、计算题1.如图所示,一修路工在长为x=100m的隧道中,突然发现一列火车出现在距右隧道口A水平的距离为x0=200m处,只要修路工跑到隧道口即认为安全脱离危险,修路工所处的位置恰好在无论向左还是向右跑均能安全脱离危险的位置,已知修路工和火车均为匀速运动。
问:(1)修路工所处的这个位置离隧道右出口距离是多少?(2)修路工奔跑的最小速度至少应是火车速度的多少倍?2.汽车A在红灯前停住,当绿灯亮时汽车A以a=1m/s2的加速度启动做匀加速直线运动,经过t0=12s后开始做匀速直线运动.在绿灯亮的同时,汽车B以v B=8m/s 的速度从A车旁边驶过一直做匀速直线运动,运动方向与A车相同.则从绿灯亮时开始计时,多长时间后汽车A可以追上汽车B?3.一队伍长200m,沿直线以2m/s的速度匀速前进。
为了传达命令,通讯员从队尾以大小为2m/s2的加速度加速到6m/s,然后匀速前进一段时间,再以大小为4m/s2的加速度减速到队伍的速度,此时恰好赶上排头兵传达命令,经过5s将命令传达完毕。
此后,通讯员又立即以大小为1m/s2的加速度做匀减速直线运动减速到1m/s,并保持这个速度匀速前进一段时间,再以大小为1m/s2的加速度加速到队伍速度,此时恰好回到队尾。
不计通讯员离开队伍时队伍长度的变化,求:(1)通讯员从队尾赶到队头的时间;(2)通讯员从队头回到队尾的时间;(3)通讯员在全程做匀速直线运动的总时间;(4)通讯员的在全程的位移。
4.在同一直线上同方向运动的A、B两辆汽车,相距s=7m,A正以v A=4m/s的速度向右做匀速直线运动,而B此时速度v B=10m/s,并关闭油门,以2m/s2的加速度大小做匀减速运动。
则(1)从B车关闭油门开始,A追上B需要的时间是多少?(2)在追上之前A、B两者之间的最大距离是多少?5.一辆长途客车正在以v0=20m/s的速度匀速行驶.突然,司机看见车的正前方s=33m处有一只狗,如图甲所示,司机立即采取制动措施.若从司机看见狗开始计时(t=0),长途客车的速度−时间图像如图乙所示。
(1)求长途客车司机从发现狗至客车停止运动的这段时间内前进的距离;(2)若司机看见狗时,狗正以v=4m/s的速度与长途客车同向匀速奔跑,请通过计算说明狗会不会被撞?6.某一长直的赛道上,有一辆F1赛车,前方200m处有一安全车正以10m/s的速度匀速前进,这时赛车从静止出发以2m/s2的加速度追赶.求:(1)赛车出发3s末的瞬时速度大小(2)赛车何时追上安全车;追上之前与安全车最远相距多大;(3)当赛车刚追上安全车时,赛车手立即刹车,使赛车以4m/s2的加速度做匀减速直线运动,问两车再经过多长时间再次相遇.(设赛车可以从安全车旁经过而不发生相撞)7.甲、乙两车在平直赛道上比赛,某一时刻,乙车在甲车前方L1=11m处,乙车速度v乙=60m/s,甲车速度v甲=50m/s,此时乙车离终点线尚有L2=600m,如图所示,若甲车做匀加速直线运动,加速度a=2m/s2,乙车速度不变,不计车长。
求:(1)经过多长时间甲、乙两车间距离最大,最大距离是多少?(2)试通过计算说明到达终点前甲车能否超过乙车?8.新的交通规定:黄灯亮时车头已经越过停车线的车辆可以继续前行,车头未越过停车线的若继续前行则视为闯黄灯,属于交通违章行为。
现有甲、乙两汽车正沿同一平直马路同向匀速行驶,甲车在前,乙车在后,当两车快要到十字路口时,甲车司机看到黄灯闪烁,3秒黄灯提示后将再转为红灯。
请问(1)若甲车在黄灯开始闪烁时刹车,要使车在黄灯闪烁的时间内停下来且刹车距离不得大于18m,则甲车刹车前的行驶速度不能超过多少?(2)若甲、乙车均以v0=15m/s的速度驶向路口,乙车司机看到甲车刹车后也紧急刹车(乙车司机的反应时间Δt2=0.4s,反应时间内视为匀速运动)。
已知甲车、乙车紧急刹车时产生的加速度大小分别为a1=5m/s2、a2=6m/s2。
若甲车司机看到黄灯闪烁时车头距警戒线L=30m,要避免闯红灯,他的反应时间Δt1不能超过多少?(3)满足第(2)问的条件下,为保证两车在紧急刹车过程中不相撞,甲、乙两车刹车前的距离x0至少多大?9.一辆汽车以10m/s的速度在平直公路匀速行驶,经过红灯路口闯红灯,在同一路口的警车立即从静止开始以2.5m/s2的加速度匀加速追去。
(1)警车出发多长时间后两车相距最远?(2)警车何时能截获超速车?(3)警车截获超速车时,警车的速率为多大?位移多大?10.一辆值勤的警车停在公路边,当警员发现从他旁边以10m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5s后警车发动起来,并以2.5m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90km/ℎ以内.问:(1)警车在追赶货车的过程中,两车间的最大距离是多少?(2)警车发动后要多长时间才能追上货车?11.某地出现雾霾天气,能见度只有200m,即看不到200m以外的情况,A、B两辆汽车沿同一公路同向行驶,A车在前,速度v A=10m/s,B车在后,速度v B=30m/s.B 车在距A车200m处才发现前方的A车,这时B车立即以最大加速度a=0.8m/s2刹车.问:(1)如果B车以最大加速度减速,能见度至少达到多少米才能保证两车不相撞?(2)如果B车以最大加速度减速,同时开始按喇叭,10s后,A车发现后,立即加速前进.则A车的加速度至少多大时才能避免与B车相撞?12.据统计,开车时看手机发生事故的概率是安全驾驶的23倍,开车时打电话发生事故的概率是安全驾驶的2.8倍。
一辆小轿车在平直公路上以某一速度行驶时,司机低头看手机2s,相当于盲开50m,该车遇见紧急情况,紧急刹车的距离(从开始刹车到停下来汽车所行驶的距离)至少是25m,根据以上提供的信息:(1)求汽车行驶的速度和刹车的最大加速度大小;(2)若该车以108km/ℎ的速度在高速公路上行驶时,前方110m处道路塌方,该司机因用手机微信抢红包2s后才发现危险,司机的反应时间为0.5s,刹车的加速度与(1)问中大小相等。
试通过计算说明汽车是否会发生交通事故。
13.同向运动的甲乙两质点在某时刻恰好通过同一路标,以此时为计时起点,此后甲质点的速度随时间的变化关系为v=4t+12(m/s),乙质点位移随时间的变化关系为x=2t+4t2(m).试求:(1)两质点何时再次相遇?(2)两质点再次相遇之前何时相距最远?最远的距离是多少?14.某人骑自行车以v1=4m/s的速度匀速前进,某时刻在他前面x0=7m处有以v t=10m/s的速度同向行驶的汽车开始关闭发动机,以a=2m/s2的加速度匀减速前进,求:(1)此人追上汽车之前落后于汽车的最大距离?(2)此人需要多长时间才能追上汽车?15.羚羊从静止开始奔跑,经过50m能加速到最大速度25m/s,并能维持一段较长的时间;猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这速度4.0s。
设猎豹距离羚羊x时开始攻击,羚羊则在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,求:(1)猎豹要在从最大速度减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追到羚羊,x值应在什么范围?(3)设猎豹从最大速度开始减速的加速度大小为5m/s2,猎豹没有追上羊,x值应在什么范围?16.A、B两列火车在同一轨道上同向行驶,A在前,速度为v A=10m/s,B车在后,速度v B=30m/s。
因大雾能见度低,B车在距A车600m时,才发现前方有A车。
这时B车立即刹车,作匀减速直线运动,但要经过1800m才能停止。
问:(1)A车若仍按原速前进,两车是否会相撞⊕若会相撞,将在何时发生⊕(2)B车在刹车的同时发出信号,A车司机在收到信号8s后加速前进,求A车的加速度多大时,才能避免事故发生?17.在某路口,一辆客车以a=4m/s2的加速度由静止启动,在同一时刻,一辆轿车以20m/s的恒定速度从客车旁边同向驶过并保持匀速行驶(不计车长),则:(1)客车什么时候追上轿车?客车追上轿车时距离路口多远?(2)在客车追上轿车前,两车的最大距离是多少?18.随着“共享单车”的普及,越来越多的人骑着单车去上班,某人骑“小黄车”以5m/s的速度匀速前进,某时刻在他正前方8m处以12m/s的速度同向行驶的汽车开始关闭发动机,然后以大小为2m/s2的加速度匀减速前进,求此人需多长时间才能追上汽车?19.甲乙两物体在同一条直线上同时同地同向运动,甲初速度为12m/s,,由于摩擦做匀减速直线运动,加速度大小为4m/s2;乙做初速度为零,加速度为2m/s2的匀加速直线运动。
求:(1)乙追上甲之前,何时甲、乙两物体间距离最大,最大距离是多少?(2)乙经过多长时间追上甲。
20.2018年9月,受台风影响,江苏多地暴雨,严重影响了道路交通安全.某高速公路同一直线车道上同向匀速行驶的轿车和货车,其速度大小分别为v1=32m/s,v2= 20m/s,轿车在与货车距离x0=16m时才发现前方有货车,若此时轿车只是立即刹车,则轿车要经过s=128m才停下来.两车可视为质点,求:(1)轿车刹车后减速运动的加速度大小;(2)若轿车刹车时货车以v2匀速行驶,通过计算分析两车是否会相撞;(3)若轿车在刹车的同时给货车发信号,货车司机经t0=1s收到信号并立即以大小a2=4m/s2的加速度加速前进,两车间的最小距离是多少?21.相距d=170m的两物体在同一水平直线上相向运动,初速度分别为v1=10m/s,v2=2m/s,均做加速度大小相等的匀减速运动直至停止,经过20s,两物体相遇,求两物体相遇时的速度.某同学解答过程如下:at2)+设物体的加速度大小为a,相遇时,两物体位移大小之和为d,有d=(v1t−12 at2)(v2t−12代入数据得a的大小,再由运动学公式v t=v0+at求得两物块相遇时的速度.你认为上述解法是否正确?若正确,根据上述过程列式求出结果;若不正确,指出错误原因并求出正确结果.22.一辆执勤的警车停在公路边,当警员发现从他旁边以v=10m/s的速度匀速行驶的摩托车有违章行为时,立即决定前去追赶;经t0=1s警车发动起来,以加速度a= 2m/s2做匀加速直线运动,试问:(1)在警车追上摩托车之前,两车经过多长时间相距最远?(2)在警车追上摩托车之前,两车间的最大距离是多少?(3)若警车能达到的最大速度为v max=12m/s,警车发动起来后要多长的时间才能追上摩托车?23.A,B两物体在同一直线上运动,当它们相距S0=7m时,A以v A=4m/s的速度向右做匀速运动,而物体B此时速度v B=10m/s向右,以a=−2m/s2做匀减速运动直到停止.(1)经过2s,B发生的位移是多大?(2)经过多长时间A追上B?(3)若v A=8m/s,则又经多长时间A追上B?24.汽车从静止开始以a=1m/s2的加速度前进,车后与车相距x0=25m处,某人同时开始以6m/s的速度匀速追车.⑴经过多长时间汽车的速度达到6m/s?⑴试判断人能否追上车?⑴若人能追上车,则求经过多长时间人才追上车;若人不能追上车,求人、车间的最小距离.25.一辆汽车向悬崖匀速驶近时鸣喇叭,经t1=8s后听到来自悬崖的回声;再前进t2=27s,第二次鸣喇叭,经t3=6s又听到回声。