直线的倾斜角斜率和方程练习题

合集下载

直线的倾斜角与斜率(含答案)

直线的倾斜角与斜率(含答案)

直线的倾斜角与斜率(含答案)一、单选题1.经过点A ( 3,-2)和B (0,1)的直线l 的倾斜角α为( )A .30°B .60°C .120°D .150°2.已知直线l 1: 3+m x +4y =5−3m ,l 2:2x + 5+m y =8平行,则实数m 的值为()A .−7B .−1C .−1或−7D .1333.已知直线l 1:x +my +7=0和l 2:(m −2)x +3y +2m =0互相平行,则实数m =( )A .m =−3B .m =−1C .m =−1或3D .m =1或m =−3 4.已知1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F ∆的内切圆半径为1r ,12BF F ∆的内切圆半径为2r ,若122r r =,则直线l 的斜率为()A .1BC .2D .5.已知集合A ={(x ,y )|x +a 2y +6=0},集合B ={(x ,y )|(a -2)x +3ay +2a =0},若A ∩B =Ø,则a 的值是( )A .3B .0C .-1D .0或-16.直线x+6y+2=0在x 轴和y 轴上的截距分别是( )A .2,13B .-2,−13C .−12,-3D .-2,-3 7.已知两直线1:230l x y -+=,2:210l mx y ++=平行,则m 的值是()A .4-B .1-C .1D .48.已知坐标平面内三点P(3,-1),M(6,2),N − ,直线l 过点P.若直线l 与线段MN 相交,则直线l 的倾斜角的取值范围()A . 450,1500B . 450,1350C . 600,1200D . 300,6009.直线1y =+的倾斜角为()A .30︒B .60︒C .150︒D .120︒二、填空题10.设直线l 1:(a +1)x +3y +2−a =0,直线l 2:2x +(a +2)y +1=0.若l 1⊥l 2,则实数a 的值为______,若l 1∥l 2,则实数a 的值为_______.11.直线l 1:x +2y −4=0与l 2:mx + 2−m y −1=0平行,则实数m =________.12.线2cos α•x﹣y ﹣1=0,α∈[π6,23π]的倾斜角θ的取值范围是__________13.直线x + 3y +1=0的倾斜角的大小是_________.14.若直线l 1:ax +2y =8与直线l 2:x +(a +1)y +4=0平行,则a =__________.15.已知点P 2,−3 ,Q 3,2 ,直线ax +y +2=0与线段PQ 相交,则实数a 的取值范围是____;16.若x ,y 满足约束条件 x −y +2≥0,2x +y −3≤0,y ≥1,则y +1x +2的最小值为__________.17.直线ax +(a −1)y +1=0与直线4x +ay −2=0互相平行,则实数a =________.18.直线x +2y +2=0与直线ax −y +1=0互相垂直,则实数a 等于________.三、解答题19.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,060,,BAD E F ∠=分别为,PA BD 的中点,2.PA PD AD ===(1)证明://EF 平面PBC ;(2)若PB =A DEF -的体积.20.已知直线1:220l x y ++=;2:40l mx y n ++=.(1)若12l l ⊥,求m 的值.(2)若12//l l ,且他们的距离为,求,m n 的值.21.已知直线l 经过点()P 2,5-,且斜率为 (1)求直线l 的方程.(2)求与直线l平行,且过点()2,3的直线方程.(3)求与直线l垂直,且过点()2,3的直线方程.22.已知椭圆C的方程为x2a2+y2b2=1a>b>0,P1,22在椭圆上,椭圆的左顶点为A,左、右焦点分别为F1、F2,△PAF1的面积是△POF2的面积的2−1倍.(1)求椭圆C的方程;(2)直线y=kx(k>0)与椭圆C交于M,N,连接MF1,NF1并延长交椭圆C于D,E,连接DE,指出k DE与k之间的关系,并说明理由.23.已知直线l:kx−y+1+2k=0(k∈R)(1))若直线l不经过第四象限,求k的取值范围;(2)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.24.已知直线l1:x+my+6=0,l2:( m−2 ) x+3y+2m=0.求当m为何值时,l1,l2 (1) 平行;(2) 相交;(3) 垂直.25.已知直线l1:x−y+1=0,l2:(a−1)x+ay+12=0.(1)若l1//l2,求实数a的值;(2)在(1)的条件下,设l1,l2与x轴的交点分别为点A与点B,平面内一动点P到点A 和点B的距离之比为P的轨迹方程E.26.已知椭圆x2a2+y2b2=1(a>b>0)的焦距为2,离心率为22,右顶点为A.(I)求该椭圆的方程;(II)过点D(2,−2)作直线PQ交椭圆于两个不同点P、Q,求证:直线AP,AQ的斜率之和为定值.27.已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4,且椭圆C与圆M:(x−3)2+y2=34的公共弦长为(1)求椭圆C的方程(2)椭圆C的左右两个顶点分别为A1,A2,直线l:y=kx+1与椭圆C交于E,F两点,且满足k A1F =2k A2E,求k的值.参考答案1.C【解析】分析:先由直线的斜率公式求出直线的斜率,再根据倾斜角的范围及倾斜角的正切值等于斜率,求得倾斜角的值.详解:由直线的斜率公式得,经过点A(,-2)和B(0,1)的直线l的斜率为0−3=-,又倾斜角大于或等于0°小于180°,倾斜角的正切值等于-3,故倾斜角等于120°,故选C.点睛:本题考查直线的斜率公式以及倾斜角的范围、倾斜角与斜率的关系.2.A【解析】【分析】对x,y的系数分类讨论,利用两条直线平行的充要条件即可判断出.【详解】当m=﹣3时,两条直线分别化为:2y=7,x+y=4,此时两条直线不平行;当m=﹣5时,两条直线分别化为:x﹣2y=10,x=4,此时两条直线不平行;当m≠﹣3,﹣5时,两条直线分别化为:y=−3+m4x+5−3m4,y=−25+mx+85+m,∵两条直线平行,∴−3+m4=−25+m,5−3m4≠85+m,解得m=﹣7.综上可得:m=﹣7.故选:A.【点睛】本题考查了分类讨论、两条直线平行的充要条件,属于基础题.3.C【解析】【分析】根据直线平行充要关系得等式,解得结果.【详解】由题意得1m−2=m3≠72m∴m=−1或3,选C.【点睛】本题考查直线平行位置关系,考查基本转化求解能力,属基础题.4.D【解析】设12AF F ∆的内切圆圆心为1,I ,12BF F ∆的内切圆圆心为2,I ,边1212A F A F F F 、、上的切点分别为M N E 、、,易见1I E 、横坐标相等,则1122AM AN F M F E F N F E ===,,,由122AF AF a -=, 即122AM MF AN NF a +-+=(),得122MF NF a -=,即122F E F E a -=,记1I 的横坐标为0x ,则00E x (,),于是002x c c x a +--=(),得0x a =,同理内心2I 的横坐标也为a ,则有12I I x ⊥轴,设直线的倾斜角为θ,则22129022OF I I F O θθ∠=∠=︒-,,则211212221tan ,tan tan 90222tan 2r r I F O r r F E F E θθθ⎛⎫=∠=︒-=== ⎪⎝⎭ ,222tan 12tan ,tan tan 22221tan 2θθθθθ∴==∴==- 故选D.5.D 【解析】A B ?⋂=,即直线()212602320l x a y l a x ay a :++=与:-++=平行, 令()2132a a a ⨯=-,解得01a a =或=-或3a =.0a =时,l 1:x +6=0,l 2:x =0,l 1∥l 2.a =-1时,l 1:x +y +6=0,l 2:-3x -3y -2=0.l 1∥l 2.a =3时,l 1:x +9y +6=0,l 2:x +9y +6=0,l 1与l 2重合,不合题意.∴a =0或a =-1.答案:D.点睛:本题考查两条直线平行的判定;已知两直线的一般式判定两直线平行或垂直时,若化成斜截式再判定往往要讨论该直线的斜率是否存在,容易出错,可记住以下结论进行判定: 已知直线1111:0l A x B y C ++=,2222:0l A x B y C ++=,(1)121221//0l l A B A B ⇔-=且12210AC A C -≠;(2))1212120l l A A B B ⊥⇔+=.6.B【解析】【分析】可分别令x =0,y =0,求出相应的y 和x 的值,即为相应坐标轴上的截距.【详解】令x =0,解得:y =−13,即为y 轴上截距; 令y =0,解得:x =−2,即为x 轴上截距.故选B.【点睛】本题考查截距的求法,即直线分别与x 轴、y 轴交点的横坐标和纵坐标,根据坐标轴上点的特点将0代入即可.7.A【解析】由两直线1:230l x y -+=,2:210l mx y ++=平行可得,斜率相等,截距不相等,即22m =-且132≠-,解得4m =-,故选A. 8.A【解析】【分析】先由P (3,﹣1),N (﹣ 3, 3),M (6,2),求得直线NP 和MP 的斜率,再根据直线l 的倾斜角为锐角或钝角加以讨论,将直线l 绕P 点旋转并观察倾斜角的变化,由直线的斜率公式加以计算,分别得到直线l 斜率的范围,进而得到直线l 的倾斜角的取值范围.【详解】∵P (3,﹣1),N (﹣ 3, 3),∴直线NP 的斜率k 1= 3+1− 3−3=﹣ 33.同理可得直线MP 的斜率k 2=2+16−3=1.设直线l 与线段AB 交于Q 点,当直线的倾斜角为锐角时,随着Q 从M 向N 移动的过程中,l 的倾斜角变大,l 的斜率也变大,直到PQ 平行y 轴时l 的斜率不存在,此时l 的斜率k ≥1;当直线的倾斜角为钝角时,随着l 的倾斜角变大,l 的斜率从负无穷增大到直线NP 的斜率,此时l 的斜率k ≤﹣ 33.可得直线l 的斜率取值范围为:(﹣∞,﹣ 33]∪[1,+∞).∴直线l 的倾斜角的取值范围 450,1500故选:A .【点睛】本题给出经过定点P 的直线l 与线段MN 有公共点,求l 的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.9.B【解析】设倾斜角为θ,直线1y =+tan θ=60θ=︒,故选B .10.−85−4 【解析】分析:由题意得到关于a 的方程或方程组,据此求解方程即可求得最终结果. 详解:若l 1⊥l 2,则:2 a +1 +3 a +2 =0,整理可得:5a +8=0,求解关于实数a 的方程可得:a =−85. 若l 1∥l 2,则a +12=3a +2≠2−a 1,据此可得:a =−4.点睛:本题主要考查直线垂直、平行的充分必要条件,意在考查学生的转化能力和计算求解能力.11.23【解析】【分析】由直线的平行关系可得1× 2−m −2m =0,解之可得答案【详解】∵直线l1:x+2y−4=0与l2:mx+2−m y−1=0平行,∴1×2−m−2m=0,解得m=23故答案为23【点睛】本题主要考查的是直线的与直线的平行关系,继而求得斜率与斜率之间的关系,属于基础题。

(完整版)直线倾斜角与斜率经典例题(有答案精品)

(完整版)直线倾斜角与斜率经典例题(有答案精品)

直线的倾斜角与斜率(20131125)讲义类型一:倾斜角与斜率的关系1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;【变式】直线的倾斜角的范围是( )A.B.C.D.类型二:斜率定义2.已知△ABC为正三角形,顶点A在x轴上,A在边BC的右侧,∠BAC的平分线在x轴上,求边AB与AC所在直线的斜率.【变式1】如图,直线的斜率分别为,则( )A.B.C.D.类型三:斜率公式的应用3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.【变式1】过两点,的直线的倾斜角为,求的值.【变式2】为何值时,经过两点(-,6),(1,)的直线的斜率是12.4.已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值.【变式1】已知,,三点,这三点是否在同一条直线上,为什么?【变式2】已知直线的斜率,,,是这条直线上的三个点,求和的值.类型四:两直线平行与垂直5.四边形的顶点为,,,,试判断四边形的形状.【变式1】已知四边形的顶点为,,,,求证:四边形为矩形.【变式2】已知,,三点,求点,使直线,且.【变式3】若直线与直线互相垂直,则实数=__________.直线的倾斜角与斜率(20131125)作业姓名成绩题组一直线的倾斜角1.已知直线l过点(m,1),(m+1,tanα+1),则()A.α一定是直线l的倾斜角B.α一定不是直线l的倾斜角C.α不一定是直线l的倾斜角D.180°-α一定是直线l的倾斜角2.如图,直线l经过二、三、四象限,l的倾斜角为α,斜率为k,则()A.k sinα>0B.k cosα>0 C.k sinα≤0D.k cosα≤0题组二直线的斜率及应用3.12312<k3,则下列说法中一定正确的是()A.k1k2=-1 B.k2k3=-1 C.k1<0 D.k2≥04.已知a>0,若平面内三点A(1,-a),B(2,a2),C(3,a3)共线,则a=________.5.已知两点A(-1,-5),B(3,-2),若直线l的倾斜角是直线AB倾斜角的一半,则l的斜率是________.题组三两条直线的平行与垂直6已知两条直线l1:ax+by2bm是直线l1∥l2的 ()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知直线a2x+y+2=0与直线bx-(a2+1)y-1=0互相垂直,则|ab|的最小值为()A.5 B.4 C.2 D.18.已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则a b为 ( ) A.23 B .-23 C.13 D .-139.设直线l 1的方程为x +2y -2=0,将直线l 1绕原点按逆时针方向旋转90°得到直线l 2,则l 2的方程是________________.10.若关于x 的方程|x -________.11.已知点A (2,3),B (-5,2),若直线l 过点P (-1,6),且与线段AB 相交,则该直线倾斜角的取值范围是________.12.已知点M (2,2),N (5,-2),点P 在x 轴上,分别求满足下列条件的P 点坐标.(1)∠MOP =∠OPN (O 是坐标原点).(2)∠MPN 是直角.直线的倾斜角与斜率(20131125)讲义答案类型一:倾斜角与斜率的关系1.已知直线的倾斜角的变化范围为,求该直线斜率的变化范围;思路点拨:已知角的范围,通过正切函数的图像,可以求得斜率的范围,反之,已知斜率的范围,通过正切函数的图像,可以求得角的范围解析:∵,∴.总结升华:在知道斜率的取值范围求倾斜角的取值范围,或知道倾斜角的取值范围求斜率的取值范围时,可利用在和上是增函数分别求解.当时,;当时,;当时,;当不存在时,.反之,亦成立.举一反三:【变式】(2010山东潍坊,模拟)直线的倾斜角的范围是A.B.C.D.【答案】B解析:由直线,所以直线的斜率为.设直线的倾斜角为,则.又因为,即,所以.类型二:斜率定义2.已知△ABC为正三角形,顶点A在x轴上,A在边BC的右侧,∠BAC的平分线在x轴上,求边AB与AC所在直线的斜率.思路点拨:本题关键点是求出边AB与AC所在直线的倾斜角,利用斜率的定义求出斜率.解析:如右图,由题意知∠BAO=∠OAC=30°∴直线AB的倾斜角为180°-30°=150°,直线AC的倾斜角为30°,∴k AB=tan150°=k AC=tan30°=总结升华:在做题的过程中,要清楚倾斜角的定义中含有的三个条件①直线向上方向②轴正向③小于的角,只有这样才能正确的求出倾斜角.举一反三:【变式1】如图,直线的斜率分别为,则( )A.B.C.D.【答案】由题意,,则本题选题意图:对倾斜角变化时,如何变化的定性分析理解.∴选B.类型三:斜率公式的应用3.求经过点,直线的斜率并判断倾斜角为锐角还是钝角.思路点拨:解析:且,经过两点的直线的斜率,即.即当时,为锐角,当时,为钝角.总结升华:本题求出,但的符号不能确定,我们通过确定的符号来确定的符号.当时,,为锐角;当时,,为钝角.举一反三:【变式1】过两点,的直线的倾斜角为,求的值.【答案】由题意得:直线的斜率,故由斜率公式,解得或.经检验不适合,舍去.故.【变式2】为何值时,经过两点(-,6),(1,)的直线的斜率是12.【答案】,.即当时,,两点的直线的斜率是12.4.已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值.思路点拨:如果过点AB,BC的斜率相等,那么A,B,C三点共线.解析:∵A、B、C三点在一条直线上,∴k AB=k AC.总结升华:斜率公式可以证明三点共线,前提是他们有一个公共点且斜率相等.举一反三:【变式1】已知,,三点,这三点是否在同一条直线上,为什么?【答案】经过,两点直线的斜率.经过,两点的直线的斜率.所以,,三点在同一条直线上.【变式2】已知直线的斜率,,,是这条直线上的三个点,求和的值.【答案】由已知,得;.因为,,三点都在斜率为2的直线上,所以,.解得,.类型四:两直线平行与垂直5.四边形的顶点为,,,,试判断四边形的形状.思路点拨:证明一个四边形为矩形,我们往往先证明这个四边形为平行四边形,然后再证明平行四边形的一个角为直角.解析:边所在直线的斜率,边所在直线的斜率,边所在直线的斜率,边所在直线的斜率.,,,,即四边形为平行四边形.又,,即四边形为矩形.总结升华:证明不重和的的两直线平行,只需要他们的斜率相等,证明垂直,只需要他们斜率的乘积为-1.举一反三:【变式1】已知四边形的顶点为,,,,求证:四边形为矩形.【答案】由题意得边所在直线的斜率.边所在直线的斜率,边所在直线的斜率,边所在直线的斜率,则;.所以四边形为平行四边形,又因为,,即平行四边形为矩形.已知,,三点,求点,使直线,且.【答案】设点的坐标为,由已知得直线的斜率;直线的斜率;直线的斜率;直线的斜率.由,且得解得,.所以,点的坐标是.【变式3】(2011浙江12)若直线与直线互相垂直,则实数=__________.【答案】因为直线与直线互相垂直,所以,所以.直线的倾斜角与斜率(20131125)作业答案姓名 成绩题组一 直线的倾斜角1.已知直线l 过点(m,1),(m +1, ( )A .α一定是直线l 的倾斜角B .α一定不是直线l 的倾斜角C .α不一定是直线l 的倾斜角D .180°-α一定是直线l 的倾斜角解析:设θ为直线l 的倾斜角,则tan θ=tan α+1-1m +1-m=tan α, ∴α=kπ+θ,k ∈Z ,当k ≠0时,θ≠α.答案:C2.如图,直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则 ( )A .k sin α>0B .k cos α>0C .k sin α≤0D .k cos α≤0解析:显然k <0,π2<α<π, ∴cos α<0,∴k cos α>0.答案:B题组二 直线的斜率及应用3.12312<k 3,则下列说法中一定正确的是 ( )A .k 1k 2=-1B .k 2k 3=-1C .k 1<0D .k 2≥0解析:结合图形知,k 1<0.答案:C4.(2008·浙江高考)已知a >0,若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a =________. 解析:∵A 、B 、C 三点共线,∴k AB =k BC ,即a 2+a 2-1=a 3-a 23-2,又a >0,∴a =1+ 2. 答案:1+ 25.已知两点A (-1,-5),B (3,-2),若直线l 的倾斜角是直线AB 倾斜角的一半,则l 的斜率是________. 解析:设直线AB 的倾斜角为2α,则直线l 的倾斜角为α,由于0°≤2α<180°,∴0° ≤α<90°,由tan2α=-2-(-5)3-(-1)=34,得tan α=13,即直线l 的斜率为13. 答案:136.(2009·陕西八校模拟)12+p =0,则an =bm 是直线l 1∥l 2的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵l 1∥l 2⇒an -bm =0,且an -bm =0⇒/ l 1∥l 2,故an =bm 是直线l 1∥l 2的必要不充分条件.答案:B7.(2009·福建质检)已知直线a 2x +y +2=0与直线bx -(a 2+1)y -1=0互相垂直,则|ab |的最小值为( )A .5B .4C .2D .1解析:由题意知,a 2b -(a 2+1)=0且a ≠0,∴a 2b =a 2+1,∴ab =a 2+1a =a +1a, ∴|ab |=|a +1a |=|a |+1|a |≥2.(当且仅当a =±1时取“=”). 答案:C8.(2010·合肥模拟)已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则a b为 ( )A.23 B .-23 C.13 D .-13解析:曲线y =x 3在点P (1,1)处的切线斜率为3,所以a b =-13. 答案:D9.(2009·泰兴模拟)设直线l 1的方程为x +2y -2=0,将直线l 1绕原点按逆时针方向旋转90°得到直线l 2,则l 2的方程是________________.解析:∵l 1⊥l 2,k 1=-12,∴k 2=2,又点(0,1)在直线l 1上,故点(-1,0)在直线l 2上,∴直线l 2的方程为y =2(x +1),即2x -y +2=0.答案:2x -y +2=0题组四 直线的倾斜角和斜率的综合问题10.若关于x 的方程|x -1|-kx =0有且只有一个正实数根,则实数k 的取值范围是________.解析:数形结合.在同一坐标系内画出函数y =kx ,y =|x -1|的图象如图所示,显然k ≥1或k =0时满足题意.答案:k ≥1或k =011.(2009·青岛模拟)已知点A (2,3),B (-5,2),若直线l 过点P (-1,6),且与线段AB 相交,则该直线倾斜角的取值范围是________.解析:如图所示,k P A =6-3-1-2=-1, ∴直线P A 的倾斜角为3π4, k PB =6-2-1-(-5)=1, ∴直线PB 的倾斜角为π4, 从而直线l 的倾斜角的范围是[π4,3π4]. 答案:[π4,3π4] 12.已知点M (2,2),N (5,-2),点P 在x 轴上,分别求满足下列条件的P 点坐标.(1)∠MOP =∠OPN (O 是坐标原点).(2)∠MPN 是直角.解:设P (x,0),(1)∵∠MOP =∠OPN ,∴OM ∥NP .∴k OM =k NP .又k OM =2-02-0=1,k NP =0-(-2)x -5=2x -5(x ≠5), ∴1=2x -5,∴x =7, 即P 点坐标为(7,0).(2)∵∠MPN =90°,∴MP ⊥NP , ∴k MP ·k NP =-1.又k MP =22-x (x ≠2),k NP =2x -5(x ≠5), ∴22-x ×2x -5=-1,解得x =1或x =6, 即P 点坐标为(1,0)或(6,0).。

直线的倾斜角、斜率与直线的方程

直线的倾斜角、斜率与直线的方程

直线的倾斜角、斜率与直线的方程A 级——夯基保分练1.(2019·河北衡水十三中质检)直线2x ·sin 210°-y -2=0的倾斜角是( ) A .45° B .135° C .30°D .150°解析:选B 由题意得直线的斜率k =2sin 210°=-2sin 30°=-1,故倾斜角为135°.故选B.2.在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )解析:选B 由题意l 1:y =-ax -b ,l 2:y =-bx -a ,当a >0,b >0时,-a <0,-b <0.选项B 符合.3.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为( )A .1B .2C .4D .8解析:选C ∵直线ax +by =ab (a >0,b >0)过点(1,1), ∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab≥2+2b a ·ab=4, 当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.4.已知直线l :x -my +3m =0上存在点M 满足与A (-1,0),B (1,0)两点连线的斜率k MA 与k MB 之积为3,则实数m 的取值范围是( )A .[-6, 6 ] B.⎝⎛⎭⎫-∞,-66∪⎝⎛⎭⎫66,+∞ C.⎝⎛⎦⎤-∞,-66∪⎣⎡⎭⎫66,+∞ D.⎣⎡⎦⎤-22,22解析:选C 设M (x ,y ),由k MA ·k MB =3,得y x +1·yx -1=3,即y 2=3x 2-3.联立⎩⎨⎧x -my +3m =0,y 2=3x 2-3,得⎝⎛⎭⎫1m 2-3x 2+23m x +6=0(m ≠0),则Δ=⎝⎛⎭⎫23m 2-24⎝⎛⎭⎫1m 2-3≥0,即m 2≥16,解得m ≤-66或m ≥66.∴实数m 的取值范围是⎝⎛⎦⎤-∞,-66∪⎣⎡⎭⎫66,+∞.5.(多选)若直线过点A (1,2),且在两坐标轴上截距的绝对值相等,则直线l 方程可能为( )A .x -y +1=0B .x +y -3=0C .2x -y =0D .x -y -1=0解析:选ABC 当直线经过原点时,斜率为k =2-01-0=2,所求的直线方程为y =2x ,即2x -y =0;当直线不过原点时,设所求的直线方程为x ±y =k ,把点A (1,2)代入可得1-2=k 或1+2=k ,求得k =-1或k =3,故所求的直线方程为x -y +1=0或x +y -3=0;综上知,所求的直线方程为2x -y =0,x -y +1=0或x +y -3=0.故选A 、B 、C.6.(多选)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形的直线方程为( ) A .x -y +1=0 B .x +y -7=0 C .2x -y -2=0D .2x +y -10=0解析:选AB 由题意可知,所求直线的斜率为±1.又过点(3,4),由点斜式得y -4=±(x -3).所求直线的方程为x -y +1=0或x +y -7=0.7.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为________________.解析:由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0. 答案:4x -3y -4=08.过点(-10,10)且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为________________.解析:当直线经过原点时,此时直线的方程为x +y =0,满足题意.当直线不经过原点时,设直线方程为x 4a +y a =1,把点(-10,10)代入可得a =152,故直线方程为x 30+2y15=1,即x+4y -30=0.综上所述,所求直线方程为x +y =0或x +4y -30=0.答案:x +y =0或x +4y -30=09.(一题两空)已知实数x ,y 满足y =x 2-2x +2(-1≤x ≤1),则y +3x +2的最大值为________,最小值为________.解析:如图,作出y =x 2-2x +2(-1≤x ≤1)的图象(曲线段AB ),则y +3x +2表示定点P (-2,-3)和曲线段AB 上任一点(x ,y )的连线的斜率k ,连接P A ,PB ,则k P A ≤k ≤k PB .易得A (1,1),B (-1,5),所以k P A =1-(-3)1-(-2)=43,k PB =5-(-3)-1-(-2)=8,所以43≤k ≤8,故y +3x +2的最大值是8,最小值是43.答案:8 4310.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,则直线AB 的方程为____________________________.解析:由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0. 答案:(3+3)x -2y -3-3=011.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4); (2)斜率为16.解:(1)由题意知,直线l 存在斜率. 设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b ,则直线l 的方程为y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.12.已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA ―→|·|MB ―→|取得最小值时直线l 的方程.解:设A (a,0),B (0,b ),则a >0,b >0,直线l 的方程为x a +yb =1,所以2a +1b=1.|MA ―→|·|MB ―→|=-MA ―→·MB ―→=-(a -2,-1)·(-2,b -1) =2(a -2)+b -1=2a +b -5 =(2a +b )⎝⎛⎭⎫2a +1b -5 =2b a +2ab≥4, 当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0.B 级——提能综合练13.已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为( )A.π4B.π3C.2π3D.3π4解析:选D 由f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x 知,函数f (x )的图象关于x =π4对称,所以f (0)=f ⎝⎛⎭⎫π2,所以-b =a ,则直线ax -by +c =0的斜率为k =ab =-1,又直线倾斜角的取值范围为[0,π),所以该直线的倾斜角为3π4,故选D.14.已知点P 在直线x +3y -2=0上,点Q 在直线x +3y +6=0上,线段PQ 的中点为M (x 0,y 0),且y 0<x 0+2,则y 0x 0的取值范围是________.解析:依题意可得|x 0+3y 0-2|10=|x 0+3y 0+6|10,化简得x 0+3y 0+2=0,又y 0<x 0+2,k OM=y 0x 0,在坐标轴上作出两直线,如图,当点M 位于线段AB (不包括端点)上时,k OM >0,当点M 位于射线BN 上除B 点外时,k OM <-13.所以y 0x 0的取值范围是⎝⎛⎭⎫-∞,-13∪(0,+∞).答案:⎝⎛⎭⎫-∞,-13∪(0,+∞) 15.已知射线l 1:y =4x (x ≥0)和点P (6,4),试在l 1上求一点Q 使得PQ 所在直线l 和l 1以及直线y =0在第一象限围成的面积达到最小值,并写出此时直线l 的方程.解:设点Q 坐标为(a,4a ),PQ 与x 轴正半轴相交于M 点. 由题意可得a >1,否则不能围成一个三角形. PQ 所在的直线方程为y -4=4a -4a -6(x -6),令y =0,x =5aa -1,因为a >1,所以S △OQM =12×4a ×5aa -1,则S △OQM =10a 2a -1=10⎝ ⎛⎭⎪⎫a 2-2a +1+2a -2+1a -1=10⎣⎡⎦⎤(a -1)+1a -1+2≥40,当且仅当(a -1)2=1时取等号. 所以a =2时,Q 点坐标为(2,8), 所以此时直线l 的方程为x +y -10=0.C 级——拔高创新练16.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1, 则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k ≥0,故k 的取值范围是[)0,+∞.(3)依题意,直线l 在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k ,∴A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.。

高中数学 直线的倾斜角与斜率(常见例题 考题 练习)附答案

高中数学 直线的倾斜角与斜率(常见例题 考题 练习)附答案

直线的倾斜角与斜率、直线方程知识点1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角。

当直线l 与x 轴平行或重合时,规定它的倾斜角为0°。

(2)范围:直线l 倾斜角的范围是[0,π)。

2.直线的斜率(1)定义:若直线的倾斜角θ不是90°,则斜率k =tan θ。

(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1。

3.直线方程的五种形式基础专练一 、走进教材1.直线l :x sin30°+y cos150°+1=0的斜率是( )A.33B.3 C .- 3 D .-332. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线方程为( )A .4x +2y -5=0B .4x -2y -5=0C .x +2y -5=0D .x -2y -5=0走进教材答案1.A ; 2. B ;二、查漏补缺1.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( )A .1B .4C .1或3D .1或42.直线x +3y +m =0(m ∈R )的倾斜角为( )A .30°B .60°C .150°D .120°3.已知直线l 过点P (-2,5),且斜率为-34,则直线l 的方程为( ) A .3x +4y -14=0 B .3x -4y +14=0 C .4x +3y -14=0 D .4x -3y +14=04.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为__________。

5.过点(-3,4),且在两坐标轴上的截距之和为12的直线方程是________。

查漏补缺答案5.4x -y +16=0或x +3y -9=0直击考点考点一 直线的倾斜角与斜率……母题发散【典例1】 (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( )A.⎣⎡⎦⎤π6,π3B.⎣⎡⎦⎤π4,π3C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________。

高一数学直线的倾斜角与斜率试题答案及解析

高一数学直线的倾斜角与斜率试题答案及解析

高一数学直线的倾斜角与斜率试题答案及解析1.直线的倾斜角为.【答案】【解析】设直线的倾斜角为,则.【考点】直线的倾斜角.2.已知一条直线过点(3,-2)与点(-1,-2),则这条直线的倾斜角是().A.B.C.D.【答案】A【解析】直线过点与,直线的斜率,则直线的倾斜角为.【考点】直线的斜率、倾斜角.3.已知若直线:与线段PQ的延长线相交,则的取值范围是 .【答案】【解析】直线的方程为,显然经过定点,过点M作直线,显然的斜率,过M、Q作直线的斜率为,依题意,应夹在直线与之间,即于是,即。

【考点】(1)斜率公式的应用;(2)数形结合思想的应用。

4.直线的倾斜角的大小为。

【答案】【解析】,所以倾斜角为.【考点】1.直线方程;2.倾斜角和斜率.5.经过点的直线的斜率等于1,则m的值为()A.1B.4C.1或3D.1或4【答案】A【解析】由题意可知,性的判断与证得m=1,故选A.【考点】直线斜率公式.6.过点(-3,0)和点(-4,)的直线的倾斜角是()A.30°B.150°C.60D.120°【答案】D【解析】因为,,所以,直线的倾斜角是120°,选D。

【考点】直线的斜率、倾斜角点评:简单题,利用斜率的坐标计算公式求得倾斜角的正切。

7.若直线经过A(-2,9)、B(6,-15)两点,则直线AB的倾斜角是( )A.45°B.60°C.120°D.135°【答案】C【解析】设直线AB的倾斜角是θ,由直线的斜率公式得k="tan" θ=,再根据倾斜角的范围求出倾斜角的大小。

解:设直线AB的倾斜角是θ,由直线的斜率公式得k=tanθ==又0≤θ<π,θ=120°,故选 C.【考点】直线的倾斜角和斜率点评:本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小.求出斜率tanθ是解题的关键8.如图,若图中直线1,2,3的斜率分别为k1, k2, k3,则A.k1<k2<k3B.k3<k1<k2C.k3<k2<k1D.k1<k3<k2【答案】B【解析】由于直线L2、L1的倾斜角都是锐角,且直线L2的倾斜角大于直线L1的倾斜角,可得 K2>K1>0.由于直线L3、的倾斜角为钝角,K3<0,由此可得结论.k3<k1<k2,,故可知选B.【考点】直线的倾斜角和斜率点评:本题主要考查直线的倾斜角和斜率的关系,属于基础题.9.直线的倾斜角是()A.300B.600C.1200D.1350【答案】C【解析】由于直线的斜率为,那么根据倾斜角和斜率的关系可知,tanθ=,那么可知角为1200,故选C.【考点】直线的倾斜角和斜率的关系点评:本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小,求出tanθ=,是解题的关键10.已知点,,则直线的倾斜角是.【答案】【解析】直线垂直于x轴,倾斜角为【考点】直线斜率与倾斜角点评:若则直线的斜率为,倾斜角满足11.(本小题满分6分)求经过两条直线和的交点,并且与直线垂直的直线方程的一般式.【答案】【解析】由解得,则两直线的交点为………2分直线的斜率为,则所求的直线的斜率为……………4分故所求的直线为即………………6分【考点】本题考查了直线的位置关系及直线方程的求法点评:熟练运用直线的位置关系求直线方程是解题的关键12.直线的倾斜角是( )A.150oB.135oC.120oD.30o【答案】A【解析】解:因为直线,故倾斜角是150o,选A13..过点P(-2,m)和Q(m,4)的直线的斜率等于1,则m的值为.【答案】1【解析】由斜率公式可知,所以m=1.14.如果直线l沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是 .【答案】【解析】设直线l的方程为y=kx+b,由题意知平移后直线方程为y=k(x+3)+b+1,即y=kx+3k+b+1,由于直线平移后还回到原来的位置,所以3k+b+1=b,所以15.直线的倾斜角等于__________.【答案】【解析】直线的斜率为,则倾斜角满足即直线的倾斜角为.16.直线的倾斜角是()A.30°B.120°C.60°D.150°【答案】A【解析】17.倾斜角为135°,在轴上的截距为的直线方程是()A.B.C.D.【答案】D【解析】直线斜率为所以直线方程为故选D18.直线的倾斜角是()A B C D【答案】C【解析】略19.已知点. 若直线与线段相交,则的取值范围是_____________.【答案】[-2,2]【解析】略20.以下直线中,倾斜角是的是()..【答案】C【解析】略21.已知点,若直线过点与线段相交,则直线的斜率的取值范围是A.B.C.D.【答案】C【解析】略22.当时,如果直线的倾斜角满足关系式,则此直线方程的斜率为;【答案】【解析】略23.直线的倾斜角为,则的值为( )A.B.C.D.【答案】A【解析】略24.长方形OABC各点的坐标如图所示,D为OA的中点,由D点发出的一束光线,入射到边AB上的点E处,经AB、BC、CO依次反射后恰好经过点A,则入射光线DE所在直线斜率为【答案】【解析】如图:作关于的对称点,关于的对称点,关于的对称点,关于的对称点,则的延长线过完点,因为,所以根据对称性得,所以【考点】点关于线对称的点25.对于直线x sin+y+1=0,其斜率的取值范围是()A.B.C.D.【答案】B【解析】直线的斜率为,因此斜率的取值范围是[-1,1],答案选B.【考点】直线的一般方程与斜率26.如图所示,直线的斜率分别为,则的大小关系为(按从大到小的顺序排列).【答案】【解析】由图形可知,比的倾斜角大,所以【考点】斜率与倾斜角的关系27.已知三点在同一条直线上,则的值为()A.B.C.D.【答案】C【解析】确定的直线方程为,代入点得【考点】直线方程28.若图,直线的斜率分别为,则()A.B.C.D.【答案】C【解析】切斜角为钝角,斜率为负,切斜角为锐角,斜率为正,因为倾斜角大于倾斜角,所以【考点】直线倾斜角与斜率的关系29.直线经过点,且倾斜角范围是,则的范围是()A.B.C.D.【答案】C【解析】【考点】直线倾斜角与斜率的关系30.已知三点在同一条直线上,则的值为()A.B.C.D.【答案】B【解析】确定的直线方程为,代入点得【考点】直线方程。

高三数学(文理)复习《直线的倾斜角与的斜率、直线方程》专题练(学生版)(无答案)

高三数学(文理)复习《直线的倾斜角与的斜率、直线方程》专题练(学生版)(无答案)

《直线的倾斜角与斜率、直线的方程》专题练专题1 直线的倾斜角与斜率1.1 求直线的倾斜角与斜率1.直线x +3y +1=0的倾斜角是2.直线3x -y +a =0(a 为常数)的倾斜角为3.直线x cos140°+y sin40°+1=0的倾斜角是4.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是5.若过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为6.若经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y 等于7.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为8.已知三点A (2,-3),B (4,3),C ⎝⎛⎭⎫5,k 2在同一条直线上,则k 的值为9. 若A (-2,3),B (3,-2),C ⎝⎛⎭⎫12,m 三点在同一条直线上,则m 的值为10.若平面内三点A (1,-a ),B (2,a 2),C (3,a 3)共线,则a 等于11.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为12.直线l 与两直线y =1,x -y -7=0分别交于P ,Q 两点,线段PQ 中点是(1,-1),则l 的斜率是________.13.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为14.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来位置,那么l的斜率为15.若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为16.已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为1.2 求直线的倾斜角与斜率的取值范围1.若过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是2.已知点(-1,2)和⎝⎛⎭⎫33,0在直线l :ax -y +1=0(a ≠0)的同侧,则直线l 倾斜角的取值范围是3.直线x sin α+y +2=0的倾斜角的范围是 4.直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( ) A.⎣⎡⎦⎤π6,π3 B .⎣⎡⎦⎤π4,π3 C.⎣⎡⎦⎤π4,π2 D .⎣⎡⎦⎤π4,2π35.直线x +(a 2+1)y +1=0的倾斜角的取值范围是6.如果直线l 经过A (2,1),B (1,m 2)(m ∈R)两点,那么直线l 的倾斜角α的取值范围是7.设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线的倾斜角α的取值范围是8.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 29.设直线l 的倾斜角为α,且π4≤α≤5π6,则直线l 的斜率k 的取值范围是________.10.若直线l 过点P (-3,2),且与以A (-2,-3),B (3,0)为端点的线段相交,则直线l 的斜率的取值范围是________.11.已知两点M (2,-3),N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是12.直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.13.已知直线l 过坐标原点,若直线l 与线段2x +y =8(2≤x ≤3)有公共点,则直线l 的斜率的取值范围是________.14.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的范围为⎣⎡⎦⎤0,π4,则点P 的横坐标的取值范围为专题2 直线方程1.倾斜角为135°,在y 轴上的截距为-1的直线方程是2.过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程是3.过点A (-1,-3),斜率是直线y =3x 的斜率的-14的直线方程是4.直线过点(-4,0),倾斜角的正弦值为1010的直线方程是5.已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为6.若直线经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半,则该直线的方程为7.一条直线经过点A (2,-3),并且它的倾斜角等于直线y =13x 的倾斜角的2倍,则这条直线的一般式方程是.8.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为9.过点(2,1)且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是10.直线过点(5,10),到原点的距离为5的直线方程是11.直线过点(-3,4),且在两坐标轴上的截距之和为12的直线方程是12.过点A (4,1)且在两坐标轴上的截距相等的直线方程是13.经过点M(1,1)且在两坐标轴上截距相等的直线方程是14.经过点P(3,2),且在两坐标轴上的截距相等的直线方程是15.过点M(3,-4),且在两坐标轴上的截距相等的直线的方程为________.16.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为______________.17.过点M(-3,5)且在两坐标轴上的截距互为相反数的直线方程为_________.18.直线l过点(-2,2)且与x轴、y轴分别交于点(a,0),(0,b),若|a|=|b|,则直线l的方程为__________ 19.若直线经过点A(-5,2),且在x轴上的截距等于在y轴上的截距的2倍,则该直线的方程为________.20.已知直线l过点P(1,3),且与x轴,y轴的正半轴所围成的三角形的面积等于6,则直线l的方程是21.一条直线经过点A(-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为________.22.过A(2,1),B(m,3)两点的直线l的方程为23.过直线l:y=x上的点P(2,2)作直线m,若直线l,m与x轴围成的三角形的面积为2,则直线m 的方程为24.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16.25.已知菱形ABCD 的顶点A ,C 的坐标分别为A (-4,7),C (6,-5),BC 边所在直线过点P (8,-1).求:(1)AD 边所在直线的方程;(2)对角线BD 所在直线的方程.26.如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.27.求过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点且|AB |=5的直线方程专题3 直线方程定点图像问题1.如果A ·C <0且B ·C <0,那么直线Ax +By +C =0不通过( )A .第一象限B .第二象限C .第三象限D .第四象限2.直线l 的方程为Ax -By -C =0,若A ,B ,C 满足AB >0且BC <0,则直线l 不经过的象限是() A .第一象限 B .第二象限 C .第三象限 D .第四象限3.直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( )A .ab >0,bc <0B .ab >0,bc >0C .ab <0,bc >0D .ab <0,bc <04.若3π2<α<2π,则直线x cos α+ysin α=1必不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.两直线x m -y n =a 与x n -y m =a (其中a 为不为零的常数)的图象可能是( )6.在同一平面直角坐标系中,直线l1:ax+y+b=0和直线l2:bx+y+a=0有可能是()7.直线l:(a-2)x+(a+1)y+6=0,则直线l恒过定点________.8.不论实数m为何值,直线mx-y+2m+1=0恒过定点.9.设点A(-2,3),B(3,2),若直线ax+y+2=0与线段AB没有交点,则a的取值范围是.10.已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S 的最小值及此时直线l的方程.专题4 直线方程的综合应用4.1 与基本不等式相结合求最值问题1.已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA→|·|MB →|取得最小值时直线l 的方程.2.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为4.2 由直线方程解决参数问题1.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是2.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( )A .m ≠-32B .m ≠0C .m ≠0且m ≠1D .m ≠13.若过点P (1-a,1+a )与Q (4,2a )的直线的倾斜角为钝角,且m =3a 2-4a ,则实数m 的取值范围是________.4.已知直线l:x-my+3m=0上存在点M满足与两点A(-1,0),B(1,0)连线的斜率k MA与k MB 之积为3,则实数m的取值范围是____________.5.已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时,直线l1,l2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a的值.6.直线x-2y+b=0与两坐标轴所围成的三角形的面积不大于1,那么b的取值范围是() A.[-2,2]B.(-∞,-2]∪[2,+∞) C.[-2,0)∪(0,2]D.(-∞,+∞)4.3 与直线方程有关的最值问题1.设点A(-1,0),B(1,0),直线2x+y-b=0与线段AB相交,则b的取值范围是2.已知直线x+a2y-a=0(a是正常数),当此直线在x轴,y轴上的截距和最小时,正数a的值是3.若直线ax+by=ab(a>0,b>0)过点(1,1),则该直线在x轴、y轴上的截距之和的最小值为________.4.已知动直线l0:ax+by+c-3=0(a>0,c>0)恒过点P(1,m),且Q(4,0)到动直线l0的最大距离为3,则12a+2c的最小值为.5.过点P(4,1)作直线l分别交x轴,y轴正半轴于A,B两点,O为坐标原点.(1)当△AOB面积最小时,求直线l的方程;(2)当|OA|+|OB|取最小值时,求直线l的方程.6.已知过定点P(2,0)的直线l与曲线y=2-x2相交于A,B两点,O为坐标原点,当△AOB的面积取到最大值时,直线l的倾斜角为。

直线的倾斜角.斜率.直线方程基础练习题

直线的倾斜角.斜率.直线方程基础练习题

直线的倾斜角.斜率.直线方程基础练习题一、选择题1.直线013=++y x 的倾斜角为( )A .150°B .120°C .60°D .30°2.关于直线的倾斜角与斜率,下列说法正确的是( )A .所有的直线都有倾斜角和斜率B .所有的直线都有倾斜角但不一定都有斜率C .直线的倾斜角和斜率有时都不存在D .所有的直线都有斜率,但不一定有倾斜角3.若直线经过(0,1),4)A B 两点,则直线AB 的倾斜角为( ) A .30o B .45o C .60o D .120o 4.直线0334=-+y x 的斜率为( ) A.34 B.43 C.43- D.34- 5.在直角坐标系中,已知(1, 2)A -,(3, 0)B ,那么线段AB 中点的坐标为( ). A.(2,2) B.(1,1) C.(-2,-2) D.(-1,-1) 6.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 7.在直角坐标系中,直线033=-+y x 的倾斜角是( )A .6π B .3π C .65π D .32π 8.一条直线经过点1(2,3)P -,倾斜角为45α=o,则这条直线的方程为( )A. 50x y ++=B.50x y --=C. 50x y -+=D. 50x y +-= 9.若直线l 经过原点和点A (2,2),则它的倾斜角为 A .-45° B .45° C .135° D .不存在 10.若直线的倾斜角为︒120,则直线的斜率为( ) A. 3 B. 3- C. 33 D. 33-11.直线02:=--+a y ax l 在x 轴和y 灿上的截距相等,则a 的值是 A.1B .-1C .-2或-1D. -2或112.倾斜角为135︒,在y 轴上的截距为1-的直线方程是( )A .01=+-y xB .01=--y xC .01=-+y xD .01=++y xA .30︒B .60︒C .120︒D .150︒14.过点(3,0),(2,3)的直线的倾斜角为( )A 、0120B 、030C 、060D 、0150 15.若直线1=x 的倾斜角为α,则α等于 A.︒0 B. ︒45 C. ︒90 D.不存在16.如右图所示,直线123,,l l l 的斜率分别为123,,k k k ,则 (A )123k k k << (B )312k k k << (C )132k k k << (D )321k k k <<17. 经过两点 (4,0)(0,3)A B -、的直线方程是( ). A .34120x y --= B. 34120x y +-= C .43120x y -+= D .43120x y ++=18.将直线y=3x 绕原点逆时针旋转90度,再向右平移1个单位,所得的直线方程为则( ) A. 3131+-=x yB. 131+-=x y C. 33-=x y D. 131+=x y 19.直线x =-1的倾斜角为 ( ▲ )(A )135︒ (B )90︒ (C )45︒ (D )0︒ 20. 直线经过点(2,0)A -,(5,3)B -,则直线的斜率为 A. -1 B. 1 C . 0 D . 221.已知直线l 经过)2,3(-A ,)3,2(-B 两点,那么直线l 的倾斜角为( ) A.3π B.6π C.4π D.43π22.直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是4π,则m 的值为 A.2 B.3 C.-2D.-323.直线31y x =+的倾斜角是A .6π B .3π C .23π D .56π 24.下列四种说法中正确的是( )A .一条直线向上的方向与x 轴正向所成的角叫做这条直线的倾斜角B .直线l 的倾斜角取值范围是第一象限角或第二象限角C .已知直线l 经过),(),,(222111y x P y x P 两点,则直线l 的斜率1212x x y y k --=D .与x 轴垂直的直线斜率为0 25.直线l 的倾斜角为45°,且过(0,1),则直线l 的方程是A x+y+1=0B x-y+1=0C x-y-1=0D x+y-1=0 26.直线l 过P (1,0)、Q (12,2+-),则直线l 的倾角α=A 、ο135B 、ο45C 、ο60D 、ο225 27.直线3410x y +-=的倾斜角为α,则cos α的值为( ) A .45-B.45C.35D. 34- 28.过点P (-2,0),斜率为3的直线方程是( )A.y =3x -2B.y =3x +2C.y =3(x -2)D.y =3(x +2)29.已知经过两点(5,m)和(m,8)的直线的斜率大于1,则m 的取值范围是( ) A.(5,8) B.(8,+∞) C.(,8)D.(5,)30.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( ).A .34k ≥B .324k ≤≤C .324k k ≥≤或 D .2k ≤ 31.已知直线l 的倾斜角为120o,则直线l 的斜率是( ). A .3 B .3- C .33- D . 3332.直线x tan7π+y =0的倾斜角是( ) A.-7π B.7π C.7π5 D .7π633.直线1x =的倾斜角和斜率分别是( )A .045,1B .0135,1- C .090,不存在D .0180,不存在34. )A B C D 35.直线30x y -+=的倾斜角是( )A 、300B 、450C 、600D 、90036.已知直线l 过点()1,2P ,()5,7Q ,则直线l 的斜率为( ) A .45 B .45- C .54 D .54- 37.直线0cos 40sin 4010x y -++=的倾斜角是( ) A .040 B .050 C .0130 D .0140 二、填空题38.已知直线l 与直线01=--y x 垂直,则直线l 的倾斜角=α . 39.已知点(3,8),(2,4)A B -,若y 轴上的点P 满足PA 的斜率是PB 斜率的2倍,则P 点的坐标为_________.40.经过两点A(-3,5),B(1,1 )的直线倾斜角为________.4110y ++=的倾斜角是 .42.给定三点A(0,1),B(a ,0),C(3,2),直线l 经过B 、C 两点,且l 垂直AB ,则a 的值为________.43.直线5x-2y-10=0在y 轴上的截距为 。

高二数学直线的倾斜角与斜率试题

高二数学直线的倾斜角与斜率试题

高二数学直线的倾斜角与斜率试题1.直线的参数方程为 (t为参数),则直线的倾斜角为()A.40°B.50°C.140°D.130°【答案】C【解析】,所以,故选C.【考点】直线的参数方程2.直线xsinα+y+2=0的倾斜角的取值范围是( )A.[0,π)B.∪C.D.∪【答案】B【解析】xsinα+y+2=0的斜率为-sina,-sina取值范围为[-1,1],故斜率范围为[-1,1],即倾斜角的范围就是∪.【考点】倾斜角与斜率.3.若直线y=0的倾斜角为α,则α的值是( )A.0B.C.D.不存在【答案】A【解析】∵直线y=0的斜率为0,倾斜角的正切值是斜率,∴α=0。

【考点】直线的倾斜角与斜率.4.过点和的直线的斜率为 .【答案】【解析】根据求斜率的公式可知:.【考点】直线的斜率.5.在平面直角坐标系中,直线的倾斜角的大小是___ __.【答案】【解析】根据直线方程知道直线的倾斜角为零角.【考点】由直线的方程求直线的斜率.6.在平面直角坐标系中,已知直线的斜率为.(Ⅰ)若直线过点,求直线的方程;(Ⅱ)若直线在轴、轴上的截距之和为,求直线的方程.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意知道所求直线的斜率为,经过点.由点斜式方程可得的方程;(Ⅱ)设直线的方程为.再由直线在轴、轴上的截距之和为解得.试题解析:(Ⅰ)由题意,直线的斜率为,所以直线的方程为,即:.(Ⅱ)由题意,直线的斜率为,所以设直线的方程为.令,得.令,得.由题知,解得.所以直线的方程为,即.【考点】直线的点斜式方程;直线方程中的截距.7.直线l经过点,则它的倾斜角是()A.300B.600C.1500D.1200【答案】D【解析】由二点先求斜率,通过斜率再求倾斜角.由斜率公式,再由倾斜角的范围知, 故选D【考点】直线的倾斜角8.直线的倾斜角是.【答案】【解析】直线的倾斜角满足=,所以,=。

直线的倾斜角与斜率(含答案)

直线的倾斜角与斜率(含答案)

直线的倾斜角与斜率一、单选题(共10道,每道10分)1.已知直线,则该直线的倾斜角为( )A.30°B.60°C.120°D.150°答案:D解题思路:试题难度:三颗星知识点:直线的倾斜角2.已知过点A(-2,m)和B(m,4)的直线与直线平行,则m的值为( )A.0B.-8C.2D.10答案:B解题思路:试题难度:三颗星知识点:斜率的计算公式3.已知过点M(2m+3,m)和点N(m-2,1)的直线MN的倾斜角为钝角,则m的范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:斜率的计算公式4.若直线沿x轴向左平移3个单位,再沿y轴向上平移1个单位,回到了原来的位置,则直线( )A.斜率不存在B.斜率为C.斜率为D.斜率为-3答案:B解题思路:试题难度:三颗星知识点:直线的斜截式方程5.设直线的倾斜角为,且,则满足( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:直线的斜率6.若点在以,,为顶点的△ABC的内部(不包括边界),则的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:直线的斜率7.已知点M(2,-3),N(-3,-2),直线与线段MN相交,则实数a的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:恒过定点的直线8.若直线与直线的交点位于第一象限,则直线的倾斜角的取值范围( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:恒过定点的直线9.已知圆,则的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:圆的切线方程10.已知函数()的图象的一段圆弧(如图所示),若,则( )A. B.C. D.前三个都可能答案:D解题思路:试题难度:三颗星知识点:直线的斜率。

高考数学《直线的倾斜角与斜率、直线的方程》真题含答案

高考数学《直线的倾斜角与斜率、直线的方程》真题含答案

高考数学《直线的倾斜角与斜率、直线的方程》真题含答案一、选择题1.直线经过点(0,2)和点(3,0),则它的斜率k 为( )A .23B .32C .-23D .-32答案:C解析:k =0-23-0 =-23 .2.直线x + 3 y +1=0的倾斜角是( )A .π6B .π3C .23 πD .56 π答案:D解析:由x + 3 y +1=0,得y =-33 x -33 ,∴直线的斜率k =-33 ,其倾斜角为56 π.3.已知直线l 过点P(-2,5),且斜率为-34 ,则直线l 的方程为( )A .3x +4y -14=0B .3x -4y +14=0C .4x +3y -14=0D .4x -3y +14=0答案:A解析:由点斜式得y -5=-34 (x +2),即:3x +4y -14=0.4.已知直线l 的倾斜角为α、斜率为k ,那么“α>π3 ”是“k> 3 ”的() A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:B解析:∵当π2 <α<π时,k<0,∴α>π3 D ⇒/k> 3 ; 当k> 3 时,π3 <α<π2 ,∴k> 3 ⇒π3 <α<π2 ,∴α>π3是k> 3 的必要不充分条件. 5.倾斜角为120°,在x 轴上的截距为-1的直线方程是( )A . 3 x -y +1=0B . 3 x -y - 3 =0C . 3 x +y - 3 =0D . 3 x +y + 3 =0答案:D解析:由于倾斜角为120°,故斜率k =- 3 .又直线过点(-1,0),由点斜式可知y =- 3 (x +1),即: 3 x +y + 3 =0.6.经过点P(1,2)且在x 轴、y 轴上的截距相等的直线方程为( )A .2x -y =0B .x +y -3=0C .x -y -3=0或2x -y =0D .x +y -3=0或2x -y =0答案:D解析:若直线过原点,则直线方程为y =2x ,若直线不过原点,设所求的直线方程为x +y =m ,又P(1,2)在直线上,∴1+2=m ,∴m =3,即:x +y =3.7.直线ax +by +c =0同时要经过第一、二、四象限,则a ,b ,c 应满足( )A .ab>0,bc<0B .ab>0,bc>0C .ab<0,bc>0D .ab<0,bc<0答案:A解析:ax +by +c =0可化为y =-a b x -c b ,又直线过一、二、四象限,∴-a b<0且-c b>0,即ab>0,bc<0. 8.直线x sin α+y +2=0的倾斜角的取值范围是( )A .[0,π)B .⎣⎡⎦⎤0,π4 ∪⎣⎡⎭⎫34π,π C .⎣⎡⎦⎤0,π4 D .⎣⎡⎦⎤0,π4 ∪⎝⎛⎭⎫π2,π 答案:B解析:设直线的倾斜角为θ,0≤θ<π,由题意得tan θ=-sin α∈[-1,1],∴θ∈⎣⎡⎦⎤0,π4 ∪⎣⎡⎭⎫34π,π .9.已知点A(2,3),B(-3,-2),若直线kx -y +1-k =0与线段AB 相交,则k 的取值范围是( )A .⎣⎡⎦⎤34,2B .⎝⎛⎦⎤-∞,34 ∪[2,+∞) C .(-∞,1]∪[2,+∞)D .[1,2]答案:B解析:直线kx -y +1-k =0恒过P(1,1),k PA =2,k PB =34,∴k 的取值范围是⎝⎛⎦⎤-∞,34 ∪[2,+∞).二、填空题10.若A(4,3),B(5,a),C(6,5)三点共线,则a 的值为________.答案:4解析:由题意得k AC =k BC ,∴5-36-4 =5-a 6-5,得a =4. 11.曲线y =x 3-2x +4在点(1,3)处的切线的倾斜角为________.答案:45°解析:y′=3x 2-2,当x =1时,该曲线的导函数值为1,∴k =1,其倾斜角为45°.12.过点M(-2,m),N(m ,4)的直线的斜率为1,则m =________.答案:1解析:由题意得,4-m m +2=1,得m =1.。

直线的倾斜角和斜率(经典练习及答案详解)

直线的倾斜角和斜率(经典练习及答案详解)

直线的倾斜角和斜率1.若直线过点(1,2),(2,2+3),则此直线的倾斜角是( )A .30°B .45°C .60°D .90°【答案】C 【解析】利用斜率公式k =3=tan α,可求倾斜角为60°.2.(2021年合肥月考)若直线l 经过原点和点A (-2,-2),则它的斜率为( )A .-1B .1C .1或-1D .0【答案】B 【解析】根据两点表示的斜率公式得k =y 2-y 1x 2-x 1=-2-0-2-0=1. 3.(2021年中山月考)若A (-2,3),B (3,-2),C ⎝ ⎛⎭⎪⎫12,m 三点共线,则m 的值为( )A .12B .-12C .-2D .2【答案】A 【解析】因为A (-2,3),B (3,-2),C ⎝ ⎛⎭⎪⎫12,m ,三点共线,所以k AB =k BC ,所以-2-33-(-2)=m +212-3,解得m =12. 4.若三点A (-1,-2),B (4,8),C (5,x )在同一条直线上,则实数x 的值为( )A .10B .-10C .5D .-5【答案】A 【解析】由三点在同一直线上,则可得k AB =k BC ,由斜率计算公式可知8-(-2)4-(-1)=x -85-4,解得x =10. 5.(2021年清远模拟)已知A (3,5),B (5,7),直线l 的斜率是直线AB 斜率的3倍,则直线l 的倾斜角为________.【答案】60° 【解析】设直线l 的斜率为k ,则k =3k AB =3×7-55-3= 3.所以直线l 的倾斜角为60°.6.设P 为x 轴上的一点,A (-3,8),B (2,14),若P A 的斜率是PB 的斜率的两倍,则点P 的坐标为________.【答案】(-5,0) 【解析】设P (x,0)为满足题意的点,则k P A =8-3-x ,k PB =142-x ,于是8-3-x =2×142-x,解得x =-5. 7.直线l 的一个方向向量d =(3,3),则直线l 的倾斜角是________,直线l 斜率是________.【答案】π6 33 【解析】由d =(3,3)=3⎝ ⎛⎭⎪⎫1,33,设c =⎝⎛⎭⎪⎫1,33,则d ∥c .由向量d =(3,3)是直线l 的一个方向向量,则c =⎝⎛⎭⎪⎫1,33也为直线l 的一个方向向量.故直线l 的斜率为33,所以倾斜角为π6.8.以下叙述中:(1)任何一条直线都有倾斜角,也有斜率;(2)平行于x 轴的直线的倾斜角是0°或180°;(3)直线的斜率范围是(-∞,+∞);(4)过原点的直线,斜率越大越靠近x 轴;(5)两条直线的斜率相等,则它们的倾斜角相等;(6)两条直线的倾斜角相等,则它们的斜率相等.其中正确的序号是________.【答案】(3)(5) 【解析】(1)倾斜角为90°的直线没有斜率;(2)直线的倾斜角取值范围是0°≤α<180°;(4)过原点的直线斜率的绝对值越大,其对应的直线越靠近y 轴;(6)倾斜角为90°的直线没有斜率.9.已知点A (1,2),在坐标轴上求一点P 使直线P A 的倾斜角为60°. 解:(1)当点P 在x 轴上时,设点P (a,0),因为A (1,2),所以k P A =0-2a -1=-2a -1. 又因为直线P A 的倾斜角为60°,所以tan 60°=-2a -1,解得a =1-233. 所以点P 的坐标为⎝ ⎛⎭⎪⎫1-233,0. (2)当点P 在y 轴上时,设点P (0,b ). 同理可得b =2-3, 所以点P 的坐标为(0,2-3).10.已知交于点M (8,6)的四条直线l 1,l 2,l 3,l 4的倾斜角之比为1∶2∶3∶4,又知l 2过点N (5,3),求这四条直线的倾斜角.解:因为k 2=k MN =6-38-5=1, 所以l 2的倾斜角为45°.又l 1,l 2,l 3,l 4的倾斜角之比为1∶2∶3∶4,故这四条直线的倾斜角分别为22.5°,45°,67.5°,90°.B 级——能力提升练11.直线l 过点M (-1,2),且与以P (-2,-3),Q (4,0)为端点的线段PQ 相交,则l 的斜率的取值范围是( )A .⎣⎢⎡⎦⎥⎤-25,5B .⎣⎢⎡⎭⎪⎫-25,0∪(0,5] C .⎣⎢⎡⎭⎪⎫-25,12∪⎝ ⎛⎦⎥⎤12,5 D .⎝ ⎛⎦⎥⎤-∞,-25∪[5,+∞) 【答案】D 【解析】当l 的斜率为正时,因为其倾斜角均大于或等于直线MP 的倾斜角,故其斜率不小于k MP =5;当l 的斜率为负时,因为其倾斜角均小于或等于直线MQ 的倾斜角,故其斜率不大于k MQ=-25.12.(多选)在下列四个命题中,错误的有( )A .坐标平面内的任何一条直线均有倾斜角和斜率B .直线的倾斜角的取值范围是[0,π)C .若一条直线的斜率为tan α,则此直线的倾斜角为αD .若一条直线的倾斜角为α,则此直线的斜率为tan α【答案】ACD 【解析】对于A ,当直线与x 轴垂直时,直线的倾斜角为90°,斜率不存在,A 错误;对于B ,直线倾斜角的取值范围是[0,π),B 正确;对于C ,一条直线的斜率为tan α,此直线的倾斜角不一定为α,如y =x 的斜率为tan 5π4,它的倾斜角为π4,C 错误;对于D ,一条直线的倾斜角为α时,它的斜率为tan α或不存在,D 错误.故选ACD .13.已知三点A (1-a ,-5),B (a,2a ),C (0,-a )共线,则a =________.【答案】2 【解析】①当过A ,B ,C 三点的直线斜率不存在时,即1-a =a =0,无解.②当过A ,B ,C 三点的直线斜率存在时,即k AB=2a-(-5)a-(1-a)=k BC=-a-2a0-a,即2a+52a-1=3,解得a=2.综上可知,当A,B,C三点共线时,a的值为2.14.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为________.【答案】0【解析】由于正三角形的内角都为60°,且边BC所在直线的斜率是0,不妨设边AB所在直线的倾斜角为60°,则斜率为tan 60°=3,则边AC所在直线的倾斜角为120°,斜率为tan 120°=-3,所以AC,AB所在直线的斜率之和为3+(-3)=0.15.已知两点A(-3,4),B(3,2),过点C(2,-1)的直线l与线段AB有公共点,求直线l的斜率k的取值范围.解:如图,依题意,直线l由直线CB开始按逆时针方向旋转至直线CA止,其间直线l与线段AB都有公共点.直线CB的斜率为k CB=-1-22-3=3,直线CA的斜率k CA=-1-42-(-3)=-1.直线l由直线CB开始按逆时针方向旋转时,直线l的斜率逐渐增大,直至当直线l与x轴垂直时,倾斜角为90°,此时斜率不存在.继续旋转直线l,其斜率由负无穷大开始增大,直至直线CA终止,所以直线l的斜率取值范围是(-∞,-1]∪[3,+∞).16.已知直线l过点P(3,4),且与以A(-1,0),B(2,1)为端点的线段AB有公共点,求l的斜率k的取值范围.解:如图,当k 变化时,直线l 绕点P 旋转,当l 由P A 旋转到PB 时,l 与线段AB 有公共点,即k 由k P A 增加到k PB ,∵k P A =4-03-(-1)=1,k PB =4-13-2=3, ∴要使l 与线段AB 有公共点,斜率k 的取值范围为[1,3].C 级——探究创新练17.已知直线AB 过点A (3,-5),B (0,-9),倾斜角为α.(1)若直线CD 的倾斜角为2α,则斜率k CD =________;(2)若直线EF 的倾斜角为α2,则斜率k EF =________.【答案】-247 12 【解析】由题意,得tan α=-5+93-0=43. (1)若直线CD 的倾斜角为2α,则斜率k CD =tan 2α=2tan α1-tan 2α=2×431-169=-247.(2)由α∈[0,π),α2∈⎣⎢⎡⎭⎪⎫0,π2,故设k EF =k (k >0), 则2k 1-k 2=43,∴k =12. 18.若经过点A (1-t,1+t )和点B (3,2t )的直线的倾斜角α不是锐角,求实数t 的取值范围.解:因为直线的倾斜角α不是锐角,所以α=0°或α=90°或α是钝角.当α=0°时,1+t=2t,得t=1;当α=90°时,1-t=3,得t=-2;当α是钝角时,直线的斜率小于0,即2t-(1+t)3-(1-t)<0,得t-1t+2<0,解得-2<t<1.综上所述,实数t的取值范围为[-2,1].。

专题03直线的倾斜角与斜率直线方程(课时训练)原卷版

专题03直线的倾斜角与斜率直线方程(课时训练)原卷版

专题03 直线的倾斜角与斜率、直线方程1.(2023秋·江苏盐城·高二盐城中学校考阶段练习)一条直线过点()1,0A -和()2,3B ,则该直线的倾斜角为( )A .30︒B .45︒C .60︒D .90︒2.(2023秋·高二单元测试)斜率为2的直线的倾斜角α所在的范围是( ) A .045α<<B .4590α<<C .90135α<<D .135180α<<3.(2023秋·广西南宁·高二南宁市邕宁高级中学校考开学考试)过点()1,4A 的直线在两坐标轴上的截距之和为零,则该直线方程为( ) A .30x y -+=B .50x y +-=C .40x y -=或50x y +-=D .40x y -=或30x y -+=5.(2023·四川宜宾·校考二模)若直线()0,0ax by ab a b +=>>过点()1,1,则该直线在x 轴与y 轴上的截距之和的最小值为( ).A .1B .2C .3D .46.(2019秋·辽宁大连·高二大连八中校考阶段练习)已知直线221:(23)()41l m m x m m y m +-+-=-,2:350l x y --=互相垂直,则实数m 的值为( )A .3B .3或1C .1D .3-或1-7.(2021秋·辽宁大连·高二大连八中校考期中)连接两点的直线无限延展,与其平行的直线无论走多远都无法碰面.设R m ∈,则“1m =-”是“直线240mx y ++=与直线()120x m y +-+=平行”的( ) A .充分必要条件B .既不充分也不必要条件C .充分不必要条件D .必要不充分条件8.(2021秋·安徽合肥·高二合肥一六八中学校考阶段练习)(多选题)下列命题中,是假命题的是()9.(2023秋·高二课时练习)(多选题)过定点(2,3)且在两坐标轴上截距的绝对值相等的直线为()13.(2023·全国·高二专题练习)已知直线()():211510l m x m y m ++---=,且与坐标轴形成的三角形面积为S .求:(1)求证:不论m 为何实数,直线l 过定点P ;(2)分别求3S =和5S =时,所对应的直线条数;(3)针对S 的不同取值,讨论集合{}l 直线l 经过P ,且与坐标轴围成的三角形面积为S 中的元素个数.14.(2023秋·江苏扬州·高二统考开学考试)已知直线l 的方程为:()()211740+++--=m x m y m(1)求证:不论m 为何值,直线必过定点M ;(2)过点M 引直线1l ,使它与两坐标轴的正半轴所围成的三角形面积最小,求1l 的方程.当AOB的面积为16.(2023·全国·高二专题练习)设m ∈R ,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=,则PAB 面积的最大值是(17.(2023·全国·高二专题练习)已知直线()12:310,:4340l m x y l x my m ++-=++-=,下列命题中正确的是125m 1=或m =-),3是直线l 的最大距离为18.(2023·全国·高二专题练习)下列说法中,正确的是( )的最小值是 .20.(2022秋·河北沧州·高二校考阶段练习)直线1l :330mx y m +++=与直线2l :220x y 相交,则m 的取值范围为 .21.(2023秋·江西新余·高二校考开学考试)已知直线l 的方程为:()()()212430m x m y m ++-+-=.(1)求证:不论m 为何值,直线必过定点M ;(2)过点M 引直线1l ,使它与两坐标轴的负半轴所围成的三角形面积最小,求1l 的方程.。

直线的倾斜角与斜率练习题

直线的倾斜角与斜率练习题

直线的倾斜角与斜率练习题一.选择题(共16小题)1.直线l1、l2的斜率是方程x2﹣3x﹣1=0的两根,则l1与l2的位置关系是()A.平行B.重合C.相交但不垂直D.垂直2.直线x+y﹣1=0的倾斜角为()A.B.C.D.3.若直线x﹣y﹣1=0的倾斜角为α,则α的值是()A.B.C.D.4.直线l:x+y+3=0的倾斜角α为()A.30°B.60°C.120°D.150°5.若三点A(3,1),B(﹣2,b),C(8,11)在同一直线上,则实数b等于()A.2 B.3 C.9 D.﹣96.直线的倾斜角是()A.30°B.45°C.60°D.120°7.若直线l经过第二、四象限,则直线l的倾斜角的范围是()A.[0°,90°)B.[0°,180°)C.[90°,180°)D.(90°,180°)8.若直线l过点A(﹣1,1),B(2,﹣1),则l的斜率为()A.﹣B.﹣C.D.9.若直线过点M(1,2),N(4,2+),则此直线的倾斜角为()A.30°B.45°C.60°D.90°10.若直线x+(1+m)y﹣2=0和直线mx+2y+4=0平行,则m的值为()A.1 B.﹣2 C.1或﹣2 D.11.若直线l1:ax+2y+a+3=0与l2::x+(a+1)y+4=0平行,则实数a的值为()A.1 B.﹣2 C.1或﹣2 D.﹣1或212.直线L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,则a的值为()A.﹣3 B.2 C.﹣3或2 D.3或﹣213.若直线2mx+y+6=0与直线(m﹣3)x﹣y+7=0平行,则m的值为()A.﹣1 B.1 C.1或﹣1 D.314.若直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+a2﹣1=0垂直,则a=()A.2 B.C.1 D.﹣215.以下四个命题:①过一点有且仅有一个平面与已知直线垂直;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面;③两条相交直线在同一平面内的射影必为相交直线;④两个互相垂直的平面,一个平面内的任一直线必垂直于另一平面的无数条直线.其中正确的命题是()A.①和②B.②和③C.③和④D.①和④16.直线xcosθ+ysinθ+a=0与xsinθ﹣ycosθ+b=0的位置关系是()A.平行B.垂直C.斜交D.与a,b,θ的值有关二.填空题(共1小题)17.已知直线l1:ax﹣y+2a=0,l2:(2a﹣1)x+ay+a=0互相垂直,则实数a的值是.三.解答题(共1小题)18.已知直线l1的方程为3x+4y﹣12=0.(1)若直线l2与l1平行,且过点(﹣1,3),求直线l2的方程;(2)若直线l2与l1垂直,且l2与两坐标轴围成的三角形面积为4,求直线l2的方程.直线的倾斜角与斜率练习题参考答案与试题解析一.选择题(共16小题)1.直线l1、l2的斜率是方程x2﹣3x﹣1=0的两根,则l1与l2的位置关系是()A.平行B.重合C.相交但不垂直D.垂直【解答】解:设直线l1、l2的斜率分别为k1,k2,∵直线l1、l2的斜率是方程x2﹣3x﹣1=0的两根,∴k1k2=﹣1.∴l1⊥l2.故选:D.2.直线x+y﹣1=0的倾斜角为()A.B.C.D.【解答】解:设直线x+y﹣1=0的倾斜角为θ.由直线x+y﹣1=0化为y=﹣x+1,∴tanθ=﹣,∵θ∈[0,π),∴θ=.故选:C.3.若直线x﹣y﹣1=0的倾斜角为α,则α的值是()A.B.C.D.【解答】解:由题意,直线的斜率为k=直线倾斜角的正切值是又倾斜角大于或等于0°且小于180°,故直线的倾斜角α为°故选:A.4.直线l:x+y+3=0的倾斜角α为()A.30°B.60°C.120°D.150°【解答】解:由于直线l:x+y+3=0的倾斜角为α,则直线的斜率tanα=﹣,再由0°≤α<180°,可得α=120°,故选:C.5.若三点A(3,1),B(﹣2,b),C(8,11)在同一直线上,则实数b等于()A.2 B.3 C.9 D.﹣9【解答】解:∵三点A(3,1),B(﹣2,b),C(8,11)在同一直线上,∴kAC =kAB,即,解得b=﹣9.故选:D.6.直线的倾斜角是()A.30°B.45°C.60°D.120°【解答】解:设直线y=x+2的倾斜角是α,则tanα=,又0°≤α<180°,∴α=60°.故选:C.7.若直线l经过第二、四象限,则直线l的倾斜角的范围是()A.[0°,90°)B.[0°,180°)C.[90°,180°)D.(90°,180°)【解答】解:若直线l经过第二、四象限,则直线l的斜率小于零,故直线的倾斜角为钝角,故选:D.8.若直线l过点A(﹣1,1),B(2,﹣1),则l的斜率为()A.﹣B.﹣C.D.【解答】解:根据题意,直线l过点A(﹣1,1),B(2,﹣1),则其斜率kAB==﹣;故选:A.9.若直线过点M(1,2),N(4,2+),则此直线的倾斜角为()A.30°B.45°C.60°D.90°【解答】解:∵直线过点M(1,2),N(4,2+),∴该直线的斜率为k==,即tanα=,α∈[0°,180°);∴该直线的倾斜角为α=30°.故选:A.10.若直线x+(1+m)y﹣2=0和直线mx+2y+4=0平行,则m的值为()A.1 B.﹣2 C.1或﹣2 D.【解答】解:直线x+(1+m)y﹣2=0和直线mx+2y+4=0平行,可得,得:m=1,故选:A.11.若直线l1:ax+2y+a+3=0与l2::x+(a+1)y+4=0平行,则实数a的值为()A.1 B.﹣2 C.1或﹣2 D.﹣1或2【解答】解:∵直线l1:ax+2y+a+3=0,l2:x+(a+1)y+4=0,l1∥l2,∴=≠,解得a=1或a=﹣2.∵当a=1时,两直线重合,∴a≠1.∴a=﹣2.故选:B.12.直线L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,则a的值为()A.﹣3 B.2 C.﹣3或2 D.3或﹣2【解答】解:直线L1:ax+3y+1=0的斜率为:,直线L1∥L2,所以L2:2x+(a+1)y+1=0的斜率为:所以=;解得a=﹣3,a=2(舍去)故选:A.13.若直线2mx+y+6=0与直线(m﹣3)x﹣y+7=0平行,则m的值为()A.﹣1 B.1 C.1或﹣1 D.3【解答】解:因为两条直线平行,所以:解得 m=1故选:B.14.若直线l1:ax+2y+6=0与直线l2:x+(a﹣1)y+a2﹣1=0垂直,则a=()A.2 B.C.1 D.﹣2【解答】解:直线l1:ax+2y+6=0,l2:x+(a﹣1)y+a2﹣1=0,且l1⊥l2,∴a•1+2(a﹣1)=0;解得:a=.故选:B.15.以下四个命题:①过一点有且仅有一个平面与已知直线垂直;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面;③两条相交直线在同一平面内的射影必为相交直线;④两个互相垂直的平面,一个平面内的任一直线必垂直于另一平面的无数条直线.其中正确的命题是()A.①和②B.②和③C.③和④D.①和④【解答】解:①过一点有且仅有一个平面与已知直线垂直,满足直线与平面垂直的条件,成立;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面,如果两点在平面两侧,不成立;③两条相交直线在同一平面内的射影必为相交直线,如果两条相交直线所在平面与已知平面垂直,射影则是一条直线,不正确;④两个互相垂直的平面,一个平面内的任一直线必垂直于另一平面的无数条直线.正确.故选:D.16.直线xcosθ+ysinθ+a=0与xsinθ﹣ycosθ+b=0的位置关系是()A.平行B.垂直C.斜交D.与a,b,θ的值有关【解答】解:当cosθ=0或sinθ=0时,这两条直线中,有一条斜率为0,另一条斜率不存在,两条直线垂直.当cosθ和sinθ都不等于0时,这两条直线的斜率分别为﹣和tanθ,显然,斜率之积等于﹣1,故两直线垂直.综上,两条直线一定是垂直的关系,故选:B.二.填空题(共1小题)17.已知直线l1:ax﹣y+2a=0,l2:(2a﹣1)x+ay+a=0互相垂直,则实数a的值是0或1 .【解答】解:∵直线l1:ax﹣y+2a=0与直线l2:(2a﹣1)x+ay+a=0互相垂直,∴a×(2a﹣1)+(﹣1)×a=0,解之得a=0或1故答案为:0或1三.解答题(共1小题)18.已知直线l1的方程为3x+4y﹣12=0.(1)若直线l2与l1平行,且过点(﹣1,3),求直线l2的方程;(2)若直线l2与l1垂直,且l2与两坐标轴围成的三角形面积为4,求直线l2的方程.【解答】解:(1)由直线l2与l1平行,可设l2的方程为3x+4y+m=0,以x=﹣1,y=3代入,得﹣3+12+m=0,即得m=﹣9,∴直线l2的方程为3x+4y﹣9=0.(2)由直线l2与l1垂直,可设l2的方程为4x﹣3y+n=0,令y=0,得x=﹣,令x=0,得y=,故三角形面积S=•|﹣|•||=4∴得n2=96,即n=±4∴直线l2的方程是4x﹣3y+4=0或4x﹣3y﹣4=0.。

直线的倾斜角与斜率练习及答案

直线的倾斜角与斜率练习及答案

直线的倾斜角与斜率练习及答案1.设点A(2,-3)和B(-3,-2),直线l与线段AB相交且过点P(11,3),则l的斜率k的取值范围是什么?答案:B。

-4≤k≤3或k≤-42.直线l经过原点和点(-1,1),则它的倾斜角是多少?答案:C。

π/43.斜率为2的直线过(3,5),(a,7),(-1,b)三点,则a,b的值是什么?答案:A。

a=4,b=-34.直线l过点A(1,2),且不过第四象限,那么直线l的斜率的取值范围是什么?答案:C。

(-∞,1) U (1,∞)5.若直线x+5y+C=0的倾斜角为α,则α等于多少?答案:D。

不存在6.直线答案:B。

B=-B'且C=-5BB'7.满足以下条件的l1与l2,其中l1∥l2的是什么?1)l1的斜率为2,l2过点A(1,2),B(4,8);2)l1经过点P(3,3),Q(-5,3),l2平行于x轴,但不经过P,Q两点;3)l1经过点M(-1,5),N(-5,-2),l2经过点R(-4,3),S(0,-3);答案:C。

(1) (3)8.已知三点(2,-2),(4,3)和(5,k)在同一条直线上,则k的值是多少?答案:k=79.已知两点A(x,-2)和B(3,1),并且直线AB的斜率为1/2,则x等于多少?答案:x=7/210.若直线答案:a=-211.在y轴上有一点m,它与点(-3,1)连成的直线的倾斜角为120°,则点m的坐标为多少?答案:m的坐标为(-3,-3)12.已知:直线l1斜率为2,直线l2上有三点M(3,5),N(x,7),P(-1,y),若l1∥l2,则x,y的值分别为多少?答案:x=4,y=113.直线l1经过点A(a,2)和B(-5,6),l2经过点C(3,5)和D(-1,1),若l1∥l2,则a的值为多少?答案:a=11/2经过点(2,3),且垂直于x轴,若存在,求m的值.第14题:证明四边形MNPQ是矩形,已知其顶点为M(1,1),N(3,0),P(4,-1),Q(2,2)。

高一数学直线的倾斜角与斜率试题答案及解析

高一数学直线的倾斜角与斜率试题答案及解析

高一数学直线的倾斜角与斜率试题答案及解析1.直线的倾斜角的大小是()A.B.C.D.【答案】A【解析】直线设直线的倾斜角为,则又故答案选A.【考点】直线的一般式方程;直线的倾斜角2.直线的倾斜角为()A.B.C.D.【答案】D【解析】设已知直线的倾科角为,由已知得故选D.【考点】直线倾斜角.3.过两点A,B(,的直线倾斜角是,则的值是()A.B.3C.1D.【答案】C【解析】根据直线斜率的计算式有,解得.【考点】直线斜率的计算式.4.直线的倾斜角和斜率分别是()A.,不存在B.C.D.,不存在【答案】A【解析】是垂直于x轴的一条直线,故斜率不存在,倾斜角为【考点】直线的倾斜角与斜率的概念5.若直线的倾斜角为,则直线的斜率为()A.B.C.D.【答案】【解析】【考点】利用倾斜角求斜率.6.已知直线过点且与线段相交,那么直线的斜率的取值范围是()A.B.C.D.【答案】A【解析】,,由直线逆时针旋转到的过程中,斜率的变化由2开始变大,直线的倾斜角过,由增大到-3,故选A.【考点】直线的斜率7.过点且倾斜角为的直线方程为()A.B.C.D.【答案】A【解析】依题意可知斜率,根据直线方程的点斜式可写出直线方程:即,故选A.【考点】1.直线的倾斜角与斜率;2.直线的方程.8.已知直线上两点的坐标分别为,且直线与直线垂直,则的值为()A.B.C.D.【答案】B【解析】因为直线的斜率为,直线的斜率为,由这两条直线垂直可得即,解得,故选B.【考点】1.直线的倾斜角与斜率;2.两直线垂直的判定与性质.9.若,,三点共线,则.【答案】【解析】直线BC方程为,将点A的坐标代入得,所以,也可以用求解.【考点】直线的斜率.10.直线的倾斜角为( )A.B.C.D.【答案】B【解析】根据题意,由于直线的方程可知,该直线的斜率为,因此可知该直线的倾斜角为=60°,选B.【考点】直线的倾斜角点评:主要是考查了直线的倾斜角的求解,属于基础题。

直线的倾斜角和斜率与方程

直线的倾斜角和斜率与方程

1.直线y =x cos α+1 (α∈R )的倾斜角的取值范围是(A )[0, ] (B )[0, π) (C )[-, ] (D )[0, ]∪[,π) 2.直线2x cos α-y -3=0⎝ ⎛⎭⎪⎫α∈⎣⎢⎡⎦⎥⎤π6,π3的倾斜角的取值范围是( ) A.⎣⎢⎡⎦⎥⎤π6,π3 B.⎣⎢⎡⎦⎥⎤π4,π3 C.⎣⎢⎡⎦⎥⎤π4,π2 D.⎣⎢⎡⎦⎥⎤π4,2π3 3.已知直线l 的倾斜角为α,若cos α=-,则直线l 的斜率为 (A ) (B ) (C )- (D )- 4.过点M (-2, a ), N (a , 4)的直线的斜率为-,则a 等于 (A )-8 (B )10 (C )2 (D )45.过点A (2, b )和点B (3, -2)的直线的倾斜角为,则b 的值是 (A )-1 (B )1 (C )-5 (D )56.已知点M (cos α, sin α), N (cos β, sin β),若直线MN 的倾斜角为θ,0<α<π<β<2π, 则θ等于(A )(π+α+β) (B )(α+β) (C )(α+β-π) (D )(β-α) 7.设点(23)A -,,(32)B --,,直线过(11)P ,且与线段AB 相交,则l 的斜率k 的取值范围是( ) (A )k ≥或k ≤-4 (A)-4≤k ≤ (C)-≤k ≤4 (D)以上都不对 8. 直线l 过点()12A ,,且不过第四象限,那么直线l 的斜率的取值范围是( )A .[]02,B .[]01,C .102⎡⎤⎢⎥⎣⎦,D .102⎛⎫ ⎪⎝⎭, 9.已知直线l :x -my +3m =0上存在点M 满足与A (-1,0),B (1,0)两点连线的斜率k MA 与2π4π6π4π43π54433443342143π21212121434343k MB 之积为3,则实数m 的取值范围是( )A .[-6, 6 ] B.⎝ ⎛⎭⎪⎫-∞,-66∪⎝ ⎛⎭⎪⎫66,+∞C.⎝ ⎛⎦⎥⎤-∞,-66∪⎣⎢⎡⎭⎪⎫66,+∞D.⎣⎢⎡⎦⎥⎤-22,2210.平面上有相异两点A (cos θ,sin 2 θ),B (0,1),则直线AB 的倾斜角α的取值范围是________.11.若α为直线的倾斜角,则sin(-α)的取值范围是__________________. 12.已知A (-2, 3), B (3, 2),过点P (0, -2)的直线l 与线段AB 没有公共点,则直线l 的斜率的取值范围是 .13.若经过点A (1-t , 1+t )和点B (3, 2t )的直线的倾斜角为钝角,则实数t 的取值范围是 .14.若直线k 的斜率满足-<k <,则该直线的倾斜角α的范围是 . 15.已知M (2, -3), N (-3,-2),直线l 过点P (1, 1),且与线段MN 相交,则直线l 的斜率k 的取值范围是 .16.已知直线l 1和l 2关于直线y =x 对称,若直线l 1的斜率为,则直线l 2的斜率为 ;倾斜角为 .17.经过两点A (2, -1)和B (a , -2)的直线l 的倾斜角为___________________________.18.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________________.19.已知{a n }是等差数列,d 是公差且不为零,它的前n 项和为S n ,设集合A ={(a n ,n S n)| n ∈N },若以A 中的元素作为点的坐标,这些点都在同一直线上,求这条直线的斜率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《直线的倾斜角、斜率和方程》练习题1.已知点P在直线x+3y﹣2=0上,点Q在直线x+3y+6=0上,线段PQ的中点为M(x0,y0),且y0<x0+2,则的取值范围是()A.[﹣,0)B.(﹣,0)C.(﹣,+∞)D.(﹣∞,﹣)∪(0,+∞)2.一条直线的倾斜角的正弦值为,则此直线的斜率为()A.B.±C.D.±3.已知点A(2,﹣3)、B(﹣3,﹣2)直线l过点P(1,1),且与线段AB相交,则直线l的斜率k的取值范围是()A.或k≤﹣4 B.或C.D.4.已知直线ax+y+2=0的倾斜角为π,则该直线的纵截距等于()A.1 B.﹣1 C.2 D.﹣25.如图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则()A.k1<k2<k3B.k3<k1<k2C.k3<k2<k1D.k1<k3<k26.若直线2x﹣y﹣4=0在x轴和y轴上的截距分别为a和b,则a﹣b的值为()A.6 B.2 C.﹣2 D.﹣67.已知直线l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,若l1∥l2,则实数m的值是()A.3 B.﹣1,3 C.﹣1 D.﹣38.已知A(2,4)与B(3,3)关于直线l对称,则直线l的方程为( )A.x+y=0 B.x﹣y=0 C.x+y﹣6=0 D.x﹣y+1=09.以A(1,3)和B(﹣5,1)为端点的线段AB的中垂线方程是( )A.3x﹣y+8=0 B.3x+y+4=0 C.2x﹣y﹣6=0 D.3x+y+8=010.入射光线沿直线x﹣2y+3=0射向直线l:y=x被直线反射后的光线所在的方程是( )A.x+2y﹣3=0 B.x+2y+3=0 C.2x﹣y﹣3=0 D.2x﹣y+3=011.若直线l:(a>0,b>0)经过点(1,2)则直线l在x轴和y轴的截距之和的最小值是.12.在平面直角坐标系xOy中,将直线l沿x轴正方向平移3个单位,沿y轴正方向平移5个单位,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位,沿y 轴负方向平移2个单位,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 的方程是 . 13.直线2x ﹣5y ﹣10=0与坐标轴所围成的三角形面积是 .14.在平面直角坐标系xOy 中,已知点A (0,2),B (2,0) ,C (1,0),分别以△ABC 的边AB AC 、向外作正方形ABEF 与ACGH ,则直线FH 的一般式方程为 .15.已知两直线l 1:ax ﹣2y+1=0,l 2:x ﹣ay ﹣2=0.当a= 时,l 1⊥l 2. 16.直线l 与直线3x ﹣y+2=0关于y 轴对称,则直线l 的方程为 .17.直线过点(2,﹣3),且在两个坐标轴上的截距互为相反数,则这样的直线方程是 . 18.不论m 取什么实数,直线(2m ﹣1)x ﹣(m+3)y ﹣(m ﹣11)=0恒过定点 .19.已知直线l 的倾斜角为30°,(结果化成一般式) (1)若直线l 过点P (3,﹣4),求直线l 的方程. (2)若直线l 在x 轴上截距为﹣2,求直线l 的方程. (3)若直线l 在y 轴上截距为3,求直线l 的方程. 20.已知直线l 过点(1,4).(1)若直线l 与直线l 1:y=2x 平行,求直线l 的方程并求l 与l 1间的距离; (2)若直线l 在x 轴与y 轴上的截距均为a ,且a≠0,求a 的值. 21.设直线l 的方程为(a+1)x+y+2﹣a=0(a ∈R ). (1)若l 在两坐标轴上的截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围.22.已知两直线l 1:mx+8y+n=0和l 2:2x+my ﹣1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,﹣1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为﹣1.yHxGEFOBCA《直线的倾斜角、斜率和方程》答案1.D【解答】解:∵点P在直线x+3y﹣2=0上,点Q在直线x+3y+6=0上,线段PQ的中点为M(x0,y0),∴,化为x0+3y0+2=0.又y0<x0+2,设=k OM,当点位于线段AB(不包括端点)时,则k OM>0,当点位于射线BM(不包括端点B)时,k OM<﹣.∴的取值范围是(﹣∞,﹣)∪(0,+∞).故选:D.2.B【解答】解:由sinα=(0≤α<π),得cosα=±.所以k=tanα==±.故选:B.3.A【解答】解:如图所示:由题意得,所求直线l的斜率k满足k≥k PB或k≤k PA,即k≥或k≤4故选:A.4.D【解答】解:∵直线ax+y+2=0的倾斜角为π,∴=﹣a,解得a=1.∴直线化为:y=﹣x﹣2,∴该直线的纵截距等于﹣2.故选:D.5.D【解答】解:设直线l1、l2、l3的倾斜角分别为α1,α2,α3.由已知为α1为钝角,α2>α3,且均为锐角.由于正切函数y=tanx在(0,)上单调递增,且函数值为正,所以tanα2>tanα3>0,即k2>k3>0.当α为钝角时,tanα为负,所以k1=tanα1<0.综上k1<k3<k2,故选:D.6.A【解答】解:直线2x﹣y﹣4=0化为截距式为+=1,∴a=2,b=﹣4,∴a﹣b=2﹣(﹣4)=6,故选:A.7.C【解答】解:∵l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,若l1∥l2,则,解得:m=﹣1.故选:C . 8.D【解答】解:由题意得直线l 是线段AB 的中垂线. 线段AB 的中点为D (25,27),线段AB 的斜率为 k=2343--=﹣1,故直线l 的斜率等于1,则直线l 的方程为 y ﹣27=1×(x ﹣25),即x ﹣y+1=0, 故选 D . 9.B【解答】解:直线AB 的斜率,所以线段AB 的中垂线得斜率k=﹣3,又线段AB 的中点为(﹣2,2),所以线段AB 的中垂线得方程为y ﹣2=﹣3(x+2)即3x+y+4=0, 故选B . 10.C【解答】解:∵入射光线与反射光线关于直线l :y=x 对称 ∴反射光线的方程为y ﹣2x+3=0,即2x ﹣y ﹣3=0 故选C . 11.3+2【解答】解:∵直线l :(a >0,b >0)经过点(1,2)∴=1,∴a+b=(a+b )()=3+≥3+2,当且仅当b=a 时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为3+2.故答案为:3+2.12.6x ﹣8y+1=0【解答】解:设直线l 的方程为:y=kx+b ,将直线l 沿x 轴正方向平移3个单位,沿y 轴正方向平移5个单位,得到直线l 1:y=k (x ﹣3)+5+b ,化为y=kx+b+5﹣3k ,再将直线l 1沿x 轴正方向平移1个单位,沿y 轴负方向平移2个单位,y=k (x ﹣3﹣1)+b+5﹣2,化为y=kx+3﹣4k+b . 又与直线l 重合. ∴b=3﹣4k+b ,解得k=.∴直线l 的方程为:y=x+b ,直线l 1为:y=x++b ,设直线l 上的一点P (m ,b+),则点P 关于点(2,3)的对称点P′(4﹣m ,6﹣b ﹣m ), ∴6﹣b ﹣m=(4﹣m )+b+,解得b=.∴直线l 的方程是y=x+,化为:6x ﹣8y+1=0. 故答案为:6x ﹣8y+1=0. 13.5【解答】解:直线2x ﹣5y ﹣10=0与坐标轴的交点坐标为(0,﹣2),(5,0), 所以直线2x ﹣5y ﹣10=0与坐标轴所围成的三角形面积是: =5.故答案为:5. 14.4140x y +-=试题分析:分别作HM y ⊥轴,FN y ⊥轴,,M N 为垂足.因为ACGH 是正方形,所以t AHM Rt AO,AM=OC,MH=OA.R C ∆≅∆又因为(0,2),C(1,0),A 所以2,13,MH OA AM OC OM OA AM ====⇒=+=所以(2,3),H 同理可得(2,4),F -所以直线FH的斜率为431224k -==---,由直线方程的点斜式得13(2)4y x -=--,化简得4140x y +-=.15.0【解答】解:∵两直线l 1:ax ﹣2y+1=0,l 2:x ﹣ay ﹣2=0相互垂直, ∴a×1﹣(﹣2)(﹣a )=0, 解得a=0 故答案为:0 16.3x+y ﹣2=0【解答】解:由题意可知,直线l 的斜率与直线3x ﹣y+2=0斜率互为相反数, ∵3x﹣y+2=0的斜率为3,∴直线l 的斜率为﹣3, 又直线3x ﹣y+2=0过点(0,2),∴直线l 的方程为y=﹣3x+2,即3x+y ﹣2=0. 故答案为:3x+y ﹣2=0.17.3x+2y=0或x﹣y﹣5=0【解答】解:当直线经过原点时满足条件,此时直线方程为,化为3x+2y=0;当直线不经过原点时,设,把点(2,﹣3)代入可得: =1,解得a=5.∴直线方程为x﹣y﹣5=0.综上可得:直线方程为3x+2y=0或x﹣y﹣5=0.故答案为:3x+2y=0或x﹣y﹣5=0.18.(2,3)【解答】解:直线(2m﹣1)x﹣(m+3)y﹣(m﹣11)=0可为变为m(2x﹣y﹣1)+(﹣x﹣3y+11)=0令解得:,故不论m为何值,直线(2m﹣1)x﹣(m+3)y﹣(m﹣11)=0恒过定点(2,3)故答案为:(2,3).19.【解答】解:直线l的倾斜角为30°,则直线的斜率为:.(1)过点P(3,﹣4),由点斜式方程得:y+4=(x﹣3),∴y=x﹣﹣4,即x﹣3y﹣3﹣12=0;(2)在x轴截距为﹣2,即直线l过点(﹣2,0),由点斜式方程得:y﹣0=(x+2),则y=x+,即x﹣3y+2=0;(3)在y轴上截距为3,由斜截式方程得:y=x+3.即: x﹣3y+9=0.20.【解答】解:(1)由于直线l过点(1,4)与直线l1:y=2x平行,则y﹣4=2(x﹣1),化为y=2x+2.l与l1间的距离d==.(2)由题意可得直线l的方程为: =1,把点(1,4)代入可得: =1,解得a=5.21.【解答】解:(1)令x=0,得y=a﹣2.令y=0,得(a≠﹣1).∵l在两坐标轴上的截距相等,∴,解之,得a=2或a=0.∴所求的直线l方程为3x+y=0或x+y+2=0.(2)直线l的方程可化为 y=﹣(a+1)x+a﹣2.∵l不过第二象限,∴,∴a≤﹣1.∴a的取值范围为(﹣∞,﹣1].22.【解答】解:(1)将点P(m,﹣1)代入两直线方程得:m2﹣8+n=0 和 2m﹣m﹣1=0,解得 m=1,n=7.(2)由 l1∥l2得:m2﹣8×2=0,m=±4,又两直线不能重合,所以有8×(﹣1)﹣mn≠0,对应得n≠2m,所以当 m=4,n≠﹣2 或 m=﹣4,n≠2 时,L1∥l2.(3)当m=0时直线l1:y=﹣和 l2:x=,此时,l1⊥l2,﹣=﹣1⇒n=8.当m≠0时此时两直线的斜率之积等于,显然 l1与l2不垂直,所以当m=0,n=8时直线 l1和 l2垂直,且l1在y轴上的截距为﹣1.。

相关文档
最新文档