最新北师大版七年级上册数学拔高期末测试试题以及答案

合集下载

北师大版七年级上册数学期末试卷及答案完整版 3套

北师大版七年级上册数学期末试卷及答案完整版 3套

七年级数学上册期末试卷及答案(考试时间100分钟,试卷满分100分)一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号直接填写在试卷相应位置上) 1.下列四个算式中,有一个算式与其他三个算式的计算结果不同,则该算式是 A .()21-B .21-C .()31- D .1--2.已知水星的半径约为24400000米,用科学记数法表示为( )米A .80.24410⨯ B .61044.2⨯ C .71044.2⨯ D .624.410⨯ 3.下列各式中,运算正确的是A .3a 2+2a 2=5a 4B .a 2+a 2=a 4C .6a -5a =1D .3a 2b -4ba 2=-a 2b4.如图所示几何体的左视图是5.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°-∠β;②∠α-90°;③180°-∠α;④12(∠α-∠β).正确的是: A .①②③④B .①②④C .①②③D .①②6.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是103,则m 的值是 A .9B .10C .11D .12二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在试卷相应位置上)7.已知∠A =30°36′,它的余角 = . 8.如果a -3与a +1互为相反数,那么a = . 9.写出所有在652- 和1之间的负整数: . 10.如果关于x 的方程2x +1=3和方程032=--xk 的解相同,那么k 的值为________.11.点C 在直线AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点, 则线段MN 的长为 .12.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm”和“8cm”分别对应数轴上的-3和x ,那么x 的值为 .13.|x -3|+(y +2)2=0,则y x 为 .14.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为 .15.一个正方体的平面展开图如图,已知正方体相对两个面上的数之和为零,则a+b = .16.小明同学在某月的日历上圈出2×2个数(如图),正方形方框内的4个数的和是28,那么这4个数是三、解答题(本大题共9小题,共68分.请在试卷指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本题8分)计算: (1)9+5×(-3)-(-2)2 ÷ 4; (2)()()14-2-61-31-212⨯+⎪⎭⎫ ⎝⎛÷⎪⎭⎫⎝⎛ 18.(本题8分)解下列方程: (1)13421+=+x x ; (2)1612312-+=-x x . 19.(本题5分)先化简,再求值:)]2(23[25222b a ab abc b a abc -+--,其中a =21-,b =-1,c =3. 20.(本题6分)作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.21.(本题6分)在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为xcm,请用x来表示这个无盖长方体的容积;(2)当剪去的小正方体的边长x的值分别为3cm和3.5cm时,比较折成的无盖长方体的容积的大小.22.(本题7分)如图,在三角形ABC中,先按要求画图,再回答问题:(1)过点A画∠BAC的平分线交BC于点D;过点D画AC的平行线交AB于点E;过点D画AB的垂线,垂足为F.(画图时保留痕迹)(2)度量AE、ED的长度,它们有怎样的数量关系?(3)比较DF、DE的大小,并说明理由.23.(本题8分)如图,已知同一平面内∠AOB=90o,∠AOC=60o,(1)填空∠AOC= ;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60o改成∠AOC=2α(α<45o),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.24.(本题8分)我市为打造八圩港风光带,现有一段河道整治任务由A B 、两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成.现在A 工程队单独做6天后,B 工程队加入合做完成剩下的工程,问A 工程队一共做了多少天? (1)根据题意,万颖、刘寅两名同学分别列出尚不完整的方程如下: 万颖:=++⨯x )241161(6161________ ; 刘寅:()1241161=⨯+y根据万颖、刘寅两名同学所列的方程,请你分别指出未知数x y 、表示的意义,然后在,然后在方框中补全万颖、刘寅同学所列的方程:万颖:x 表示 ,刘寅:y 表示 ,万颖同学所列不完整的方程中的方框内该填 ,刘寅同学所列不完整的方程中的方框内该填 . (2)求A 工程队一共做了多少天.(写出完整的解答过程) 25.(本题10分)已知:线段AB=20 cm .(1)如图1,点P 沿线段AB 自A 点向B 点以2厘米/秒运动,点P 出发2秒后,点Q 沿线段BA 自B 点向A 点以3厘米/秒运动,问再经过几秒后P 、Q 相距5cm?(2)如图2:AO=4 cm , PO=2 cm , ∠POB=60o ,点P 绕着点O 以60度/秒的速度逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P 、Q 两点能相遇,求点Q 运动的速度 .参考答案一、选择题 ACDD BB 二、填空题7.59o 24′ 8.1 9.-2,-1 10.7 11.7cm 戓1cm 12.5 13.-8 14.870 15.-1 16.3,4,10,11 三、解答题17.(1)解:原式=9+(-15)-1 (2分)= -7(4分) (2)解:原式=()()()14-46-31-6-21⨯+⨯⨯=-3+2-56…………………3分 =-57 …………………4分 或原式=()()14-46-61⨯+⨯= -1-56=-57…………………4分 18.(1)解:去分母得 3(x+1)=8x+6………………………………1分 去括号、移项、合并同类项,得 -5x=3………………………………2分 系数化为1,得 x=53-. ………………………………4分 (2)解:去分母得 2(2x-1)=(2x+1)-6………………………………1分 去括号、移项、合并同类项,得 2x=-3………………………………2分 系数化为1,得 x=23-. ………………………………4分 19.解:原式=]243[25222b a ab abc b a abc -+-- (1分) = b a ab abc b a abc 22224325+--- (2分) = 242ab abc - (3分) 当a =21-,b =-1,c =3时. 原式= 2)1()21(43)1()21(2-⨯-⨯-⨯-⨯-⨯ (4分) =23+ =5 (5分) 20.(各2分)1121.(1)容积:2)216(x x - ……………3分(2)当x=3时,容积为300cm 3……………4分 当x=3.5时,容积为283.5 cm 3……………5分答 当剪去的小正方形的边长为3cm 时,无盖长方体的容积大些.……………6分 22.(1)画角平分线(2分),画平行线(3分),画垂线 (4分) (2)AE=ED (5分) (3)DF<DE , (6分)理由:直线外一点和直线上各点连接的所有线段中,垂线段最短.(7分) 23.(1)150° ………………………1分 (2)45° ………………………3分 (3)解:因为∠AOB =90°,∠AOC =2α 所以∠BOC =900+2α因为OD 、OE 平分∠BOC ,∠AOC 所以∠DOC =21∠BOC =45o +α,∠CO E=21∠AOC =α ……6分 所以∠DO E=∠DOC -∠CO E=450 ……8分 说明:其他解法参照给分.24.(1)x 表示A 、B 合做的天数(或者B 完成的天数);y 表示A 工程队一共做的天数; 1 ; y-6 . (每空1分共4分) (2)解:设A 工程队一共做的天数为y 天,由题意得:=-+)6(241161y y 1 …………………6分 解得y=12答:A 工程队一共做的天数为12天. ……8分 用另一种方法类似得分.(2)解答不完整只有答案扣2分. 25.解:(1)设再经过t s 后,点P 、Q 相距5cm , ①P 、Q 未相遇前相距5cm ,依题意可列223205t t +-()+=, 解得,t =115……2分 ②P 、Q 相遇后相距5cm ,依题意可列223205t t ++()+=, 解得,t =215……4分 答:经过115s 或215s 后,点P 、Q 相距5cm . 解:(2)点P ,Q 只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为12060=2s或120180560s += ……6分设点Q 的速度为y m/s ,当2秒时相遇,依题意得,2y 20218-==,解得y =9 当5秒时相遇,依题意得,5y 20614-==,解得y 2.8= 答:点Q 的速度为9m /s 2.8m /s 或. …………8 分 若只有一解得5分.数 学 试 卷 北 师 大 版 七 年 级 上 册一、精心选一选(每小题3分,共30分) 1.-21的相反数是( )A .2B .-2C .21 D .-212.下列式子正确的是( )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 3. 沿图1中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A B C D 图1 4.多项式12++xy xy 是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式5.桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②6.数a ,b 在数轴上的位置如图2所示,则b a +是( )A .正数B .零C .负数D .都有可能7. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米 B .1.5×810千米 C .15×710千米 D .1.5×710千米 8.图5是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( ) A .这天15点时的温度最高B .这天3点时的温度最低C .这天最高温度与最低温度的差是13℃D .这天21点时的温度是30℃9.一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( )温度/℃383430 26 22 15 18 21 24图3 O O O O A B C D 图4图210.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A .3瓶B .4瓶C .5瓶D .6瓶 二、细心填一填(每空3分,共30分)11.52xy -的系数是 。

北师大版七年级上学期数学《期末检测题》附答案

北师大版七年级上学期数学《期末检测题》附答案

北师大版数学七年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图是一个几何体的表面展开图,这个几何体是()A. B. C. D.2.如图,数轴上蝴蝶所在点表示的数可能为()A. 3B. 2C. 1D. -13. ﹣2的绝对值是()A. 2B. 12C.12- D. 2-4.计算:(3)9-⨯的结果等于()A. 27- B. 6- C. 27 D. 65. 下列结果为负数的是( )A.-(-3)B. -32C. (-3)2D. |-3|6.若12m a b+-与323a b是同类项,则m=()A. 2 B. 3 C. 4 D. 5 7.学校需要了解学生眼睛患上近视的情况,下面抽取样本方式比较合适的是()A. 从全校每个班级中随机抽取几个学生作调查B. 在低年级学生中随机抽取一个班级作调查C. 在学校门口通过观察统计佩戴眼镜的人数D. 从学校的男同学中随机抽取50名学生作调查8.某地一周前四天每天的最高气温与最低气温如下表,则这四天中温差最大的是( ) 星期 一 二 三 四 最高气温 21℃ 22℃ 14℃ 20℃ 最低气温 11℃14℃-1℃11℃A. 星期一B. 星期二C. 星期三D. 星期四9.如图,跑道由两个半圆部分AB ,CD 和两条直跑道AD ,BC 组成,两个半圆跑道的长都是115m ,两条直跑道的长都是85m .小斌站在C 处,小强站在B 处,两人同时逆时针方向跑步,小斌每秒跑4m ,小强每秒跑6m .当小强第一次追上小斌时,他们的位置在( )A. 半圆跑道AB 上B. 直跑道BC 上C. 半圆跑道CD 上D. 直跑道AD 上10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A. B. C. D.二、填空题(本题共6小题,每题4分,满分24分,将答案填在答题纸上)11.比-2大3的数是__________. 12.单项式232x y的次数是__________. 13.据某网站报道2019年10月我国的初中生数已接近43100000人,数43100000用科学记数法表示为:__________.14.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____.15.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是________16.已知一列数a ,b ,+a b ,2+a b ,23a b +,35a b +,……,按照这个规律写下去,第10个数是__________.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).18.计算: (1)21324()368-⨯-+ (2)22(3)|8|4-⨯---÷19.先化简,再求值:22(4)2(3)a ab a ab ---,其中1a =-,2b =. 20.解方程:(1)42(3)0x --=(2)412123x x -+-=21.如图,已知线段12AB cm =,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若点C 恰好是AB 的中点,则DE =cm ; (2)若4AC cm =,求DE的长.22.为弘扬中华民族传统文化,某校举办了“燕城诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整): 组别 分数人数 第1组 90100x ≤≤16第2组 8090x ≤< a第3组 7080x ≤<20第4组 6070x ≤<b第5组 5060x << 6请根据以上信息,解答下列问题:(1)此次随机抽取的学生数是 人,a = ,b = ; (2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1500名学生,那么成绩低于70分的约有多少人?23.“水是生命之源”,某市自来水公司为了鼓励居民节约用水,规定按以下标准收取水费: 月用水量(吨) 单价(元/吨) 不超过25吨 1.4 超过25吨的部分2.1另:每吨用水加收0.95元的城市污水处理费(1)如果1月份小明家用水量为18吨,那么小明家1月份应该缴纳水费 元; (2)小明家2月份共缴纳水费104.5元,那么小明家2月份用水多少吨?(3)小明家的水表3月份出了故障,只有80%的用水量记入水表中,这样小明家在3月份只缴纳了56.4元水费,问小明家3月份实际应该缴纳水费多少元?24.已知直角三角板ABC 和直角三角板DEF ,90ACB EDF ∠=∠=︒,60ABC ∠=︒,45DEF ∠=︒.(1)如图1,将顶点C 和顶点D 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转,当CF 平分ACB ∠时,求ACE∠的度数;(2)在(1)的条件下,继续旋转三角板DEF ,猜想ACE ∠与BCF ∠有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C 和顶点E 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转.当CA 落在DCF ∠内部时,直接写出ACD ∠与BCF ∠之间的数量关系.25.如图①是一张长为18cm ,宽为12cm 的长方形硬纸板,把它的四个角都剪去一个边长为xcm 的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题:(1)折成的无盖长方体盒子的容积V = 3cm ;(用含x 的代数式表示即可,不需化简) (2)请完成下表,并根据表格回答,当x 取什么正整数时,长方体盒子的容积最大?(3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出x的值;如果不是正方形,请说明理由.答案与解析一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图是一个几何体的表面展开图,这个几何体是()A. B. C. D.【答案】C【解析】【分析】由平面图形的折叠及三棱柱的展开图的特征作答.【详解】解:由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱.故选C.【点睛】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.2.如图,数轴上蝴蝶所在点表示的数可能为()A. 3B. 2C. 1D. -1【答案】D【解析】【分析】直接利用数轴得出结果即可.【详解】解:数轴上蝴蝶所在点表示的数可能为-1,故选D.【点睛】本题考查了有理数与数轴上点的关系,任何一个有理数都可以用数轴上的点表示,在数轴上,原点左边的点表示的是负数,原点右边的点表示的是正数,右边的点表示的数比左边的点表示的数大.3. ﹣2的绝对值是()A. 2B.12C. 12-D. 2-【答案】A 【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A .4.计算:(3)9-⨯的结果等于( ) A. 27- B. 6-C. 27D. 6【答案】A 【解析】 【分析】根据有理数的乘法法则进行计算即可 【详解】解:(3)9=-27-⨯ 故选A【点睛】本题考查了有理数的乘法,解决本题的关键是熟记有理数的乘法法则. 5. 下列结果为负数的是( ) A. -(-3) B. -32C. (-3)2D. |-3|【答案】B 【解析】试题分析:A 、-(-3)=3;B 、-23=-9;C 、2(3)-=9;D 、3-=3.考点:有理数的计算6.若12m a b +-与323a b 是同类项,则m =( ) A. 2 B. 3C. 4D. 5【答案】A 【解析】 【分析】本题考查同类项的定义,所含字母相同,相同字母的指数也相同,据此列出方程m 13+=即可解答本题. 【详解】解:因为m 12a b +-与323a b 是同类项, 所以m 13+=,,所以m2故选:A.【点睛】本题考查的是同类项的定义,直接利用定义解决即可.7.学校需要了解学生眼睛患上近视的情况,下面抽取样本方式比较合适的是()A. 从全校的每个班级中随机抽取几个学生作调查B. 在低年级学生中随机抽取一个班级作调查C. 在学校门口通过观察统计佩戴眼镜的人数D. 从学校的男同学中随机抽取50名学生作调查【答案】A【解析】【分析】抽取样本要注意样本必须有代表性.【详解】A. 从全校的每个班级中随机抽取几个学生作调查,有代表性,合适;B. 在低年级学生中随机抽取一个班级作调查,样本没有代表性,不合适;C. 在学校门口通过观察统计佩戴眼镜的人数,样本没有代表性,不合适;D. 从学校的男同学中随机抽取50名学生作调查,样本没有代表性,不合适.故选A【点睛】本题考核知识点:抽样调查.解题关键点:注意抽取的样本应该具有代表性.8.某地一周前四天每天的最高气温与最低气温如下表,则这四天中温差最大的是()A. 星期一B. 星期二C. 星期三D. 星期四【答案】C【解析】【分析】本题考查的是最大温差,先求出星期一、星期二、星期三、星期四的温差,再进行比较,找到最大的即可.【详解】解:星期一的温差是21-11=10,星期二的温差是22-14=8,星期三的温差是14-(-1)=15,星期四的温差是20-11=9,因为15>10>9>8,所以星期三的温差最大,故选:C.【点睛】本题考查的是温差,温差=最高温度-最低温度,依次计算这四天的温差,之后按照有理数的大小比较,找到最大的值就可以了.9.如图,跑道由两个半圆部分AB,CD和两条直跑道AD,BC组成,两个半圆跑道的长都是115m,两条直跑道的长都是85m.小斌站在C处,小强站在B处,两人同时逆时针方向跑步,小斌每秒跑4m,小强每秒跑6m.当小强第一次追上小斌时,他们的位置在()A. 半圆跑道AB上B. 直跑道BC上C. 半圆跑道CD上D. 直跑道AD上【答案】D【解析】【分析】本题考查是一元一次方程,设小强第一次追上小彬的时间为x秒,根据小强的路程-小彬的路程=BC的长度,也就是85米,再进一步判断即可求解本题.【详解】解:设小强第一次追上小彬的时间为x秒,-=,根据题意,得:6x4x85解得x=42.5,则4x=170>115,170-115=55,所以他们的位置在直跑道AD上,故选:D.【点睛】本题主要考查一元一次方程的应用,解题的关键是理解题意找到环形跑道上路程间的相等关系:小强的路程-小彬的路程=路程差BC 直跑道的长.10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A. B. C. D.【答案】C 【解析】 【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得. 【详解】由题意知,原图形中各行、各列中点数之和为10, 符合此要求的只有:故选C .【点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.二、填空题(本题共6小题,每题4分,满分24分,将答案填在答题纸上)11.比-2大3的数是__________. 【答案】1 【解析】 【分析】本题要注意有理数运算中的加法法则:异号两数相加,取绝对值较大数的符号,并把绝对值相减. 【详解】解:-2+3=3-2=1, 故答案为:1.【点睛】解题的关键是理解加法的法则,先确定和的符号,再进行计算. 12.单项式232x y 的次数是__________. 【答案】3 【解析】【分析】本题考查的是单项式的次数,一个单项式中,所有字母的指数的和叫做单项式的次数,注意指数为1时省略不写.【详解】解:因为x 的指数为2,y 的指数为1, 所以单项式的次数是2+1=3, 故答案为:3.【点睛】本题正确理解单项式的次数,注意到y 的指数为1即可.13.据某网站报道2019年10月我国的初中生数已接近43100000人,数43100000用科学记数法表示为:__________. 【答案】74.3110⨯ 【解析】 【分析】本题考查的是科学记数法,直接将题目中的数据43100000数出位数,位数-1即为10的指数就可以解答本题. 【详解】解:因为43100000是8位数, 所以43100000=4.31×107, 故答案为:74.3110⨯.【点睛】本题考查的是科学记数法,是指把一个数表示成a ×10的n 次幂的形式(1a 10≤<,n 为正整数). 14.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____. 【答案】两点确定一条直线 【解析】 【分析】根据两点确定一条直线解答.【详解】解:要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是:两点确定一条直线, 故答案为两点确定一条直线.【点睛】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.15.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是________ 【答案】甲班 【解析】 【分析】分别求出甲班与乙班成绩为D 等级的人数进行比较即可. 【详解】由频数分布直方图知甲班成绩为D 等级的人数为13人, 由扇形统计图知乙班成绩为D 等级的人数为40×30%=12, ∴D 等级较多的人数是甲班, 故答案为甲班.【点睛】本题考查了频数分布直方图,扇形统计图,读懂统计图,从中找到必要的信息是解题的关键. 16.已知一列数a ,b ,+a b ,2+a b ,23a b +,35a b +,……,按照这个规律写下去,第10个数是__________. 【答案】2134a b + 【解析】 【分析】认真读题可知,本题的规律是:从第3个数开始,每个数均为前两个数的和,从而可以得出答案. 【详解】解:由题意可知第7个数是5a+8b, 第8个数是8a+13b, 第9个数是13a+21b, 第10个数是21a+34b, 故答案为:21a+34b .【点睛】本题主要考查数字的变化规律,解题的关键是得出从第3个数开始,每个数均为前两个数的和的规律.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).【答案】【解析】【分析】从上面看可以得到3列正方形的个数一次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示【点睛】本题主要考查作三视图,需要注意我们从物体的正面、左面和上面看所得到的图形的不同,每个观察面所对应的最大数需要注意.18.计算:(1)21324()368-⨯-+(2)22(3)|8|4-⨯---÷【答案】(1)-21;(2)10 【解析】【分析】本题为基础的计算题:(1) 需要注意可以先算括号内,也可以运用运算律直接拆开,注意负号的存在; (2) 注意到绝对值,减数这部分要先算绝对值再算除法. 【详解】(1)原式213242424368=-⨯+⨯⨯- 1649=-+-21=-(2)原式4384=-⨯--÷()122=-10=【点睛】本题考查的是有理数的混合运算,这里掌握它们的运算法则是解题的关键. 19.先化简,再求值:22(4)2(3)a ab a ab ---,其中1a =-,2b =. 【答案】22a ab -+,-5 【解析】 【分析】根据去括号、合并同类项,可化简整式,之后将题目中的数值代入,即可求得答案. 【详解】原式22426a ab a ab =--+22a ab =-+当1a =-,2b =时原式21212=--+⨯-⨯()()14=-- 5=-【点睛】本题考查了整式的化简求值,去括号是解题关键,括号前面是正数去括号不变号,括号前面是负数去括号都变号. 20.解方程:(1)42(3)0x --=(2)412123x x -+-=【答案】(1)5x =;(2) 1.3x = 【解析】 【分析】根据一元一次方程的解法:(1) 去括号、移项,即可解答;(2) 先利用等式的性质去分母,之后去括号、移项,即可解答. 【详解】(1)4260x -+=246x -=--210x -=- 5x =(2) ()()341622x x --=+123624x x --=+ 122436x x -=++ 1013x =1.3x =【点睛】本题是一元一次方程的解法,属于基础题目,在解题的时候,需要注意:括号前面是负号去掉括号要变号;去分母的时候要注意每一项都要乘,不要漏项.21.如图,已知线段12AB cm =,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若点C 恰好是AB 的中点,则DE = cm ; (2)若4AC cm =,求DE 的长. 【答案】(1)6DE cm =;(2)6cm 【解析】 【分析】(1)C 是AB 的中点,先求AC 和CB ,再根据D 、E 是AC 和BC 的中点,即可求解; (2)由AC 和AB 可求BC ,再根据D 、E 分别是AC 和BC 的中点,即可求解. 【详解】(1)因为AB=12cm,C 是AB 的中点,所以AC=BC=6cm,因为D 、E 是AC 和BC 的中点,所以CD=CE=3cm, 所以DE=3+3=6cm, 所以DE=6cm .(2)1248BC AB AC =-=-=114222CDAC ==⨯= 118422CE BC ==⨯= ∴246DE DC CE cm =+=+=【点睛】本题考查的是线段的中点问题,注意线段中点的计算即可.22.为弘扬中华民族传统文化,某校举办了“燕城诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整): 组别 分数人数 第1组 90100x ≤≤16第2组 8090x ≤< a第3组 7080x ≤< 20第4组 6070x ≤<b第5组 5060x <<6请根据以上信息,解答下列问题:(1)此次随机抽取的学生数是 人,a = ,b = ; (2)计算扇形统计图中“第5组”所在扇形圆心角的度数; (3)若该校共有1500名学生,那么成绩低于70分的约有多少人?【答案】(1)80,24,14;(2)27︒;(3)375人【解析】【分析】(1)抽取学生人数我们找到一组数据以及所占整体的百分率即可求解,之后可依次求出a、b的值;(2)由第5组学生的人数为6人,即可求得所占圆心角为63602780︒⨯=︒;(3)由样本估计整体,根据抽查学生中低于70分的学生占80名学生的比,即可求得答案.【详解】(1)20÷25%=80(人),b=20-6=14(人),a=80-16-20-20=24(人)(2)∵6 3602780︒⨯=︒∴“第五组”所在扇形的圆心角为27︒(3)∵614 150037580+⨯=∴成绩低于70分的约有375人.【点睛】本题主要考查的是数据的统计和分析,我们在解题的时候,需要注意认真计算,同时需要牢固掌握统计表和扇形统计图.23.“水是生命之源”,某市自来水公司为了鼓励居民节约用水,规定按以下标准收取水费:(1)如果1月份小明家用水量为18吨,那么小明家1月份应该缴纳水费元;(2)小明家2月份共缴纳水费104.5元,那么小明家2月份用水多少吨?(3)小明家的水表3月份出了故障,只有80%的用水量记入水表中,这样小明家在3月份只缴纳了56.4元水费,问小明家3月份实际应该缴纳水费多少元?【答案】(1)42.3;(2)40吨;(3)74元【解析】分析】本题是一个实际应用题:(1)小明家用水量没有超过25吨,直接单价×数量即可;(2)设小明家2月份用水量为x 吨,可列方程()25 1.4x 25 2.10.95x 104.5⨯+-⨯+=,求出x 的值即可; (3)应先算出水表中3月的用水量,再计算实际的用水量,最后根据收费标准计算应缴纳水费. 【详解】(1)18×(1.4+0.95)=42.3(元) (2)∵25(1.40.95)58.75104.5⨯+=< ∴小明家2月份用水超过25吨. 设小明家2月份用水x 吨根据题意得:25 2.35(25)(2.10.95)104.5x ⨯+-⨯+= 解这个方程得:40x = 答:小明家2月份用水40吨 (3)水表计数:56.4 2.3524÷= 实际用水:2480%30÷=应缴水费:25 2.35(3025) 3.05⨯+⨯-74=(元) 答:小明家3月份实际应交水费74元.【点睛】本题考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程;易错点是忽略污水处理费.24.已知直角三角板ABC 和直角三角板DEF ,90ACB EDF ∠=∠=︒,60ABC ∠=︒,45DEF ∠=︒.(1)如图1,将顶点C 和顶点D 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转,当CF 平分ACB ∠时,求ACE ∠的度数;(2)在(1)的条件下,继续旋转三角板DEF ,猜想ACE ∠与BCF ∠有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C 和顶点E 重合,保持三角板ABC 不动,将三角板DEF 绕点C 旋转.当CA 落在DCF ∠内部时,直接写出ACD ∠与BCF ∠之间的数量关系.【答案】(1)45︒;(2)ACE BCF ∠=∠,理由见解析;(3)45BCF ACD ∠=︒+∠或45BCF ACD ∠-∠=︒ 【解析】 【分析】(1)根据角平分线的性质求出∠FCA ,即可求出∠ACE ; (2)根据同角的余角相等即可求出;(3)∠ACD 和∠BCF 都和∠ACF 关系紧密,分别表示它们与∠ACF 的关系即可求解. 【详解】(1)∵CF 平分ACB ∠ ∴11904522ACF ACB ∠=∠=⨯= ∴90ACE ACF ∠=︒-∠904545=︒-︒=︒(2)猜想:ACE BCF ∠=∠ 理由:∵90ACF BCF ∠=︒-∠90ACE ACF ∠=︒-∠∴9090ACE BCF ∠=︒-︒-∠()9090BCF =︒-︒+∠ BCF =∠(3)因为CA 在∠DCF 内侧,所以∠DCA=∠DCF -∠ACF=45°-∠ACF ,∠BCF=∠BCA -∠ACF=90°-∠ACF , 所以45BCF ACD ∠=︒+∠或45BCF ACD ∠-∠=︒【点睛】本题考查了角平分线的性质,角和角之间的关系,同角的余角相等的性质,要善于观察顶点相同的角之间的关系.25.如图①是一张长为18cm ,宽为12cm 的长方形硬纸板,把它的四个角都剪去一个边长为xcm 的小正方形,然后把它折成一个无盖的长方体盒子(如图②),请回答下列问题:(1)折成的无盖长方体盒子的容积V = 3cm ;(用含x 的代数式表示即可,不需化简)(2)请完成下表,并根据表格回答,当x 取什么正整数时,长方体盒子的容积最大? /x cm 12 3 4 5 3/cm V160 ________ 216 ________ 80(3)从正面看折成的长方体盒子,它的形状可能是正方形吗?如果是正方形,求出x 的值;如果不是正方形,请说明理由.【答案】(1)()()182122x x x --;(2)224,160;(3)不可能是正方形,理由见解析【解析】【分析】本题考查的是长方体的构造:(1) 根据题意,分别表示出来长方体的长、宽、高,即可写出其体积;(2) 根据给到的x 的值求得体积即可;(3) 列出方程求得x 的值后,即可确定能否为正方形.【详解】(1)182122x x x --()()(2)224,160当x 取2cm 时,长方体盒子的容积最大(3)从正面看长方体,形状是正方形时,有182x x =-解得6x =当6x =时,1220x -=所以,不可能是正方形【点睛】本题考查了简单的几何题的三视图的知识,解题的关键是根据题意确定长方体的长、宽、高,之后依次解答题目.。

北师大版七年级上学期数学《期末测试卷》及答案

北师大版七年级上学期数学《期末测试卷》及答案
情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:
你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?
22.如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.
15.已知 ,则 ______.
16.如图,线段AB上的点数与线段的总数有如下关系:如果线段AB上有三个点时,线段总共有3条,如果线段AB上有4个点时,线段总数有6条,如果线段AB上有5个点时,线段总数共有10条,当线段AB上有n个点时,线段总数共有多少__________.
三、解答题
17.计算
(1)3-(-8)+(-5)+6
(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP
(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的 ;
(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的
答案与解析
一、选择题
1. 的相反数是()
A. B.2C. D.
[答案]D
[解析]
[详解]因为- + =0,所以- 的相反数是 .
故选D.2. 小星同学在“”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61700000,这个数用科学记数法表示为()
A.617×105B.6.17×106C.6.17×107D.0.617×108
16.如图,线段AB上的点数与线段的总数有如下关系:如果线段AB上有三个点时,线段总共有3条,如果线段AB上有4个点时,线段总数有6条,如果线段AB上有5个点时,线段总数共有10条,当线段AB上有n个点时,线段总数共有多少__________.

北师大版七年级上册数学期末考试试卷及答案

北师大版七年级上册数学期末考试试卷及答案

北师大版七年级上册数学期末考试试题一、单选题1.-2的倒数是()A .-2B .12-C .12D .22.下列调查中适合采用普查方式的是()A .了解一大批炮弹的杀伤半径B .调查全国初中学生的上网情况C .旅客登机前的安检D .了解成都市中小学生环保意识3.用一个平面去截下列的几何体,可以得到长方形截面的几何体有()A .1个B .2个C .3个D .4个4.如图所示,由A 到B 有①、②、③三条路线,最短的路线选①的理由是()A .两点确定一条直线B .两点间距离的定义C .两点之间,线段最短D .因为它直5.数据42600用科学记数法表示为()A .4.26×103B .4.26×104C .42.6×103D .0.426×1056.解一元一次方程11(1)123x x +=-时,去分母正确的是()A .3(1)12x x+=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-7.如图,已知点D 在点O 的北偏西30°方向,点E 在点O 的北偏东50︒方向,那么DOE ∠的度数为()A .30°B .50︒C .80︒D .100︒8.甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的汽车是乙车队的汽车的两倍,则需要从乙队调x 辆汽车到甲队,由此可列方程为()A .100﹣x =2(68+x)B .2(100﹣x)=68+xC .100+x =2(68﹣x)D .2(100+x)=68﹣x 9.某校七年级开展“阳光体育”活动,对爱好排球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.爱好排球的人数是21人,爱好足球的人数是爱好羽毛球的人数的4倍,则下列正确的是()A .喜欢篮球的人数为16人B .喜欢足球的人数为28人C .喜欢羽毛球的人数为10人D .被调查的学生人数为80人10.如图所示,直线,AB CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为1,2,3,4,5,6---….那么标记为“2021”的点在()A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上11.如图,把一张长方形纸片沿对角线BD 折叠,25CBD ∠=︒,则ABF ∠的度数是()A .25︒B .30°C .40︒D .50︒12.如图所示的运算程序中,如果开始输入的x 值为48-,我们发现第1次输出的结果为24-,第2次输出的结果为12-,…,第2021次输出的结果为()A .6-B .3-C .24-D .12-二、填空题13.如图所示在数轴上的点A 对应的数为a ,B 对应的数为b ,则a ,b 与0的大小关系为_____<0<_____.14.方程260x +=的解是______.15.如图,D 是AC 的中点,CB =4cm ,DB =7cm ,则AB 的长为___________cm .16.某地制作一年来每个月平均气温变化统计图,请你帮忙选择最恰当的统计图是_________.(从条形统计图、折线统计图、扇形统计图中选一个)17.已知A =2x 2+x+1,B =mx+1,若关于x 的多项式A+B 不含一次项,则常数m =_____.18.如图,是一个正方体的六个面的展开图形,则“力”所对的面是_____.19.如果代数式x+2y 的值是3,则代数式2x+4y+5的值是___________.三、解答题20.计算:(1)()211713-+--(2)214(3)()()39⎡⎤-⨯-+-⎢⎥⎣⎦.21.如图所示,已知线段AB ,点P 是线段AB 外一点.按要求画图,保留作图痕迹;(1)作射线PA ,作直线PB ;(2)延长线段AB 至点C ,使得AC=2AB .22.化简并求值:2(2a -3b)-(3a+2b+1),其中a=2,b=12-.23.解方程:(1)6234y y +=-(2)151136x x +--=24.如图,∠AOC 和∠BOD 都是直角.(1)如果∠DOC =35°,则∠AOB =;(2)找出图中一组相等的锐角为:;(3)选择,若∠DOC 变小,∠AOB 将变;(A .大B .小C .不变)25.某商店购进A 、B 两种商品共100件,花费3100元,其进价和售价如表:(元/件)售价(元/件)进价A2530B3545(1)B两种商品分别购进多少件?(2)两种商品售完后共获取利润多少元?26.如图,已知在数轴上有三个点A、B、C,O是原点,满足OA=AB=BC=20cm,动点P从点O出发向右以每秒2cm的速度匀速运动;同时,动点Q从点C出发,在数轴上向左匀速运动,速度为v(v>1);运动时间为t.(1)求:点P从点O运动到点C时,运动时间t的值.(2)若Q的速度v为每秒3cm,则经过多长时间P,Q两点相距30cm?此时|QB﹣QC|是多少?27.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)m=_____,E组对应的圆心角度数为______︒;(2)补全频数分布直方图;参考答案1.B 【分析】根据倒数的定义(两个非零数相乘积为1,则说它们互为倒数,其中一个数是另一个数的倒数)求解.【详解】解:-2的倒数是-12,故选:B .【点睛】本题难度较低,主要考查学生对倒数等知识点的掌握.2.C 【分析】根据全面调查与抽样调查的特点对四个选项进行判断.【详解】解:A 、具有破坏性,必须抽查,故选项错误;B 、人数多,不容易调查,适合抽查,故选项错误;C 、事关重大,是精确度要求高的调查,需全面调查,故本选项正确;D 、人数多,不容易调查,适合抽查,故选项错误;故选C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.B 【分析】根据球、圆柱、圆锥、三棱柱的形状判断即可,可用排除法.【详解】解:球、圆锥不可能得到长方形截面,故能得到长方形截面的几何体有:圆柱、三棱柱,一共有2个.故选:B .【点睛】本题考查几何体的截面,关键要理解面与面相交得到线,注意:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.4.C 【分析】根据基本事实:两点之间,线段最短,直接作答即可.【详解】解:由A 到B 有①、②、③三条路线,最短的路线选①的理由是:两点之间,线段最短.故选C【点睛】本题考查的是两点之间,线段最短的实际应用,掌握“几何基本事实或图形的性质在生活中的应用”是解本题的关键.5.B 【分析】用科学记数法表示较大的数时,一般形式为10n a⨯,其中11|0|a ≤<,n 为整数.【详解】解:44.264260010=⨯.故选B .6.D 【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x+1)=6﹣2x ,故选:D .【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.7.C 【分析】利用方向角的定义求解即可.【详解】解:∵D 在点O 的北偏西30°方向,点E 在点O 的北偏东50°方向,∴∠DOE=30°+50°=80°,故选:C .【点睛】本题主要考查了方向角,解题的关键是理解方向角的定义:方向角是表示方向的角;以正北,正南方向为基准,来描述物体所处的方向.8.C 【分析】由题意得到题中存在的等量关系为:2(乙队原来的车辆-调出的车辆)=甲队原来的车辆+调入的车辆,根据此等式列方程即可.【详解】设需要从乙队调x 辆汽车到甲队,由题意得100+x =2(68﹣x),故选C .【点睛】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键.9.B 【分析】先求出被调查的学生的人数,可求得喜欢篮球的人数,从而得到喜欢足球的和喜欢羽毛球的人数之和,根据爱好足球的人数是爱好羽毛球的人数的4倍,可求出喜欢足球的人数,喜欢羽毛球的人数,即可求解.【详解】解:根据题意得:被调查的学生的人数:2130%70÷=(人),故D 错误;∴喜欢篮球的人数为:7020%14⨯=(人),故A 错误;∴喜欢足球的和喜欢羽毛球的人数之和为:70211435--=,∵爱好足球的人数是爱好羽毛球的人数的4倍,∴喜欢羽毛球的人数为()35417÷+=(人),故C 错误;∴喜欢足球的人数为35728-=(人),故B正确;故选:B.【点睛】本题主要考查了扇形统计图,解题的关键是从扇形统计图中获取准确的信息.10.A【分析】由图可观察出奇数项在OA或OB射线上,根据每四条射线为一组,即可得出答案.【详解】解:观察图形的变化可知:奇数项:1、3、5、7,…,2n-1(n为正整数),偶数项:-2、-4、-6、-8,…,-2n(n为正整数),∵2021是奇数项,∴2n-1=2021,∴n=1011,∵每四条射线为一组,始边为OC,∴1011÷4=252...3,∴标记为“2021”的点在射线OA上,故选:A.【点睛】本题考查了规律型图形的变化类,解决本题的关键是观察图形的变化寻找规律.11.C【分析】利用折叠的特性可得:∠CBD=∠EBD=25°,再利用长方形的性质∠ABC =90°,则∠ABE=90°−∠EBC,结论可得.【详解】解:由折叠可得:∠CBD=∠EBD=25°,则∠EBC=∠CBD+∠EBD=50°,∵四边形ABCD是长方形,∴∠ABC=90°,∴∠ABF=90°−∠EBC=40°,故C正确.故选:C.【点睛】本题主要考查了角的计算,折叠的性质,利用折叠得出:∠CBD=∠EBD是解题的关键.12.A【分析】根据程序得出一般性规律,确定出第2021次输出结果即可.【详解】解:把x=-48代入得:12×(-48)=-24;把x=-24代入得:12×(-24)=-12;把x=-12代入得:12×(-12)=-6;把x=-6代入得:12×(-6)=-3;把x=-3代入得:-3-3=-6,依此类推,从第3次输出结果开始,以-6,-3循环,∵(2021-2)÷2=1009…1,∴第2021次输出的结果为-6,故选:A .【点睛】此题考查了代数式求值,理解题意,根据程序得出一般性规律是解本题的关键.13.a b 【分析】根据数轴上点的位置进行判断,0的右边大于0,0的左边小于0,据此分析即可【详解】解:∵在数轴上的点A 对应的数为a ,B 对应的数为b ,A 点在原点的左侧,B 点在原点的右侧,正数大于负数,∴0a b<<故答案为:,a b【点睛】本题考查了根据数轴判断有理数的大小,数形结合是解题的关键.14.x =−3【分析】方程移项,把x 系数化为1,即可求出解.【详解】解:2x +6=0,移项得:2x =−6,解得:x =−3.故答案为:x =−3.【点睛】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.15.10【分析】根据线段中点的性质可得AD DC =,由DC DB CB =-求得AD ,根据AB AD DB =+求解即可.【详解】解:∵743cm DC DB CB =-=-=,点D 为AC 的中点,∴3cmAD DC ==∴AB AD DB =+3710cm=+=故答案为:10【点睛】本题考查了线段中点的性质,线段和差的计算,数形结合是解题的关键.16.折线统计图【分析】首先要清楚每一种统计图的特点:频数直方图能够显示各组频数分布的情况;条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.【详解】制作一年来每个月平均气温变化统计图,选择折线统计图合适.故答案为:折线统计图【点睛】本题考查统计图的选择,解答此题要熟练掌握统计图的特点,根据实际情况灵活选择.17.1-【分析】先计算A B +,合并同类项之后,根据题意令一次项系数为0,即可求得m 的值.【详解】A B +222112(1)2x x mx x m x ++++=+++=,若关于x 的多项式A+B 不含一次项,10m ∴+=,解得1m =-.故答案为:1-.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.18.我【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“力”字相对的面上的汉字是“我”.故答案为:我【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.19.11【分析】观察看出,所求的代数式是已知代数式变形得到的,利用代入法求得代数式的值即可.【详解】∵x+2y=3,∴代数式两边分别乘以2得:2x+4y=6,代入2x+4y+5,得:原式=6+5=11.故本题答案为:11.【点睛】考查代数式的变形及代入法的运用.注意整体思想的应用.20.(1)9(2)-7【解析】(1)()211713-+--413=-+9=(2)214(3)(()39⎡⎤-⨯-+-⎢⎥⎣⎦149939⎛⎫⎛⎫=⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭34=--7=-21.(1)见解析(2)见解析【分析】(1)根据题意作射线PA ,作直线PB ;(2)以B 为圆心AB 的长为半径画弧,交AB 的延长线于点C ,连接BC ,则AC=2AB(1)如图所示,射线PA ,直线PB 即为所求作;(2)如图所示,延长线段AB 至点C ,使得AC=2AB22.a -8b -1;5【分析】根据去括号的法则去括号,然后合并同类项,然后代入求值即可.【详解】2(2a -3b )-(3a +2b +1)=4a -6b -3a -2b -1=a -8b -1.当a =2,b =-12,代入原式=2-8×(-12)-1=5考点:整式的化简求值23.(1)2y =-(2)1x =-【解析】(1)原方程可化为:6342y y -=--36y =-2y =-(2)原方程可化为:()21651x x +-=-2451x x -=-33x -=1x =-24.(1)145°(2)∠AOD 与∠BOC(3)A【分析】(1)根据题意可得90AOD DOC ∠=︒-∠,进而根据AOB AOD DOB ∠=∠+∠即可求解;(2)根据DOC ∠的余角相等求解即可;(3)由(1)可知AOB ∠180DOC =︒-∠,进而即可求得答案.(1)∠AOC 和∠BOD 都是直角∴90AOD DOC ∠=︒-∠,AOB AOD DOB ∠=∠+∠9090DOC =︒-∠+︒180DOC =︒-∠ ∠DOC =35°,∴AOB ∠=145°故答案为:145°(2)∠AOC 和∠BOD 都是直角∴90AOD AOC DOC DOC ∠=∠-∠=︒-∠,90BOC DOB DOC DOC ∠=∠-∠=︒-∠∴AOD ∠=BOC∠故答案为:AOD ∠与BOC∠(3)由(1)可知AOB ∠180DOC=︒-∠若∠DOC 变小,∠AOB 将变大故答案为:A【点睛】本题考查了几何图形中角度的计算,同角的余角相等,数形结合是解题的关键.25.(1)A 、B 两种商品分别购进40件、60件;(2)两种商品售完后共获取利润800元【分析】(1)设购进A 种商品a 件,则购进B 种商品(100a -)件,然后根据题意和表格中的数据即可列出相应的方程,从而可以求得A 、B 两种商品分别购进多少件;(2)根据(1)中的结果和表格中的数据可以计算出两种商品售完后共获取利润多少元.【详解】(1)设购进A 种商品a 件,则购进B 种商品(100a -)件,()25351003100a a +-=,解得,40a =,则10060a -=,答:A 、B 两种商品分别购进40件、60件;(2)()()302540453560-⨯+-⨯5401060=⨯+⨯200600800=+=(元),答:两种商品售完后共获取利润800元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.26.(1)30秒(2)经过6秒或18秒P ,Q 两点相距30cm ,此时|QB ﹣QC|是16cm 或20cm【分析】(1)根据题意求得OC 的长,进而根据时间等于路程除以速度列算式求解即可;(2)根据题意,分相遇前和相遇后相距30cm ,两种情形列一元一次方程求解即可.(1)由题意知:OC=OA+AB+BC=20+20+20=60(cm),∴当P运动到点C时,t=60÷2=30(秒);(2)①当点P、Q还没有相遇时,2t+3t=60﹣30,解得:t=6,此时,QC=3×6=18(cm),QB=BC﹣QC=20﹣18=2(cm),∴|QB﹣QC|=|2﹣18|=16(cm),②当点P、Q相遇后,2t+3t=60+30,解得:t=18,此时,QC=3×18=54(cm),QB=QC﹣BC=54﹣20=34(cm),∴|QB﹣QC|=|34﹣54|=20(cm),综上所述,经过6秒或18秒P,Q两点相距30cm,此时|QB﹣QC|是16cm或20cm【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数形结合以及分类讨论是解题的关键.27.(1)40;14.4(2)见解析【分析】(1)由B组有21人和B组占抽查学生总数的21%可计算出被抽查学生的总数,根据C组人数为40人,即可计算出C组占总数的百分比,从而得到:“m”的值;由E组人数4除以总人数再乘以360°即可得到扇形统计图中E组所对应的圆心角度数;(2)根据(1)计算出的被抽查学生的总数,由总数减去A、B、C、E各组的人数可得D 组的人数,即可补全频数直方图.(1)由题意可得:被抽查的总人数为:21÷21%=100(人),C组占总人数的百分比为:40100%=40% 100⨯,∴m=40;“E”组对应的圆心角度数为:4360=14.4 100⨯︒︒;故答案为:40;14.4.(2)D组的频数为:100-10-21-40-4=25(人),频数分布直方图补充完整如下:。

最新北师大版七年级上册数学期末拔高考试试题以及答案

最新北师大版七年级上册数学期末拔高考试试题以及答案
A、﹣6
B、6
C、2或﹣2
D、6或﹣6
二、填空题。
1、已知
2、在直线L上有3个点A、B、C,AB=10厘米,BC=4厘米,则AC等于()
3、2点15分时,分针和时针的夹角是()
4、若 是一元一次方程,则a的值是()
5、Biblioteka 6、7、温度由t℃下降了5℃后是。
8、
9、已知多项式 的差中不含xy这一项,则k的值。
最新七年级上册数学期末考试试题
一、选择题。
1、下列适合采用普查的是()
2、
3、某商品按进件提价40%后又打八折,结果仍获利15元,这个商品的进件是()元。
A、115元
B、120元
C、125元
D、150元
4、
5、已知代数式8x-7与3-2x互为相反数,则x的值是()
A、
B、1
C、
D、﹣1
6、
7、若 ,xy=﹣8,则x-y的值是()
三、解答题。
1、解方程。
2、计算题。
3、
(2)
4、如图,A、O、B在同一条直线上,∠COD=2∠BOC,若∠COD=40°,问∠AOD的度数。
5、
6、
7、
8、
9、
10、

最新北师大版七年级上册数学期末考试试题以及答案(3套)

最新北师大版七年级上册数学期末考试试题以及答案(3套)

最新七年级上册数学期末考试试题一、选择题。

1.的相反数是()A.2B.C.12D.﹣122.一运动员某次跳水的最高点离跳台2m,记作+2m,则水面离跳台10m可以记作()A.-10mB.-12mC.+10mD.+12m3.在-6、-2、0、3这四个数中,最小的数是()A.-6B.-2C.0D.34.计算的结果等于()A.12B.-12C.65.等于()A.2B、-2C.±2D.6.下列运算正确的是()A.B.C.D.7.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()A.5B.6C.7D.8的结果为()8.计算A.-5x2B.5x2B.-x29.如图是一个长方体包装盒,则它的平面展开图是()10.如图,OB是∠AOC的平分线,OD是∠COE的平分线,如果∠AOB=50°,∠COE=60°,则下列结论不正确的是()A∠BOD=80°B∠AOE=110°C∠BOC=50°D∠DOE=30°11.一元一次方程2x=4的解是()A.x=1B.x=2C.x=3D.x=412.下列是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,第3个图形由10个基础图形组成,第5个图形中基础图形的个数为()A.13B.14C.15D.16二、填空题。

13.计算:2a2+3a2=.14.若,互为倒数,,互为相反数,则=。

15.如果与是同类项,则。

16.如图,和都是直角,如果,那么17.购买一本书,打八折比打九折少花2元钱,那么这本书的原价是元。

18.为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第(n)图,需用火柴棒的根数为.三、解答题。

19、计算(每小题3分,共12分)20、解方程(每小题3分,共6分)(1)2x-3=x+1(2)21、先化简,后求值:(1)化简:3x2-5x一6-7x2-6x+15(2)先化简,再求值:-2x2-2[3y2-2(x2-y2)+6],其中x=-1,y =-2.22.出租车司机小李某天下午营运全是在东西走向的长清清河街,如果规定向东为正,向西为负,他这天下午行车里程如下:+15,-3,+14,-11,+10,-12,+4,-15,+16,-18.(1)将最后一名乘客送到目的地时,小李距下午出车地点的距离是多少千米?(2)若每千米耗油0.1升,这天下午共耗油多少升?23.为迎接6月5日的“世界环境日”,某校团委开展“光盘行动”,倡议学生遏制浪费粮食行为.该校七年级(1)、(2)、(3)三个班共128人参加了活动.其中七(3)班48人参加,七(1)班参加的人数比七(2)班多10人,请问七(1)班和七(2)班各有多少人参加“光盘行动”?B24.如图,已知数轴上点A表示的数为8,是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?最新七年级上册数学期末考试试题一、选择题。

北师大版七年级上学期数学《期末测试题》及答案解析

北师大版七年级上学期数学《期末测试题》及答案解析
故选C.
[点睛]此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.有理数 , , 在数轴上的对应点的位置如图所示,则正确的结论是()
A. B. C. D.
[答案]A
[解析]
[分析]
根据数轴上点的位置作出判断即可.
(2)若 ,直接写出 的度数(用含 的代数式表示).
28.对数轴上的点 进行如下操作:先把点 表示的数乘以 ,再把所得数对应的点沿数轴向右平移 个单位长度,得到点 .称这样的操作为点 的“倍移”,对数轴上的点 , , , 进行“倍移”操作得到的点分别为 , , , .
(1)当 , 时,
①若点 表示的数为 ,则它的对应点 表示的数为.若点 表示的数是 ,则点 表示的数为;②数轴上的点 表示的数为1,若 ,则点 表示的数为;
[详解]由相反数的意义得,2的相反数是-2,
故选:D.
[点睛]本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.
2.2019年12月16日,我国在西昌卫星发射中心用长征三号乙运载火箭,以“一箭双星”方式成功发射第52、53颗北斗导航卫星,卫星距离地球表面约21500000m,将数字21500000用科学记数法表示应为
二、填空题(本题共8个小题,每小题2分,共16分)
9.计算: =________; ________.
[答案](1).-1(2).18
[解析]
[分析]
根据有理数的乘方以及乘除法运算法则进行计算即可得到答案.
[详解] =-1;
,
故答案为:-1,18.

最新北师大版七年级上册数学拔高期末测试试题以及答案

最新北师大版七年级上册数学拔高期末测试试题以及答案

最新七年级上册数学期末考试试题一、选择题。

1、下列说法中正确的有()①过两点有且只有一条直线②连接两点的线段叫做两点间的距离③两点之间,线段最短’.④若AB=BC,则点B 是AC的中点A.1个B.2个C.3个D.4个2、经过同一平面内的三个点A、B、C中的每两个点画直线,可以画()A.1条B.3条C.1条或3条D.无数条3、去年某市9.6万学生参加初中毕业会考,为了解这9.6万名考生的数学成绩,从中抽取5000名考生的数学成绩进行统计分析,以下说法正确的是()A,这5000名考生是总体的一个样本B.9.6万名考生是总体C.每位考生的数学成绩是个体D.5000名学生是样本容量4、商店购进某种商品的进价是每件8元,销售价是每件10元,为了扩大销售量,将每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得利润的90%,那么x应等于() A.10B.4C.2D.185、将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠CBD=66°,则∠ABE为()A.20∘B.24∘C.40∘D.506、轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()7、如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是()A.m+nB.m﹣nC.n﹣mD.|m+n|8、9、已知线段AB =3cm ,延长线段AB 到C ,使BC =4cm ,延长线段BA 到D ,使AD =AC ,则线段CD 的长为( )A .14cmB .8cmC .7cmD .6cm10、将边长为1的正方形纸片如图1所示的方法进行对折,记第一次对折后得到的图形面积二、选择题。

1、若8x 410x 3 与-值相等,则x 的值是 。

2、在数学活动中,小明为了求的值(结果用行表示),设计如图所示的 几何图形,请你利用这个几何图形,计算= 。

七年级数学上册期末测试卷含答案(北师大版)

七年级数学上册期末测试卷含答案(北师大版)

(北师大版)七年级数学上册期末测试卷含答案七年级数学上册期末测试卷班级姓名得分一、选择题(每题2分,共20分)1.对于如图所示几何体的说法正确的是().A.几何体是四棱柱 B. 几何体的底面是长方形C.几何体有3条侧棱 D.几何体有4个侧面(第1题)(第7题)2.火星围绕太阳公转的轨道半长径为230 000 000 km.将230 000 000用科学记数法表示为( ).A.23×107B. 2.3×108C.2.3×109D.0.23×1093.下列四组变形中,属于移项变形的是().A.由2x-1=0,得x=12B.由5 x+6=0,得5 x= -6C. 由x3=2,得x=6 D.由5 x=2,得x=254.最适合采用全面调查的是( ).A.调查全国中学生的体重B.调查“神舟十三号”载人飞船的零部件C.调查某市居民日平均用水量D.调查某种品牌电器的使用寿命5.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏35元,而按标价的8折出售将赚55元,照这样计算,若按标价的6折出售则().A.赚30元B.亏30元C.赚5元D.亏5元6.对于两个不相等的有理数α,b,我们规定符号min{α,b}表示α,b两数中较小的数,例如min{-2,3}=-2.按照这个规定,方程min{x,- x}= -2 x -1的解为( ).A. x=−13B. x= -1C. x=1D. x=-1或x=−137.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A B C D8.如图一副三角板按不同的方式摆放得到下面四个图形,满足∠1=∠2的图形个数有( ).A.1个 B.2个 C.3个 D.4个9.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程( ).A.4(x-1)=2 x+8B.4(x+1)=2 x-8C.x4+1=x+82D.x4-1=x−8210.在直线l上有四个点A,B,C,D,已知AB=10,AC=6,点D是BC的中点,则线段AD的长是( ).A.2 B.8 C.4或8 D.2或8二、填空题(每题2分,共16分)11. 已知(k2-1)x2-(k+1)x+10=0是关于x的一元一次方程,则k的值为 .12.已知有理数a,b,c在数轴上的对应位置如图所示,则|a-b|-2|b-c|-|a-1|化简后的结果是(第12题)(第13题)(第15题)13.如图,已知∠AOB=40°,自O点引射线OC,若∠AOC:∠COB=2:3,OC与∠AOB的平分线所成的角的度数为。

北师大版2022-2023学年七年级数学上册期末测试卷(附答案)

北师大版2022-2023学年七年级数学上册期末测试卷(附答案)

2022-2023学年七年级数学上册期末测试卷(附答案)一.选择题(满分30分)1.有理数5,﹣2,0,﹣4中最小的一个数是()A.5B.﹣2C.0D.﹣42.新冠病毒的直径约为11m,若11用科学记数法记作1.1×10﹣7,则n的值为()A.5B.6C.7D.83.如图的一个几何体,其左视图是()A.B.C.D.4.下列运算中,正确的是()A.a6÷a2=a4B.a2+a3=a5C.a•a3=a3D.(a3)3=a6 5.为了解我市八年级学生的视力状况,从中随机抽取500名学生的视力状况进行分析,此项调查的样本为()A.500B.被抽取的500名学生C.被抽取500名学生的视力状况D.我市八年级学生的视力状况6.已知a﹣b=2,a﹣c=,则代数式(b﹣c)2+3(b﹣c)+的值是()A.﹣B.C.0D.7.如图,表示阴影部分面积的代数式正确的是()A.ab+bc B.ab﹣cdC.c(b﹣d)+d(a﹣c)D.ad+c(b﹣d)8.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A.B.C.D.9.下列正确的有()个①倒数等于本身的数是0,1,﹣1.②多项式与单项式的和一定是多项式.③如果∠POB=∠AOB,则OP是平分∠AOB.④(﹣0.8)2021×(﹣)2020=0.8.⑤2a﹣3=.⑥(﹣1﹣3a)2=1+6a+9.A.3B.2C.1D.010.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.1二.填空题(满分20分)11.若x2y与3x m﹣1y是同类项,则m的值为.12.在全国足球甲级A组的比赛中,某队在已赛的11场比赛中保持连续不败,积25分.已知胜一场得3分,平一场得1分,那么该队已胜场.13.若2m=a,32n=b,m,n为正整数,则23m+10n=.14.如图,已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点;则DE的长为cm.15.有一列数4,7,x3,x4,…,x n,从第二个数起,每一个数都是它前一个数和后一个数和的一半,则当n≥2时,x22=.三.解答题(满分70分)16.(1)计算:﹣12+()﹣2﹣(π﹣3)0﹣|﹣1|.(2)解方程:=4.17.先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.18.甲、乙、丙三名候选人要参加学校学生会干部竞选,按程序分别进行答辩、笔试和民主投票.答辩、笔试成绩如下表所示,学生民主投票每张选票只限填写甲、乙、丙中的一人,且每张选票记1分.统计得票后,绘出如下所示不完整的统计图.答辩、笔试成绩统计表:人员甲乙丙答辩成绩(分)958886笔试成绩(分)808690根据以上信息,请解答下列问题.(1)参加投票的共有人,乙的得票率是.(2)补全条形统计图.(3)学校将答辩、笔试和学生投票三项得分按4:4:2的比例确定每位候选人的总成绩,总成绩最高者当选,试通过计算说明哪位候选人当选.19.已知a,b,c为有理数,且它们在数轴上的位置如图所示.(1)试判断a,b,c的正负性;(2)在数轴上标出a,b,c相反数的位置;用﹣a,﹣b,﹣c表示;(3)若|a|=5,|b|=2.5,|c|=7.5,求a,b,c的值.20.第24届冬季奥林匹克运动会于2022年2月4日至2022年2月20日在北京市和张家口市联合举行,北京是唯一个既举办冬季奥运会又举办夏季奥运会的城市.为了迎接2022年北京冬季奥运会,某校准备举行冬季长跑比赛,为奖励长跑优胜者,学校需要购买一些冬奥会吉祥物冰墩墩、雪容融水杯和徽章.了解到某商店水杯的单价比徽章的单价多11元,若买2个水杯和3个徽章共需67元.(1)水杯和徽章的单价各是多少元?(2)该商店推出两种优惠方案,方案一:消费金额超过200元的部分打八折;方案二:全店商品打九折.若学校需要购买10个水杯和30个徽章,选择哪种方案更优惠?21.我们知道,从一个角的顶点出发把这个角分成两个相等的角的射线,叫做这个角的平分线.类似的我们给出一些新的概念:从一个角的顶点出发把这个角分成度数为1:2的两个角的射线,叫做这个角的三分线:从一个角的顶点出发把这个角分成度数为1:3的两个角的射线,叫做这个角的四分线…显然,一个角的三分线、四分线都有两条.例如:如图1,若∠BOC=2∠AOB,则OB是∠AOC的一条三分线;若∠AOD=2∠COD,则OD是∠AOC的另一条三分线.(1)如图2,OB是∠AOC的三分线,∠BOC>∠AOB,若∠AOC=60°,则∠AOB =;(2)如图3,∠DOF=120°,OE是∠DOF的四分线,∠DOE>∠EOF,过点O作射线OG,当OG刚好为∠DOE的三分线时,求∠GOF的度数;(3)如图4,∠AOD=120°,射线OB、OC是∠AOD的两条四分线,将∠BOC绕点O 沿顺时针方向旋转α(0≤α≤180°),在旋转的过程中,若射线OB、OC、OD中恰好有一条射线是其它两条射线组成夹角的四分线,请直接写出α的值.22.已知多项式x3﹣3xy2﹣4的常数项是a,次数是b(1)直接写出a,b,并将这两个数在数轴上所对应的点A、B表示出来;(2)数轴上A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|,设点P在数轴上对应的数为x,当|P A|+|PB|=13时,直接写出x的值;(3)若点A、点B同时沿数轴向正方向运动,点A的速度是点B的2倍,且3秒后,AO=OB,求点B的速度.参考答案一.选择题(满分30分)1.解:∵|﹣2|=2,|﹣4|=4,而2<4,∴﹣2>﹣4,∴﹣4<﹣2<0<5,∴有理数5,﹣2,0,﹣4中最小的一个数是﹣4.故选:D.2.解:∵1.1×10﹣7=0.00000011,∴n=7,故选:C.3.解:从左边看,是一列三个相邻的矩形.故选:B.4.解:A.a6÷a2=a4,正确,故选项符合题意;B.a2,a3不能合并,原说法错误,故选项不符合题意;C.a•a3=a4,原说法错误,故选项不符合题意;D.(a3)3=a9,原说法错误,故选项不符合题意;故选:A.5.解:为了解我市八年级学生的视力状况,从中随机抽取500名学生的视力状况进行分析,此项调查的样本为被抽取500名学生的视力状况,故选:C.6.解:∵a﹣b=2,a﹣c=,∴两式左右分别相减,得b﹣c=﹣,∴(b﹣c)2+3(b﹣c)+=(﹣)2+3×(﹣)+=﹣+=0.故选:C.7.解:如图,阴影部分的面积是:ad+c(b﹣d).故选:D.8.解:设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:.故选:C.9.解:①因为0没有倒数,因此①不正确;②多项式与单项式的和不一定是多项式,也可能是单项式,如多项式2x﹣3y与单项式3y的和就是单项式,因此②不正确;③当OP不在∠AOB的内部,这个结论就不正确,因此③不正确;④原式=(﹣0.8)×(﹣0.8)2020×(﹣)2020=(﹣0.8)×[﹣0.8×(﹣)]2020=﹣0.8,因此④不正确;⑤,故⑤正确;⑥(﹣1﹣3a)2=1+6a+9a2,故⑥不正确,故正确的有⑤,共有1个.故选:C.10.解:∵1<x<2,∴x﹣2<0,x﹣1>0,x>0,∴原式=﹣1﹣(﹣1)+1=1,故选:D.二.填空题(满分20分)11.解:由题意得,2=m﹣1.∴m=3.故答案为:3.12.解:设该队已胜x场,那么该队平场的场数为(11﹣x),根据题意得:3x+(11﹣x)=25,答:该队已胜7场.故答案为:7.13.解:32n=25n=b,则23m+10n=23m•210n=a3•b2=a3b2.故答案为:a3b2.14.解:∵AC=12cm,CB=AC,∴CB=12×=8(cm),∴AB=AC+CB=12+8=20(cm),∵D、E分别为AC、AB的中点,∴AD=AC=×12=6(cm),AE=AB=×20=10(cm),∴DE=AE﹣AD=10﹣6=4(cm),故答案为:4.15.解:由题意得,=7,解得x3=10,=10,解得x4=13,同理x5=16,x6=19,x7=22,…因此这列数为4,7,10,13,16,19,22,25…所以x22=4+3(22﹣1)=67,故答案为:67.三.解答题(满分70分)16.解:(1)原式=﹣1+4﹣1﹣1=1.(2)+=4.3(x﹣3)+2(x﹣1)=24,3x﹣9+2x﹣2=24,5x=35,x=7.17.解:原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2=﹣x2+y2;当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.18.解:(1)204÷34%=600(人),1﹣30%﹣34%=36%.故答案为:600,36%;(2)600×30%=180(人),补图如下:(3)将答辩、笔试和学生投票三项得分按4:4:2的比例确定每人的最终成绩为:甲的成绩:95×0.4+80×0.4+204×0.2=110.8(分),乙的成绩:88×0.4+86×0.4+216×0.2=112.8(分),丙的成绩:86×0.4+90×0.4+180×0.2=106.4(分),∵112.8>110.8>106.4,∴乙当选.19.解:(1)观察数轴,可知:a<0,b>0,c>0;(2)﹣a、﹣b、﹣c在数轴上的位置如图所示:(3)∵|a|=5,a<0,∴a=﹣5,∵|b|=2.5,b>0,∵|c|=7.5,c>0,∴c=7.5.20.解:(1)设水杯的单价是x元,则徽章的单价是(x﹣11)元,根据题意,得:2x+3(x﹣11)=67,解得x=20,徽章:x﹣11=20﹣11=9.答:水杯的单价是20元,徽章的单价是9元;(2)方案一:10×20+9×30=470(元),(470﹣200)×0.8=216(元),200+216=416(元),方案二:(10×20+9×30)×0.9=423(元),∵416<423,∴选择方案一更优惠.21.解:(1)∵OB是∠AOC的三分线,∴∠BOC=2∠AOB,又∵∠AOC=∠BOC+∠AOB=60°,∴∠AOB=20°.故答案为:20°(2)如图所示:∵OE是∠DOF的四分线,∴∠EOF=∠DOF=30°,∠DOE=∠DOF=90°,又∵OG为∠DOE的三分线,∴当∠DOG>∠GOE时,∴∠GOE=∠DOE=30°,∴∠GOF=∠GOE+∠EOF=60°.当∠DOG<∠GOE时,∴∠GOE=∠DOE=60°,∴∠GOF=∠GOE+∠EOF=90°.综上所述,∠GOF的度数为60°或90°.(3)∵∠AOD=120°,OB、OC是∠AOD的两条四分线,∴∠AOB=∠DOC=∠AOD=30°,∴∠BOC=∠AOD﹣∠AOB﹣∠DOC=60°,①当OC为∠BOD的四分线时,∠DOC=30°﹣α,∠BOD=∠BOC+∠DOC=90°﹣α,即30°﹣α=(90°﹣α),解得α=10°,②当OD为四分线时,∠COD=α﹣30°,则有∠COD=∠BOC或∠COD=∠BOC,即α﹣30°=×60°或α﹣30°=×60°,解得α=45°或α=75°,③当OB为四分线时,∠BOD=α﹣90°,∠COD=α﹣30°,则有∠BOD=∠COD或∠BOD=∠COD,即α﹣90°=(α﹣30°)或α﹣90°=(α﹣30°),解得α=110°或α=270°(舍去),综上所述,α的值为10°或45°或75°或110°.22.解:(1)∵多项式x3﹣3xy2﹣4的常数项是a,次数是b,∴a=﹣4,b=3,点A、B在数轴上如图所示:(2)根据题意得|x﹣(﹣4)|+|x﹣3|=13,点P在A点左边,﹣x﹣4﹣x+3=13,解得x=﹣7;点P在A点右边,x+4+x﹣3=13,解得x=6.故x的值为6或﹣7;(3)设B速度为v,则A的速度为2v,3秒后点,A点在数轴上表示的数为(﹣4+6v),B点在数轴上表示的数为3+3v,当A还在原点O的左边时,由OA=OB可得(4﹣6v)=3+3v,解得v=;当A在原点O的右边时,由OA=OB可得(6v﹣4)=3+3v,v=.故点B的速度为或.故答案为:6或﹣7.。

2022-2023年北师大版初中数学七年级上册期末考试检测试卷及答案(共五套)

2022-2023年北师大版初中数学七年级上册期末考试检测试卷及答案(共五套)

2022-2023年北师大版数学七年级上册期末考试测试卷及答案(一)一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣22.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.3.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0 4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.67.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣aC.b<﹣b<﹣a<a D.b<a<﹣a<﹣b9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为.(用含n的代数式表示)15.(3分)单项式﹣的系数是,次数是.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=.17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是(填序号).三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.参考答案:一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)下列运算正确的是()A.2a+3b=5a+b B.2a﹣3b=﹣(a﹣b)C.2a2b﹣2ab2=0D.3ab﹣3ba=0【解答】解:A、2a、3b不是同类项,不能合并,此选项错误;B、2a﹣3b=﹣(a﹣b),此选项错误;C、2a2b、﹣2ab2不是同类项,不能合并,此选项错误;D、3ab﹣3ba=0,此选项正确;故选:D2.(3分)已知2x3y2与﹣x3m y2的和是单项式,则式子4m﹣24的值是()A.20B.﹣20C.28D.﹣2【解答】解:由题意可知:2x3y2与﹣x3m y2是同类项,∴3=3m,∴m=1,∴4m﹣24=4﹣24=﹣20,故选(B)3.(3分)﹣的相反数是()A.﹣2B.2C.﹣D.【解答】解:根据相反数的含义,可得﹣的相反数是:﹣(﹣)=.故选:D.4.(3分)若2(a+3)的值与4互为相反数,则a的值为()A.﹣1B.﹣C.﹣5D.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,∴a=﹣5,故选C5.(3分)解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误()A.①B.②C.③D.④【解答】解:方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x﹣x﹣2x=4+1;③合并同类项,得x=5;④化系数为1,x=5.其中错误的一步是②.故选B.6.(3分)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.6【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故选:C.7.(3分)下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交【解答】解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选D.8.(3分)有理数,a、b在数轴上的位置如图所示,则a、b、﹣b、﹣a的大小关系是()A.b<﹣a<a<﹣b B.b<a<﹣b<﹣a C.b<﹣b<﹣a<a D.b<a<﹣a<﹣b 【解答】解:根据图示,可得b<﹣a<a<﹣b.故选:A.9.(3分)儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的2倍.()A.5年后B.9年后C.12年后D.15年后【解答】解:设x年后父亲的年龄是儿子的年龄的2倍,根据题意得:39+x=2(12+x),解得:x=15.答:15年后父亲的年龄是儿子的年龄的2倍.故选D.10.(3分)已知:点A,B,C在同一条直线上,点M、N分别是AB、AC的中点,如果AB=10cm,AC=8cm,那么线段MN的长度为()A.6cm B.9cm C.3cm或6cm D.1cm或9cm【解答】解:(1)点C在线段AB上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=BM﹣BN=5﹣4=1cm;(2)点C在线段AB的延长线上,如:点M是线段AB的中点,点N是线段BC的中点,MB=AB=5,BN=CB=4,MN=MB+BN=5+4=9cm,故选:D.二、填空题(本大题共10个小题,每小题3分,共30分)11.(3分)若一个角的余角是它的2倍,这个角的补角为150°.【解答】解:设这个角为x°,则它的余角为(90﹣x)°,90﹣x=2x解得:x=30,180°﹣30°=150°,答:这个角的补角为150°,故答案为:150°.12.(3分)若关于x的方程3x+2b+1=x﹣(3b+2)的解是1,则b=﹣1.【解答】解:把x=1代入方程3x+2b+1=x﹣(3b+2)得:3+2b+1=1﹣(3b+2),解得:b=﹣1,故答案为:﹣1.13.(3分)如果(a﹣2)x a﹣2+6=0是关于x的一元一次方程,那么a=3.【解答】解:∵(a﹣2)x a﹣2+6=0是关于x的一元一次方程,∴a﹣2=1,解得:a=3,故答案为:3.14.(3分)如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖块数为2+3n.(用含n的代数式表示)【解答】解:观察图形发现:第1个图案中有白色瓷砖5块,第2个图案中白色瓷砖多了3块,依此类推,第n个图案中,白色瓷砖是5+3(n﹣1)=3n+2.15.(3分)单项式﹣的系数是﹣,次数是3.【解答】解:∵单项式﹣的数字因数是﹣,所有字母指数的和=2+1=3,∴此单项式的系数是﹣,次数是3.故答案为:﹣,3.16.(3分)有理数a、b、c在数轴上的对应点如图所示,化简:|b|﹣|c+b|+|b ﹣a|=﹣b+c+a.【解答】解:由数轴可知:c<b<0<a,∴b<0,c+b<0,b﹣a<0,∴原式=﹣b+(c+b)﹣(b﹣a)=﹣b+c+b﹣b+a=﹣b+c+a,故答案为:﹣b+c+a17.(3分)如图,圈中有6个数按一定的规律填入,后因不慎,一滴墨水涂掉了一个数,你认为这个数可能是26或5.【解答】解:∵按逆时针方向有8﹣6=2;11﹣8=3;15﹣11=4;∴这个数可能是20+6=26或6﹣1=5.18.(3分)如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是①②④(填序号).【解答】解:如图,①CE=CD+DE,故①正确;②CE=BC﹣EB,故②正确;③CE=CD+BD﹣BE,故③错误;④∵AE+BC=AB+CE,∴CE=AE+BC﹣AB=AB+CE﹣AB=CE,故④正确;故答案是:①②④.三、解答题(共40分)19.(8分)计算(1)(﹣)×(﹣30);(2)1÷(﹣1)+0÷4﹣5×0.1×(﹣2)3.【解答】解:(1)原式=﹣10+2=﹣8;(2)原式=﹣1+0﹣0.5×(﹣8)=﹣1+4=3.20.(8分)解方程(1)3(x+2)﹣1=x﹣3;(2)﹣1=.【解答】解:(1)去括号,得:3x+6﹣1=x﹣3,移项,得:3x﹣x=﹣3﹣6+1,合并同类项,得:2x=﹣8,系数化为1,得:x=﹣4;(2)去分母,得:3(x+1)﹣6=2(2﹣x),去括号,得:3x+3﹣6=4﹣2x,移项,得:3x+2x=4+6﹣3,合并同类项,得:5x=7,系数化为1,得:x=.21.(8分)先化简,再求值:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【解答】解:(4x2﹣4y2)﹣3(x2y2+x2)+3(x2y2+y2)=4x2﹣4y2﹣3x2y2﹣3x2+3x2y2+3y2=x2﹣y2,当x=﹣1,y=2时,原式=(﹣1)2﹣22=﹣3.22.(8分)用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?【解答】解:设小拖拉机每小时耕地x亩,则大拖拉机每小时耕地(30﹣x)亩,根据题意得:30﹣x=1.5x,解得:x=12.答:小拖拉机每小时耕地12亩.23.(14分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为ts.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.【解答】解:(1)根据C、D的运动速度知:BD=2,PC=1,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(2)根据C、D的运动速度知:BD=4,PC=2,则BD=2PC,∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∵AB=12cm,AB=AP+PB,∴12=3AP,则AP=4cm;(3)根据C、D的运动速度知:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP,∴点P在线段AB上的处,即AP=4cm;(4)如图:∵AQ ﹣BQ=PQ ,∴AQ=PQ +BQ ;又∵AQ=AP +PQ ,∴AP=BQ ,∴PQ=AB=4cm ;当点Q'在AB 的延长线上时,AQ′﹣AP=PQ′,所以AQ′﹣BQ′=PQ=AB=12cm .综上所述,PQ=4cm 或12cm .2022-2023年北师大版数学七年级上册期末考试测试卷及答案(二)一.选择题(每小题3分)1.下列选项中,比3-小的数是()A.1- B.0 C.21 D.5-2.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()3.下列各式符合代数式书写规范的是()A.a b B.7⨯a C.12-m 元 D.x 2134.2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学计数法表示为()A.1110395.0⨯元B.101095.3⨯元C.91095.3⨯元D.9105.39⨯元5.下列计算正确的是()A.2624a a a =+ B.ab ba ab =-67 C.ab b a 624=+ D.325=-a a 6.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()7.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为()A.两点之间线段的长度,叫做这两点之间的距离B.过一点有无数条直线C.两点确定一条直线D.两点之间,线段最短8.深圳市12月上旬每天平均空气质量指数(AQI)分别为:35,42,55,78,57,64,58,69,74,82,为了描述这十天空气质量的变化情况,最适合用的统计图是()A.折线统计图B.频数直方图C.条形统计图D.扇形统计图9.如图,AB=24,点C 为AB 的中点,点D 在线段AC 上,且AD:CB=1:3,则DB 的长度为()A.12B.18C.16D.2010.若2=x 是方程01424=-+m x 的解,则m 的值为()A.10B.4C.3D.-311.在如图所示的2018年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是()A.86B.78C.60D.10112.下列叙述:①最小的正整数是0;②36x π的系数是π6;③用一个平面去截正方体,截面不可能是六边形;④若AC=BC,则点C 是线段AB 的中点;⑤三角形是多边形;⑥绝对值等于本身的数是正数,其中正确的个数有()A.2B.3C.4D.5二、填空题(每小题3分)13.已知323y x m 和n y x 22-是同类项,则式子n m +的值是.14.在数轴上,与表示数1-的点的距离是三个单位长度的点表示的数是.15.某书店把一本新书按标价的八折出售,仍获利30%,若该书的进价为40元,则标价为元.16.如图所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2018次输出的结果为.三、解答题17.(本题15分)计算:(1);15)9()18(16--+--(2)-(;5324)8312761-⨯-+(3).6)5()2(322---⨯-+-18.(本题4分)先化简,再求值:),244(21)53(22----a a a a 其中a=31.19.(本题8分)解方程(1));3(1)2(2+-=+x x21.(本题5分):如图,∠AOC=21∠BOC=50°,OD 平分∠AOB,求∠AOB 和∠COD 的度数.22.(本题5分)深圳某小区停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为10元/辆.现在停车场有50辆中、小型汽车,期中中型汽车有x辆.(1)则小型汽车的车辆数为(用含x的代数式表示)(2)这些车共缴纳停车费580元,求中、小型汽车各有多少辆?23.(本题8分)如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a-30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为__,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?参考答案2022-2023年北师大版数学七年级上册期末考试测试卷及答案(三)一、选择题(每题3分,共30分)1.在0,-2,1,5这四个数中,最小的数是()A.0B.-2C.1D.52.下列调查中,适宜采用抽样调查方式的是()A.调查奥运会上女子铅球参赛运动员兴奋剂的使用情况B.调查某校某班学生的体育锻炼情况C.调查一批灯泡的使用寿命D.调查游乐园中一辆过山车上共40个座位的稳固情况3.下列运算正确的是()A.6a2-a2=5B.2a+b=2abC.4ba2-3a2b=a2b D.2a2+3a4=5a64.如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A.a<1<-a B.a<-a<1C.1<-a<a D.-a<a<15.如图,两块三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD 的度数为()A.45°B.120°C.135°D.150°6.某市获“全国文明城市”提名,为此小王特制了一个正方体玩具,其表面展开图如图所示,正方体中与“全”字相对的字是()A.文B.明C.城D.市7.有一篮苹果平均分给若干人,若每人分2个,则还余下2个苹果,若每人分3个,则少7个苹果,设有x人分苹果,则可列方程为()A.3x+2=2x+7B.2x-2=3x+7C.3x-2=2x-7D.2x+2=3x-78.如图,把一根绳子对折成线段AB,从P处把绳子剪断,已知PB=2P A,若剪断后的各段绳子中最长的一段为40cm,则绳子的原长为()A.30cmB.60cmC.120cmD.60cm或120cm9.小王去早市为餐馆选购蔬菜,他指着标价为每千克3元的豆角问摊主:“这豆角能便宜吗?”摊主说:“多买按八折,你要多少千克?”小王报了质量后,摊主同意按八折卖给小王,并说:“之前有一人只比你少买5kg就是按标价,还比你多花了3元呢!”小王购买豆角的质量是()A.25kg B.20kgC.30kg D.15kg10.如图所示的图案均是由长度相同的木棒按一定规律拼搭而成的,第1个图案需7根木棒,第2个图案需13根木棒,…以此规律,第11个图案需要木棒的根数是()A.156B.157C.158D.159二、填空题(每题3分,共24分)11.22.5°=________°________′;12°24′=________°.12.某中学要了解七年级学生的视力情况,在全校七年级学生中抽取了25名学生进行检查,在这个问题中,总体是________________________,样本是________________________.13.我国“南仓”级远洋综合补给舰满载排水量为37000t ,把数37000用科学记数法表示为_______________________________________.14.若a +b =2,则代数式3-2a -2b =________.15.从中午12时开始,时钟的时针转过了80°的角,则此时的时间是________.16.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1dm 的正方体摆放在课桌上,如图所示,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为________.17.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC内,且∠BOE =13∠EOC ,∠DOE =60°,则∠EOC =________.18.某市为提倡节约用水,采取分段收费.若每户每月用水量不超过20m 3,每立方米收费2元;若用水量超过20m 3,超过的部分每立方米加收1元.小明家5月份缴水费64元,则他家该月用水________.三、解答题(19~23题每题6分,24~26题每题12分,共66分)19.计算:(1)-32-(-17)-|-23|+(-15);÷9121-+23--24).20.解方程:(1)3x+7=32-2x;(2)x-1-x3=x+5 6.21.化简求值:已知|2x+1|+=0,求4x2y-[6xy-3(4xy-2)-x2y]+1的值.22.如图是由小立方块搭成的几何体,请画出从正面、左面和上面看到的平面图形.23.如图,OC是∠AOD的平分线,∠BOC=12∠COD,那么∠BOC是∠AOD 的几分之几?说明你的理由.24.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分学生的兴趣爱好进行调查,将收集的数据整理并绘制成如图所示的两幅统计图.请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了________名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为________.25.某班计划购买一些乒乓球和乒乓球拍,现了解到的情况如下:甲、乙两家店出售同样品牌同种型号的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副乒乓球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需乒乓球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家店购买更合算?26.在数轴上,表示数m与n的点之间的距离可以表示为|m-n|.例如:在数轴上,表示数-3与2的点之间的距离是5=|-3-2|,表示数-4与-1的点之间的距离是3=|-4-(-1)|.利用上述结论解决如下问题:(1)若|x-5|=3,求x的值;(2)点A,B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a-b|=6(b>a),点C表示的数为-2.若A,B,C三个点中的某一个点是另两个点所连线段的中点,求a,b的值.参考答案:一、1.B2.C3.C4.A5.C6.B7.D8.D9.C点拨:设小王购买豆角的质量是x kg,则3×80%x=3(x-5)-3,整理得2.4x=3x-18,解得x=30.所以小王购买豆角的质量是30kg.10.B点拨:第1个图案需7根木棒,7=1×(1+3)+3,第2个图案需13根木棒,13=2×(2+3)+3,第3个图案需21根木棒,21=3×(3+3)+3,……第n个图案需[n(n+3)+3]根木棒,所以第11个图案需11×(11+3)+3=157(根)木棒.故选B.二、11.22;30;12.412.该中学七年级学生的视力情况;抽取的25名学生的视力情况13.3.7×10414.-115.14时40分16.33dm217.90°点拨:设∠BOE=x°,则∠EOC=3x°,∠DOB=60°-x°.由OD平分∠AOB,得∠AOB=2∠DOB,故3x+x+2(60-x)=180,解方程得x=30,所以∠EOC=90°,故答案为90°.18.28m3点拨:设小明家5月份用水x m3,因为20×2=40(元),64>40,所以x>20.根据题意可得2×20+(2+1)(x-20)=64,解得x=28.三、19.解:(1)原式=-32+17-23-15=-53.(2)原式=-11-[12×(-24)+23×(-24)-34×(-24)]=-11-(-12-16+18)=-1.20.解:(1)移项,得3x+2x=32-7.合并同类项,得5x=25.系数化为1,得x=5.(2)去分母,得6x-2(1-x)=x+5,去括号,得6x-2+2x=x+5,移项、合并同类项,得7x=7,系数化为1,得x=1.21.解:由|2x+1|+=0得2x+1=0,y-14=0,即x=-12,y=14.原式=4x2y-6xy+12xy-6+x2y+1=5x2y+6xy-5.当x=-12,y=14时,原式=5x2y+6xy-5=516-34-5=-5716.22.解:如图.23.解:∠BOC是∠AOD的四分之一.理由如下:因为OC是∠AOD的平分线,所以∠COD=12∠AOD.因为∠BOC=12∠COD,所以∠BOC=12×12∠AOD=14∠AOD.24.解:(1)100(2)喜欢民乐的人数为100×20%=20(人),补全条形统计图如图所示.(3)36°25.解:(1)设该班购买乒乓球x盒,则在甲店付款:100×5+(x-5)×25=(25x+375)元,在乙店付款:0.9×100×5+25×0.9×x=(22.5x+450)元,由25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样.(2)当购买20盒乒乓球时,在甲店付款:25×20+375=875(元),在乙店付款:22.5×20+450=900(元),875<900,故在甲店购买更合算;当购买40盒乒乓球时,在甲店付款:25×40+375=1375(元),在乙店付款:22.5×40+450=1350(元),1350<1375,故在乙店购买更合算.答:购买20盒时,去甲店购买更合算;购买40盒时,去乙店购买更合算。

【北师大版】七年级上学期数学《期末检测试题》及答案

【北师大版】七年级上学期数学《期末检测试题》及答案

北师大版七年级上学期数学期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1.如图,一个由6个相同小正方体组成的几何体,则该几何体的主视图是( )A. B. C. D. 2.今年1月3日,我国的嫦娥四号探测器成功在月球背面着陆,标志着我国已经成功开始了对月球背面的研究,填补了国际空白.月球距离地球的平均距离为384000千米,数据384000用科学记数法表示为( )A. 338410⨯B. 53.8410⨯C. 438.410⨯D. 60.38410⨯3.下列说法错误的是 ( )A. 2231x xy --是二次三项式B. 1x -+不是单项式C. 223xy π-的系数是23π-D. 222xab -的次数是6 4.射线OC 在AOB ∠内部,下列条件不能说明OC 是AOB ∠的平分线的是( ) A. 12AOC AOB ∠=∠ B. 1BOC AOB 2∠=∠ C . AOC BOC AOB ∠+∠=∠D. AOC BOC ∠=∠ 5.为了调查某校学生的视力情况,在全校的800名学生中随机抽取了80名学生,下列说法正确的是( )A. 此次调查属于全面调查B. 样本容量是80C. 800名学生是总体D. 被抽取的每一名学生称为个体 6.已知线段AB =10cm ,在直线AB 上取一点C ,使AC =16cm ,则线段AB 的中点与AC 的中点的距离为( )A. 13cm 或26cmB. 6cm 或13cmC. 6cm 或25cmD. 3cm 或13cm7.(-2)2004+3×(-2)2003的值为 ( )A. -22003B. 22003C. -22004D. 220048.如图,两块直角三角板的直角顶点O重合在一起,若∠BOC=17∠AOD,则∠BOC的度数为()A. 22.5°B. 30°C. 45°D. 60°9.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种电子产品的标价为A. 26元 B. 27元 C. 28元 D. 29元10.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的34.若设甲一共做了x天,则所列方程为()A.13584x x++= B.-13584x x+= C.13-584x x+= D.-13-584x x=11.如图,AB∥CD,BF,DF 分别平分∠ABE 和∠CDE,BF∥DE,∠F 与∠ABE 互补,则∠F 的度数为A. 30°B. 35°C. 36°D. 45°12.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A1,第2次移动到A2,第3次移动到A3,……,第n次移动到A n,则△OA2A2019的面积是()A. 504B. 10092C.10112D. 1009二、填空题13.如图,一个正方体的平面展开图,若折成正方体后,每对相对面上标注的值的和均相等,则x+y=_____.14.已知代数式312+n a b 与223--m a b 是同类项, 则23m n +=__________15.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .16.如图,已知正方形ABCD 的边长为24厘米.甲、乙两动点同时从顶点A 出发,甲以2厘米/秒的速度沿正方形的边按顺时针方向移动,乙以4厘米/秒的速度沿正方形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动,则第四次相遇时甲与最近顶点的距离是______厘米.三、解答题17.(1)计算:2211363()(2)32----⨯-+-÷(2)解方程: 212134x x -+=- 18.先化简,再求值:221222()2x y xy xy x y ⎡⎤---+⎢⎥⎣⎦,其中x=3,y=-13. 19.某校开设武术、舞蹈、剪纸三项活动课程,为了了解学生对这三项活动课程的兴趣情况,随机抽取了部分学生进行调查(每人从中只能选一顶),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是___;(3)在扇形统计图中,计算女生喜欢剪纸活动课程人数对应的圆心角度数;(4)已知该校有1200名学生,请结合数据简要分析该校学生对剪纸课程的兴趣情况.20.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.21.如图,直线AB和直线BC相交于点B,连接AC,点D. E. H分别在AB、AC、BC上,连接DE、DH,F是DH 上一点,已知∠1+∠3=180°,(1)求证:∠CEF=∠EAD;(2)若DH平分∠BDE,∠2=α,求∠3的度数.(用α表示).22.列方程解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的1 2倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?23.如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB 向左运动(C在线段AP上,D在线段BP上),运动的时间为t.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.答案与解析一、选择题1.如图,一个由6个相同小正方体组成的几何体,则该几何体的主视图是( )A. B. C. D.【答案】D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】该主视图是:底层是3个正方形横放,上层靠左有2个正方形,故选:D .【点睛】本题考查了从不同方向看几何体,主视图是从物体的正面看得到的视图.2.今年1月3日,我国的嫦娥四号探测器成功在月球背面着陆,标志着我国已经成功开始了对月球背面的研究,填补了国际空白.月球距离地球的平均距离为384000千米,数据384000用科学记数法表示为( )A. 338410⨯B. 53.8410⨯C. 438.410⨯D. 60.38410⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将384000用科学记数法表示为:3.84×105. 故选:B.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.3.下列说法错误的是 ( )A. 2231x xy --是二次三项式B. 1x -+不是单项式C. 223xy π-的系数是23π-D. 222xab -的次数是6 【答案】D【解析】 【详解】试题分析:根据多项式和单项式的有关定义判断即可. A .根据多项式的次数:次数最高的那项的次数.22x 次数为2;3xy -次数为2;-1的次数为0,所以2231x xy --是二次三项式 ,正确;B .根据单项式是数字与字母的积可得1x -+不是单项式 ,正确;C .根据单项式系数:字母前边的数字因数可得223xy π-的系数是23π-,正确; D .根据单项式的次数是所有字母指数的和可得222xab -的次数是4,,错误.所以选D.考点:多项式、单项式4.射线OC 在AOB ∠内部,下列条件不能说明OC 是AOB ∠的平分线的是( )A. 12AOC AOB ∠=∠B. 1BOC AOB 2∠=∠ C. AOC BOC AOB ∠+∠=∠D. AOC BOC ∠=∠【答案】C【解析】【分析】 利用角平分的定义从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.可知B 不一定正确.【详解】解:A 、当∠AOC=12 ∠AOB 时,OC 一定在∠AOB 的内部且OC 是∠4OB 的平分线,故本选项正确;B 、当1BOC AOB 2∠=∠时,OC 一定在∠A0B 的内部且OC 是∠A0B 的平分线,故本选项正确;C 、当AOC BOC AOB ∠+∠=∠,只能说明OC 在∠AOB 的内部,但不能说明OC 平分∠AOB,故本选项错误;D 、当∠AOC=∠BOC 时,OC 一定在∠AOB 的内部且OC 是∠AOB 的平分线,故本选项正确.故选C.【点睛】本题考查的是角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.5.为了调查某校学生的视力情况,在全校的800名学生中随机抽取了80名学生,下列说法正确的是( )A. 此次调查属于全面调查B. 样本容量是80C. 800名学生是总体D. 被抽取的每一名学生称为个体 【答案】B【解析】【分析】 总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.【详解】本题的样本是80名学生的视力情况,故样本容量是80.故选B .【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握其定义.6.已知线段AB =10cm ,在直线AB 上取一点C ,使AC =16cm ,则线段AB 的中点与AC 的中点的距离为( )A. 13cm 或26cmB. 6cm 或13cmC. 6cm 或25cmD. 3cm 或13cm 【答案】D【解析】【分析】结合题意画出简单的图形,再结合图形进行分析求解.【详解】解:①如图,当C 在BA 延长线上时,∵AB=10cm ,AC=16cm ,D ,E 分别是AB ,AC 的中点,∴AD=12AB=5cm ,AE=12AC=8cm , ∴DE=AE+AD=8+5=13cm ; ②如图,当C 在AB 延长线上时,∵AB=10cm ,AC=16cm ,D ,E 分别是AB ,AC 的中点,∴AD=12AB=5cm,AE=12AC=8cm,∴DE=AE-AD=8-5=3cm;故选:D.【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论.7.(-2)2004+3×(-2)2003的值为()A. -22003B. 22003C. -22004D. 22004【答案】A【解析】(-2)2004可以表示为(-2)(-2)2003,可以提取(-2)2003,即可求解.解:原式=(-2)(-2)2003+3×(-2)2003,=(-2)2003(-2+3),=(-2)2003,=-22003.故选A.点评:本题主要考查了有理数的乘方的性质,(-a)2n=a2n,(-a)2n+1=-a2n+1,正确提取是解决本题的关键.8.如图,两块直角三角板的直角顶点O重合在一起,若∠BOC=17∠AOD,则∠BOC的度数为()A. 22.5°B. 30°C. 45°D. 60°【答案】A【解析】【分析】此题由”两块直角三角板”可知∠DOC=∠BOA=90°,根据同角的余角相等可以证明∠DOB=∠AOC,由题意设∠BOC=x°,则∠AOD=7x°,结合图形列方程即可求解.【详解】解:由两块直角三角板的直顶角O重合在一起可知:∠DOC=∠BOA=90°,∴∠DOB+∠BOC=90°,∠AOC+∠BOC=90°,∴∠DOB=∠AOC,设∠BOC=x°,则∠AOD=7x°,∴∠DOB+∠AOC=∠AOD﹣∠BOC=6x°,∴∠DOB=3x°,∴∠DOB+∠BOC=4x°=90°,解得:x=22.5.故选:A.【点睛】本题考查了直角三角形的简单性质,属于简单题,熟悉直角三角形的性质是解题关键.9.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种电子产品的标价为A. 26元 B. 27元 C. 28元 D. 29元【答案】C【解析】【分析】根据题意,设电子产品的标价为x元,按照等量关系”标价×0.9-进价=进价×20%”,列出一元一次方程即可求解.【详解】设电子产品的标价为x元,由题意得:0.9x-21=21×20%解得:x=28∴这种电子产品的标价为28元.故选C.10.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的34.若设甲一共做了x天,则所列方程为()A.13584x x++= B.-13584x x+= C.13-584x x+= D.-13-584x x=【答案】B【解析】【分析】题目默认总工程为1,设甲一共做x天,由于甲先做了1天,所以和乙合作做了(x-1)天,根据甲的工作量+乙的工作量=总工作量的四分之三,代入即可.【详解】由题意得:甲的工作效率为15,乙的工作效率为18设甲一共做了x天,乙做了(x-1)天∴列出方程:x x13 584-+=故选B【点睛】本题考查一元一次方程的应用,工程问题的关键在于利用公式:工程量=工作时间×工作效率.11.如图,AB∥CD,BF,DF 分别平分∠ABE 和∠CDE,BF∥DE,∠F 与∠ABE 互补,则∠F 的度数为A. 30°B. 35°C. 36°D. 45°【答案】C【解析】【分析】延长BG交CD于G,然后运用平行的性质和角平分线的定义,进行解答即可.【详解】解:如图延长BG交CD于G∵BF∥ED∴∠F=∠EDF又∵DF 平分∠CDE,∴∠CDE=2∠F,∵BF∥ED∴∠CGF=∠EDF=2∠F,∵AB∥CD∴∠ABF=∠CGF=2∠F ,∵BF 平分∠ABE∴∠ABE =2∠ABF=4∠F ,又∵∠F 与∠ABE 互补∴∠F +∠ABE =180°即5∠F=180°,解得∠F=36°故答案选C.【点睛】本题考查了平行的性质和角平分线的定义,做出辅助线是解答本题的关键.12.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A. 504B. 10092C. 10112D. 1009【答案】B【解析】【分析】 观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题.【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S 1009122∴=⨯⨯=, 故选B .【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.二、填空题13.如图,一个正方体的平面展开图,若折成正方体后,每对相对面上标注的值的和均相等,则x+y=_____.【答案】10【解析】【分析】首先由正方体表面展开图,确定出相对面,再根据相对面上的数之和相等,进行计算即可.【详解】由图可知,”3”和”5”是相对面,3+5=8,“2”和”x ”是相对面,则2+x=8,所以x=6,“4”和”y ”是相对面,则4+y=8,所以y=4,所以x+y=6+4=10,故答案为:10.【点睛】本题考查了正方体的表面展开图,熟记正方体展开图的特点是关键.14.已知代数式312+n a b 与223--m a b 是同类项, 则23m n +=__________【答案】13【解析】【分析】根据同类项的定义,含有相同的字母,相同字母的指数相同,可得关于m 、n 的方程,根据解方程,可得m 、n 的值,然后可得答案.【详解】解:2m+n=2由题意,得m-2=3,n+1=2,解得m=5,n=1,23253113m n +=⨯+⨯=故答案为:13.【点睛】本题考查了同类项,所含字母相同,并且相同字母的指数也相同,注意①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.15.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .【答案】125【解析】【分析】首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠ABF+∠CDF的度数,又由两只线平行,内错角相等,即可求得∠BFD的度数.【详解】过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴EM∥AB∥CD∥FN,∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∴∠ABE+∠BED+∠CDE=360°,∵∠BED=110°,∴∠ABE+∠CDE=250°,∵BF平分∠ABE,DF平分∠CDE,∴∠ABF=12∠ABE,∠CDF=12∠CDE,∴∠ABF+∠CDF=12(∠ABE+∠CDE)=125°,∵∠DFN=∠CDF,∠BFN=∠ABF,∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故答案为125°【点睛】此题考查了平行线的性质与角平分线的定义.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.16.如图,已知正方形ABCD 的边长为24厘米.甲、乙两动点同时从顶点A 出发,甲以2厘米/秒的速度沿正方形的边按顺时针方向移动,乙以4厘米/秒的速度沿正方形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动,则第四次相遇时甲与最近顶点的距离是______厘米.【答案】5.6.【解析】【分析】可设第1次相遇的时间为x 秒,根据速度和×时间=路程和,求出相遇时间;设第2次相遇的时间为y 秒,根据速度和×时间=路程和,求出相遇时间;设第3次相遇的时间为z 秒,根据速度和×时间=路程和,求出相遇时间;设第4次相遇的时间为t 秒,根据速度和×时间=路程和,求出相遇时间;【详解】设第1次相遇的时间为x 秒,依题意有:(2+4)x =24×4,解得:x =16;设第2次相遇的时间为y 秒,依题意有:(2+1+4+1)y =24×4,解得:y =12;设第3次相遇的时间为z 秒,依题意有:(2+1+1+4+1+1)z =24×4,解得:z =9.6;设第4次相遇的时间为t 秒,依题意有:(2+1+1+1+4+1+1+1)t =24×4,解得:y =8;2×16﹣(2+1)×12+(2+1+1)×9.6﹣(2+1+1+1)×8=32﹣36+38.4﹣40=﹣5.6故第四次相遇时甲与最近顶点的距离是5.6厘米.故答案为5.6.【点睛】本题考查了一元一次方程的应用、正方形的性质,本题是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题17.(1)计算:2211363()(2)32----⨯-+-÷(2)解方程: 212134x x -+=- 【答案】(1)6-;(2)x=0.4-【解析】【分析】(1)根据有理数混合运算的法则和运算顺序计算即可;(2)根据去分母、去括号、移项合并同类项、系数化为1的步骤进行计算即可.【详解】解:(1)()2211363232⎛⎫----⨯-+-÷ ⎪⎝⎭ 96142=--++⨯148=-+6=-(2)212134x x -+=- 两边都乘以12,得:()()4213212x x -=+-去括号,得843612x x -=+-移项,合并同类项得52x =-两边都除以5,得0.4=-x【点睛】本题主要考查有理数混合运算以及解一元一次方程,熟练掌握相关的法则和解一元一次方程的一般步骤是解题的关键.18.先化简,再求值:221222()2x y xy xy x y ⎡⎤---+⎢⎥⎣⎦,其中x=3,y=-13. 【答案】-x 2y ;3.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】原式=﹣2x 2y ﹣(2xy -2xy ﹣x 2y )= ﹣2x 2y ﹣2xy +2xy +x 2y =﹣x 2y .当x =3,y 13=-时,原式=2133⎛⎫-⨯- ⎪⎝⎭=3. 【点睛】本题考查了整式的加减﹣化简求值,熟练掌握运算法则是解答本题的关键.19.某校开设武术、舞蹈、剪纸三项活动课程,为了了解学生对这三项活动课程的兴趣情况,随机抽取了部分学生进行调查(每人从中只能选一顶),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是___;(3)在扇形统计图中,计算女生喜欢剪纸活动课程人数对应的圆心角度数;(4)已知该校有1200名学生,请结合数据简要分析该校学生对剪纸课程的兴趣情况.【答案】(1)见解析;(2)100;(3)115.2°;(4)全校喜欢剪纸的学生360人【解析】【分析】(1)根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,即可求出女生总人数,即可得出喜欢舞蹈的人数;(2)根据(1)的计算结果再利用条形图即可得出样本容量;(3)360°乘以女生中剪纸类人数所占百分比即可得;(4)用全校学生数×喜欢剪纸的学生在样本中所占比例即可求出.【详解】解:(1)被调查的女生人数为10÷20%=50人,则女生舞蹈类人数为50﹣(10+16)=24人,补全图形如下:(2)样本容量为50+30+6+14=100,故答案为100;(3)扇形图中剪纸类所占的圆心角度数为360°×1650=115.2°; (4)估计全校学生中喜欢剪纸的人数是1200×1416100 =360, 全校喜欢剪纸的学生有360人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.已知,O 为直线AB 上一点,∠DOE =90°.(1)如图1,若∠AOC =130°,OD 平分∠AOC .①求∠BOD 的度数;②请通过计算说明OE 是否平分∠BOC .(2)如图2,若∠BOE :∠AOE =2:7,求∠AOD 的度数.【答案】(1)①115°;②答案见解析;(2)∠AOD =50° 【解析】试题分析:(1)①先求出∠AOD 的度数,再根据邻补角求出∠BOD 即可;②分别求出∠COE ,∠BOE 的度数即可作出判断;(2)由已知设∠BOE =2x ,则∠AOE =7x , 再根据∠BOE +∠AOE =180°,求出∠BOE=40°,再根据互余即可求出∠AOD =90°-40°=50°. 试题解析:(1)①∵OD 平分∠AOC ,∠AOC =130°, ∴∠AOD =∠DOC =12∠AOC =12×130°=65°, ∴∠BOD =180°-∠AOD =180°-65°=115°; ②∵∠DOE =90°,又∠DOC =65°,∴∠COE =∠DOE -∠DOC =90°-65°=25°, ∵∠BOD =115°,∠DOE =90°, ∴∠BOE =∠BOD -∠DOE =115°-90°=25°,(2)若∠BOE:∠AOE=2:7,设∠BOE=2x,则∠AOE=7x,又∠BOE+∠AOE=180°,∴2x+7x=180°,∴x=20°,∠BOE=2x=40°,∵∠DOE=90°,∴∠AOD=90°-40°=50°.21.如图,直线AB和直线BC相交于点B,连接AC,点D. E. H分别在AB、AC、BC上,连接DE、DH,F是DH 上一点,已知∠1+∠3=180°,(1)求证:∠CEF=∠EAD;(2)若DH平分∠BDE,∠2=α,求∠3的度数.(用α表示).【答案】(1)证明见解析;(2)90+12α.【解析】【分析】(1)根据平行线的判定和性质解答即可;(2)根据平行线的性质解答即可.【详解】(1)∵∠3+∠DFE=180°,∠1+∠3=180°,∴∠DFE=∠1,∴AB∥EF,∴∠CEF=∠EAD;(2)∵AB∥EF,∴∠2+∠BDE=180°又∵∠2=α∴∠1=12∠BDE=12(180°−α)∴∠3=180°−12(180°−α)=90+12α【点睛】此题考查平行线的判定和性质,解题关键在于掌握其判定定理.22.列方程解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的1 2倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?【答案】(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获利1950元;(2)第二次乙种商品是按原价打8.5折销售【解析】【分析】(1)设第一次购进甲商品x件,则购进乙商品(12x+15)件,根据题意列出方程即可求出x的值,然后根据”获利=售价-进价”即可求出结论;(2)设第二次乙种商品是按原价打y折销售,根据题意列出方程即可求出结论.【详解】解:(1)设第一次购进甲商品x件,则购进乙商品(12x+15)件由题意可得:22x+30(12x+15)=6000解得:x=150∴购进乙商品12×150+15=90件∴全部卖完后一共可获利(29-22)×150+(40-30)×90=1950(元)答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获利1950元.(2)设第二次乙种商品是按原价打y折销售由题意可得:(29-22)×150+(40×10y-30)×90×3-1950=180解得:y=8.5答:第二次乙种商品是按原价打8.5折销售.【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.23.如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB 向左运动(C在线段AP上,D在线段BP上),运动的时间为t.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP 的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.【答案】(1)4cm;(2)4cm;(3)4cm;(4)4cm或12cm【解析】试题分析:(1) 观察图形可以看出,图中的线段PC和线段BD的长分别代表动点C和D的运动路程. 利用”路程等于速度与时间之积”的关系可以得到线段PC和线段BD的长,进而发现BD=2PC. 结合条件PD=2AC,可以得到PB=2AP. 根据上述关系以及线段AB的长,可以求得线段AP的长.(2) 利用”路程等于速度与时间之积”的关系结合题目中给出的运动时间,可以求得线段PC和线段BD的长,进而发现BD=2PC. 根据BD=2PC和PD=2AC的关系,依照第(1)小题的思路,可以求得线段AP的长.(3) 利用”路程等于速度与时间之积”的关系可知,只要运动时间一致,点C与点D运动路程的关系与它们运动速度的关系一致. 根据题目中给出的运动速度的关系,可以得到BD=2PC. 这样,本小题的思路就与前两个小题的思路一致了. 于是,依照第(1)小题的思路,可以求得线段AP的长.(4) 由于题目中没有指明点Q与线段AB的位置关系,所以应该按照点Q在线段AB上以及点Q在线段AB 的延长线上两种情况分别进行求解. 首先,根据题意和相关的条件画出相应的示意图. 根据图中各线段之间的关系并结合条件AQ-BQ=PQ,得到AP和BQ之间的关系,借助前面几个小题的结论,即可求得线段PQ 的长.试题解析:(1) 因为点C从P出发以1(cm/s)的速度运动,运动的时间为t=1(s),所以111PC=⨯=(cm).因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =1(s),所以212BD =⨯=(cm).故BD =2PC.因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以1112433AP AB ==⨯=(cm). (2) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t =2(s),所以122PC =⨯=(cm). 因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t =2(s),所以224BD =⨯=(cm).故BD =2PC.因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以1112433AP AB ==⨯=(cm). (3) 因为点C 从P 出发以1(cm/s)的速度运动,运动的时间为t (s),所以PC t =(cm).因为点D 从B 出发以2(cm/s)的速度运动,运动的时间为t (s),所以2BD t =(cm).故BD =2PC.因为PD =2AC ,BD =2PC ,所以BD +PD =2(PC +AC ),即PB =2AP .故AB =AP +PB =3AP .因为AB =12cm ,所以1112433AP AB ==⨯=(cm).(4) 本题需要对以下两种情况分别进行讨论.(i) 点Q 在线段AB 上(如图①).因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ =AP +PQ ,所以AP =BQ .因为13AP AB =,所以13BQ AP AB ==.故13PQ AB AP BQ AB =--=.因为AB =12cm ,所以1112433PQ AB ==⨯=(cm).(ii) 点Q 不在线段AB 上,则点Q 在线段AB 的延长线上(如图②).因为AQ -BQ =PQ ,所以AQ =PQ +BQ .因为AQ=AP+PQ,所以AP=BQ.因为13AP AB=,所以13BQ AP AB==.故1433AQ AB BQ AB AB AB =+=+=.因为AB=12cm,所以411233PQ AQ AP AB AB AB=-=-==(cm).综上所述,PQ的长为4cm或12cm.点睛:本题是一道几何动点问题. 分析图形和题意,找到代表动点运动路程的线段是解决动点问题的重要环节. 利用速度、时间和路程的关系,常常可以将几何问题与代数运算结合起来,通过运算获得更多的线段之间的关系,从而为解决问题提供有利条件. 另外,分情况讨论的思想也是非常重要的,在思考问题时要注意体会和运用.。

最新北师大版七年级数学上册期末考试题及答案【全面】

最新北师大版七年级数学上册期末考试题及答案【全面】

最新北师大版七年级数学上册期末考试题及答案【全面】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC3.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D .4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.﹣6的倒数是( )A .﹣16B .16C .﹣6D .6 7.当a <0,n 为正整数时,(-a )5·(-a )2n 的值为( ) A .正数 B .负数 C .非正数 D .非负数8.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.下列说法:① 平方等于64的数是8;② 若a ,b 互为相反数,ab ≠0,则1a b=-;③ 若a a -=,则3()a -的值为负数;④ 若ab ≠0,则a b a b +的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( )A .0个B .1个C .2个D .3个10.若320,a b -++=则a b +的值是( )A .2B .1C .0D .1-二、填空题(本大题共6小题,每小题3分,共18分)1.若|x|=4,|y|=5,则x -y 的值为____________.2.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则∠BED 的度数为________.3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色与红球不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.化简:9=________. 三、解答题(本大题共6小题,共72分)1.解下列方程:(1)()()64233x x -+=- (2)2134134x x ---=2.若关于x 的方程221933m x x x +=-+-有增根,则增根是多少?并求方程产生增根时m 的值.3.如图,在△ABC 中,∠B=40°,∠C=80°,AD 是BC 边上的高,AE 平分∠BAC ,(1)求∠BAE 的度数;(2)求∠DAE 的度数.4.如图,已知∠A=∠ADE.(1)若∠EDC=3∠C,求∠C的度数;(2)若∠C=∠E.求证:BE∥CD.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、C6、A7、A8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±1,±92、55°3、43 32a≤≤4、205、两6、3三、解答题(本大题共6小题,共72分)1、()11x=;()24x=-.2、x=3或-3是原方程的增根;m=6或12.3、(1) ∠BAE=30 °;(2) ∠EAD=20°.4、(1)45°;(2)详略.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆。

北师大版初中数学七年级上册期末测试卷(标准难度)(含答案解析)

北师大版初中数学七年级上册期末测试卷(标准难度)(含答案解析)

北师大版初中数学七年级上册期末测试卷考试范围:全册;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.一个无盖的正方体纸盒,将它展开成平面图形,可能的情形共有( )A. 11种B. 9种C. 8种D. 7种2.某车间原计划用13小时生产一批零件,实际每小时多生产了10件,用了12小时不但完成了任务,而且还多生产了60件,设原计划每小时生产x个零件,那么下列方程正确的是( )A. 13x=12(x+10)+60B. 12(x+10)=13x+60C. 113x=112(x+10)+60 D. 112(x+10)=113x+603.中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是( )A. 10B. 89C. 165D.2944.在我国远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,类似现在我们熟悉的“进位制”.如图所示是远古时期一位母亲记录孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满五进一,根据图示可知,孩子已经出生的天数是( )A. 27B. 42C. 55D. 2105.由襄阳东站到汉口站的某趟高铁,运行途中停靠的车站依次是:襄阳东站—枣阳—随州南—新安陆西—孝感东—汉口站,那么铁路运营公司要为这条线路制作的车票有( )A. 6种B. 12种C. 15种D. 30种6.按如图所示的运算程序,能使输出y值为1的是( )A. m=1,n=1B. m=1,n=0C. m=1,n=2D. m=2,n=17.一个两位数,个位上的数字是a,十位上的数字比个位的数字小1,则这个两位数可以表示为( )A. a(a−1)B. (a+1)aC. 10(a−1)+aD. 10a+(a−1)8.如图,C,D是线段AB上两点,M,N分别是线段AD,BC的中点,下列结论: ①若AD=BM,则AB=3BD; ②若AC=BD,则AM=BN; ③AC−BD=2(MC−DN); ④2MN=AB−CD.其中正确的结论是( )A. ① ② ③B. ③ ④C. ① ② ④D. ① ② ③ ④9.中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是( )A. 羊B. 马C. 鸡D. 狗10.已知关于x的一元一次方程1x+3=2x+b的解为x=−3,那么关于y的一元一次方程20201(y+1)+3=2(y+1)+b的解为( )2020A. y=1B. y=−1C. y=−3D. y=−411.某市今年共有8万名学生参加了体育健康测试,为了了解这8万名考生的体育健康成绩,从中抽取了2000名学生的成绩进行统计分析.下列说法中正确的个数为( )①这种调查采用了抽样调查的方式;②8万名学生是总体;③2000名学生是总体的一个样本;④每名学生的体育健康成绩是个体.A. 2个B. 3个C. 4个D. 0个12.从1980年初次征战冬奥会,到1992年取得首枚冬奥会奖牌,再到2022年北京冬奥会金牌榜前三,中国的冰雪体育事业不断取得突破性成绩.历届冬奥会的比赛项目常被分成两大类:冰项目和雪项目.根据统计图提供的信息,有如下四个结论:①中国队在2022年北京冬奥会上获得的金牌数是参加冬奥会以来最多的一次;②中国队在2022年北京冬奥会上获得的奖牌数是参加冬奥会以来最多的一次;③中国队在冬奥会上的冰上项目奖牌数逐年提高;④中国队在冬奥会上的雪上项目奖牌数在2022年首次超越冰上项目奖牌数.上述结论中,正确的有( )A. 1个B. 2个C. 3个D. 4个第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如图,长方形的长为3cm,宽为2cm,以该长方形的一边所在直线为轴,将其旋转一周,形成圆柱,其体积为______ cm3.(结果保留π)14.单项式(−2)3x m y2z的次数8,则m的值是.15.如图,已知线段AB=8cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=1.5cm,则线段MP=cm.16.当x=时,代数式x+3与2−5x的差是−5.三、解答题(本大题共9小题,共72.0分。

最新北师大版七年级上册数学期末拔高考试试题以及答案

最新北师大版七年级上册数学期末拔高考试试题以及答案

最新七年级上册数学期末考试试题一、选择题。

1、2、某商品按进件提价40%后又打八折,结果仍获利15元,这个商品的进件是()元。

A、115元B、120元C、125元D、150元3、二、填空题。

1、在直线L上有3个点A、B、C,AB=10厘米,BC=4厘米,则AC等于()2、若1a x(是一元一次方程,则a的值是()-2)a-3、如图C、D是以AB为直径的圆上的两点,OB=2厘米,∠COD=120°,则阴影部分的面积是( )4、5、6、在大的长方形中放入六个长、宽分别相等的小长方形,如图所示,则小长方形的宽是( )7、温度由t ℃下降了5℃后是 。

8、已知多项式5kx y 4y x y 4x 222 与﹣--的差中不含xy 这一项,则k 的值 。

三、解答题。

1、计算题。

2、解方程。

3、8、根据乘方的意义及乘法运算律可知:a2•b2=a•a•b•b=(ab)•(ab)=(ab)2;a3•b3=a•a•a•b•b•b=(ab)•(ab)•(ab)=(ab)3;(1)根据以上材料可知:(1)a4•b4=______,a n•b n=______(n为正整数);1)2020=______.(2)根据上面得到的结论,计算:(-8)2020×(81)6×900(结果用科学记数法表示)(3)计算36×(339、如图①,将笔记本活页一角折过去,使角的顶点A落在A′处,BC 为折痕.(1)图①中,若∠1=30°,求∠A′BD的度数;(2)如果又将活页的另一角斜折过去,使BD边与BA′重合,折痕为BE,如图②所示,你能求出∠2的度数吗?并试判断两条折痕CB与BE的位置关系,并说明理由.(3)如果在图②中改变∠1的大小,则BA′的位置也随之改变,那么问题(2)中两条折痕CB与BE的位置关系是否会发生变化?(不要求说明理由)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新七年级上册数学期末考试试题
一、选择题。

1、下列关于“0”的叙述,不正确的是( )
A.不是正数,也不是负数
B.不是正整数,也不是负整数
C.不是非正数,也不是非负数
D.不是负数,是整数
2、下面的计算正确的是()
3、经过同一平面内的三个点A、B、C中的每两个点画直线,可以画()
A.1条
B.3条
C.1条或3条
D.无数条
4、下列说法中错误的有()
①过两点有且只有一条直线②连接两点的线段叫做两点间的距离③两点之间,线段最短’.④若AB=BC,则点B 是AC的中点,⑤直线比射线长
A.1个
B.2个
C.3个
D.4个
5、去年某市9.6万学生参加初中毕业会考,为了解这9.6万名考生的数学成绩,从中抽取3000名考生的数学成绩进行统计分析,以下说法正确的是()
A、这3000名考生是总体的一个样本
B、9.6万名考生是总体
C、每位考生的数学成绩是个体
D、3000名学生是样本容量
6、钟表上12时15分时,时针与分针的夹角为()
A.90°
B.82.5°
C.67.5°
D.60°
7、将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠CBD=66°,则∠ABE为()
A.20∘
B.24∘
C.40∘
D.50
8、轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是
()
9、如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是()
A.m+n
B.m﹣n
C.n﹣m
D.|m+n|
10、某件商品,按成本价提高40%后标价,又以8折优惠卖出,结果仍可获利15元,则这件商品的成本价为()
A.115元
B.120元
C.125元
D.150元
二、填空题。

1、从一个多边形的某顶点出发,连接其余各顶点,把该多边形分成了4个三角形,则这个多边形是______边形
2、
3、某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打出售此商品
4、在植树节活动中,A班有35人,B班有16人,现要从A班调一部分人去支援B班,使B班人数为A班人数的2倍,那么应从A班调出多少人?如设从A班调x人去B班,根据题意可列方程:。

5、关于x、y的两个多项式mx2﹣2x+y与﹣3x2+2x+3y的差中不含二次项,则代数式m2 +3m﹣3的值为。

6、
7、
三、解答题。

1、计算题。

)(﹣)(﹣﹣22
93122⨯÷+
13216138-﹣)(﹣﹣⨯÷+
)(﹣)(﹣-﹣31
32411624⨯÷++
]3[241
123)-(﹣-)(﹣

2、先化简再求值。

3
1x 2x 2116x 2x 4412﹣),其中-)-(-(﹣﹣=+
(2)
3、解方程。

4、某校为了了解九年级学生体育测试成绩情况,以九年级(1)班学生的体育测试成绩为样本,按彳,B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:
说明:A级:90分—100分;B级:75分—89分;C级:60分~74分;D级:60分以下)
(1)求出D级学生的人数占全班总人数的百分比;
(2)求出扇形统计图中C级所在的扇形圆心角的度数;
(3)若该校九年级学生共有2800人,请你估计这次考试中彳级和B级的学生共有多少人?
5、已知:点A,B;C在一条直线上,线段AB=8cm,,线段BC=6cm,若M,N分别为线段AB、BC的中点,求MN的长
6、
7、点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.
(1)如图1,若∠AOM=40°,求∠CON的度数;
(2)在图1中,若∠AOM=a,直接写出∠CON的度数(用含a的代数式表示);
(3)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,一边OM在射线OB上方,另一边ON在直线AB的下方.
①探究∠AOM和∠CON的度数之间的关系,写出你的结论,并说明理由;
②当∠AOC=4∠BON时,求∠AOM的度数.
8、2018年12月份,我市迎来国家级文明城市复查,为了了解学生对文明城市的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果技照“A非常了解.B了解.C了解较少.D不了解”四类分别统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:
(1)此次共调查了______名学生;
(2)扇形统计图中D所在的扇形的圆心角为______;
(3)将条形统计图补充完整;
(4)若该校共有800名学生,请你估计对文明城市的了解情况为“非常了解”的学生的人数.。

相关文档
最新文档