人教版初中八年级上册角平分线的性质教案
最新人教版八年级数学上册《第1课时角平分线的性质》优质教案
12.3角的平分线的性质第1课时角平分线性质一、新课导入1.导入课题:投影教材第48页开头的“思考”中的文字和图形,让学生说明道理后提出问题:你能从“思考”中得到的启示通过运用尺规作一个角的平分线吗?2.学习目标:(1)学会角平分线的画法.(2)探究并认知角平分线的性质.(3)熟练地运用角平分线的性质解决实际问题.3.学习重、难点:重点:角的平分线的性质.难点:运用角平分线的性质解决相关的问题.二、分层学习1.自学指导:(1)自学内容:探究“角平分线的作法”.(2)自学时间:5分钟.(3)自学方法:阅读、作图、总结、归纳.(4)自学参考提纲:①投影中AE平分∠DAB是由什么方法得到∠DAE=∠BAE?证明△ABC≌△ADC(SSS).②由平分角的仪器尝试画∠AOB的平分线.③由导入得到作角平分线的方法:a.作法(1)能得到OM=ON;b.作法(2)能得到MC=NC;c.由SSS方法判定△OMC≌△ONC,得到∠MOC=∠NOC,∴OC是∠AOB的平分线;d.在作法的第二步中,去掉“大于12MN的长”这个条件行吗?不行.2.自学:学生结合自学指导进行探究式学习.3.助学:(1)师助生:①明了学情:利用角平分仪悟出画角平分线的方法,由实物抽象出几何图形,应用了数学里面的建模思想,部分学生理解起来还存在一定的困难.②差异指导: a.引导学生理解角平分仪平分角的道理是证明两角相等,回忆前面证明角相等的方法是证明三角形全等.b.在尺规作图的过程中引导学生运用三角形三边关系定理,理解“大于12MN的长”这个条件.(2)生助生:学生之间相互交流帮助.4.强化:(1)让学生口述角平分线的作法步骤.(2)尝试练习:作出△ABC的三条角平分线(保留作图痕迹,写出作法).(3)练习:平分平角∠AOB,通过作角平分线得到射线OC,然后反向延长OC得到直线CD,直线CD 与直线AB存在什么样的位置关系?互相垂直.(4)给一张三角形纸片,你能不借助任何工具找到某一个角的平分线吗?能,将这个三角形沿过一个顶点的线折叠,使在该顶点的角的两边重合,则该线就是这个角的平分线.1.自学指导:(1)自学内容:探究“角平分线上的点到角的两边的距离相等”.(2)自学时间:5分钟.(3)学习方法:先通过折纸画图、测量得出角平分线的性质,再探究几何证明方法.(4)探究提纲:①如图,OC平分∠AOB,点P是OC上任一点,P点到OA、OB的距离怎么找?过点P分别向OA、OB作垂线,P点与垂足之间的线段的长就是P点到OA、OB的距离.②这两个距离可采用什么方法得到它们的大小关系?证三角形全等,然后得出这两个距离相等.③用你采用的方法,得到了什么结论?结论:角的平分线上的点到角的两边的距离相等..④将性质用图形、几何语言表示(填写下表):图形:已知事项:已知∠AOB,OC是∠AOB的平分线,P为OC上一点,且PD⊥OA,PE⊥OB,垂足分别为D、E.由已知事项推出的事项:PD=PE⑤根据探究的内容,写出已知、求证及证明结论的过程.已知:∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D、E.求证:PD=PE.证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在△PDO和△PEO中,∠PDO=∠PEO,∠AOC=∠BOC,OP=OP,∴△PDO≌△PEO(AAS),∴PD=PE.⑥由上述证明过程,总结证明一个几何命题的一般步骤:1.明确命题中的已知和求证;2.根据题意,画出图形,并用符号表示已知和求证;3.经过分析,找出由已知推出要证的结论的途径,写出证明过程.2.自学:学生可结合自学指导探究式学习.3.助学:(1)师助生:①明了学情:通过第二层次的学习,学生能够理解角平分线的性质定理,但在证明过程中,大部分学生不习惯把文字语言改成几何语言,教师应了解学生在几何表述中存在的问题.②差异指导:得出结论之后,要通过证明,才能确定命题的正确性,引导学生学会证明文字语言描述的几何题的步骤.(2)生助生:学生之间相互交流帮助.4.强化:(1)用文字及几何语言表述定理;(2)证明题的基本步骤.三、评价1.学生的自我评价:学生相互交谈自己的收获和学习困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课由于采用了动手操作、直观模型的观察以及讨论交流等教学方法.从而有效地增强了学生对角以及角的平分线的感性认识,提高了学生对新知识的理解与感性.所以本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的,不是之处:少数学生在尺规作图上还存在问题,需要在今后的教学与作业中进一步加强巩固和训练.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.角平分线的性质定理:角平分线上的点到角的两边的距离相等.2.如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D.下列结论中错误的是 (D)A.PC=PDB.OC=ODC.∠CPO=∠DPOD.OC=PO第2题图第3题图第4题图3.如图,△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,若AB=10cm,则△DBE的周长等于(A)A.10cmB.8cmC.6cmD.9cm4.如图,P是∠AOB角平分线上的点,C、D分别是OA、OB上的点,且PC=PD,PE⊥OA于E,PF⊥OB于F,求证:CE=DF.证明:∵OP是∠AOB的平分线,PE⊥OA,PF⊥OB,∴∠PEC=∠PFD=90°,PE=PF,在Rt△PEC 和Rt△PFD中,PC=PD,PE=PF,∴Rt△PEC≌Rt△PFD(HL),∴CE=DF.二、综合应用(第5题10分,第6题20分,共30分)5.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,则下列四个结论:①AD上任意一点到点C、点B的距离相等;②AD上任意一点到AB,AC的距离相等;③BD=CD,AD⊥BC;④∠BDE=∠CDF.其中,正确的个数是(D)A.1个B.2个C.3个D.4个第5题图第6题图6.如图,在△ABC中,AD为∠BAC的平分线,∠B=90°,DF⊥AC,垂足为F,DE=DC,求证:BE=CF.证明:∵DF⊥AC,∴∠DFA=∠B=90°.∵AD为∠BAC的平分线,∴DB=DF.在Rt△BDE和Rt △FDC中,DE=CD,DB=DF,∴Rt△BDE≌Rt△FDC(HL).∴BE=CF.三、拓展延伸(20分)7.如图,点D、B分别在∠MAN的两边上,C是∠MAN内一点,AB=AD,BC=CD,CE⊥AM于E,CF⊥AN于F.求证:CE =CF.证明:在△ABC和△ADC中,AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS).∴∠DAC=∠BAC.∴AC平分∠MAN.∵CE⊥AM,CF⊥AN,∴CE=CF.人生格言:我们要知道别人能做到的事,只要自己有恒心,坚持努力,就没有什么事是做不到的。
人教版八年级数学上册-角的平分线的性质 角平分线的性质教案
12.3 角的平分线的性质第1课时角平分线的性质一、教学目标(一)知识与技能1.会作已知角的平分线;2.了解角的平分线的性质,能利用三角形全等证明角的平分线的性质;3.会利用角的平分线的性质进行证明与计算.(二)过程与方法在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力.(三)情感、态度与价值观在探究作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.二、教学重点、难点重点:角的平分线的性质的证明及应用;难点:角的平分线的性质的探究.三、教法学法三步导学的教学模式;自主探索,合作交流的学习方式.四、教与学互动设计(一)激情导课如图是小明制作的风筝,他根据AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?(二)民主导学1、探究一:角的平分线的作法Ⅰ、议一议问题1请你拿出准备好的角,用你自己的方法画出它的角平分线.问题2如图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB 和AD沿着角的两边放下,画一条射线AE,AE就是∠DAB的平分线.你能说明它的道理吗?问题3通过上面的探究,你有什么启发?你能用尺规作图作已知角的平分线吗?请你试着做一做,并与同伴交流.ABCECA BOBD 21AOCADBMN已知:∠MAN求作:∠MAN 的角平分线.作法:(1)以A 为圆心,适当长为半径画弧,交AM 于B ,交AN 于D.(2)分别以B 、D 为圆心,大于的长为半径画弧,两弧在∠MAN 的内部交于点C.(3)画射线AC. ∴射线AC 即为所求. Ⅱ、练一练平分平角∠AOB.通过上面的步骤得到射线OC 以后,把它反向延长得到直线CD.直线CD 与直线AB 是什么关系?思考:你能总结出“过直线上一点作这条直线的垂线”的方法吗?请说明你的方法。
人教版八年级数学上册-角的平分线的性质 角平分线的判定教案
第2课时角平分线的判定一、教学目标(一)知识与技能1.了解角的平分线的判定定理;2.会利用角的平分线的判定进行证明与计算.(二)过程与方法在探究角的平分线的判定定理的过程中,进一步发展学生的推理证明意识和能力.(三)情感、态度与价值观在探究作角的平分线的判定定理的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.二、教学重点、难点重点:角的平分线的判定定理的证明及应用;难点:角的平分线的判定.三、教法学法自主探索,合作交流的学习方式.四、教学过程温故知新1、写出命题“全等三角形的对应边相等”的逆命题.1、写出命题“角平分线上的点到角的两边的距离相等”的逆命题.(一)复习、回顾1. 角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.2. 角平分线的性质:角的平分线上的点到角的两边的距离相等.①推导已知:OC平分∠MON,P是OC上任意一点,PA⊥OM,PB⊥ON,垂足分别为点A、点B.求证:PA=PB.证明:∵PA⊥OM,PB⊥ON∴∠PAO=∠PBO=90°∵OC平分∠MON∴∠1=∠2在△PAO和△PBO中,∴△PAO≌△PBO∴PA=PB②几何表达:(角的平分线上的点到角的两边的距离相等)如图所示,∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,∴PA=PB.(二)合作探究角平分线的判定:到角的两边的距离相等的点在角的平分线上.①推导已知:点P是∠MON内一点,PA⊥OM于A,PB⊥ON于B,且PA=PB.求证:点P在∠MON的平分线上.证明:连结OP在Rt△PAO和Rt△PBO中,∴Rt△PAO≌Rt△PBO(HL)∴∠1=∠2∴OP平分∠MON即点P在∠MON的平分线上.②几何表达:(到角的两边的距离相等的点在角的平分线上.)如图所示,∵PA⊥OM,PB⊥ON,PA=PB∴∠1=∠2(OP平分∠MON)【典型例题】例1. 已知:如图所示,∠C=∠C′=90°,AC=AC′.求证:(1)∠ABC=∠ABC′;(2)BC=BC′(要求:不用三角形全等判定).分析:由条件∠C=∠C′=90°,AC=AC′,可以把点A看作是∠CBC′平分线上的点,由此可打开思路.证明:(1)∵∠C=∠C′=90°(已知),∴AC⊥BC,AC′⊥BC′(垂直的定义).又∵AC=AC′(已知),∴点A在∠CBC′的角平分线上(到角的两边距离相等的点在这个角的平分线上).∴∠ABC=∠ABC′.(2)∵∠C=∠C′,∠ABC=∠ABC′,∴180°-(∠C+∠ABC)=180°-(∠C′+∠ABC′)即∠BAC=∠BAC′,∵AC⊥BC,AC′⊥BC′,∴BC=BC′(角平分线上的点到这个角两边的距离相等).例2. 如图所示,已知△ABC的角平分线BM,CN相交于点P,那么AP能否平分∠BAC?请说明理由.由此题你能得到一个什么结论?分析:由题中条件可知,本题可以采用角的平分线的性质及判定来解答,因此要作出点P到三边的垂线段.解:AP平分∠BAC.结论:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等.理由:过点P分别作BC,AC,AB的垂线,垂足分别是E、F、D.∵BM是∠ABC的角平分线且点P在BM上,∴PD=PE(角平分线上的点到角的两边的距离相等).同理PF=PE,∴PD=PF.∴AP平分∠BAC(到角的两边的距离相等的点在这个角的平分线上).(三)巩固训练(四)小结请你说说本课的收获与困惑.(五)作业双基检测1.如图4,在ABC△中,90C∠=,AD平分CAB∠,8cm5cmBC BD==,,那么D点到直线AB的距离是cm.2.如图5,已知在Rt△ABC中,∠C=90°, BD平分∠ABC, 交AC于D.(1) 若∠BAC=30°, 则AD与BD之间有何数量关系,说明理由;(2) 若AP平分∠BAC,交BD于P, 求∠BPA的度数.图4ABDCPABD3、如图6,所示,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点O。
人教版数学八年级上册教学设计12.3《角的平分线的性质》
人教版数学八年级上册教学设计12.3《角的平分线的性质》一. 教材分析《角的平分线的性质》是人教版数学八年级上册的教学内容。
本节课主要让学生掌握角的平分线的性质,即角的平分线上的点到角的两边的距离相等。
这一性质是几何中的基本概念,对于学生理解和掌握几何知识体系具有重要意义。
教材通过引入角的平分线,引导学生探究角的平分线的性质,从而培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了角的概念、线段的概念以及一些基本的几何性质。
但是,对于角的平分线的性质,学生可能较为陌生。
因此,在教学过程中,教师需要从学生的实际出发,通过引导、探究、实践等方式,帮助学生理解和掌握角的平分线的性质。
三. 教学目标1.知识与技能:使学生理解和掌握角的平分线的性质,能够运用角的平分线的性质解决一些简单的问题。
2.过程与方法:通过观察、操作、探究等方法,培养学生的几何思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:角的平分线的性质。
2.难点:如何运用角的平分线的性质解决实际问题。
五. 教学方法1.引导法:教师通过提问、设疑等方式,引导学生思考和探究角的平分线的性质。
2.实践操作法:学生通过实际操作,观察和总结角的平分线的性质。
3.合作交流法:学生分组讨论,共同解决问题,培养团队合作意识。
六. 教学准备1.教师准备:教材、PPT、几何模型等教学资源。
2.学生准备:笔记本、尺子、圆规等学习工具。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本的课题,如:“在平面上有两个点A和B,如何找到一点C,使得AC=BC?”引导学生思考和探讨。
2.呈现(10分钟)教师通过PPT展示角的平分线的性质,引导学生观察和总结。
同时,教师可以通过实际操作,让学生直观地感受角的平分线的性质。
3.操练(10分钟)学生分组讨论,运用角的平分线的性质解决实际问题。
人教版数学八年级上册《角平分线的性质(1)》教学设计
人教版数学八年级上册《角平分线的性质(1)》教学设计一. 教材分析人教版数学八年级上册《角平分线的性质(1)》这一节的内容主要包括角平分线的定义、性质及其在几何中的应用。
学生通过学习这一节内容,可以进一步了解角的平分线与角的大小、角的边长之间的关系,为后续学习三角形、多边形等几何知识打下基础。
二. 学情分析学生在学习这一节内容之前,已经学习了角的概念、垂线的性质等知识,具备了一定的几何基础。
但部分学生对角平分线的理解可能仍存在困难,因此在教学过程中需要加强对角平分线概念的讲解,并通过大量的实例让学生加深对角平分线的认识。
三. 教学目标1.了解角平分线的定义及其性质;2.学会运用角平分线解决一些简单的几何问题;3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.角平分线的定义及其性质;2.角平分线在几何中的应用。
五. 教学方法1.采用讲解法,让学生理解角平分线的定义和性质;2.运用示例法,让学生通过观察、分析、归纳角平分线的性质;3.采用练习法,让学生在实践中运用角平分线解决几何问题;4.运用小组合作法,让学生在讨论中加深对角平分线性质的理解。
六. 教学准备1.准备相关的教学课件、图片、几何模型等;2.准备一些有关角平分线的练习题。
七. 教学过程1.导入(5分钟)通过复习角的概念、垂线的性质等知识,引导学生进入新课的学习。
2.呈现(10分钟)利用课件、图片等展示角平分线的定义和性质,让学生直观地了解角平分线。
3.操练(10分钟)让学生通过观察、分析、归纳角平分线的性质,并尝试解答一些有关角平分线的问题。
4.巩固(10分钟)让学生分组讨论,运用角平分线的性质解决一些几何问题,加深对角平分线性质的理解。
5.拓展(5分钟)引导学生思考:角平分线在实际生活中有哪些应用?让学生联系生活实际,拓宽思路。
6.小结(5分钟)对本节课的内容进行总结,强化学生对角平分线性质的记忆。
7.家庭作业(5分钟)布置一些有关角平分线的练习题,让学生课后巩固所学知识。
人教版八年级上册 12.3 角的平分线的性质 教学设计
人教版八年级上册 12.3 角的平分线的性质教学设计
12.3 角平分线的性质
教学目标:
知识与技能:
1.掌握用尺规作已知角平分线的方法和步骤.
2.掌握角平分线的性质并能初步应用.
过程和方法:
1.在探究作已知角平分线的方法和角平分线的
性质的过程中,发展几何直觉.
2.初步了解角平分线的性质在生活、生产中的应
用。
情感态度与价值观:
培养学生探究问题的兴趣,增强解决问题的信
心,获得解决问题的成功体验.
教学设想:
本节案例主要采用的是课件展示的展现方式,对学生在学
习过程中表现出来的情感与态度,对知识、技能的掌握情
况,所使用的方法等各个方面进行了观察.
教材分析:
本节课是在七年级学习了角平分线的概念和前面刚学完证明三角形全等的基础上进行教学的。
内容包括角平分线的作法、角平分线的性质及初步应用。
作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础。
因此,本节内容在数学知识体系中起到了承上启下的作用。
同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律。
人教版初中八年级数学上册角的平分线的性质教案
12.3 角的平分线的性质(1)教学内容本节课首先介绍作一个角的平分线的方法,然后用三角形全等证明角平分线的性质定理.教学目标1.知识与技能通过作图直观地理解角平分线的两个互逆定理.2.过程与方法经历探究角的平分线的性质的过程,领会其应用方法.3.情感、态度与价值观激发学生的几何思维,启迪他们的灵感,使学生体会到几何的真正魅力.重点难点1.重点:领会角的平分线的两个互逆定理.2.难点:两个互逆定理的实际应用.教具准备投影仪、制作如课本图11.3─1的教具.教学方法采用“问题解决”的教学方法,让学生在实践探究中领会定理.教学过程一、创设情境,导入新课【问题探究】(投影显示)如课本图11.3─1,是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?【教师活动】首先将“问题提出”,然后运用教具(如课本图11.3─1•)直观地进行讲述,提出探究的问题.【学生活动】小组讨论后得出:根据三角形全等条件“边边边”课本图11.3─1判定法,可以说明这个仪器的制作原理.【教师活动】请同学们和老师一起完成下面的作图问题.操作观察:已知:∠AOB.求法:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,交OA于M,交OB于N.(2)分别以M、N为圆心,大于12MN的长为半径作弧,两弧在∠AOB的内部交于点C.(3)作射线OC,射线OC•即为所求(课本图11.3─2).【学生活动】动手制图(尺规),边画图边领会,认识角平分线的定义;同时在实践操作中感知.【媒体使用】投影显示学生的“画图”.【教学形式】小组合作交流.二、随堂练习,巩固深化课本P19练习.【学生活动】动手画图,从中得到:直线CD与直线AB是互相垂直的.【探研时空】(投影显示)如课本图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?【教师活动】操作投影仪,提出问题,提问学生.【学生活动】实践感知,互动交流,得出结论,“从实践中可以看出,第一条折痕是∠AOB的平分线OC,第二次折叠形成的两条折痕PD、PE是角的平分线上一点到∠AOB两边的距离,这两个距离相等.”论证如下:已知:OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E(课本图11.3─4)求证:PD=PE.证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°在△PDO和△PEO中,,,,PDO PEO AOC BOC OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PDO ≌△PEO (AAS )∴PD=PE【归纳如下】角的平分线上的点到角的两边的距离相等.【教学形式】师生互动,生生互动,合作交流.三、情境合一,优化思维【问题思索】(投影显示)如课本图11.3─5,要在S 区建一个集贸市场,使它到公路、铁路的距离相等,•离公路与铁路交叉处500米,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20 000)?【学生活动】四人小组合作学习,动手操作探究,获得问题结论.从实践中可知:角平分线上的点到角的两边距离相等,将条件和结论互换:到角的两边的距离相等的点也在角的平分线. 证明如下:已知:PD ⊥OA ,PE ⊥OB ,垂足分别是D 、E ,PD=PE .求证:点P 在∠AOB 的平分线上.证明:经过点P 作射线OC .∵PD ⊥OA ,PE ⊥OB∴∠PDO=∠PEO=90°在Rt △PDO 和Rt △PEO 中,,,OP OP PD PE =⎧⎨=⎩∴Rt △PDO ≌Rt △P EO (HL ) ∴∠AOC=∠BOC ,∴OC 是∠AOB 的平分线.【教师活动】启发、引导学生;组织小组之间的交流、讨论;帮助“学困生”.【归纳】到角的两边的距离相等的点在角的平分线上.【教学形式】自主、合作、交流,在教师的引导下,比较上述两个结论,弄清其条件和结论,加深认识.四、范例点击,应用所学【例】如课本图11.3─6,△ABC的角平分线BM,CN相交于点P,求证:点P•到三边AB,BC,CA的距离相等.【思路点拨】因为已知、求证中都没有具体说明哪些线段是距离,而证明它们相等必须标出它们.所以这一段话要在证明中写出,同辅助线一样处理.如果已知中写明点P到三边的距离是哪些线段,那么图中画实线,在证明中就可以不写.【教师活动】操作投影仪,显示例子,分析例子,引导学生参与.证明:过点P作PD、PE、PF分别垂直于AB、B C、CA,垂足为D、E、F.∴BM是△ABC的角平分线,点P在BM上.∴PD=PE同理 PE=PF∴PD=PE=PF即点P到边AB、BC、CA的距离相等.【评析】在几何里,如果证明的过程完全一样,只是字母不同,可以用“同理”二字概括,省略详细证明过程.【学生活动】参与教师分析,主动探究学习.五、随堂练习,巩固深化课本P50练习1、2.六、课堂总结,发展潜能1.学生自行小结角平分线性质及其逆定理,和它们的区别.2.说明本节例子实际上是证明三角形三条角平分线相交于一点的问题,•说明这一点是三角形的内切圆的圆心(为以后学习设伏).七、布置作业,专题突破课本P51习题12.3第1、2、3题.板书设计把黑板分成三部分,左边部分板书概念、定理等,中间部分板书探究,右边部分板书例题,重复使用时,中间部分和右边部分板书练习题.。
人教版数学八年级上册《角平分线性质》教学设计
人教版数学八年级上册《角平分线性质》教学设计一. 教材分析《角平分线性质》是人教版数学八年级上册的教学内容。
本节内容主要让学生了解角平分线的性质,掌握角平分线上的点到角的两边的距离相等的性质。
通过学习本节内容,为学生进一步学习几何知识打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了角的概念、线段的概念以及一些基本的几何图形。
但学生对角平分线的性质可能还没有直观的认识,因此需要通过实例和几何图形来帮助学生理解和掌握。
三. 教学目标1.知识与技能:使学生了解角平分线的性质,学会用角平分线的性质解决一些简单的问题。
2.过程与方法:通过观察、操作、猜想、验证等活动,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.重点:角平分线的性质。
2.难点:角平分线性质的证明和应用。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等,引导学生通过观察、操作、猜想、验证等过程,自主学习角平分线的性质。
六. 教学准备1.教学PPT:制作角平分线性质的PPT,包括角的定义、线段的定义、角平分线的性质等。
2.几何图形:准备一些几何图形,如角、线段、三角形等,用于引导学生观察和操作。
3.学习素材:准备一些关于角平分线性质的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT展示角的定义和线段的定义,引导学生回顾相关知识。
然后提出问题:“你们知道角平分线是什么吗?角平分线有哪些性质呢?”激发学生的兴趣,引出本节课的主题。
2.呈现(10分钟)通过PPT展示角平分线的性质,并用几何图形进行说明。
引导学生观察和操作,让学生自己发现角平分线上的点到角的两边的距离相等的性质。
在此过程中,教师进行讲解和引导,帮助学生理解和掌握。
3.操练(10分钟)让学生分组进行合作学习,每组选择一个几何图形,用直尺和圆规画出该图形的角平分线,并验证角平分线上的点到角的两边的距离是否相等。
人教版数学八年级上册12.3角平分线的性质教案
2.教学难点
a.角平分线性质的证明过程,尤其是辅助线的添加和全等三角形的运用;
b.理解角平分线性质中“点到角两边距离相等”的含义,并能将其应用于解决问题;
c.解决与角平分线相关的高难度问题,如构造角平分线、解决综合几何问题等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了角平分线的定义、性质和它在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对角平分线的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
a.证明角平分线上的任意一点到角的两边的距离相等;
b.应用角平分线的性质解决实际问题;
c.掌握角平分线在实际图形中的应用,如等腰三角形、等边三角形等。
二、核心素养目标
1.培养学生的逻辑推理能力:通过角平分线性质的探究与证明,使学生能够运用几何语言进行逻辑推理,提高论证能力。
2.增强空间观念:通过观察、操作和想象,使学生能够理解角平分线在二维空间中的位置关系,培养空间观念。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解角平分线的基本概念。角平分线是通过一个角的顶点,将角分为两个相等角的直线。(解释概念)它是解决几何问题中关于角的重要工具,有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了角平分线在实际中的应用,以及它如何帮助我们解决问题。
五、教学反思
在今天的课堂中,我们探讨了人教版数学八年级上册第十二章第三节“角平分线的性质”。通过这节课的教学,我发现以下几点值得反思:
人教版八年级数学上册教案角的平分线的性质
课本P109练习。
师:放投影8。
生:两个学生板演。
巩固深化。
[活动7]
小结:我们这节课学习了那些知识?有那些运用?
师:放投影9,总结。
生:回顾、总结、提高。
系统知识点,加深理解、印象。
[活动8]
布置作业:教科书P110习题第2、3题
巩固提高。
板书设计
13.3角的平分线的性质
*证明直角三角形全等的方法有哪些?
教师提问,学生与老师一起完成探究过程。
学生独立说明。
学生相互讨论,交流,归纳。(板演习题)
教师放投影4。
学生独立作图,思考,发现直线CD与直线AB的关系。
培养学生的抽象思维能力和运用三角形全等的知识(SSS)解决问题的能力。
从实验抽象出几何模型,明确几何作图的基本思路和方法。
培养学生运用直尺和圆规作已知角的平分线的能力。
让学生掌握过直线上一点作已知直线的垂线的方法。
[活动4]
问题1:从上面的研究中我们知道了如何作一个已知角的角平分线以及证明方法。
探究:如何利用直角三角形全等的方法找出角平分线上任意一点到角的两边的距离的关系?(点到线的距离)
师:提问题。
生:小组讨论。
师:放投影5,引导得出结论
---角平分线的性质。
培养学生的数学抽象概括能力及理性精神。
(6)归纳角平分线的作法。
作一个平角∠AOB,作出它的角平分线OC得到直线CD。你能说出直线CD与直线AB的关系吗?
师:首先将问题提出,然后运用教具直观的进行讲述,提出探究的问题。(用所学知识解释它的道理)
生:小组讨论后得出:根据三角形全等条件“边边边”判定方法,可以说明这个仪器的制作原理。
人教版数学八年级上册《角平分线的判定》教学设计
人教版数学八年级上册《角平分线的判定》教学设计一. 教材分析人教版数学八年级上册《角平分线的判定》是初中数学的重要内容,主要让学生了解角平分线的性质和判定方法。
本节内容是在学生学习了角的概念、垂线的性质等知识的基础上进行学习的,为后续学习几何中的线段和平面的位置关系打下基础。
本节课的主要内容包括角平分线的定义、判定定理及其应用。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们对角、线段等基本几何概念有了一定的了解。
但是,对于角平分线的性质和判定方法,学生可能还比较陌生,需要通过实例和操作来加深理解。
此外,学生可能对几何图形的直观感知能力较强,但对于用数学语言来描述和证明几何性质的能力还需加强。
三. 教学目标1.知识与技能:使学生了解角平分线的定义,掌握角平分线的判定方法,能运用角平分线的性质解决一些简单的问题。
2.过程与方法:通过观察、操作、猜想、验证等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.重点:角平分线的定义,角平分线的判定方法。
2.难点:角平分线性质的证明,角平分线在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入角平分线,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、操作、猜想、验证,培养学生的思维能力。
3.小组合作学习:鼓励学生之间相互讨论、交流,提高学生的合作意识。
六. 教学准备1.教具:三角板、直尺、圆规、多媒体设备。
2.学具:学生用三角板、直尺、圆规。
3.教学素材:角平分线的实例、图片、动画等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的角平分线的实例,如钟表指针、蝴蝶翅膀等,引导学生观察并思考:这些实例中有什么共同特点?从而引出本节课的主题——角平分线。
2.呈现(10分钟)(1)介绍角平分线的定义:角平分线是指从一个角的顶点出发,把这个角分成两个相等的角的射线。
12.3 角的平分线的性质 人教版八年级数学上学期教案
课题12.3角平分线的判定上课教师上课时间第周第节教学目标1、掌握角平分线的判定。
2、熟练运用角平分线的判定及性质解决问题。
3、结合实际,创造丰富的情境,提高学生的学习兴趣,让他们在活动中获得成功的体验,培养学生的探索精神,树立学习的信心.教学重点角平分判定的应用。
教学难点运用角平分线判定证明及解决实际问题.教学过程环节教师活动学生活动设计意图课前预习1、布置学生的课前预习任务;2、进行预习方法指导;3、对学生预习任务进行检查与评定。
1、认真阅读教材50内容,用铅笔勾画重点概念;2、完成《练习册》28-29页例1、例2。
培养课前预习习惯,提升自主学习能力。
自主学习理解新知一、师生互动、引问激思(运用教材,梳理知识)1、角平分线的判定例1:如图,BE⊥AC于点E,CF⊥AB于点F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.(练习册28页例1)2、三角形的平分线例2:如图,某市有一块由三条公路围成的三角形绿地,现准备在其中建一座小亭供人们休息吗,而且要使小亭中心到三条公路的距离相等,试确定小亭中心的位置(练习册29页例2)一、进入情境、领会所学(理解教材,领悟新知)1、在课本上用红色笔勾画角平分线判定的内容;2、分小组分享例1解答过程;3、总结证明角平分线的常见方法。
1、分小组展示例2解答;2、说出解决此类题型的方法;3、说出三角形三条角平分线的关系;4、板书写例题解答格式。
课堂前阶段通过师生互动,学生温故知新,初步领会角平分线判定定理。
通过例题掌握三角形三角平分线的关系。
互动交流巩固所学二、点导评析、归类拓展(运用教辅,解疑释惑)例1变式:如图,在 △ ABC 中,摆放有两个完全一样的三板,它们的一组对应直角边分别在边AB 、AC 上,且这组对应边所对的顶点重合于点M ,则点M 一定在( )A、∠A的平分线上; B、边AC的高上;C、边BC的垂直平分线上;D、边AB的中线上(练习册28页列1变式训练)例2变式:如图,已知∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC.求证:AM 平分∠DAB (练习册29页例2变式训练)二、课堂展示、体系建构(例题展示,变式操练)说出作判断的依据;1、规范快速求解;2、准确说清解题依据;3、尝试总结解题方法。
人教版数学八年级上册《角平分线的性质(1)》教案
人教版数学八年级上册《角平分线的性质(1)》教案一. 教材分析人教版数学八年级上册《角平分线的性质(1)》这一节,主要让学生掌握角平分线的性质,能够运用角平分线解决一些几何问题。
教材通过角的平分线上的点到角的两边的距离相等这一性质,引导学生探究并证明这一结论,从而培养学生的逻辑思维能力和探究精神。
二. 学情分析学生在学习本节课之前,已经学习了角的概念,线段的概念,对几何图形的认知有一定的基础。
但是,对于角平分线的性质,可能还没有直观的认识,需要通过实例和证明来理解和掌握。
同时,学生可能对证明过程感到困难,需要教师耐心引导和解答。
三. 教学目标1.让学生了解角平分线的性质,能够运用角平分线解决一些几何问题。
2.培养学生的逻辑思维能力和探究精神。
3.提高学生的几何证明能力。
四. 教学重难点1.角平分线性质的掌握。
2.角平分线性质的证明。
五. 教学方法采用问题驱动法,让学生在解决问题的过程中,发现和总结角平分线的性质。
同时,运用分组合作法,让学生在小组讨论中,共同探究和证明角平分线的性质。
最后,运用实例讲解法,让学生通过具体的例子,理解和掌握角平分线的性质。
六. 教学准备1.准备角平分线的性质的实例和证明。
2.准备相关的几何题目,用于巩固和拓展。
七. 教学过程1.导入(5分钟)通过提问方式,引导学生回顾角的概念,线段的概念,为新课的学习做好铺垫。
2.呈现(10分钟)展示角平分线的性质的实例,让学生观察并描述实例中的特点。
引导学生发现角平分线上的点到角的两边的距离相等这一性质。
3.操练(10分钟)让学生在小组内,运用角平分线的性质,解决一些几何问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)讲解一些运用角平分线解决几何问题的题目,让学生在解题过程中,巩固对角平分线性质的理解。
5.拓展(10分钟)引导学生思考:角平分线性质的证明。
让学生尝试用已学的知识,证明角平分线上的点到角的两边的距离相等。
6.小结(5分钟)教师引导学生总结本节课所学的内容,让学生明确角平分线的性质,并能够运用到实际问题中。
八年级数学上人教版《 角的平分线的性质》教案
《角的平分线的性质》教案
一、教学目标
1.掌握角的平分线的性质及其简单的应用。
2.培养学生观察、实验、归纳和推理的能力,以及动手操作能力。
3.初步了解“经过证明,得到确定的结论”的方法。
4.体验数学活动充满着探索性和创造性。
二、教学重点
掌握角的平分线的性质及其简单的应用。
三、教学难点
正确画出角的平分线,理解角的平分线的性质。
四、教学方法
1.通过观察、实验、归纳和推理,探究角的平分线的性质。
2.通过实例,介绍经过证明得到确定的结论的方法。
3.通过角平分器的使用,以及用圆规和直尺等工具画角的平分线,使学生能够正
确地画出角的平分线。
4.通过实例,让学生掌握角的平分线的性质的简单应用。
5.通过实例,让学生了解“经过证明,得到确定的结论”的方法。
6.通过实例,让学生体验数学活动充满着探索性和创造性。
7.通过实例,让学生了解数学与现实生活的密切联系。
8.通过实例,让学生理解数学来源于生活并服务于生活。
人教版数学八年级上册《角的平分线的性质(2)》教学设计
人教版数学八年级上册《角的平分线的性质(2)》教学设计一. 教材分析人教版数学八年级上册《角的平分线的性质(2)》这一节,是在学生已经掌握了角的平分线的概念和性质的基础上进行教学的。
本节课的主要内容是进一步探究角的平分线的性质,包括角的平分线上的点到角的两边的距离相等,以及角的平分线与角的对边的关系。
这些性质对于学生后续学习几何知识有着重要的铺垫作用。
二. 学情分析学生在学习本节课之前,已经掌握了角的平分线的概念,对于角的平分线的性质有一定的了解。
但是,对于角的平分线性质的深入理解以及灵活运用还需要进一步的引导和培养。
此外,学生对于几何图形的观察和分析能力也需要在本节课中得到锻炼和提高。
三. 教学目标1.知识与技能:使学生理解和掌握角的平分线上的点到角的两边的距离相等的性质,以及角的平分线与角的对边的关系。
2.过程与方法:培养学生的观察能力、分析能力以及推理能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.教学重点:角的平分线上的点到角的两边的距离相等的性质,角的平分线与角的对边的关系。
2.教学难点:角的平分线性质的证明,以及灵活运用角的平分线性质解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入角的平分线的性质,激发学生的学习兴趣。
2.问题驱动法:引导学生提出问题,并通过小组合作、讨论的方式解决问题。
3.几何画图法:利用几何画图工具,直观地展示角的平分线的性质。
4.讲解法:对于角的平分线的性质进行详细的讲解,确保学生理解。
六. 教学准备1.教学课件:制作角的平分线的性质的课件,包括文字、图片、动画等。
2.几何画图工具:准备直尺、圆规、三角板等几何画图工具。
3.练习题:准备与角的平分线性质相关的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个生活实例,如建筑设计中测量角度的问题,引导学生思考角的平分线的性质。
提问:“角的平分线有什么特殊的性质呢?”从而引出本节课的主题。
角的平分线的性质人教版数学八年级上册教案
角的平分线的性质人教版数学八年级上册教案角平分线是指从一个角的顶点引出一条射线,把这个角分成两个完全一样的角,这条射线叫做这个角的角平分线。
三角形三条角平分线的交点叫做三角形的内心。
以下是我整理的角的平分线的心质人教版数学八年级上册教案,欢送大家借鉴与参考!12.3角的平分线的性质教案一、创设情景,明确目标1.不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么方法?2.假如前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?二、自主学习,指向目标学习至此:请完成《学生用书》相应局部.用尺规作确定角的平分线的方法活动一:教材P48思索展示点评:相等的边有哪些?图形中隐含的条件是什么?作确定角的平分线的方法?为什么要用“大于MN的一半为半径画弧”?小组探讨:平分角的仪器的原理依据是什么?反思小结:理论依据是三角形全等的判定“SSS”.针对训练:见《学生用书》相应局部角平分线的性质与证明活动二:同学们结合折纸活动,猜测一下角平分线有怎样的性质呢?猜测:角平分线上的点到角的两边的距离相等.展示点评:请同学们证明上述猜测(写出确定、求证):通过证明我们得出角平分线性质:________.用数学语言翻译描述上述性质:小组探讨:第一次对折可以得到什么结论?其次次为什么要折出一个直角?角平分线的性质内容?确定和求证分别是什么?如何证明?如何用几何语言表达?根本图形是什么?反思小结:角平分线上的点到角两边的距离相等.针对训练:见《学生用书》相应局部角平分线的运用活动三:如图,OC平分∠AOB,点P为OC上随意一点,PD⊥OA于D,PE⊥OB于E,猜测PD与PE 的数量关系,并证明.展示点评:由角平分线可以得到哪些角相等?由垂直可以得到哪些角相等?由图形可挖掘什么条件?由三角形全等可以得到什么结论?如何写证明过程?小组探讨:此题有哪些不同的证明方法,哪种方法更简便?反思小结:用角平分线的性质证明线段相等比用全等三角形证明线段相等更便利.针对训练:见《学生用书》相应局部四、总结梳理,内化目标本节课学习了那些学问?有哪些运用?1.角平分线的性质定理:在角平分线上的点到角的两边的距离相等.2.角平分线的性质定理是证明角相等、线段相等的新途径.五、达标检测,反思目标1.三角形中,到三边距离相等的点是( C )A.三条高线交点B.三条中线交点C.三条角平分线交点D.三边垂直平分线交点12.3角平分线的性质:测试一、填空题(每题3分,共30分)1.到一个角的两边距离相等的点都在_________.2.∠AOB的平分线上一点M,M到OA的距离为1.5 cm,那么M到OB的距离为_________.3.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,那么∠DOC=_________.12.3角的平分线的性质:精选练习7.确定Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,假设BC=32,且BD:CD=9:7,那么D到AB边的距离为( )A.18B.16C.14D. 128.如图6,AE⊥BC于E,CA为∠BAE的角平分线,AD=AE,连结CD,那么以下结论不正确的选项是( )A.CD=CEB.∠AC D= ∠ACEC.∠CDA =90°D.∠BCD=∠ACD9.在△ABC中,∠B=∠ACB,CD是∠ACB的角平分线,确定∠ADC=105°,那么∠A的度数为( )A.40°B.36°C.70°D.60°10.在以下结论中,不正确的选项是( )A.平面内到角的两边的距离相等的点必须在角平分线上B.角平分线上任一点到角的两边的距离必须相等C.一个角只有一条角平分线D.角的平分线有时是直线,有时是线段角的平分线的性质人教版数学八年级上册教案。
人教版八年级数学上册12.2角的平分线的性质教学设计
-设计不同形式的练习题和证明题,让学生在解答过程中,逐步巩固对角的平分线性质的理解,并能够灵活运用到解题过程中。
(三)情感态度与价值观
1.培养学生严谨的学习态度和逻辑思维能力。
-在教学过程中,强调几何证明的严谨性,要求学生在解答问题时,注意逻辑推理的严密性,培养学生严谨的学习态度。
(五)总结归纳
在本节课的最后,我将带领学生进行以下总结归纳:
1.总结角的平分线的定义、性质及证明方法。
2.强调角的平分线在实际问题中的应用。
3.指出学生在学习过程中存在的问题,提醒他们在今后的学习中需要注意的地方。
4.鼓励学生继续探索几何图形的性质,提高他们的逻辑思维能力和解决问题的能力。
五、作业布置
2.激发学生对数学学科的兴趣,培养其探究精神。
-通过生动有趣的实例和问题,引导学生体验数学的魅力,激发学生对数学学科的兴趣,培养其探究精神和创新意识。
3.培养学生团队合作意识,提高沟通与交流能力。
-在课堂教学中,组织学生进行小组讨论和合作探究,使学生在交流互动中,提高沟通能力,培养团队合作意识。
二、学情分析
(二)教学设想
1.利用多媒体和实物教学,增强直观感受。
-通过动态多媒体演示和实物操作,如使用折纸和直尺等工具,让学生直观感受角的平分线的作用,从而加深对性质的理解。
2.分层次教学,满足不同学生的学习需求。
-对于基础层次的学生,重点在于让他们掌握角的平分线的定义和基本性质;对于提高层次的学生,则引导他们进行性质的证明和应用,解决更复杂的问题。
八年级的学生已经在之前的数学学习中,掌握了角的初步知识,如角的分类、角的度量等。在此基础上,学生对角的平分线的性质的学习,既是对已有知识的巩固,也是对几何图形性质探究能力的进一步提升。然而,由于角的平分线性质涉及到几何证明,学生在逻辑推理和证明过程中可能存在一定困难。因此,在教学过程中,应关注以下几点:
人教版八年级上册 12.3 角平分线的性质 教案
角的平分线的性质(一)教学目标1、应用三角形全等的知识,解释角平分线的原理.2.会用尺规作一个已知角的平分线.教学重点利用尺规作已知角的平分线.教学难点角的平分线的作图方法的提炼.教学过程Ⅰ.知识回顾问题1:三角形中有哪些重要线段.问题2:你能作出这些线段吗?Ⅱ.合作探究思考:右图是一个平分角的仪器,其中,.将点A放在角的顶点,和沿着角的两边放下,沿画一条射线,就是角平分线.你能说明它的道理吗?要说明是∠的平分线,其实就是证明∠∠.∠和∠分别在△和△中,那么证明这两个三角形全等就可以了.看看条件够不够在△和△.因为所以△≌△().所以∠∠.即射线就是∠的平分线.这种平分角的方法告诉了我们一种作已知角的平分线的方法。
作已知角的平分线的方法:已知:∠.求作:∠的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交、于M、N.的长为半径作弧.两弧在∠内部交(2)分别以M、N为圆心,大于12于点C.(3)作射线,射线即为所求.议一议:的长”这个条件行吗?1.在上面作法的第二步中,去掉“大于122.第二步中所作的两弧交点一定在∠的内部吗?总结:1.去掉“大于1的长”这个条件,所作的两弧可能没有交点,所以2就找不到角的平分线.2.若分别以M、N为圆心,大于1的长为半径画两弧,两弧的交点可2能在∠ 的内部,也可能在∠的外部,而我们要找的是∠内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.思考如图,任意画一角∠,做出∠的角平分线,在上任取一点O,过点O 画出的垂线,分别记垂足为。
测量并作比较,你得到什么结论?在上再取几个点试试。
通过以上测量,你发现了角的平分线的什么性质?PⅢ.课堂精讲我们猜想角的平分线有以下性质:角平分线的性质:角平分线上的点到角的两边的距离相等.下面,我们利用三角形全等证明这个性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教材版本人教版学段八年级上学科数学
章节§11.3课题名角的平分
线的性质
课时第2课时
教学目标1、知识与技能:
掌握角平分线的判定方法;认识三角形的内心。
2、过程与方法:
能够利用角平分线的性质和判定进行推理和计算;了解角的平分线的判定在生活、生产中的应用。
3、情感态度与价值观:
通过探究活动,培养学生的联想、探索、概括归纳的能力,激发学生学习数学的兴趣。
教学重点角的平分线的判定的证明及运用
教学难点灵活应用角平分线的性质和判定解决问题教具多媒体辅助、三角板、圆规
时间安排(一)温故知新(3分钟)(二)探究新知(10分钟)(三)例题讲解;(四)巩固练习;(五)思维延伸(30分钟)(六)课堂小结(七)作业布置(2分钟)
课后小结本节课要引导学生在解决问题时,正确区分两个“角的平分线的性质”的使用前提和结论。
由于例、习题分析求解的过细,导致时间上有
P A O B C E D 些紧张,课堂容量上对于综合运用已学知识解
决问题方面欠佳。
教学方法:采取类比学习法,创设合理的实际背景,激发学生思维的积极性,充分展现学生的主体作用。
分组讨论,讲练结合。
组织教学:学生16人,要求积极思考、实验。
教学过程:
(一)温故知新
复习:1、如何作已知角∠AOB的角平分线?
2、角的平分线的性质:角的平分线上的点到角的两边的距离相等.
3、如何用几何语言来表述这一性质?
(二)探究新知
“角的平分线上的点到角的两边的距离相等.” 的题设和结论分别是什么?把题设和结论反过来得到的命题什么?
猜想:到一个角的两边的距离相等的点是否在这个角的平分线上呢?
已知:如图,PD ⊥OA 于D ,PE ⊥OB 于E ,PD =PE .
求证:OP 平分∠AOB .
由Rt △PEO ≌Rt △PDO (HL ),可得∠EOP=∠DOP .即:OP 平分∠AOB .
由此我们又可以得到一个性质:到角
的两边距离相等的点在角的平分线
上。
对比这两个性质,可知已知条件和
所推出的结论可以互换.
(三)例题讲解
例题1、(课本P21 思考):如图
所示,要在S区建一个集贸市场,
使它到公路、铁路距离相等,•离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?
引导学生分析:
1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?
2.比例尺为1:20000是什么意思?
作图如下:
1、尺规作图法作出∠AOB的平分线OP.
2、在射线OP上截取OC=2.5cm,确定C点,∴C点即为所求。
练习1、(课本P27 6)详见(四)巩固练习
在确定度假村的位置时,一定要画出三个角的平分线吗?
能证明吗?(通过例2(2)证明)
例题2、(课本P21 例):如图,△ABC的角平分线BM、CN相交于点P。
求证:(1)点P到三边AB、BC、CA的距离相等。
(2)点P 在∠BAC的平分线上。
引导学生分析:(1)上节课用“角的平分线上的点到角的两边的距离相等.”已证;
(2)用“到角的两边距离相等的点在角的平分线上.”可得。
练习2、(课本P22 练习)
变式:求证:(2)点P在∠A的平分线上。
详见(四)巩固练习
归纳:若遇到有关角平分线,又要证线段、角相等的问题,•我们可以直接利用角的平分线的性质解决问题。
(四)巩固练习
练习1、(课本P27 6)如图,为了促
进当地旅游发展,某地要在三条公路
围成的一块平地上修建一个度假村.
要使这个度假村到三条公路的距离相
等,应在何处修建?
练习2、(课本P22 练习)如图,△ABC的∠B的外角的
平分线BD与∠C的外角的平分线C
E相交于点P.求证:点P到三边AB,
BC,CA所在直线的距离相等.求证:
P A O B C E D (2)点P 在∠A 的平分线上。
(五)课堂小结
和学生共同总结:角的平分线的性质
1、到角的两边距离相等的点在角的平分线上。
∵ PD ⊥OA ,PE ⊥OB ,PD =PE .
∴点P 在∠AOB 的平分线上.
2、角的平分线上的点到角的两边的距
离相等. ∵ PD ⊥OA,PE ⊥OB,点P 在∠AOB 的平分线上
∴ PD =PE
(六)作业布置
1、复习本节笔记;
2、课本P22 3;P23 6;P26 5
3、练习册P8
【板书设计】 §11.3角的平分线的性质
角的平分线的性质: 例题1、3 例题2、
1、到角的两边距离相等的点在角的平分线上。
2、角的平分线上的点到角的两边的距离相等.
学生演板。