第七章 离散时间系统的时域分析1-6
第七章离散时间信号与系统的Z域分析总结
1 z X ( z) = 此时, = 1 − az −1 z − a
z > a 收敛域:
0
j Im[ z ]
a
*收敛域一定在模最大的极点 所在的圆外。
Re[ z ]
信号与系统
第7章 离散时间信号与系统的z域分析
13 /82
3.左边指数序列 x(n) = −b nu (−n − 1)
的形式 ,其中x2+Ax+B是实数范围内的不可约 多项式,而且k是正整数。这时称各分式为原 分式的“部分分式”。
信号与系统
第7章 离散时间信号与系统的z域分析
19 /82
M X ( z ) 通常, 可表成有理分式形式: b z −i ∑ i B( z ) = i =0N X ( z) = A( z ) 1 + ∑ ai z −i
z −n < ∞
n1 ≤ n ≤ n2 ;
信号与系统
第7章 离散时间信号与系统的z域分析
7 /82
因此,当时,只要,则 n= z − n 1/ z n , ≥0 同样,当时,只要,则 n <= 0 z z ,
n −n
z≠0 z≠∞ z
z −n < ∞
−n
<∞
所以收敛域至少包含,也就是除 0< z <∞ “有限平面” z= (0, ∞) z 。 ∞外的开域,即所谓
9 /82
(3)左边序列
x(n), n ≤ n2 x ( n) = n > n2 0,
X ( z)
n = −∞
= x ( n) z ∑ ∑ x ( n) z
−n n = −∞
n2
7 离散时间系统的时域分析4
m m −1
+ … + b1s + b0
则有:D( s )[ y (k )] = N ( s )[e(k )]
§7.4 离散时间系统的零输入响应
2、零输入响应的解法 ① 一阶系统 y (k + 1) + a0 y (k ) = b0 e( k )
则:sy (k ) + a0 y (k ) = b0 e(k ) e( k ) = 0 根据 即: s + a0 ) y (k ) = 0 ( y (k + 1) = − a0 y (k )
例4:有一离散时间系统,用下列差分方程描写y(k+2)有一离散时间系统,用下列差分方程描写y(k+2)y(k+2) 3y(k+1)+2y(k)=e(k+1)-2e(k),系统的初始条件为 3y(k+1)+2y(k)=e(k+1)-2e(k),系统的初始条件为 (1)=1.求该系统的零输入响应 求该系统的零输入响应。 yzi(0)=0,yzi(1)=1.求该系统的零输入响应。
y ( k ) = cr k
(
r −1
+ ar −1k +
n j = r +1
r −2
+ ⋯ + c2 k + c1 vr
k j
)
k
∑c v
j
,k ≥ 0
式中c 为待定系数,可由初始条件y(0) y(0), 式中c1,c2,…,cn为待定系数,可由初始条件y(0), y(1), y(n-1)确定 确定。 y(1), …,y(n-1)确定。 注:共轭复根可配对(变幅正弦序列) 共轭复根可配对(变幅正弦序列)
离散时间系统的时域特性分析
数字信号处理实验报告学生姓名:孙奇学生学号:10934212学生班级:10093412所属专业:通信工程实验日期:2012-11-6实验一:离散时间系统的时域特性分析实验目的线性时不变离散时间系统在时域中可以通过常系数线性差分方程来描述冲激响应序列可以刻画其时域特性。
本实验通过使用MATLAB函数研究离散时间系统的时域特性以加深对离散时间系统的差分方程、冲激响应系统的线性和时不特性的理解。
基本原理一个离散时间系统是将输入序列变换成输出序列的一种运算。
离散时间系统离散时间系统最重要的最常用的是“线性时不变系统实验内容程序一clf;n=0:100;x=cos(20*pi*n/256)+cos(200*pi*n/256);subplot(3,1,1);stem(n,x); %输入信号的图形xlabel('时间信号n');ylabel('信号幅度');title('输入信号');den1=[1]; %对应系统一的差分方程系数num1=[0.5 0.27 0.77];den2=[1 -0.53 0.46]; %对应系统二的差分方程系数num2=[0.45 0.5 0.45];y1=filter(num1,den1,x);subplot(3,1,2);stem(n,y1); %系统一输出信号的图形y2=filter(num2,den2,x);subplot(3,1,3);stem(n,y2); %系统二输出信号的图形3程序二n=40; %取冲击响应的前40个样本num1=[0.5 0.27 0.77]; %对应系统一的差分方程系数den1=[1];num2=[0.45 0.5 0.45]; %对应系统二的差分方程系数den2=[1 -0.53 0.46];y1=impz(num1,den1,n); %系统一的冲击响应subplot(2,1,1);stem(y1);y2=impz(num2,den2,n); %系统二的冲击响应subplot(2,1,2);stem(y2);判断是否为线性程序三(1)n=0:40;a=2; %任取两个系数b=3;x1=cos(2*pi*0.3*n);x2=cos(2*pi*0.5*n);x=a*x1+b*x2;num=[0.45 0.5 0.45]; %对应系统二的差分方程系数den=[1 -0.53 0.46];y1=filter(num,den,x1); %计算出y1(n)y2=filter(num,den,x2); %计算出y2(n)y=filter(num,den,x); %计算出y(n)subplot(2,1,1);stem(n,y);ylabel('信号幅度');yt=a*y1+b*y2; %计算出yt(n)=a y1(n)+b y2(n)subplot(2,1,2);stem(n,yt);ylabel('信号幅度');从图中可知,上下两个图完全一样,可知系统二符合叠加原理,即系统二是线性系统。
自动控制理论课件第七章离散系统的时域分析
已知起始状态y(1) 2,试求零输入响应。
解:在无外加输入时系统的零输入响应通常
是指n 0以后的响应起始状态是值y(1),
y(2), 各值。
y(n) y(n 1)
故有 y(n) y(1) y(2)
y(n 1) y(0) y(1)
y(n)是公比为的等比级数,故零输入响应有如下形式
是一阶非齐次差分方程。
梯形电阻网络,设各点 对地电压为 u(n), n 0,1,2,...为各节点
序号,为常数,则求其差分方程。
根据KCL, 有
u(n 1) u(n) u(n) u(n) u(n 1)
R
R
R
整理可得
u(n 1) u(n 1) (2a 1)u(n) 0
是关于节点电压的齐次差分方程。
u(n) (2a 1)u(n 1) u(n 2) 0
差分方程的阶数为未知 序列(响应序列)的最大序号与
最小序号之差。上式为 二阶差分方程。
对于一个线性是不变离散系统,若响应信号为y(n),
输入信号为f (n),则描述系统输入- 输出关系的
N阶差分方程为
y(n) a1y(n 1) a2 y(n 2) aN-1y(n N 1) aN y(n N )
an n 1 a 0
1 1 O 1
23
4n
5.正弦序列
xn sinnω0
余弦序列:xn cosn0
sinnω0
1
sin 0 t
O
1
5
10 n
1
0 : 正弦序列的频率, 序列值依次周期性重复的速率。
当
=2π 0 10
,
则序列每10个重复一次正弦包络的数值。
(信息与通信)第七章离散时间系统的时域分析2
稳定性分析的应用
稳定性分析在离散时间系统中的应用非常广 泛。例如,在数字信号处理中,稳定性分析 可以帮助我们判断数字滤波器的性能和稳定 性;在控制系统分析中,稳定性分析是判断 系统能否正常工作的关键;在图像处理中, 稳定性分析可以帮助我们判断图像处理算法 的性能和稳定性。
此外,稳定性分析还可以应用于其他领域, 如金融、交通等。在这些领域中,稳定性分 析可以帮助我们理解和预测系统的行为,从
数字电视、数字广播、卫星通 信、移动通信等。
计算机控制系统
计算机控制的生产线、机器人 、智能家居等。
科学计算
数值计算、模拟仿真等。
02
离散时间系统的时域分析方法
差分法
01
差分法是通过离散时间信号的差分运算来分析系统的
特性。
02
差分方程是描述离散时间系统动态行为的基本工具,
通过求解差分方程可以得到系统的输出响应。
离散时间系统的仿真工具与技术
数学软件仿真
使用数学软件(如MATLAB、Simulink等)进行离散时间系统的建 模和仿真,可以进行系统性能分析和优化。
硬件描述语言仿真
使用硬件描述语言(如Verilog、VHDL等)进行离散时间系统的建 模和仿真,可以模拟硬件实现并进行验证。
模拟器仿真
使用模拟器(如QEMU、ModelSim等)进行离散时间系统的仿真, 可以模拟实际硬件运行环境,进行系统测试和验证。
对比分析
将离散时间系统的性能与其他同类系统进行对比, 以评估其优劣。
性能优化策略
01
算法优化
改进或优化离散时间系统的算法, 以提高其性能。
并行处理
利用并行处理技术,提高离散时间 系统的处理速度和效率。
03
信号与系统-离散信号与系统
(1)
y (k + 3) − 2 2 y (k + 2) + y (k + 1) + 0 y (k ) = f (k ) 1 y (k + 2) − y (k + 1) + y (k ) = f (k ) 4
(2)
解:用转移算子法求。
1 (1) H ( E ) = 3 2 E − 2 2E + E 1 = E ( E − 2 − 1)( E − 2 + 1) 1 1 1 2( 2 + 1) 2( 2 − 1) = + − E E − 2 −1 E − 2 + 1
f ( n )= ∑ i=-∞ f(i) ∗ δ (k-i)=f(n) ∗ δ (n)
∞
四 离散信号的卷积和
l 定义
f1 (n) ∗ f2 (n)=∑i=-∞ f1 (i) ∗ f2 (k-i)=∑i=-∞ f2 (i) ∗ f1 (k-i)
∞ ∞
l 上下限范围
– 当f1(n), f2(n)均为因果序列
yh (n) =
l
l
∑
K
N i =1
A iα
n i
i −1 n yh (n) = ∑i =+1 An α1 + ∑i=k +1 Aiαin i N
l l l
将所求得的强迫解和自由解相加,即可得到全响应 将给定的全响应的初始值代入到方程中,已确定待定系数 将所求得的待定系数带入到全响应方程中
例:求下列差分方程所 描述的系统的单位响应 h(k)
1 故h(k) =δ (k −1) +[ ( 2 +1)k−1 − 2( 2 +1) 1 k−1 ( 2 −1) ]U(k −1) 2( 2 −1) 1 k−2 1 k−2 =δ (k −1) +[ ( 2 +1) − ( 2 −1) ]U(k −2) −δ (k −1) 2 2 1 k−2 k−2 = [( 2 +1) −( 2 −1) ]U(k −2) 2
离散时间系统的时域分析实验报告
3. clf; h=[-6 5 2 3 -2 0 1 0 5 -3 4 2 -1 -3 2]; %冲激 x=[2 4 -1 3 -5 2 0 -1 2 -1]; %输入序列 y=conv(h,x); n=0:23; subplot(2,1,1); stem(n,y);
4. clf; n=0:301; x=cos((0.5*pi/600)*n.*n+0*n); %计算输出序列 num1=[0.5 0.27 0.77]; y1=filter(num1,1,x);%系统#1 的输出 den2=[1 -0.35 0.46]; num2=[0.45 0.5 0.45]; y2=filter(num2,den2,x);%系统#2 的输出 %画出输入序列 subplot(3,1,1); plot(n,x); axis([0 300 -2 2]); ylabel('振幅'); title('系统的输入'); grid;
四、实验结果与分析
图一 图二
2
图三
图四
五、实验小结
通过这次实验,我熟悉 MATLAB 中产生信号和绘制信号的基本命令,学会 通过 MATLAB 仿真一些简单的离散时间系统,并研究了它们的时域特性。
经过了两次实验课,对于 MATLAB 的一些命令语句的格式熟悉多了。在完 成实验时比第一次更顺利了些。
subplot(3,1,3) d=d(2:42); stem(n,d);
2. clf; n=0:40; D=10; a=3.0; b=-2; x=a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n); xd=[zeros(1,D) x]; nd=0:length(xd)-1; y=(n.*x)+[0 x(1:40)]; yd=(nd.*xd)+[0 xd(1:length(xd)-1)]; d=y-yd(1+D:41+D);
离散时间系统分析
离散时间系统分析离散时间系统分析是指对离散时间信号和系统的特性进行研究和分析的过程。
离散时间信号是在时间上是离散的,而连续时间信号则是在时间上是连续的。
离散时间系统是指对离散时间信号进行输入输出变换的系统。
离散时间系统分析主要包括对离散时间信号和系统的表示、性质、分析和设计等方面的内容。
离散时间信号的表示离散时间信号可以通过数学方法进行表示和描述。
常用的表示方法包括序列表示法和函数表示法。
序列表示法是离散时间信号的一种常见表示方式,它将离散时间信号看作是一个序列,表示为一个有序的数值列表。
序列可以分为有限序列和无限序列两种。
有限序列表示了在有限时间内的信号取值,而无限序列表示了在无限时间内的信号取值。
函数表示法是另一种常用的离散时间信号的表示方式,它使用数学函数来描述信号的取值。
函数表示法更加灵活,可以表示各种复杂的离散时间信号,如周期序列、随机信号等。
离散时间系统的性质离散时间系统可以根据其性质进行分类和分析。
其中包括线性性、时不变性、因果性和稳定性等。
线性性是指系统的输出与输入之间存在线性关系。
如果系统满足输入信号的线性性质,那么对于任意输入信号x1(n)和x2(n),以及对应的输出信号y1(n)和y2(n),系统将满足以下性质:•线性叠加性:对于任意的实数a和b,有系统对于输入信号ax1(n)+bx2(n)的输出为ay1(n)+by2(n)。
时不变性是指系统的输出与输入之间的关系不随时间的变化而变化。
如果系统满足输入信号的时不变性质,那么对于任意输入信号x(n)和对应的输出信号y(n),如果将输入信号延时d个单位时间,那么对应的输出信号将也会延时d个单位时间。
因果性是指系统的输出只取决于当前和过去的输入值,不受未来输入值的影响。
如果系统满足输入信号的因果性质,那么对于任意n的值,系统的输出信号y(n)只取决于输入信号x(n)及其过去的值。
稳定性是指系统的输出有界,不会无限增长。
如果系统满足输入信号的稳定性质,那么对于任意有界输入序列,输出序列也将是有界的。
离散时间系统的时域分析
离散时间系统的时域分析离散时间系统是指系统输入和输出信号都是在离散的时间点上进行采样的系统。
时域分析是分析系统在时域上的性质和特征。
在离散时间系统的时域分析中,常用的方法包括冲击响应法、单位样值法和差分方程法等。
冲击响应法是通过对系统施加单个冲击信号,观察系统在输出上的响应来分析系统的时域特征。
冲击响应法的基本思想是将系统的输出表示为输入信号与系统的冲击响应之间的卷积运算。
冲击响应法适用于线性时不变系统,在实际应用中可以使用软件工具进行计算。
单位样值法是通过将系统输入信号取为单位样值序列,观察系统在输出上的响应来分析系统的时域特征。
单位样值法的基本思想是将系统的输出表示为输入信号与系统的单位样值响应之间的卷积运算。
单位样值法适用于线性时不变系统,可以用来计算系统的单位样值响应和单位样值响应序列。
差分方程法是通过建立系统输入和输出之间的差分方程来分析系统的时域特征。
差分方程法的基本思想是根据系统的差分方程,利用系统的初始条件和输入序列,递推计算系统的输出序列。
差分方程法适用于线性时不变系统,可以用来计算系统的单位样值响应和任意输入信号下的输出序列。
以上所述的方法是离散时间系统时域分析中常用的方法,通过这些方法可以获得系统的冲击响应、单位样值响应和任意输入信号下的输出序列,进而分析系统的时域特征和性质。
在实际应用中,根据系统的具体情况和需求,选择合适的方法进行时域分析,能够更好地理解离散时间系统的动态行为和响应特性。
离散时间系统的时域分析是研究系统在离散时间上的动态行为和响应特性的关键方法。
通过分析系统的时域特征,可以深入了解系统的稳定性、响应速度、频率选择性和滤波特性等方面的性能。
冲击响应法是离散时间系统常用的时域分析方法之一。
它通过施加一个单个的冲击信号,即输入信号序列中只有一个非零元素,然后观察系统在输出上的响应。
这样可以得到系统的冲击响应序列,它描述了系统对单位幕函数输入信号的响应情况。
冲击响应法的核心思想是将系统的输出表示为输入信号序列与系统的冲击响应序列之间的卷积运算。
离散时间系统的时域分析--一阶和二阶差分方程求解9页word文档
课程设计任务书目录1 引言 (1)2 Matlab7.0入门 (1)3 利用Matlab 7.0实现一阶和二阶差分方程求解的设计 (2)3.1 设计原理分析 (2)3.1.1 差分方程定义 (2)3.1.2 差分方程的意义与应用 (2)3.1.3 用MATLAB仿真时用的相关函数说明 (3)3.2 一阶和二阶差分方程求解的编程设计及实现 (4)3.2.1 设计函数思路 (4)3.2.2 理论计算 (4)3.2.3 设计过程记录及运行结果 (4)4 结论 (5)5 参考文献 (6)1引言人们之间的交流是通过消息的传播来实现的,信号则是消息的表现形式,消息是信号的具体内容。
《信号与系统》课程是一门实用性较强、涉及面较广的专业基础课,该课程是将学生从电路分析的知识领域引入信号处理与传输领域的关键性课程,对后续专业课起着承上启下的作用. 该课的基本方法和理论大量应用于计算机信息处理的各个领域,特别是通信、数字语音处理、数字图像处理、数字信号分析等领域,应用更为广泛。
近年来,计算机多媒体教序手段的运用逐步普及,大量优秀的科学计算和系统仿真软件不断涌现,为我们实现计算机辅助教学和学生上机实验提供了很好的平台。
通过对这些软件的分析和对比,我们选择MATLAB语言作为辅助教学工具,借助MATLAB 强大的计算能力和图形表现能力,将《信号与系统》中的概念、方法和相应的结果,以图形的形式直观地展现给我们,大大的方便我们迅速掌握和理解老师上课教的有关信号与系统的知识。
2Matlab7.0入门MATLAB的名称源自Matrix Laboratory,它是一种科学计算软件,专门以矩阵的形式处理数据。
MATLAB将高性能的数值计算和可视化集成在一起,并提供了大量的内置函数,从而被广泛地应用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作,而且利用MATLAB产品的开放式结构,可以非常容易地对MATLAB的功能进行扩充,从而在不断深化对问题认识的同时,不断完善MATLAB产品以提高产品自身的竞争能力。
数字信号处理知识要点
数字信号处理知识要点一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。
模拟信号:是连续信号的特例。
时间和幅度均连续。
离散信号:时间上不连续,幅度连续。
常见离散信号——序列。
数字信号:幅度量化,时间和幅度均不连续。
(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩ 2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。
注意正弦周期序列周期性的判定(课本第10页)2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即()()i x n x n iL ∞=-∞=-∑当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠(4)序列的分解序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+- 1()[()()]2o x n x n x M n *=--(4)序列的运算 1)基本运算2)线性卷积:将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求和——翻转、移位、相乘、求和定义式: 1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积的计算:A 、图解 B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求和(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3.22进行练习(5)序列的功率和能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑ (6)相关函数——与随机信号的定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统的输入分别为1()x n 和2()x n ,输出分别为1()y n 和2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统的输对于任意给定的常数a 、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。
离散信号与系统的时域和频域分析
h(k n) an1h(k n 1) an2h(k n 2) ... a0h(k ) 0 K>0时, n 齐次差分方程解: k
h(k ) [ ci ( ) ] (k )
离散信号与系统分析
开始
下一页
结束
本章说明
与连续信号与系统相比较,离散系统的数学描述是激励响应的差分方 程,其系统分析求响应实质是求解描述离散系统的差分方程。离散系 统的零状态响应可以用卷积和来求取。 时域分析: 1.掌握离散信号与系统的基本概念。 2.熟悉并掌握常用基本信号的描述、特性、运算与变换。 3.深刻理解采样定理的意义、内容及应用。 4.掌握离散系统的数学描述方法—差分方程及模拟图 5.掌握离散系统的时域分析—经典法求零输入响应、零状态响应。 6.熟悉卷积和法及其主要性质并会应用卷积和法求零状态响应。
4、图解法卷积
①变量代换 f1(n) 变成f1(k) f2(n) 变成f2( ②反折其中之一信号 ③将反折信号移位 m f2(-k) f2(m-k) 以k代n
④e将平移后的f2(m-k)与对应的f1(k)相乘 ⑤将各乘积值相加可画出全部y(m) ⑥重复步骤③到⑤可画出全部y(n) 5、系统零状态响应为
5、序列的运算
④差分:离散信号的差分运算 f (k ) f (k 1) f (k ) 前向差分: f (k ) f (k ) f (k 1) 后向差分: ⑤反折:将离散信号以纵轴为对称轴反折(转) ⑥压扩:将离散信号中f(k)的自变量k置换为ak得到的过程称为信号的尺 度变换 注意:不存在非整数ak的值! ⑦求和:离散信号的求和运算是对某一离散信号进行历史推演的求和过程。
郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第7章 离散时间系统的时域分析【圣才
图 7-2-2
7-3 分别绘出以下各序列的图形。 (1)x(n)=sin(nπ/5); (2)x(n)=cos(nπ/10-π/5); (3)x(n)=(5/6)nsin(nπ/5)。 解:各序列图形如图 7-2-3(a)~(c)所示。
5 / 49
圣才电子书
十万种考研考证电子书、题库视频学习平 台
4 / 49
圣才电子书
十万种考研考证电子书、题库视频学习平
台
(2)x(n)=-nu(-n);
(3)x(n)=2-nu(n);
(4)x(n)=(-1/2)-nu(n);
(5)x(n)=-(1/2)nu(-n);
(6)x(n)=(1/2)n+1u(n+1)。
解:各序列图形如图 7-2-2(a)~(f)所示。
(4)x(n)=(-2)nu(n);
(5)x(n)=2n-1u(n-1);
(6)x(n)=(1/2)n-1u(n)。
解:各序列图形如图 7-2-1(a)~(f)所示。
图 7-2-1 【总结】离散序列波形即离散时刻之间隔均匀且线段的长短代表各序列值的大小。
7-2 分别绘出以下各序列的图形。 (1)x(n)=nu(n);
n1
y n h n mx m
x n
m0
h 0
7.2 课后习题详解
3 / 49
圣才电子书
十万种考研考证电子书、题库视频学习平
台
7-1 分别绘出以下各序列的图形。
(1)x(n)=(1/2)nu(n);
(2)x(n)=2nu(n);
(3)x(n)=(-1/2)nu(n);
3
33
y
2
2
1 3
y
离散信号与系统的时域分析实验报告
离散信号与系统的时域分析实验报告1. 引言离散信号与系统是数字信号处理中的重要基础知识,它涉及信号的采样、量化和表示,以及离散系统的描述和分析。
本实验通过对离散信号在时域下的分析,旨在加深对离散信号与系统的理解。
在实验中,我们将学习如何采样和显示离散信号,并通过时域分析方法分析信号的特性。
2. 实验步骤2.1 信号的采样与显示首先,我们需要准备一个模拟信号源,例如函数发生器,来产生一个连续时间域的模拟信号。
通过设置函数发生器的频率和振幅,我们可以产生不同的信号。
接下来,我们需要使用一个采样器来对模拟信号进行采样,将其转化为离散时间域的信号。
使用合适的采样率,我们可以准确地获取模拟信号的离散样本。
最后,我们将采样后的信号通过合适的显示设备进行显示,以便观察和分析。
2.2 信号的观察与分析在实验中,我们可以选择不同类型的模拟信号,例如正弦波、方波或脉冲信号。
通过观察采样后的离散信号,我们可以观察到信号的周期性、频率、振幅等特性。
通过对不同频率和振幅的信号进行采样,我们可以进一步研究信号与采样率之间的关系,例如采样定理等。
2.3 信号的变换与滤波在实验中,我们可以尝试对采样后的离散信号进行变换和滤波。
例如,在频域下对信号进行离散傅里叶变换(DFT),我们可以将时域信号转换为频域信号,以便观察信号的频谱特性。
通过对频谱进行分析,我们可以观察到信号的频率成分和能量分布情况。
此外,我们还可以尝试使用不同的数字滤波器对离散信号进行滤波,以提取感兴趣的频率成分或去除噪声等。
3. 实验结果与分析通过实验,我们可以得到许多有关离散信号与系统的有趣结果。
例如,在观察信号的采样过程中,我们可以发现信号频率大于采样率的一半时,会发生混叠现象,即信号的频谱会发生重叠,导致采样后的信号失真。
而当信号频率小于采样率的一半时,可以还原原始信号。
此外,我们还可以观察到在频域下,正弦波信号为离散频谱,而方波信号则有更多的频率成分。
4. 结论通过本实验,我们对离散信号与系统的时域分析有了更深入的理解。
离散时间信号的时域变换
第七章离散信号与系统时域分析7-1 离散信号及其时域特性一、离散时间信号如果信号仅在一些离散的瞬间具有确定的数值,则称之为离散时间信号。
若选取的离散瞬间是等间隔的,则一般常用f(kT)表示,其中k=0,±1,±2,…;T为离散间隔。
一般把这种按一定规则有秩序排列的一系列数值称为序列,简记为f(k)。
本书仅讨论这种等间隔的离散时间信号。
离散时间信号可用序列{f(k)}表示。
比如也可以用数据表格形式给出,如图7-1(a)所示,或以图形方式表示,如图7-1(b)所示。
可见,f(k)具有两重意义:既代表一个序列,又代表序列中第k个数值。
离散时间信号获取的方式常有两种:一种是连续时间信号离散化,即根据抽样定理对连续时间信号进行均匀时间间隔取样,使连续时间信号在不失去有用信息的条件下转变为离散时间信号,这是目前信号数字化处理中最常用的方法之一。
另一种是直接获取离散信号,比如计算机系统中记忆器件上储存的记录,地面对人造地球卫星或其他飞行体的轨道观测记录以及一切统计数据等,这都是一些各不相同的离散时间信号。
二、离散时间信号的时域运算离散时间信号常有以下几种运算。
1.相加观看动画两个离散信号f1(k)和f2(k)相加是指它们同序号的值逐项对应相加,其和为一新的离散信号f(k),即f(k)=f1(k)+f2(k) (7-1)例如,图7-2(a),(b)所示的离散时间信号和进行相加,其结果为用图形表示如图7-2(c)所示。
离散时间信号的相加可用加法器实现。
2.两个离散信号f1(k)和f2(k)相乘是指它们同序号的值逐项对应相乘,其积为一新的离散信号f(k),即 f(k)=f1(k)f2(k) (7-2)例如,图7-2(a),(b)中的f1(k)和f2(k)相乘,其结果为用图形表示如图7-2(d)所示。
离散时间信号的相乘可用乘法器实现。
3.数乘是指对离散信号f(k)每一个取样值均乘以一个实常数a, 而得到一个新的离散信号y(k),即通常可用数乘器或比例器来实现这种运算。
第七章离散时间系统
y (n) (a 1 b) y (n 1) x(n)
例2:飞机高度控制模型 设正常高度为x(n),实际高度为y(n-1),垂直速度为 c[x(n)-y(n-1)] 第n秒飞机的实际高度为 y(n) = y(n-1)+c[x(n)-y(n-1)] 即 y(n) (1 c) y(n 1) cx(n) 例3:如图电阻梯形网络,各支路的电阻都为R,每个节点对地 电压为v(n),n=0,1,2,……,N,已知两边界点电压为v(0)=E, v(N)=0,试写出求第n个节点电压v(n)的差分方程。
n0 n0
若:y(n) 2 y(n 1) x(n)
y (0) 2 y (1) x(0), 即y (0) 2 0 1 1
y (2) 2 y (1) x(2),即y (2) 7 注:该方法概念清楚,比较简单,但只能给出数值解,不能直 接给出一个完整的解析式。 二、经典法 差分方程的一般形式 a0 y (n) a1 y (n 1) a N 1 y (n N 1) a N y (n N )
例2:
y (n) ay(n 1) x(n)
y(n) x(n) 2 x(n 1) 3x(n 2)
二、差分方程的建立 例1:人口模型 第n年总人口为y(n),正常出生率为a,死亡率为b,第n年从 外地迁入人口为x(n),上年人口为y(n-1)。 则: y (n) ay(n 1) by(n 1) y (n 1) x(n)
对于任一节点n 1,由KCL得: i1 i2 i3 v(n 2) v(n 1) v(n 1) v(n 1) v(n) i1 , i2 , i3 R R R v(n 2) v(n 1) v(n 1) v(n 1) v(n) R R R 化简:v(n) 3v(n 1) v(n 2) 0
第七章离散信号与系统时域分析
n
y0 (k )
Ai Ei k
i 1
r
n
y0 (k)
Ai k ri E1k
Ai E i k
i 1
ir 1
例1:已知某系统激励为零,初始值y(0) =1 , y(1)=4,描述系统的差
分方程为 y(k ) 5 y(k 1) 6 y(k 2) 0
求系统的响应 y(k)。
解: 1 5E 1 6E 2 0 或 E 2 5E 6 0
A1 1 A3 1/ 2 A2 0 A4 1/ 2
y(k) 1 1 ( j)k 1 ( j)k
2
2
y(k ) 1 cos( k ) 2
k 1
二、非齐次差分方程时域解
(E n an1E n1 a0 ) y(k ) (bm E m b0 ) f (k )
t 0.1 0.2 u(t) 1.2 1.4
3)序列表示
0.9, 0.8,0.3,0.1
n0
0.3 0.4 0.5 0.6 0.7
1.3 1.7 1.1 1.9 1.8
例:
试写出其序列形式并画出图形。
解:序列形式
f
(k)
,0,0,
1
,2,4,8,
序列的几种形式
k 0
单边序列: 右序列: k<0,f(k)=0
H (E)
E n
bm E m b0 an1E n1
a0
3. 模拟框图
(1)模拟单元 1)加法器
f1(k)
2) 比例器
f(k)
(2)模拟框图
y(k) f2(k)
y(k)
3) 延迟器 y(k)=f(k-1)
f(k)
y(k)
4、信号流图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y(1), y(2), y(3),, y( N )
ห้องสมุดไป่ตู้
y(0), y(1), y(2),, y( N 1)
可用迭代求出。
例: 已知描述系统的一阶差分方程为
21
(2)边界条件 y[1] 1 ,求 yzi [n], yzs [n]和y[n]。 解: (1)起始时系统处于零状态,所以, zi [n] 0 y 1 n 1 1 C ( ) , 设特解为D, 齐次解为 D D 2 2 3 1 n 2 2 D , y[n] yzs [n] C ( ) 3 2 3 由y[-1]=0可求出 C 1 , 3 1 1 n 2 y[n] yzs [n] ( ) (n 0) 所以:
已知初始条件 zi (0) 1, y zi (1) 3 y
解:齐次方程为
y(n) 2 y(n 1) 2 y(n 2) 0
特征方程为
2 2 0
2
j
特征根为 1 1 j 2e 4, 2 1 j 2e
j
4
n n y zi (n) ( 2 ) [c1 cos c2 sin ] 4 4
3 2 3
1 1 y[n] y[n 1] u[n] 2 3 (1)边界条件 y[1] 0 ,求 yzi [n], yzs [n]和y[n];
22 1 1 y[n] y[n 1] u[n] 2 3 (2)边界条件 y[1] 1,求 yzi [n], yzs [n]和y[n]。
N
N
16
1、零输入响应 输入为零,响应由齐次差分方程求得,是仅 由初始储能引起的响应。
注意:
确定零输入响应的系数时,必须用仅由初始 状态引起的初始条件; 初始条件为 M 个任意时刻的响应值,故零 输入响应的表达式不再加写后缀 n>0。
17
例:求离散时间系统的零输入响应
y(n) 2 y(n 1) 2 y(n 2) x(n) 3x(n 1)
14
y(n) yzi (n) yzs (n)
yzi (n) 当激励x(n)=0时,由系统的起始状态
y(-1), y(-2), y(-N)所产生的响应。它是齐 次解的形式,它是自由响应的一部分。
yzs (n) 当起始状态y(-1)=y(-2)=
=y(-N) =0
时,由系统的激励x(n)所产生的响应。它是自 由响应的另外部分加上强迫响应。
b0 x(n) b1 x(n 1) bN 1 x( M 1) bN x(n M)
或写成
a
k 0
N
k
y (n k )
b x(n r )
r r 0
M
在差分方程中,各序列的序号自n以递减方 式给出,称为后向(或右移序)差分方程。
3
求解常系数线性差分方程的方法
解: 先求零状态响应,此即为(1)的结果
1 n 再求零输入响应,令: yzi [n] Czi ( ) 2 1y[n] yzi [n] yzs [n] 1 1 n 由y[-1]=1可求出: Czi 所以, yzi [n] ( )
2 1 1 n 1 1 n 22 ] 完全响应n] y[nzi [ ]y ziyzs [] y zs [ n 2 ( 2 ) 3 ( 2 ) 3 y[ y ] n [ n n] 1 n 1 1 n1 1 1 n 12 1 n 12n 2 1 ( ) ( () ) ( ) ) (n 0) ( 2 2 2 3 2 33 2 6 23 3 2
e
j0
是特征根
k n
y p (n) n (D1 sin n0 D2 cosn0 )
10
例7-9: 求下示差分方程的完全解
y(n) 2 y(n 1) x(n) x(n 1)
其中激励函数 x(n) n ,且已知 y (1) 1
2
解:特征方程: 2 0 2 齐次通解: c(2) n 将x(n) 代入方程右端,得 x(n) - x(n - 1) = n2- (n - 1)2= 2n - 1
1是K重特征根:
y p (n) n (D0n D1n
K k k 1
Dk )
8
(2)自由项为 a
n
a 不是特征根,则特解
y p (n) Da
n
a 是特征单根,则特解
y p (n) ( D1n D2 )a
a 是k重特征根,则特解
n
y p (n) (D1n D2n
3
9
2 1 1 c(2) (1) 3 9 8 2 1 n y (n) (2) n 9 3 9
n
8 得 c 9
12
经典法不足之处:
若激励信号发生变化,则须全部重新求解。
若差分方程右边激励项较复杂,则难以处理。
若初始条件发生变化,则须全部重新求解。
这种方法是一种纯数学方法,无法突出系统 响应的物理概念。
一般差分方程对应的齐次方程的形式为
4
a0 y(n) a1 y(n 1) a N 1 y(n N 1) aN y(n N ) 0
一般情况下,对于任意阶的差分方程,它们的 C n 齐次解的形式为 的项组合而成。
a C
k 0 k
N k 0
N
nk
0
消去常数C,并逐项除以 n N 得到:
1 1 n 2 yzs [n] ( ) (n 0) 3 2 3
2
23
如果在求 yzi [n] 时给出的边界条件是y[0], 则
需要用迭代法求出y[-1]。在本例(2)中,若已知 5 ,则由原差分方程可迭代出y[-1]。 y[0] 6
1 1 y[n] y[n 1] u[n] 2 3 1 1 y[0] y[1] 2 3
ak C N k a0 N a1 N 1 aN 1 aN 0
上式为齐次方程的特征方程,其根 1 , 2 , N 称为 方程的特征根。
5
非重根时的齐次解 N n n n C11n C2 2 C N N Ck k K次重根时的齐次解
20
边界条件不一定由 y(0), y(1), y(2),, y( N 1) 这一组数字给出。对于因果系统,常给定
y(1), y(2), y(3),, y( N ) 为边界条件。若
激励信号在n=0时接入系统,所谓零状态是指
y(1), y(2), y(3), , y( N ) 都等于零,而不是
k
k 1
Dk 1 )a
n
9
(3)自由项为正弦 sin n0 或余弦 cosn0 表达式
y p (n) D1 sin n0 D2 cosn0
(4)自由项为正弦 e
j0
n ( A1 sin n0 A2 cosn0 )
不是特征根
n
y p (n) (D1 sin n0 D2 cosn0 )
解:特征方程为 2 5 6 ( 2)( 3) 0 特征根为 1 2, 2 3.
6
初始条件为y(0)=2和y(1)=3,求方程的齐次解。
于是 由初始条件 y(0) 2 C1 C2
yh (n) C1 (2) n C2 (3) n
y(1) 3 2C1 3C2
1、迭代法
逐次代入求解, 概念清楚, 比较简便,适用 于计算机,缺点是不易得出通式解答。
2、时域经典法 全响应=齐次解 + 特解 自由响应 强迫响应 3、全响应=零输入响应+零状态响应 零输入响应求解与齐次通解方法相同,零状 态响应求解可利用卷积和法求解。
4、变换域法(Z变换法)
一、时域经典解法 1、齐次解
n
18
例:求离散时间系统的零输入响应
y(n) 2 y(n 1) 2 y(n 2) x(n) 3x(n 1)
已知初始条件 zi (0) 1, y zi (1) 3 y
n n y zi (n) ( 2 ) [c1 cos c2 sin ] 4 4 代入初始条件 y zi (0) c1 1
y(n) (C1n K 1 C2 n K 2 CK 1n CK ) n cosn0 ( D1n K 1 D2 n K 2 DK 1n DK ) n sin n0
例.系统的差分方程 y(n 2) 5 y(n 1) 6 y(n) 0
13
二、离散系统的零输入响应和零状态响应 系统的完全响应(差分方程的完全解)可表 示为自由响应分量与强迫响应分量(齐次解与 特解)之和。 N
y ( n) C k D ( n )
k 1 n k
根据边界条件及激励的不同,完全响应也 可分为零输入响应和零状态响应之和。
y(n) yzi (n) yzs (n)
1
第七章 离散时间系统的时域分析
7.1引言
7.2离散时间信号——序列
7.3离散时间系统的数学模型 7.4常系数线性差分方程的求解 7.5离散时间系统的单位样值响应 7.6卷积(卷积和) 本章要点
2
§7.4 常系数线性差分方程的求解
线性时不变离散系统的差分方程是常系数 线性差分方程,基本形式:
a0 y(n) a1 y(n 1) a N 1 y(n N 1) a N y(n N )
15
y[n] Ck y p [n] k 1 强迫响应
n k 自由响应
N
(Ck Czik Czsk )