第2章 第11节 导数的应用(一)
中值定理
第三章 中值定理与导数的应用从第二章第一节的前言中已经知道,导致微分学产生的第三类问题是“求最大值和最小值”. 此类问题在当时的生产实践中具有深刻的应用背景,例如,求炮弹从炮管里射出后运行的水平距离(即射程),其依赖于炮筒对地面的倾斜角(即发射角). 又如,在天文学中,求行星离开太阳的最远和最近距离等. 一直以来,导数作为函数的变化率,在研究函数变化的性态中有着十分重要的意义,因而在自然科学、工程技术以及社会科学等领域中得到广泛的应用.在第二章中,我们介绍了微分学的两个基本概念—导数与微分及其计算方法. 本章以微分学基本定理—微分中值定理为基础,进一步介绍利用导数研究函数的性态,例如判断函数的单调性和凹凸性,求函数的极限、极值、最大(小)值以及函数作图的方法,最后还讨论了导数在经济学中的应用.第一节 中值定理中值定理揭示了函数在某区间的整体性质与该区间内部某一点的导数之间的关系,因而称为中值定理. 中值定理既是用微分学知识解决应用问题的理论基础,又是解决微分学自身发展的一种理论性模型, 因而称为微分中值定理.内容分布图示★ 费马引理 ★ 罗尔定理★ 例1 ★ 例2★ 例3 ★ 例4 ★ 例5★ 例6 ★ 拉格朗日中值定理 ★ 例7★ 例8 ★ 例9★ 例10 ★ 柯西中值定理 ★ 例11★ 例12★ 内容小结 ★ 课堂练习★ 习题3-1★ 返回内容要点:一、罗尔定理:在闭区间[a , b ]上连续;在开区间(a , b )内可导;在区间端点的函数值相等, 即).()(b f a f = 结论:在(a , b )内至少存在一点),(b a <<ξξ使得 .0)(='ξf注:罗尔定理的三个条件是十分重要的,如果有一个不满足,定理的结论就可能不成立. 分别举例说明之.罗尔定理中)()(b f a f =这个条件是相当特殊的,它使罗尔定理的应用受到限制. 拉格朗日在罗尔定理的基础上作了进一步的研究,取消了罗尔定理中这个条件的限制,但仍保留了其余两个条件,得到了在微分学中具有重要地位的拉格朗日中值定理.二、拉格朗日中值定理:在闭区间[a , b ]上连续;在开区间(a , b )内可导. 结论:在(a , b )内至少存在一点),(b a <<ξξ 使得))(()()(a b f a f b f -'=-ξ拉格朗日中值公式反映了可导函数在],[b a 上整体平均变化率与在),(b a 内某点ξ处函数的局部变化率的关系. 若从力学角度看,公式表示整体上的平均速度等于某一内点处的瞬时速度. 因此,拉格朗日中值定理是联结局部与整体的纽带.拉格朗日终值定理可改写为).10()(0<<∆⋅∆+'=∆θθx x x f y 称为有限增量公式.拉格朗日中值定理在微分学中占有重要地位,有时也称这个定理为微分中值定理. 在某些问题中,当自变量x 取得有限增量x ∆而需要函数增量的准确表达式时,拉格朗日中值定理就突显出其重要价值.推论1 如果函数)(x f 在区间I 上的导数恒为零, 那末)(x f 在区间I 上是一个常数.三、柯西中值定理:在闭区间[a , b ]上连续;在开区间(a , b )内可导;在(a , b )内每一点处, 0)(≠'x g . 结论:在(a , b )内至少存在一点),(b a <<ξξ 使得)()()()()()(ξξg f b g a g b f a f ''=-- 显然, 若取,)(x x g =则,1)(,)()(='-=-x g a b a g b g 因而柯西中值定理就变成拉格朗日中值定理(微分中值定理)了. 所以柯西中值定理又称为广义中值定理.例题选讲:罗尔定理的应用例1 对函数x x f 2sin )(=在区间],0[π上验证罗尔定理的正确性.例2 (讲义例1) 不求导数, 判断函数)3)(2)(1()(---=x x x x f 的导数有几个零点及这些零点所在的范围..例3 (讲义例2) 证明方程0155=+-x x 有且仅有一个小于1的正实根.例 4 设 n a a a a ,,,,321Λ为满足012)1(3121=--++--n a a a n n Λ的实数, 试证明方程 ,0)12cos(3cos cos 21=-+++x n a x a x a n Λ在)2/,0(π内至少存在一个实根.例 5 设)(x f 在],[b a 上连续, 在),(b a 内可导, 且.0)()(==b f a f 证明: 存在),(b a ∈ξ, 使)()(ξξf f ='成立.拉格朗日中值定理的应用例6 (讲义例3) 证明 ).11(2arccos arcsin ≤≤-=+x x x π 例7 (讲义例4) 证明当0>x 时, .)1ln(1x x xx <+<+ 例8 设)(x f 是在],0[c 上可导的函数, 且)(x f '单调减少, .0)(=x f 试证: 对于,0c b a b a ≤+≤≤≤ 恒有 ).()()(b f a f b a f +≤+例9 验证柯西中值定理对函数23)(,1)(x x g x x f =+=在区间]2,1[上的正确性.柯西中值定理的应应用例10 (讲义例5) 设函数)(x f 在[0, 1]上连续, 在(0, 1)内可导. 试证明至少存在一点)1,0(∈ξ, 使)].0()1([2)(f f f -='ξξ课堂练习1. 试举例说明拉格朗日中值定理的条件缺一不可.2. 若)(x f 是[a , b ]上的正值可微函数, 则有点)1,0(∈ξ使().)()()()(lna b f f a f b f -'=ξξ罗尔(Rolle ,1652~1719)简介:罗尔是法国数学家。
高考数学大一轮复习配套课时训练:第二篇 函数、导数及其应用 第11节 导数的简单应用(含答案)
第11节导数的简单应用课时训练练题感提知能【选题明细表】A组一、选择题1.函数f(x)=4x3-3x2-6x+2的极小值为( B )(A)3 (B)-3 (C)(D)-解析:f′(x)=12x2-6x-6=6(x-1)(2x+1),因此f(x)在(-∞,-),(1,+∞)上为增函数,在(-,1)上为减函数,所以函数f(x)在x=1处取到极小值f(1)=-3.故选B.2.(2013广东省六校质检)已知y=x3+bx2+(b+2)x+3是R上的单调增函数,则b的取值范围是( D )(A)b<-1或b>2 (B)b≤-1或b≥2(C)-1<b<2 (D)-1≤b≤2解析:函数y=x3+bx2+(b+2)x+3是R上的增函数,即为其导函数y′=x2+2bx+b+2≥0,x∈R恒成立,所以Δ=4b2-4(b+2)≤0,解得-1≤b≤2,故选D.3.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于( C )(A)11或18 (B)11(C)18 (D)17或18解析:∵函数f(x)=x3+ax2+bx+a2在x=1处有极值10,∴f(1)=10,且f′(1)=0,即解得或而当时,函数在x=1处无极值,故舍去.∴f(x)=x3+4x2-11x+16,∴f(2)=18.故选C.4.函数f(x)=x+2cos x在[0,]上取得最大值时x的值为( B )(A)0 (B)(C)(D)解析:由于f′(x)=1-2sin x,令f′(x)=0得,sin x=,又x∈[0,],所以x=.且f()=+,又f(0)=2,f()=,所以f()为最大值.故选B.5.(2013济宁模拟)若函数h(x)=2x-+在(1,+∞)上是增函数,则实数k的取值范围是( A )(A)[-2,+∞) (B)[2,+∞)(C)(-∞,-2] (D)(-∞,2]解析:因为h′(x)=2+,若h(x)在(1,+∞)上是增函数,则h′(x)≥0在(1,+∞)上恒成立,故2+≥0恒成立,即k≥-2x2恒成立.又x>1,∴-2x2<-2,因此,需k≥-2,故选A.6.(2013湛江毕业班调研)已知函数y=x3-3x+c的图象与x轴恰有两个公共点,则c等于( A )(A)-2或2 (B)-9或3(C)-1或1 (D)-3或1解析:∵y′=3(x+1)(x-1),∴当x=-1或x=1时取得极值,由题意得f(1)=0或f(-1)=0,即c-2=0或c+2=0,解得c=2或c=-2.故选A.7.若函数f(x)=(a>0)在[1,+∞)上的最大值为,则a的值为( D )(A)(B) (C)+1 (D)-1解析:f′(x)==,当x>时,f′(x)<0,f(x)单调递减,当-<x<时,f′(x)>0,f(x)单调递增,当x=时,令f(x)==,=<1,不合题意.∴f(x)max=f(1)==,a=-1,故选D.二、填空题8.已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为.解析:∵f′(x)=6x2-12x=6x(x-2),∴f(x)在(-2,0)上单调递增,在(0,2)上单调递减,因此,当x=0时,f(x)取得最大值,即f(0)=m=3,然而f(-2)=-37,f(2)=-5,因此f(x)min=f(-2)=-37.答案:-379.已知函数f(x)=(m-2)x2+(m2-4)x+m是偶函数,函数g(x)=-x3+2x2+mx+5在(-∞,+∞)内单调递减,则实数m= . 解析:由已知得,m2-4=0,∴m=±2.若g(x)在(-∞,+∞)内单调递减,则g′(x)≤0恒成立,即-3x2+4x+m≤0恒成立,亦即3x2-4x-m≥0恒成立.∴Δ=16+12m≤0,解得m≤-,故m=-2.答案:-210.函数f(x)=x3+3ax2+3[(a+2)x+1]有极大值又有极小值,则a的取值范围是.解析:∵f′(x)=3x2+6ax+3(a+2),令f′(x)=0得,x2+2ax+a+2=0,若f(x)有极大值和极小值,则方程x2+2ax+a+2=0有两个不等实数根,∴Δ=4a2-4(a+2)>0.解得a>2或a<-1.答案:(-∞,-1)∪(2,+∞)11.做一个圆柱形锅炉,容积为V,两个底面的材料每单位面积的价格为a元,侧面的材料每单位面积的价格为b元,当造价最低时,锅炉的底面直径与高的比为.解析:设圆柱底面半径为R,高为h,则V=πR2h,则总造价y=2πR2a+2πRhb=2πR2a+2πRb·=2πaR2+,故y′=4πaR-,令y′=0得=.故当=时y取最小值.答案:三、解答题12.(2013浙江五校联考)已知函数f(x)=x3+ax2+bx+c(x∈[-1,2]),且函数f(x)在x=1和x=-处都取得极值.(1)求a,b的值;(2)求函数f(x)的单调递增区间.解:(1)由于f′(x)=3x2+2ax+b,依题意知,f′(1)=0且f′(-)=0,所以解得(2)由(1)知,f(x)=x3-x2-2x+c,f′(x)=3x2-x-2=(3x+2)(x-1).f′(x)>0得,x>1或x<-.又x∈[-1,2],所以f(x)的单调增区间为[-1,- ),(1,2].13.(2013汕头市金山中学第一学期期中考试)某种商品的成本为5元/ 件,开始按8元/件销售,销售量为50件,为了获得最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:实际销售价x(元)每上涨1元每天销售量就减少10件;而降价后,日销售量Q(件)与实际销售价x(元)满足关系:Q=(1)求总利润(利润=销售额-成本)y(元)与实际销售价x(元)的函数关系式;(2)试问:当实际销售价为多少元时,总利润最大.解:(1)依题意得y==(2)由(1)得,当5<x<7时,y=39·(2x3-39x2+252x-535)y′=234(x2-13x+42)=234(x-6)(x-7),当5<x<6时,y′>0,y=f(x)为增函数,当6<x<7时,y′<0,y=f(x)为减函数,所以f(x)max=f(6)=195.当7≤x<8时,y=6(33-x)∈(150,156],当8≤x≤13时,y=-10(x-9)2+160,当x=9时,y max=160.综上知,当x=6时,总利润最大,最大值为195元.14.设函数f(x)=a2ln x-x2+ax,a>0.(1)求f(x)的单调区间;(2)求所有的实数a,使e-1≤f(x)≤e2对x∈[1,e]恒成立.(注:e为自然对数的底数)解:(1)因为f(x)=a2ln x-x2+ax,其中x>0,所以f′(x)=-2x+a=-.由于a>0,所以f(x)的单调增区间为(0,a),单调减区间为(a,+∞).(2)由题意得f(1)=a-1≥e-1,即a≥e.由(1)知f(x)在[1,e]内单调递增,要使e-1≤f(x)≤e2对x∈[1,e]恒成立.只要解得a=e.B组15.(2013潮州市质检)定义域为R的奇函数f(x),当x∈(-∞,0)时,f(x)+xf′(x)<0恒成立,若a=3f(3),b=(logπ3)·f(logπ3),c=-2f(-2),则( A )(A)a>c>b (B)c>b>a(C)c>a>b (D)a>b>c解析:设g(x)=xf(x),依题意得g(x)是偶函数.当x∈(-∞,0)时,f(x)+xf′(x)<0恒成立,即g′(x)<0恒成立,故g(x)在(-∞,0)上单调递减,则g(x)在(0,+∞)上单调递增,a=3f(3)=g(3),b=(logπ3)·f(logπ3)=g(logπ3),c=-2f(-2)=g(-2)=g(2).又logπ3<1<2<3,故a>c>b.故选A.16.(2013中山市期末统考)已知函数f(x)的导数f′(x)=a(x+1)(x-a), 若f(x)在x=a处取得极大值,则a的取值范围为.解析:若a>0时,则x∈(-1,a)时,f′(x)<0,f(x)单调递减;x∈(a,+∞)时,f′(x)>0,f(x)单调递增,所以f(x)在x=a处取得极小值,不适合题意,舍去.若-1<a<0时,则x∈(-1,a)时,f′(x)>0,f(x)单调递增;x∈(a,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)在x=a 处取得极大值,适合题意.若a=-1时,函数没有极值点,不适合题意.若a<-1时,则x∈(-∞,a)时,f′(x)<0,f(x)单调递减;x∈(a,-1)时,f′(x)>0,f(x)单调递增,所以f(x)在x=a处取得极小值,不适合题意.故适合题意的a的取值范围是-1<a<0.答案:(-1,0)。
第11讲 利用导数研究双变量问题(学生版) 备战2025年高考数学一轮复习学案(新高考通用)
第11讲 利用导数研究双变量问题(核心考点精讲精练)命题规律及备考策略【命题规律】本节内容是新高考卷的常考内容,设题稳定,难度较大,分值为15-17分【命题预测】题型分析 双变量问题运算量大,综合性强,解决起来需要很强的技巧性,解题总的思想方法是化双变量为单变量,然后利用函数的单调性、最值等解决.破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式:二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果1.(2024·天津·高考真题)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³-在()0,x Î+¥时恒成立,求a 的值;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.2.(2022·北京·高考真题)已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x ¢=,讨论函数()g x 在[0,)+¥上的单调性;(3)证明:对任意的,(0,)s t Î+¥,有()()()f s t f s f t +>+.3.(2021·全国·高考真题)已知函数()()1ln f x x x =-.(1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.1.(2024·江苏盐城·模拟预测)已知函数()2e ax xf x =,其中0a >.(1)若()f x 在(]0,2上单调递增,求a 的取值范围;(2)当1a =时,若124x x +=且102x <<,比较()1f x 与()2f x 的大小,并说明理由2.(23-24高三下·江苏苏州·阶段练习)已知函数()(1)1f x x x aa =+--,其中1,1x a >->.(1)讨论()f x 的单调性;(2)若01b a <£<,证明:a b b a a b a b +³+.3.(23-24高三下·北京·开学考试)已知()()1e ,0kx f x x k =+¹.(1)若1k =,求()f x 在()()0,0f 处的切线方程;(2)设()()g x f x ¢=,求()g x 的单调区间;(3)求证:当0k >时,()()()(),0,,1m n f m n f m f n ¥"Î+++>+.4.(22-23高三下·四川成都·开学考试)已知函数()1()e ln 1x f x a x x x -=--+-,0a ³.(1)求证:()f x 存在唯一零点;(2)设1()e 1x g x a x -=+-,若存在12,(1,)x x Î+¥,使得()()()211g x g x f x =-,求证:12111ln121x x x +-+>-.5.(23-24高三上·江西·阶段练习)已知函数()()()2ln 11R f x x x ax a =+---Î.(1)当2a =-时,存在[]12,0,1x x Î,使得()()12f x f x M -³,求M 的最大值;(2)已知m ,n 是()f x 的两个零点,记()f x ¢为()f x 的导函数,若()0,m n Î+¥,,且m n £,证明:02m n f +æö<ç÷èø¢.1.(2023·甘肃定西·模拟预测)已知函数21()ln(1)()2f x a x x x a =++-ÎR .(1)若a =1,求函数()f x 的单调区间;(2)若函数()f x 有两个极值点12,x x ,且12x x <,求证:()122x f x >.2.(2024·四川德阳·二模)已知函数()2ln 2,R f x x x ax a =+-Î,(1)当0a >时,讨论()f x 的单调性;(2)若函数()f x 有两个极值点()1212,x x x x <,求()()122f x f x -的最小值.3.(2023·福建龙岩·模拟预测)设函数()n e l xxf x x x =+-.(1)求()f x 的极值;(2)已知()()()1212f x f x x x =<,12kx x +有最小值,求k 的取值范围.4.(2024·河南商丘·模拟预测)已知函数()f x 的定义域为()0,¥+,其导函数()()()222112f x x a a f a x¢=+-Î=-R ,.(1)求曲线()y f x =在点()()1,1f 处的切线l 的方程,并判断l 是否经过一个定点;(2)若12,x x $,满足120x x <<,且()()120f x f x ¢¢==,求()()122f x f x -的取值范围.5.(2022·四川泸州·一模)已知函数()1ln f x ax x x =+-的图像在1x =处的切线与直线0x y -=平行.(1)求函数()f x 的单调区间;(2)若()12,0,x x "Î+¥,且12x x >时,()()()221212f x f x m x x ->-,求实数m 的取值范围.6.(2023·河南郑州·三模)已知函数()()2ln 1f x x a x =+-,R a Î.(1)讨论函数()f x 的单调性;(2)若函数()f x 有两个极值点1x ,2x ,且12x x <,求证:()12f x ax a ->-.7.(2023·福建龙岩·二模)已知函数()ln f x x =,2()g x x x=-.(1)若0x 满足()00011x f x x +=-,证明:曲线()y f x =在点()00,ln A x x 处的切线也是曲线e x y =的切线;(2)若()()()F x f x g x =-,且()()()1212F x F x x x ¢=¹¢,证明:()()124ln 27F x F x +<-.8.(23-24高三上·天津宁河·期末)已知函数()2ln 2a f x x x =+,a ÎR .(1)当1a =时,求曲线()y f x =在()()1,1f 处的切线方程;(2)求()f x 的单调区间;(3)设()1212,0x x x x <<是函数()()g x f x ax =-的两个极值点,证明:()()12ln 2ag x g x a -<-.9.(2024·河北保定·二模)已知函数()ln ,()f x ax x x f x ¢=-为其导函数.(1)若()1f x £恒成立,求a 的取值范围;(2)若存在两个不同的正数12,x x ,使得()()12f x f x =,证明:0f ¢>.10.(2023·广西·模拟预测)已知函数()2()e ln R x f x x x x ax a =-+-Î.(1)若1a =,求()y f x =在1x =处的切线方程;(2)若()f x 有两个不同零点1x ,2x 证明:()()1212e 1f x x a x x >+-.11.(2023·全国·模拟预测)已知函数()()ln 1x af x a x x=++-,a ÎR .(1)讨论()f x 的单调性;(2)若()()12f x f x =,当12112x a x <<<<时,证明:()()21212112a a x x x x a +æö++>ç÷èø.12.(2023·海南·模拟预测)已知函数()()2ln ,af x x x b a b x=--+ÎR 在()0,¥+上单调递增.(1)求a 的取值范围;(2)若存在正数()1212,x x x x ¹满足()()12f x f x b ¢¢==(()f x ¢为()f x 的导函数),求证:()()120f x f x +>.13.(2024高三下·全国·专题练习)设3x =是函数()23()e ()x f x x ax b a -=++ÎR 的一个极值点.(1)求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间;(2)设0a >,225()e 4xg x a æö=+ç÷èø.若存在1x ,24[]0,x Î,使得()()121f x g x -£,求实数a 的取值范围.14.(2024·浙江绍兴·三模)若函数()x a 有且仅有一个极值点m ,函数()x b 有且仅有一个极值点n ,且m n >,则称()x a 与()x b 具有性质//m n a b ->.(1)函数21()sin x x x j =-与()2e xx x j =-是否具有性质120//0x j j ->?并说明理由.(2)已知函数()()e ln 1x f x a x =-+与()()ln e 1xg x x a =+-+具有性质12//f g x x ->.(i )求a 的取值范围;(ii )证明:()12g x x >.15.(2023·全国·模拟预测)已知函数()212ln xf x x +=.(1)设函数()()1e 0kx g x k kx=->,若()()f x g x £恒成立,求k 的最小值;(2)若方程()f x m =有两个不相等的实根1x 、2x ,求证:()122121ln m x x x x m-+<.1.(重庆·高考真题)设函数()()()1f x x x x a =--,()1a >.(1)求导数()f x ¢,并证明()f x 有两个不同的极值点1x 、2x ;(2)若不等式()()120f x f x +≤成立,求a 的取值范围.2.(湖南·高考真题)设函数1()ln ()f x x a x a R x=--Î(1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x 和2x ,记过点1122(,()),(,())A x f x B x f x 的直线的斜率为k ,问:是否存在a ,使得2k a =-?若存在,求出a 的值,若不存在,请说明理由.3. 已知函数22()ln (0)f x x a x x x =++>,()f x 的导函数是()f x ¢.对任意两个不相等的正数1x 、2x ,证明:(1)当0a …时,1212()()()22f x f x x x f ++>;(2)当4a …时,1212|()()|||f x f x x x ¢-¢>-.。
2020届高考数学(文)总复习:创新思维课时规范练(含答案)第二章 第十一节 第一课时 函数的导数与单调性
课时规范练A组基础对点练1.函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()解析:根据题意,已知导函数的图象有三个零点,且每个零点的两边导函数值的符号相反,因此函数f(x)在这些零点处取得极值,排除A,B;记导函数f′(x)的零点从左到右分别为x1,x2,x3,又在(-∞,x1)上f′(x)<0,在(x1,x2)上f′(x)>0,所以函数f(x)在(-∞,x1)上单调递减,排除C,选D.答案:D2.函数f(x)=x2-2ln x的单调减区间是()A.(0,1)B.(1,+∞)C.(-∞,1) D.(-1,1)解析:因为f′(x)=2x-2x=2(x+1)(x-1)x(x>0).所以当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.答案:A3.若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是() A.(-∞,-2] B.(-∞,-1]C.[2,+∞) D.[1,+∞)解析:因为f(x)=kx-ln x,所以f′(x)=k-1x.因为f(x)在区间(1,+∞)上单调递增,所以当x>1时,f′(x)=k-1x≥0恒成立,即k≥1x在区间(1,+∞)上恒成立.因为x>1,所以0<1x<1,所以k≥1.故选D.答案:D4.已知函数f(x)=2x3-6ax+1,a≠0,则函数f(x)的单调递减区间为() A.(-∞,+∞)B.(-a,+∞)C.(-∞,-a)∪(a,+∞)D.(-a,a)解析:f′(x)=6x2-6a=6(x2-a),当a<0时,对x∈R,有f′(x)>0;当a>0时,由f′(x)<0解得-a<x<a,所以当a>0时,f(x)的单调递减区间为(-a,a).答案:D5.已知函数f(x)=x2+2cos x,若f′(x)是f(x)的导函数,则函数f′(x)的图象大致是()解析:设g(x)=f′(x)=2x-2sin x,g′(x)=2-2cos x≥0,所以函数f′(x)在R上单调递增.答案:A6.设函数f (x )=13x 3-(1+a )x 2+4ax +24a ,其中常数a >1,则f (x )的单调减区间为________.解析:f ′(x )=x 2-2(1+a )x +4a =(x -2)(x -2a ), 由a >1知,当x <2时,f ′(x )>0, 故f (x )在区间(-∞,2)上单调递增; 当2<x <2a 时,f ′(x )<0, 故f (x )在区间(2,2a )上单调递减; 当x >2a 时,f ′(x )>0,故f (x )在区间(2a ,+∞)上单调递增. 综上,当a >1时,f (x )在区间(-∞,2)和(2a ,+∞)上单调递增, 在区间(2,2a )上单调递减. 答案:(2,2a )7.(2019·荆州质检)设函数f (x )=13x 3-a2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间. 解析:(1)f ′(x )=x 2-ax +b , 由题意得⎩⎪⎨⎪⎧ f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ).8.设函数f (x )=13mx 3+(4+m )x 2,g (x )=a ln(x -1),其中a ≠0.(1)若函数y =g (x )的图象恒过定点P ,且点P 关于直线x =32对称的点在y =f (x )的图象上,求m 的值.(2)当a =8时,设F (x )=f ′(x )+g (x +1),讨论F (x )的单调性. 解析:(1)令ln(x -1)=0,则x =2, 即函数y =g (x )的图象恒过定点P (2,0), 所以点P 关于直线x =32对称的点为(1,0), 又点(1,0)在y =f (x )的图象上, 所以13m +4+m =0,所以m =-3.(2)因为F (x )=mx 2+2(4+m )x +8ln x ,且定义域为(0,+∞). 所以F ′(x )=2mx +(8+2m )+8x =2mx 2+(8+2m )x +8x=(2mx +8)(x +1)x .因为x >0,所以x +1>0.当m ≥0时,F ′(x )>0,此时F (x )在(0,+∞)上为增函数. 当m <0时,由F ′(x )>0得0<x <-4m , 由F ′(x )<0得x >-4m , 所以F (x )在⎝ ⎛⎭⎪⎫0,-4m 上单调递增,在⎝ ⎛⎭⎪⎫-4m ,+∞上单调递减. 综上,当m ≥0时,F (x )在(0,+∞)上为增函数;当m <0时,F (x )在⎝ ⎛⎭⎪⎫0,-4m 上单调递增,在⎝ ⎛⎭⎪⎫-4m ,+∞上单调递减.B 组 能力提升练9.(2019·兰州市高三诊断考试)定义在(0,π2)上的函数f (x ),已知f ′(x )是它的导函数,且恒有cos x ·f ′(x )+sin x ·f (x )<0成立,则有( )A .f (π6)>2f (π4) B.3f (π6)>f (π3)C .f (π6)>3f (π3)D .f (π6)>3f (π4)解析:∵cos x ·f ′(x )+sin x ·f (x )<0,∴在(0,π2)上,[f (x )cos x]′<0,∴函数y=f (x )cos x 在(0,π2)上是减函数,∴f (π6)cos π6>f (π3)cos π3,∴f (π6)>3f (π3),故选C. 答案:C10.已知函数f (x )=ln x -ax 2+1,若存在实数x 1,x 2∈[1,+∞),且x 1-x 2≥1,使得f (x 1)=f (x 2)成立,则实数a 的取值范围为( ) A .(0,ln 23)B .(0,ln 23]C .(-∞,ln 23]D .(-∞,2ln 23]解析:当a =0时,f (x )=ln x +1,若f (x 1)=f (x 2),则x 1=x 2,显然不成立,排除C ,D ;取x 1=2,x 2=1,由f (x 1)=f (x 2)得-a +1=ln 2-4a +1,得a =ln 23,排除A.选B. 答案:B11.函数f (x )=ln x -12x 2+x 的单调增区间为________.解析:因为f (x )=ln x -12x 2+x ,所以f ′(x )=1x -x +1=-x 2+x +1x ,x >0,由f ′(x )>0得x >0且x <1+52, 所以增区间为⎝ ⎛⎭⎪⎫0,1+52. 答案:⎝⎛⎭⎪⎫0,1+52 12.已知函数f (x )=3xa -2x 2+ln x (a >0).若函数f (x )在[1,2]上为单调函数,则a的取值范围是________.解析:f ′(x )=3a -4x +1x ,若函数f (x )在[1,2]上为单调函数, 则f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x ≤0在[1,2]上恒成立, 即3a ≥4x -1x 或3a ≤4x -1x 在[1,2]上恒成立.令h (x )=4x -1x ,则h (x )在[1,2]上单调递增,所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a ≤3,又a >0,所以0<a ≤25或a ≥1.答案:⎝ ⎛⎦⎥⎤0,25∪[1,+∞)13.(2019·兰州模拟)已知函数f (x )=ln x -ax +1-a x -1(a ∈R ).当0<a <12时,讨论f (x )的单调性.解析:因为f (x )=ln x -ax +1-ax-1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞),令f ′(x )=0,可得两根分别为1,1a -1, 因为0<a <12,所以1a -1>1>0,当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫1,1a -1时,f ′(x )>0,函数f (x )单调递增;当x ∈(1a -1,+∞)时,f ′(x )<0,函数f (x )单调递减.14.已知函数f (x )=⎝ ⎛⎭⎪⎫a -12x 2+ln x ,g (x )=f (x )-2ax .(a ∈R )(1)当a =0时,求f (x )在区间⎣⎢⎡⎦⎥⎤1e ,e 上的最小值;(2)若x ∈(1,+∞),g (x )<0恒成立,求a 的取值范围. 解析:(1)函数f (x )=⎝ ⎛⎭⎪⎫a -12x 2+ln x 的定义域为(0,+∞),当a =0时,f (x )=-12x 2+ln x ,则f ′(x )=-x +1x =-x 2+1x =-(x +1)(x -1)x.当x ∈⎣⎢⎡⎭⎪⎫1e ,1时,f ′(x )>0;当x ∈[1,e]时,f ′(x )<0,∴f (x )在区间⎣⎢⎡⎭⎪⎫1e ,1上是增函数,在区间[1,e]上为减函数,又f ⎝ ⎛⎭⎪⎫1e =-1-12e 2,f (e)=1-e 22,∴f (x )min =f (e)=1-e 22.(2)g (x )=f (x )-2ax =⎝ ⎛⎭⎪⎫a -12x 2-2ax +ln x ,则g (x )的定义域为(0,+∞),g ′(x )=(2a -1)x -2a +1x =(2a -1)x 2-2ax +1x =(x -1)[(2a -1)x -1]x,①若a >12,则令g ′(x )=0,得x 1=1,x 2=12a -1, 当x 2>x 1=1,即12<a <1时,在(0,1)上有g ′(x )>0,在(1,x 2)上有g ′(x )<0,在(x 2,+∞)上有g ′(x )>0,此时g (x )在区间(x 2,+∞)上是增函数,并且在该区间上有g (x )∈(g (x 2),+∞),不合题意;当x 2≤x 1=1,即a ≥1时,同理可知,g (x )在区间(1,+∞)上有g (x )∈(g (1),+∞),也不合题意;②若a ≤12,则有2a -1≤0,此时在区间(1,+∞)上恒有g ′(x )<0, 从而g (x )在区间(1,+∞)上是减函数;要使g (x )<0在此区间上恒成立,只需满足g (1)=-a -12≤0⇒a ≥-12,由此求得a 的取值范围是⎣⎢⎡⎦⎥⎤-12,12.综合①②可知,a 的取值范围是⎣⎢⎡⎦⎥⎤-12,12.。
17-18版 第2章 第11节 导数与函数的单调性
(2)如果函数在某个区间内恒有 f′(x)=0,则函数 f(x)在此区间上没有单调 性.( ) )
(3)f′(x)>0 是 f(x)为增函数的充要条件.(
[ 答案] (1)× (2)√ (3)×
高三一轮总复习
2.f(x)=x3-6x2 的单调递减区间为( A.(0,4) C.(4,+∞)
)
B.(0,2) D.(-∞,0)
高三一轮总复习
[ 规律方法]
用导数证明函数 f(x)在(a,b)内的单调性的步骤
(1)一求.求 f′(x); (2)二定.确认 f′(x)在(a,b)内的符号; (3)三结论.作出结论:f′(x)>0 时为增函数;f′(x)<0 时为减函数.
易错警示:研究含参数函数的单调性时,需注意依据参数取值对不等式解 集的影响进行分类讨论.
高三一轮总复习
5.(2014· 全国卷Ⅱ)若函数 f(x)=kx-ln x 在区间(1,+∞)单调递增,则 k 的 取值范围是( ) B.(-∞,-1] D.[1,+∞)
A.(-∞,-2] C.[2,+∞)
D
1 [由于 f′(x)=k-x ,f(x)=kx-ln x 在区间(1,+∞)单调递增⇔f′(x)=k
高三一轮总复习
[ 变式训练 1]
1 e (2016· 四川高考节选)设函数 f(x)=ax -a-ln x,g(x)=x-ex,
2
其中 a∈R,e=2.718„为自然对数的底数. (1)讨论 f(x)的单调性; (2)证明:当 x>1 时,g(x)>0.
2 1 2ax -1 (1)由题意得 f′(x)=2ax-x= x (x>0).2 分
1 -x ≥0 在(1,+∞)上恒成立. 1 1 由于 k≥x ,而 0< x<1,所以 k≥1,即 k 的取值范围为[1,+∞).]
14导数的定义及导数的计算
第11节 导数的定义及导数的计算 (14)一.知识要点:1.导数的定义:割线1l 的斜率=00()()f x x f x y x x +∆-∆=∆∆,当x ∆ 趋于0时得到()f x 在0x 处切线的斜率:0000()()limlim l x x f x x f x yk x x∆→∆→+∆-∆==∆∆也称()f x 在0x 处的导数。
2.导函数的定义:若()f x 在区间(,)a b 上的每一点x 处都有导数,导数记为()f x ',则0()()()limx f x x f x f x x∆→+∆-'=∆,称()f x '为()f x 的导函数。
3.导数的几何意义:()f x 在0x 处的导数值等于曲线()f x 在点00(,())P x f x 处切线的斜率。
即:0()l k f x '=.4.常见导数公式:0C '= 1()x xααα-'=(sin )cos x x '= (cos )sin x x '=-()ln x x a a a '=()x xe e '= 1(log )ln a x x a '=1(ln )x x'= 5.导数运算法则:(1).[]()()()()f x g x f x g x '''±=±(2)[]()()()()()()f x g x f x g x f x g x '''⋅=⋅+⋅(3)2()()()()()()()f x f x g x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦6.复合函数求导:(理)(()),(),()y f g x y f u u g x ===设,则()().y f u u x '''=⋅二.考点评析例1.利用导数定义求函数的导数(1)2348y x x =-+ (2)1y x x=+y xl 1l f(x 0)f(x 0+x)yxx 0x 0+xOyxLf(x)P(x 0,f(x 0))o x 0例2.利用公式求导13(1)ln ;x y x =+ 131(2);x y e x x =-+(3)ln y x x =(4)sin ;y x x = 2(5);x y x e =- 1(6);1x y x -=+(7)xe y x= 2(8)(23)(32)y x x =+- (9)()sin(1)y x =-+理21(10)()x y e -+=理例3.(利用导数求切线方程)3(1)-112f x 1600xy x x x =-+=+-求曲线在点(,)处的切线方程.(2)求函数()过点(,)的切线方程.三.学生练习1.如果质点A 按规律32s t =运动。
高考绿色通道 导数应用
第2模块 第11节[知能演练]一、选择题1.设f ′(x )是函数f (x )的导数,y =f ′(x )的图象如右图所示,则y =f (x )的图象最有可能是( )解析:由y =f ′(x )的图象可知,当x <0时,f ′(x )>0,∴f (x )在(-∞,0)上单调递增;当0<x <2时,f ′(x )<0,∴f ′(x )在(0,2)上单调递减.故选C.答案:C2.函数f (x )=1+x -sin x 在(0,2π)上是( )A .增函数B .减函数C .在(0,π)上增,在(π,2π)上减D .在(0,π)上减,在(π,2π)上增 解析:f ′(x )=1-cos x >0, ∴f (x )在(0,2π)上递增.故选A. 答案:A3.若a >3,则方程x 3-ax 2+1=0在(0,2)上恰有( )A .0个根B .1个根C .2个根D .3个根解析:令f (x )=x 3-ax 2+1,则f ′(x )=3x 2-2ax =3x (x -23a ).由f ′(x )=0,得x =0或x =23a (∵a >3,∴23a >2).∴当0<x <2时,f ′(x )<0,即f (x )在(0,2)上单调递减. 又f (0)·f (2)=8-4a +1=9-4a <0, ∴f (x )在(0,2)上有一个零点, 即方程在(0,2)上有一实根.故选B. 答案:B4.设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则( )A .a >-3B .a <-3C .a >-13D .a <-13解析:y ′=a ·e ax +3=0,当a =0时,显然不合题意,∴a ≠0. ∴e ax =-3a .∴x =1a ln(-3a ).由题意,得1a ln(-3a )>0,∴⎩⎪⎨⎪⎧a <0,0<-3a <1.∴a <-3. 故应选B. 答案:B 二、填空题5.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m =________.解析:f ′(x )=3x 2-12=3(x +2)(x -2),令f ′(x )=0,得x =±2.∵f (-3)=17,f (3)=-1,f (-2)=24,f (2)=-8,∴M -m =f (-2)-f (2)=32. 答案:32 6.若函数f (x )=4xx 2+1在区间(m,2m +1)上是单调递增函数,则实数m 的取值范围是________.解析:f ′(x )=4(x 2+1)-8x 2(x 2+1)2=4(1-x 2)(x 2+1)2,令f ′(x )>0,∴-1<x <1. 根据题意,得⎩⎪⎨⎪⎧m ≥-1,2m +1≤1,2m +1>m ,∴-1<m ≤0.答案:(-1,0] 三、解答题7.设函数f (x )=ln(2x +3)+x 2. (1)讨论f (x )的单调性;(2)求f (x )在区间[-34,14]上的最大值和最小值.解:(1)函数f (x )的定义域为(-32,+∞),f ′(x )=22x +3+2x =2(2x +1)(x +1)2x +3,令f ′(x )>0,∴x >-12或-32<x <-1.令f ′(x )<0,∴-1<x <-12.∴f (x )在区间(-32,-1)和(-12,+∞)上为增函数,在区间(-1,-12)上为减函数.(2)当x 在区间[-34,14]上变化时,f ′(x )与f (x )变化情况如下表:f (-34)=916+ln 32,f (-12)=14+ln2,f (14)=116+ln 72,由表知函数f (x )在x =-12处取最小值14+ln2.f (-34)-f (14)=12+ln 37=12(1-ln 499)<0.故函数f (x )在x =14处取最大值116+ln 72.8.已知f (x )=12x 2-a ln x (a ∈R ),(1)求函数f (x )的单调区间; (2)求证:当x >1时,12x 2+ln x <23x 3.(1)解:f ′(x )=x -a x =x 2-ax(x >0),若a ≤0时,f ′(x )≥0恒成立, ∴函数f (x )的单调增区间为(0,+∞). 若a >0时,令f ′(x )>0,得x >a ,∴函数f (x )的单调增区间为(a ,+∞),减区间为(0,a ). (2)证明:设F (x )=23x 3-(12x 2+ln x ),故F ′(x )=2x 2-x -1x .∴F ′(x )=(x -1)(2x 2+x +1)x .∵x >1,∴F ′(x )>0.∴F (x )在(1,+∞)上为增函数. 又F (x )在[1,+∞)上连续,F (1)=16>0,∴F (x )>16在(1,+∞)上恒成立.∴F (x )>0.∴当x >1时,12x 2+ln x <23x 3.[高考·模拟·预测]1.(2009·广东高考)函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)e x ]′=1·e x +(x -3)·e x =(x -2)·e x ,由函数导数与函数单调性关系得:当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)·e x >0解得:x >2.答案:D2.(2009·山东济宁一模)若函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞)D .(0,12)解析:∵f ′(x )=3x 2-6b ,由题意,函数f ′(x )图象如右图.∴⎩⎪⎨⎪⎧ f ′(0)<0,f ′(1)>0,即⎩⎪⎨⎪⎧-6b <0,3-6b >0,得0<b <12.故选D.答案:D3.(2009·江苏高考)函数f (x )=x 3-15x 2-33x +6的单调减区间为________.解析:由f (x )=x 3-15x 2-33x +6得,f ′(x )=3x 2-30x -33,令f ′(x )<0,即3(x -11)(x +1)<0,求得-1<x <11,所以函数f (x )的单调减区间为(-1,11). 答案:(-1,11)4.(2009·辽宁高考)若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.解析:由于f ′(x )=(x 2+a )′·(x +1)-(x 2+a )·(x +1)′(x +1)2=2x ·(x +1)-(x 2+a )·1(x +1)2=x 2+2x -a (x +1)2,而函数f (x )在x =1处取极值,则f ′(1)=12+2×1-a (1+1)2=0,解得a =3,故填3.答案:35.(2009·天津高考)已知函数f (x )=(x 2+ax -2a 2+3a )e x (x ∈R ),其中a ∈R . (Ⅰ)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线的斜率; (Ⅱ)当a ≠23时,求函数f (x )的单调区间与极值.解:(Ⅰ)当a =0时,f (x )=x 2e x ,f ′(x )=(x 2+2x )e x ,故f ′(1)=3e.所以曲线y =f (x )在点(1,f (1))处的切线的斜率为3e.(Ⅱ)f ′(x )=[x 2+(a +2)x -2a 2+4a ]e x . 令f ′(x )=0,解得x =-2a 或x =a -2. 由a ≠23知,-2a ≠a -2.以下分两种情况讨论.(1)若a >23,则-2a <a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:内是增函数,在函数f (x )在x =-2a 处取得极大值f (-2a ),且f (-2a )=3a e -2a.函数f (x )在x =a -2处取得极小值f (a -2),且f (a -2)=(4-3a )e a -2.(2)若a <23,则-2a >a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:函数f (x )在x =a -2处取得极大值f (a -2),且f (a -2)=(4-3a )e a -2.函数f (x )在x =-2a 处取得极小值f (-2a ),且f (-2a )=3a e-2a.[备选精题]6.若存在实常数k 和b ,使得函数f (x )和g (x )对其定义域上的任意实数x 分别满足:f (x )≥kx +b 和g (x )≤kx +b ,则称直线l :y =kx +b 为函数f (x )和g (x )的“隔离直线”.已知h (x )=x 2,φ(x )=2eln x (其中e 为自然对数的底数).(1)求F (x )=h (x )-φ(x )的极值;(2)函数h (x )和φ(x )是否存在隔离直线?若存在,求出此隔离直线的方程;若不存在,请说明理由.解:(1)∵F (x )=h (x )-φ(x )=x 2-2eln x (x >0), ∴F ′(x )=2x -2e x =2(x -e)(x +e)x .当x =e 时,F ′(x )=0.∵当0<x <e 时,F ′(x )<0,此时函数F (x )递减;当x >e 时,F ′(x )>0,此时函数F (x )递增, ∴当x =e 时,F (x )取极小值,其极小值为0.(2)由(1)可知函数h (x )和φ(x )的图象在x =e 处有公共点, 因此若存在h (x )和φ(x )的隔离直线, 则该直线过这个公共点, 设隔离直线的斜率为k , 则直线方程为y -e =k (x -e), 即y =kx +e -k e.由h (x )≥kx +e -k e(x ∈R ),可得x 2-kx -e +k e ≥0,当x ∈R 时恒成立. ∴Δ=(k -2e)2, ∴由Δ≤0,得k =2 e.下面证明φ(x )≤2e x -e ,当x >0时恒成立. 令G (x )=φ(x )-2e x +e =2eln x -2e x +e , 则G ′(x )=2ex -2e =2e(e -x )x ,当x =e 时,G ′(x )=0. ∵当0<x <e 时,G ′(x )>0, 此时函数G (x )递增;当x >e 时,G ′(x )<0,此时函数G (x )递减, ∴当x =e 时,G (x )取极大值,其极大值为0. 从而G (x )=2eln x -2e x +e ≤0, 即φ(x )≤2e x -e(x >0)恒成立,∴函数h (x )和φ(x )存在唯一的隔离直线y =2e x -e.。
《导数的应用》ppt课件
设 x 1 cos , y 1 sin ,由x,y为正实数得: 0 .
xy
1
(1
2
cos
)si n
.
2
设 f ( ) 1 (1 cos )sin .
2
f
(
)
1
[
s i n2
(1
cos
) co s
]
(cos
1)(cos
1 ).
2
2
令 f ( ) 0,得 cos 1,cos 1 ;又0 , .
从而当x>0时,f(x)≥1恒成立,即:
2
1
2 3
(1
x)3
成立.
令 Y
x6
3
0
1 2x
,得
4.
x
1.
当x<-1时, Y 0,则Y单调减小;当-1<x<0时, Y 0,则
Y单调增加;当0<x<1时,Y 0,则Y单调减小;当x>1
时,Y 0 ,则Y单调增加. 故当x 1时,Y有最小值5/6,此时点 (1, 1 )为所求.
3
例4: 如图,在二次函数f(x)=
2 ( x 1)3( x 3
0).
则
f
( x)
1 x
1 x2
( x 1)
2( x 1)2
(x
1)3
2x 1 x2 ,
令f (x) 0 ,结合x>0得x=1.
而0<x<1时, f (x) 0;x>1时,f (x) 0 ,所以x=1是f(x)的 极小值点.
所以当x=1时,f(x)取最小值f(1)=1.
令
S(
x)
0
人教A版2020版新一线高考理科数学一轮复习教学案:第2章第11节第2课时导数与函数的极值、最值含答案
第2课时导数与函数的极值、最值利用导数解决函数的极值问题►考法1根据函数图象判断函数极值的情况【例1】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)D[由题图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.]►考法2求已知函数的极值【例2】已知函数f(x)=(x-2)(e x-ax),当a>0时,讨论f(x)的极值情况.[解]∵f′(x)=(e x-ax)+(x-2)(e x-a)=(x-1)(e x-2a),∵a>0,由f′(x)=0得x=1或x=ln 2a.①当a=e2时,f′(x)=(x-1)(ex-e)≥0,∴f(x)单调递增,故f(x)无极值.②当0<a<e2时,ln 2a<1,当x变化时,f′(x),f(x)的变化情况如下表:故f(x)③当a>e2时,ln 2a>1,当x变化时,f′(x),f(x)的变化情况如下表:故f (x )综上,当0<a <e2时,f (x )有极大值-a (ln 2a -2)2,极小值a -e ;当a =e2时,f (x )无极值;当a >e2时,f (x )有极大值a -e ,极小值-a (ln 2a -2)2.►考法3 已知函数极值求参数的值或范围【例3】 (1)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________. (2)若函数f (x )=e x -a ln x +2ax -1在(0,+∞)上恰有两个极值点,则a 的取值范围为( ) A .(-e 2,-e) B .⎝ ⎛⎭⎪⎫-∞,-e 2 C .⎝ ⎛⎭⎪⎫-∞,-12 D .(-∞,-e)(1)-7 (2)D [(1)由题意得f ′(x )=3x 2+6ax +b ,则⎩⎨⎧a 2+3a -b -1=0,b -6a +3=0,解得⎩⎨⎧ a =1,b =3或⎩⎨⎧a =2,b =9,经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7.(2)∵f ′(x )=e x -ax +2a ,(x >0) ∴由f ′(x )=0得a =x e x1-2x .令g (x )=x e x1-2x(x >0).由题意可知g (x )=a 在(0,+∞)上恰有两个零点. 又g ′(x )=-e x (2x +1)(x -1)(1-2x )2(x >0),由g ′(x )>0得0<x <1,且x ≠12.由g ′(x )<0得x >1.∴函数g (x )在⎝ ⎛⎭⎪⎫0,12,⎝ ⎛⎭⎪⎫12,1上递增,在(1,+∞)上递减.又g (0)=0,g (1)=-e ,结合图形(图略)可知a ∈(-∞,-e),故选D .]已知函数极值点和极值求参数的两个要领0和极值列方程组,利用待定系数法求解验证:因为一点处的导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须A .2或6B .2C .23D .6(2)(2019·广东五校联考)已知函数f (x )=x (ln x -ax )有极值,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫-∞,12 B .⎝ ⎛⎭⎪⎫0,12 C .⎝ ⎛⎦⎥⎤-∞,12 D .⎝ ⎛⎦⎥⎤0,12 (1)D (2)A [(1)法一:f ′(x )=(x -c )(3x -c ),当f ′(x )=0时,x 1=c3,x 2=c .因为极大值点是x =2, 所以c >0,并且c3<c .当x ∈⎝ ⎛⎭⎪⎫-∞,c 3时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫c 3,c 时,f ′(x )<0,当x ∈(c ,+∞)时,f ′(x )>0, 所以x =c 3是极大值点,c3=2,解得c =6.故选D .法二:因为f ′(x )=(x -c )(3x -c ). 又因为f (x )在x =2处取极值, 所以f ′(2)=0,即(2-c )(6-c )=0.所以c =2或c =6.当c =6时,f ′(x )=3(x -2)(x -6),易知x ∈(-∞,2)和x ∈(6,+∞)时,f ′(x )>0,函数f (x )是增函数,x ∈(2,6)时,f ′(x )<0,函数f (x )是减函数,此时x =2为极大值点.当c =2时,f ′(x )=3(x -2)⎝ ⎛⎭⎪⎫x -23,易知x ∈⎝ ⎛⎭⎪⎫-∞,23和x ∈(2,+∞)时,f ′(x )>0,函数f (x )是增函数,x ∈⎝ ⎛⎭⎪⎫23,2时,f ′(x )<0,函数f (x )是减函数,此时x =2是极小值点. 因此c =6.故选D .(2)f (x )=x ln x -ax 2(x >0),f ′(x )=ln x +1-2ax . 令g (x )=ln x +1-2ax , 则g ′(x )=1x -2a =1-2ax x . ∵函数f (x )=x (ln x -ax )有极值, ∴g (x )=0在(0,+∞)上有实根.当a ≤0时,g ′(x )>0,函数g (x )在(0,+∞)上单调递增,当x 趋向于0时,g (x )趋向于-∞,当x 趋向于+∞时,g (x )趋向于+∞,故存在x 0∈(0,+∞),使得f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,故f (x )存在极小值f (x 0),符合题意. 当a >0时,令g ′(x )=0,得x =12a. 当0<x <12a时,g ′(x )>0,函数g (x )单调递增; 当x >12a时,g ′(x )<0,函数g (x )单调递减, ∴x =12a时,函数g (x )取得极大值. ∵当x 趋向于0和x 趋向于+∞时,均有g (x )趋向于-∞,要使g (x )=0在(0,+∞)上有实根,且f (x )有极值,必须g ⎝ ⎛⎭⎪⎫12a =ln 12a >0,解得0<a <12.综上可知,实数a 的取值范围是⎝ ⎛⎭⎪⎫-∞,12,故选A .]利用导数解决函数的最值问题【例4】 已知函数f (x )=ln x -ax (a ∈R). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.[解] (1)f ′(x )=1x -a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调递增区间为(0,+∞). ②当a >0时,令f ′(x )=1x -a =0,可得x =1a , 当0<x <1a 时,f ′(x )=1-ax x >0; 当x >1a 时,f ′(x )=1-ax x <0, 故函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞.综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞); 当a >0时,函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1a ,单调递减区间为⎝ ⎛⎭⎪⎫1a ,+∞.(2)①当0<1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a . ②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,1a 上是增函数,在⎣⎢⎡⎦⎥⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ;当ln 2≤a <1时,最小值为f (2)=ln 2-2a . 综上可知,当0<a <ln 2时,函数f (x )的最小值是f (1)=-a ; 当a ≥ln 2时,函数f (x )的最小值是f (2)=ln 2-2a .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.[解] (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x . 当x ∈⎝ ⎛⎭⎪⎫0,π2时,h ′(x )<0,所以h (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减.所以对任意x ∈⎝ ⎛⎦⎥⎤0,π2有h (x )<h (0)=0,即f ′(x )<0.所以函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减.因此f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为f (0)=1,最小值为f ⎝ ⎛⎭⎪⎫π2=-π2.利用导数研究生活中的优化问题【例5】 已知一企业生产某产品的年固定成本为10万元,每生产千件需另投入2.7万元,设该企业年内共生产此种产品x 千件,并且全部销售完,每千件的销售收入为f (x )万元,且f (x )=⎩⎪⎨⎪⎧10.8-130x 2,0<x ≤10,108x -1 0003x 2,x >10.(1)写出年利润W (万元)关于年产品x (千件)的函数解析式.(2)年产量为多少千件时,该企业生产此产品所获年利润最大?(注:年利润=年销售收入-年总成本) [解] (1)由题意得W =⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫10.8-130x 2x -2.7x -10,0<x ≤10,⎝ ⎛⎭⎪⎫108x -1 0003x 2x -2.7x -10,x >10,即W =⎩⎪⎨⎪⎧8.1x -130x 3-10,0<x ≤10,98-⎝ ⎛⎭⎪⎫1 0003x +2.7x ,x >10,(2)①当0<x ≤10时,W =8.1x -130x 3-10则W ′=8.1-110x 2=81-x 210=(9+x )(9-x )10,因为0<x ≤10所以当0<x <9时,W ′>0, 则W 递增;当9<x ≤10时,W ′<0,则W 递减. 所以当x =9时,W 取最大值1935=38.6万元. ②当x >10时,W =98-⎝ ⎛⎭⎪⎫1 0003x +2.7x ≤98-21 0003x×2.7x =38. 当且仅当1 0003x =2.7x ,即x =1009>10时取最大值38. 综上,当年产量为9千件时,该企业生产此产品所获年利润最大. 比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值.米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率). (1)将V 表示成r 的函数V (r ),并求该函数的定义域.(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.[解] (1)因为蓄水池侧面的总成本为100×2πrh =200πrh 元,底面的总成本为160πr 2元,所以蓄水池的总成本为(200πrh +160πr 2)元.又根据题意得200πrh +160πr 2=12 000π,所以h =15r (300-4r 2),从而V (r )=πr 2h =π5(300r -4r 3).由h >0,且r >0可得0<r <53,故函数V (r )的定义域为(0,53).(2)因为V (r )=π5(300r -4r 3),所以V ′(r )=π5(300-12r 2).令V ′(r )=0,解得r 1=5,r 2=-5(因为r 2=-5不在定义域内,舍去).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数; 当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数.由此可知,V(r)在r=5处取得最大值,此时h=8,即当r=5,h=8时,该蓄水池的体积最大.。
高考数学一轮复习 第二章 函数、导数及其应用 第1节 函数的概念及其表示练习 新人教A版-新人教A版
第二章 第 1 节 函数的概念及其表示[基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫ba,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.] [学生用书 课时冲关四 文P251 理P290][基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.]4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2 C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.[学生用书 课时冲关四 文P251 理P290][基础训练组]1.(导学号14577082)已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .-1B .0C .1D .±1解析:C [a =1,b =0,∴a +b =1.]2.(导学号14577083)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )解析:B [可以根据函数的概念进行排除,使用筛选法得到答案.]3.(导学号14577084)(理科)(2018·某某市一模)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1]解析:C [由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0x >0且ln x ≠0,解得0<x <1.故选C.]3.(导学号14577085)(文科)(2016·高考新课标全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:D [函数y =10lg x的定义域和值域均为(0,+∞);函数y =x 的定义域和值域均为R ,不满足要求;函数y =lg x 的定义域为(0,+∞),值域为R ,不满足要求;函数y =2x的定义域为R ,值域为(0,+∞),不满足要求;函数y =1x的定义域和值域均为(0,+∞),满足要求.故选D.]4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1.∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.4.(导学号14577086)已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2(x ≠1) B .(x -1)2(x ≠1) C .x 2-x +1(x ≠1)D .x 2+x +1(x ≠1) 解析:C [f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =x +12x 2-x +1x +1,令x +1x=t ,得f (t )=t 2-t +1(t ≠1),即f (x )=x 2-x +1(x ≠1).故选C.]5.(导学号14577087)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:C [当x ∈[-1,2]时,由3-x 2=1⇒x = 2. 当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4.故选C.]6.(导学号14577090)(2015·高考新课标卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:A [当a ≤1时,2a -1-2=-3,无解;当a >1时,-log 2(a +1)=-3,得a =7,所以f (6-a )=f (-1)=2-2-2=-74,故选A.]7.(导学号14577088)图中的图象所表示的函数的解析式f (x )= ________ .解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝ ⎛⎭⎪⎫1,32和⎝ ⎛⎭⎪⎫1,32,(2,0)分别代入求解⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎪⎨⎪⎧32x ,0≤x ≤13-32x ,1<x ≤28.(导学号14577089)若函数y =f (x )的值域是[1,3],则函数F (x )=1-2f (x +3)的值域是 ________ .解析:∵1≤f (x )≤3,∴-6≤-2f (x +3)≤-2, ∴-5≤1-2f (x +3)≤-1,即F (x )的值域为[-5,-1]. 答案: [-5,-1]9.(导学号14577091)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.10.(导学号14577092)已知函数f (x )=x ·|x |-2x . (1)求函数f (x )=0时x 的值;(2)画出y =f (x )的图象,并结合图象写出f (x )=m 有三个不同实根时,实数m 的取值X 围.解:(1)由f (x )=0可解得x =0,x =±2,所以函数f (x )=0时x 的值为-2,0,2. (2)f (x )=x |x |-2x ,即f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.图象如图,由图象可得实数m ∈(-1,1).[能力提升组]11.(导学号14577093)(2018·某某市一模)若函数y =f (x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤12,2C .[2,4]D .[1,4]解析:B [∵y =f (x )的定义域是[-1,1],∴函数y =f (log 2x )有意义⇔-1≤log 2x ≤1,∴12≤x ≤2.∴函数y =f (log 2x )的定义域是{x |12≤x ≤2}.故选B.]12.(导学号14577094)已知f (x )=⎩⎪⎨⎪⎧1x +2,-1≤x ≤0,x 2-2x ,0<x ≤1,若f (2m -1)<12,则m 的取值X 围是( )A .m >12B .m <12C .0≤m <12 D.12<m ≤1解析:D [由题得⎩⎪⎨⎪⎧ -1≤2m -1≤0,12m +1<12,或⎩⎪⎨⎪⎧0<2m -1≤1,2m -12-22m -1<12,解得12<m ≤1,故选D.]13.(导学号14577095)若函数f (x )=x 2+2ax -a 的定义域为R ,则a 的取值X 围为 ________ .解析:由题意知x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 答案:[-1,0]14.(导学号14577096)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0, ∴0≤x ≤70.故行驶的最大速度是70千米/时.。
第11节 导数的简单应用
第11节导数的简单应用课时训练练题感提知能【选题明细表】一、选择题1.函数y=(3-x2)e x的单调递增区间是( D )(A)(-∞,0) (B)(0,+∞)(C)(-∞,-3)和(1,+∞) (D)(-3,1)解析:y′=-2xe x+(3-x2)e x=e x(-x2-2x+3),由y′>0⇒x2+2x-3<0⇒-3<x<1,∴函数y=(3-x2)e x的单调递增区间是(-3,1).故选D.2.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于( C )(A)11或18 (B)11(C)18 (D)17或18解析:∵函数f(x)=x3+ax2+bx+a2在x=1处有极值10,∴f(1)=10,且f′(1)=0,即解得或而当时,函数在x=1处无极值,故舍去.∴f(x)=x3+4x2-11x+16,∴f(2)=18.故选C.3.(2012年高考大纲全国卷)已知函数y=x3-3x+c的图象与x轴恰有两个公共点,则c等于( A )(A)-2或2 (B)-9或3(C)-1或1 (D)-3或1解析:∵y′=3(x+1)(x-1),∴当x=-1或x=1时取得极值,由题意得f(1)=0或f(-1)=0,即c-2=0或c+2=0,解得c=2或c=-2.故选A.4.若函数f(x)=ax3+bx2+cx+d有极值,则导函数f′(x)的图象不可能是( D )解析:若函数f(x)=ax3+bx2+cx+d有极值,则此函数在某点两侧的单调性相反,也就是说导函数f′(x)在此点两侧的导函数值的符号相反,所以导函数的图象要穿过x轴,观察四个选项中的图象只有D项是不符合要求的,即f′(x)的图象不可能是D.5.(2013福建厦门质检)若函数f(x)=x3-3x在(a,6-a2)上有最小值,则实数a的取值范围是( C )(A)(-,1) (B)[-,1)(C)[-2,1) (D)(-,-2]解析:f′(x)=3x2-3=0,得x=±1,且x=1为函数的极小值点,x=-1为函数的极大值点.函数f(x)在区间(a,6-a2)上,则函数f(x)极小值点必在区间(a,6-a2)内,即实数a满足a<1<6-a2且f(a)=a3-3a≥f(1)=-2.解a<1<6-a2得,-<a<1,不等式a3-3a≥f(1)=-2,即a3-3a+2≥0,即a3-1-3(a-1)≥0,即(a-1)(a2+a-2)≥0,即(a-1)2(a+2)≥0,即a≥-2.故实数a的取值范围是[-2,1).故选C.6.(2013乐山市高三第三次调研)已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示,下列关于函数f(x)的命题:①函数f(x)是周期函数;②函数f(x)在[0,2]是减函数;③如当x∈[-1,t]时,f(x)的最大值为2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a有4个零点.其中正确的命题个数是( D )(A)4 (B)3 (C)2 (D)1解析:由f(x)的定义域为[-1,5]知函数f(x)不是周期函数,由导函数y=f′(x)的图象知f(x)在[0,2]是减函数.当x∈[-1,t]时,f(x)最大值为2,那么t的最大值为5,由于f(2)是函数的一个极小值,且f(2)的值未知,所以当1<a<2时,函数y=f(x)-a的零点个数不确定,故选D.7.(2014自贡模拟)若f(x)=-(x-2)2+bln x在(1,+∞)上是减函数,则b的取值范围是( C )(A)[-1,+∞) (B)(-1,+∞)(C)(-∞,-1] (D)(-∞,-1)解析:由题意可知f′(x)=-(x-2)+≤0,在x∈(1,+∞)上恒成立,即b≤x(x-2)在x∈(1,+∞)上恒成立,由于φ(x)=x(x-2)=x2-2x在(1,+∞)上的值域是(-1,+∞),故只要b≤-1即可.8.(2013石室中学高三模拟)已知函数f(x)=|xe x|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,则t的取值范围为( B ) (A)(,+∞) (B)(-∞,-)(C)(-,-2) (D)(2,)解析:f(x)=|xe x|=x≥0时,f′(x)=e x+xe x=(1+x)e x>0,x<0时,f′(x)=-e x-xe x=-(1+x)e x,当-1≤x<0时,f′(x)<0,x≤-1时,f′(x)>0,又因f(0)=0于是函数f(x)在(-∞,-1),(0,+∞)上为单调增函数,在(-1,0)上为减函数,其大致图象如图所示,由题意知关于f(x)的方程f2(x)+tf(x)+1=0有两正实根,f(x1),f(x2),不妨设f(x1)<f(x2),则0<f(x1)<,f(x2)>,所以t<-.故选B.二、填空题9.已知向量a=(e x+,-x),b=(1,t),若函数f(x)=a²b在区间(-1,1)上存在增区间,则t的取值范围为.解析:f(x)=e x+-tx,x∈(-1,1),f′(x)=e x+x-t,函数在(x1,x2)⊆(-1,1)上单调递增,故e x+x>t,x∈(x1,x2)时恒成立,故e+1>t.答案:(-∞,e+1)10.(2013眉山模拟)若函数f(x)=x4-ax3+x2-2有且仅有一个极值点,则实数a的取值范围是.解析:f′(x)=4x3-3ax2+2x=x(4x2-3ax+2),函数f(x)=x4-ax3+x2-2有且只有一个极值点的充要条件是9a2-32≤0,解得-≤a≤.答案:[-,]11.(2014郑州模拟)已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[-1,1],则f(m)+f′(n)的最小值是.解析:f′(x)=-3x2+2ax,根据已知=2,得a=3,即f(x)=-x3+3x2-4.根据函数f(x)的极值点,可得函数f(m)在[-1,1]上的最小值为f(0)=-4,f′(n)=-3n2+6n在[-1,1]上单调递增,所以f′(n)的最小值为f′(-1)=-9.[f(m)+f′(n)]min=f(m)min+f′(n)min=-4-9=-13.答案:-1312.函数f(x)=的单调递增区间是.解析:f′(x)==>0,即cos x>-,结合三角函数图象或是单位圆中的三角函数线知道,2kπ-<x<2kπ+(k∈Z),即函数f(x)的单调递增区间是(2kπ-,2kπ+)(k∈Z).答案:(2kπ-,2kπ+)(k∈Z)13.函数f(x)=|e x-bx|,其中e为自然对数的底数.若函数y=f(x)有且只有一个零点,则实数b的取值范围是.解析:记g(x)=e x-bx.f(x)=0同解于g(x)=0,因此,只需g(x)=0有且只有一个解.即方程e x-bx=0有且只有一个解.因为x=0不满足方程,所以方程同解于b=(x≠0),令h(x)=,由h′(x)==0得x=1.当x∈(1,+∞)时,h′(x)>0,h(x)单调递增,h(x)∈(e,+∞);当x∈(0,1)时,h′(x)<0,h(x)单调递减,h(x)∈(e,+∞);所以当x∈(0,+∞)时,方程b=有且只有一解等价于b=e.当x∈(-∞,0)时,h(x)单调递减,且h(x)∈(-∞,0),从而方程b=有且只有一解等价于b∈(-∞,0).综上所述,b的取值范围为(-∞,0)∪{e}.答案:(-∞,0)∪{e}三、解答题14.(2014四川眉山二诊)已知函数f(x)=aln x-ax-3(a∈R).(1)求函数f(x)的单调区间;(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2²[f′(x)+]在区间(t,3)内总不是单调函数,求m的取值范围.解:(1)f′(x)=(x>0),当a>0时,f(x)的增区间为(0,1),减区间为(1,+∞);当a<0时,f(x)的增区间为(1,+∞),减区间为(0,1);当a=0时,f(x)不是单调函数.(2)由(1)得f′(2)=-=1,即a=-2,∴f(x)=-2ln x+2x-3,∴g(x)=x3++2x2-2x,∴g′(x)=3x2+(m+4)x-2.∵g(x)在区间(t,3)内总不是单调函数,即g′(x)=0在区间(t,3)内有变号零点.由于g′(0)=-2,∴当g′(t)<0,即3t2+(m+4)t-2<0对任意t∈[1,2]恒成立,由于g′(0)<0,故只要g′(1)<0且g′(2)<0,即m<-5且m<-9,即m<-9;由g′(3)>0,即m>-.所以-<m<-9.15.(2013四川广元高三第二次适应性测试)已知函数f(x)=x3-x2+ax+b的图象在点P(0,f(0))处的切线方程为y=3x-2.(1)求实数a、b的值;(2)设g(x)=f(x)+是[2,+∞)上的增函数,①求实数m的最大值;②当m取最大值时,是否存在点Q,使得过点Q的直线若能与曲线y=g(x)围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出Q点的坐标;若不存在,说明理由.解:(1)∵f(x)=x3-x2+ax+b,f′(x)=x2-2x+a.由题设得即(2)①由g(x)=x3-x2+3x-2+得g′(x)=x2-2x+3-.∵g(x)是[2,+∞)上的增函数,所以g′(x)≥0在[2,+∞)上恒成立.设(x-1)2=t,因为x∈[2,+∞),所以t∈[1,+∞).即不等式t+2-≥0在[1,+∞)上恒成立.当m≤0时,设y=t+2-≥0在[1,+∞)上恒成立.当m>0时,设y=t+2-,t∈[1,+∞).∵y′=1+>0,所以函数y=t+2-在[1,+∞)上单调递增.∴y min=3-m.∵y min≥0,所以3-m≥0,即m≤3.又m>0,故0<m≤3.综上,m的最大值为3.②存在,由(1)得g(x)=x3-x2+3x-2+.∵g(x)=(x3-3x2+3x-1)+2(x-1)++=(x-1)3+2(x-1)++它的图象是由奇函数h(x)=x3+2x+的图象向右平移1个单位,再向上平移个单位得来的,∴g(x)的图象关于点Q(1,)成中心对称.∴存在点Q(1,)使得过点Q的直线若能与函数g(x)的图象围成两个封闭图形,则这两个封闭图形的面积总相等.16.(2013成都市高中毕业班第三次诊断)已知函数f(x)=x2+ln(x-a),a∈R.(1)若f(x)有两个不同的极值点,求a的取值范围;(2)当a≤-2时,令g(a)表示f(x)在[-1,0]上的最大值,求g(a)的表达式;(3)求证:+ln<1+++…+,n∈N*.解:(1)f′(x)=2x+=(x>a).∵f(x)有两个不同的极值点,∴令h(x)=2x2-2ax+1,则h(x)有两个大于a的零点.∴∴a<-.(2)由(1),知当a≤-2时,f(x)在(a,],[,+∞)上单调递增;在,上单调递减.x=-≤-1-<-1,1=又x,<=-a,故x2<0.注意到h(x)=2x2-2ax+1的对称轴x=<-1,h(-1)=3+2a<0,h(0)=1>0,可推知-1<x2<0.∴当x∈[-1,0]时,g(a)=f(x)max=max{f(-1),f(0)}.而f(0)=ln(-a),f(-1)=1+ln(-1-a),又由f(0)> f(-1)⇒a>,但>-2,故f(0)>f(1)不成立.综上分析可知,g(a)=f(-1)=1+ln(-1-a)(a≤-2).(3)由(2),当a=-2时,f(x)在[-1,0]上有最大值f(-1)=1.即当x∈[-1,0],a=-2时,x2+ln(x+2)≤1.令x+2=,则x=-∈(-1,0].∴2+ln<1.∴ln<-,即+ln<.∴+ln<+ln<.∴+ln(n+1)<,即+ln(n+1)<.∴+ln<1+++…+.。
导数应用ppt课件
工具
第二章 函数、导数及其应用
x
(-3,-2) -2
-2,23
2 3
23,1
f′(x)
+0-0 Nhomakorabea+
f(x)
极大值
极小值
工具
第二章 函数、导数及其应用
∴f(x)在x=-2处取得极大值f(-2)=13,在x= 23 处取得极小值 f32=9257,又f(-3)=8,f(1)=4,
∴f(x)在[-3,1]上的最大值为13,最小值为9257.
令1-2sin x=0,且x∈0,π2时,x=π6,
当x∈0,π6时,f′(x)>0,f(x)单调递增;
当x∈π6,π2时,f′(x)≤0,f(x)单调递减,
∴f(x)max=fπ6.故选B.
答案: B
工具
第二章 函数、导数及其应用
4.已知a>0,函数f(x)=x3-ax在[1,+∞)上是单调增函数, 则a的最大值是________. 解析: f′(x)=3x2-a在x∈[1,+∞)上f′(x)≥0, 则f′(1)=0⇒a=3. 答案: 3
由原点到切线 l 的距离为 1100,则 3|m2+| 1= 1100,
工具
第二章 函数、导数及其应用
解得m=±1. ∵切线l不过第四象限,∴m=1. 由于切点的横坐标为x=1,∴f(1)=4.∴1+a+b+c=4, ∴c=5. (2)由(1)可得f(x)=x3+2x2-4x+5,∴f′(x)=3x2+4x-4. 令f′(x)=0,得x=-2或x= . 当x变化时,f(x)和f′(x)的变化情况如下表:
因为函数g(x)是奇函数,所以g(-x)=-g(x),
即对任意实数x,有a(-x)3+(3a+1)(-x)2+(b+2)(-x)+b=-
导数与微分题型与做题方法总结
导数与微分题型与做题方法总结目录1. 导数与微分题型概述 (3)1.1 导数的概念 (4)1.2 微分的概念 (4)1.3 导数与微分的联系 (4)2. 导数题型分类及解题方法 (5)2.1 一阶导数求法 (6)2.1.1 利用导数定义求导 (6)2.1.2 利用导数公式求导 (7)2.1.3 利用求导法则求导 (7)2.2 高阶导数求法 (7)2.2.1 利用高阶导数公式求导 (8)2.2.2 利用求导法则求高阶导数 (9)2.3 复合函数求导 (9)2.3.2 分部积分求导 (10)2.4 隐函数求导 (11)2.4.1 直接求导法 (12)2.4.2 对数求导法 (13)2.5 参数方程求导 (13)3. 微分题型分类及解题方法 (14)3.1 微分公式及运算 (15)3.1.1 微分的基本公式 (15)3.1.2 微分的运算规则 (16)3.2 微分在近似计算中的应用 (16)3.2.1 微分近似计算公式 (17)3.2.2 微分近似计算的步骤 (17)3.3 微分在经济学中的应用 (18)3.3.1 边际分析 (19)4. 导数与微分综合题型及解题技巧 (21)4.1 导数与微分的综合应用 (22)4.1.1 导数与微分在几何中的应用 (23)4.1.2 导数与微分在物理中的应用 (24)4.2 解题步骤及注意事项 (25)4.2.1 分析题意,确定题型 (26)4.2.2 选择合适的求导方法 (27)4.2.3 注意细节,避免错误 (28)5. 案例分析及解题思路 (29)5.1 一阶导数求法案例分析 (29)5.2 高阶导数求法案例分析 (30)5.3 复合函数求导案例分析 (30)5.4 隐函数求导案例分析 (31)5.5 参数方程求导案例分析 (32)5.6 微分公式及运算案例分析 (32)5.7 微分在近似计算中的应用案例分析 (33)5.8 微分在经济学中的应用案例分析 (33)6. 常见错误及注意事项 (34)6.1 求导过程中的常见错误 (34)6.2 微分运算中的常见错误 (36)6.3 注意事项总结 (37)7. 总结与展望 (38)7.1 导数与微分的重要性 (39)7.2 学习建议及展望 (40)1. 导数与微分题型概述导数和微分是数学中的重要概念,用于描述函数的变化率和通过微小变化对函数值的影响。
高考数学第一轮知识点总复习 第二节 导数的应用(Ⅰ)
解 (1)由已知f′(x)=3 -a,x2 ∵f(x)在(-∞,+∞)上是单调增函数, ∴f′(x)=3 -ax≥2 0在(-∞,+∞)上恒成立, 即a≤3 x在2 x∈R上恒成立. ∵3 x≥2 0,∴只需a≤0. 又a=0时,f′(x)=3 ≥x20,f(x)= -1在x3R上是增函数, ∴a≤0. (2)由f′(x)=3 -ax≤2 0在(-1,1)上恒成立,得a≥3 在x∈x2(-1,1)上恒成立. ∵-1<x<1,∴3 <3,∴只需a≥3. 当a≥3时,f′(x)=x32 -a在x∈(-1,1)上恒有f′(x)<0, 即f(x)在(-1,1)上为x减2 函数,∴a≥3. 故存在实数a≥3,使f(x)在(-1,1)上单调递减.
学后反思 利用导数研究函数的单调性比用函数单调性的定义要方便, 但应注意f′(x)>0 [或f′(x)<0]仅是f(x)在某个区间上为增函数(或减函数)的充分条 件,在(a,b)内可导的函数f(x)在(a,b)上递增(或递减)的充要条件应 是f′(x)≥0[或f′(x)≤0],x∈(a,b)恒成立,且f′(x)在(a,b)的任意子区 间内都不恒等于0.这就是说, 函数f(x)在区间上的增减性并不排斥在区间内个别点处有f′(x0)=0. 因此,在已知函数f(x)是增函数(或减函数)来求参数的取值范围时, 应令f′(x)≥0[或f′(x)≤0]恒成立,解出参数的取值范围(一般可用 不等式恒成立理论求解),然后检验参数的取值能否使f′(x)恒等于0, 若能恒等于0,则参数的这个值应舍去,若f′(x)不恒为0,则由f′(x)≥0 [或f′(x)≤0]恒成立解出的参数的取值范围.
2-11第十一节 变化率与导数、导数的计算(2015年高考总复习)
2.函数f(x)的导函数 fx+Δx-fx lim Δx 称函数f′(x)= Δx→0 函数有时也记作y′.
为f(x)的导函数,导
考源教学资源网
第7页
返回导航
第二章
第十一节
高考总复习模块新课标
新课标A版数学
3.基本初等函数的导数公式
考源教学资源网
回扣教材 扫除盲点
考源教学资源网
第5页
返回导航
第二章
第十一节
高考总复习模块新课标
新课标A版数学
课 本 导 读 1.函数y=f(x)在x=x0处的导数 (1)定义: 称函数y=f(x)在x=x0处的瞬时变化率 Δy fx0+Δx-fx0 lim Δx lim = 为函数y=f(x)在x=x0处 Δx Δx→0 Δx→0 Δy 的导数,记作f′(x0)或y′|x=x0,即f′(x0)= lim Δx= Δx→0 fx0+Δx-fx0 lim . Δx
考源教学资源网
第31页
返回导航
第二章
第十一节
高考总复习模块新课标
新课标A版数学
x x 1 (3)∵y=sin (-cos )=- sinx, 2 2 2 1 1 1 ∴y′=(- sinx)′=- (sinx)′=- cosx. 2 2 2 2x-1 (4)(理)y′=(ln )′=[ln(2x-1)-ln(2x+1)]′=[ln(2x- 2x+1 1 1 2 1)]′-[ln(2x+1)]′= · (2x-1)′- · (2x+1)′= 2x-1 2x+1 2x-1 2 4 - = . 2x+1 4x2-1
第15页
返回导航
第二章
第十一节
高考总复习模块新课标
新课标A版数学
解析
(完整版)变化率与导数及导数的计算
(完整版)变化率与导数及导数的计算第⼗⼀节变化率与导数、导数的计算⼀、导数的概念1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)⼏何意义:函数f (x )在点x 0处的导数f ′(x 0)的⼏何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线⽅程为y -f (x 0)=f ′(x 0)(x -x 0).2.函数f (x )的导函数称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.⼆、基本初等函数的导数公式原函数导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=log a x f ′(x )=1 x ln af (x )=ln xf ′(x )=1x三、导数的运算法则1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );3.??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).1.(教材习题改编)若f (x )=x e x ,则f ′(1)=( ) A .0 B .e C .2eD .e 2解析:选C ∵f ′(x )=e x +x e x ,∴f ′(1)=2e.2.曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( ) A .2 B .-2 C.12D .-12解析:选A 依题意得y ′=1+ln x ,y ′ |x =e =1+ln e =2,所以-1a ×2=-1,a =2.3.(教材习题改编)某质点的位移函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,它的加速度是( )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2解析:选A 由v (t )=s ′(t )=6t 2-gt ,a (t )=v ′(t )=12t -g ,得t =2时,a (2)=v ′(2)=12×2-10=14(m/s 2).4.(2012·⼴东⾼考)曲线y =x 3-x +3在点(1,3)处的切线⽅程为________.解析:∵y ′=3x 2-1,∴y ′ |x =1=3×12-1=2.∴该切线⽅程为y -3=2(x -1),即2x -y +1=0. 答案:2x -y +1=05.函数y =x cos x -sin x 的导数为________.解析:y ′=(x cos x )′-(sin x )′=x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x . 答案:-x sin x 1.函数求导的原则对于函数求导,⼀般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应⽤,⽽且要特别注意求导法则对求导的制约作⽤,在实施化简时,⾸先必须注意变换的等价性,避免不必要的运算失误.2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯⼀的⼀条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,⽽且这样的直线可能有多条.典题导⼊[例1] ⽤定义法求下列函数的导数. (1)y =x 2; (2)y =4x2.[⾃主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=x 2+2x ·Δx +(Δx )2-x 2Δx =2x +Δx ,所以y ′=lim Δx →0 ΔyΔx=lim Δx →0 (2x +Δx )=2x . (2)因为Δy =4(x +Δx )2-4x 2=-4Δx (2x +Δx )x 2(x +Δx )2, ΔyΔx =-4·2x +Δx x 2(x +Δx )2,所以limΔx →0 Δy Δx =lim Δx →0 ?-4·2x +Δx x 2(x +Δx )2=-8x 3. 由题悟法根据导数的定义,求函数y =f (x )在x =x 0处导数的步骤 (1)求函数值的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)计算导数f ′(x 0)=li m Δx →0ΔyΔx. 以题试法1.⼀质点运动的⽅程为s =8-3t 2.(1)求质点在[1,1+Δt ]这段时间内的平均速度;(2)求质点在t =1时的瞬时速度(⽤定义及导数公式两种⽅法求解).解:(1)∵s =8-3t 2,∴Δs =8-3(1+Δt )2-(8-3×12)=-6Δt -3(Δt )2,v =ΔsΔt=-6-3Δt . (2)法⼀(定义法):质点在t =1时的瞬时速度 v =li m Δt →0ΔsΔt=li m Δt →0 (-6-3Δt )=-6. 法⼆(导数公式法):质点在t 时刻的瞬时速度 v =s ′(t )=(8-3t 2)′=-6t . 当t =1时,v =-6×1=-6.典题导⼊[例2] 求下列函数的导数. (1)y =x 2sin x ;(2)y =e x +1e x -1; [⾃主解答] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2.则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.由题悟法求导时应注意:(1)求导之前利⽤代数或三⾓恒等变换对函数进⾏化简可减少运算量.(2)对于商式的函数若在求导之前变形,则可以避免使⽤商的导数法则,减少失误.以题试法2.求下列函数的导数.(1)y =e x ·ln x ;(2)y =x x 2+1x +1x 3;解:(1)y ′=(e x ·ln x )′=e x ln x +e x ·1x =e x ln x +1x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.典题导⼊[例3] (1)(2011·⼭东⾼考)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线⽅程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .-14B .2C .4D .-12[⾃主解答] (1)y ′=3x 2,故曲线在点P (1,12)处的切线斜率是3,故切线⽅程是y -12=3(x -1),令x =0得y =9.(2)∵曲线y =g (x )在点(1,g (1))处的切线⽅程为y =2x +1,∴g ′(1)=k =2. ⼜f ′(x )=g ′(x )+2x ,∴f ′(1)=g ′(1)+2=4,故切线的斜率为4. [答案] (1)C (2)C若例3(1)变为:曲线y =x 3+11,求过点P (0,13)且与曲线相切的直线⽅程.解:因点P 不在曲线上,设切点的坐标为(x 0,y 0),由y =x 3+11,得y ′=3x 2,∴k =y ′|x =x 0=3x 20.⼜∵k =y 0-13x 0-0,∴x 30+11-13x 0=3x 20. ∴x 30=-1,即x 0=-1. ∴k =3,y 0=10.∴所求切线⽅程为y -10=3(x +1),即3x -y +13=0.由题悟法导数的⼏何意义是切点处切线的斜率,应⽤时主要体现在以下⼏个⽅⾯: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解⽅程f ′(x 1)=k ;(3)已知切线过某点M (x 1,f (x 1))(不是切点)求切点,设出切点A (x 0,f (x 0)),利⽤k =f (x 1)-f (x 0)x 1-x 0=f ′(x 0)求解.以题试法3.(1)(2012·新课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线⽅程为________. (2)(2013·乌鲁⽊齐诊断性测验)直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( )A .-2B .-1C .-12D .1解析:(1)y ′=3ln x +1+3,所以曲线在点(1,1)处的切线斜率为4,所以切线⽅程为y -1=4(x -1),即y =4x -3.(2)设切点的坐标为a ,-12a +ln a ,依题意,对于曲线y =-12x +ln x ,有y ′=-12+1x ,所以-12+1a =12,得a =1.⼜切点1,-12 在直线y =12x +b 上,故-12=12+b ,得b =-1. 答案:(1)y =4x -3 (2)B1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).2.已知物体的运动⽅程为s =t 2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194 B.174 C.154D.134解析:选D ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134.3. (2012·哈尔滨模拟)已知a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导函数f ′(x )是偶函数,则曲线y =f (x )在原点处的切线⽅程为( )A .y =-3xB .y =-2xC .y =3xD .y =2x解析:选B ∵f (x )=x 3+ax 2+(a -2)x ,∴f ′(x )=3x 2+2ax +a -2. ∵f ′(x )为偶函数,∴a =0. ∴f ′(x )=3x 2-2.∴f ′(0)=-2.∴曲线y =f (x )在原点处的切线⽅程为y =-2x .4.设曲线y =1+cos x sin x 在点π2,1处的切线与直线x -ay +1=0平⾏,则实数a 等于( ) A .-1 B.12 C .-2D .2解析:选A ∵y ′=-sin 2x -(1+cos x )cos x sin 2x =-1-cos x sin 2x ,∴y ′|x =π2=-1.由条件知1a =-1,∴a =-1.5.若点P 是曲线y =x 2-ln x 上任意⼀点,则点P 到直线y =x -2的最⼩距离为( ) A .1 B. 2 C.22D. 3解析:选B 设P (x 0,y 0)到直线y =x -2的距离最⼩,则y ′|x =x 0=2x 0-1x 0=1.得x 0=1或x 0=-12(舍).∴P 点坐标(1,1).∴P 到直线y =x -2距离为d =|1-1-2|1+1= 2.6.f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满⾜f ′(x )=g ′(x ),则f (x )与g (x )满⾜( )A .f (x )=g (x )B .f (x )=g (x )=0C .f (x )-g (x )为常数函数D .f (x )+g (x )为常数函数解析:选C 由f ′(x )=g ′(x ),得f ′(x )-g ′(x )=0,即[f (x )-g (x )]′=0,所以f (x )-g (x )=C (C 为常数).7.(2013·郑州模拟)已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________. 解析:∵f ′(x )=1x -2f ′(-1)x +3,f ′(-1)=-1+2f ′(-1)+3,∴f ′(-1)=-2,∴f ′(1)=1+4+3=8.答案:88.(2012·辽宁⾼考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.解析:易知抛物线y =12x 2上的点P (4,8),Q (-2,2),且y ′=x ,则过点P 的切线⽅程为y =4x -8,过点Q 的切线⽅程为y =-2x -2,联⽴两个⽅程解得交点A (1,-4),所以点A 的纵坐标是-4.答案:-49.(2012·⿊龙江哈尔滨⼆模)已知函数f (x )=12x -14sin x -34cos x 的图象在点A (x 0,y 0)处的切线斜率为1,则tan x 0=________.解析:由f (x )=12x -14sin x -34cos x 得f ′(x )=12-14cos x +34sin x ,则k =f ′(x 0)=12-14cos x 0+34sin x 0=1,即32sin x 0-12cos x 0=1,即sin x 0-π6=1. 所以x 0-π6=2k π+π2,k ∈Z ,解得x 0=2k π+2π3,k ∈Z.故tan x 0=tan 2k π+2π3=tan 2π3=- 3. 答案:- 310.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3);解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′=tan x +x ·sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +x cos 2x. (2)y ′=(x +1)′(x +2)(x +3)+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11. 11.已知函数f (x )=x -2x ,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同⼀条直线.解:根据题意有曲线y =f (x )在x =1处的切线斜率为f ′(1)=3,曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a .所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线⽅程为y -f (1)=3(x -1),得:y +1=3(x -1),即切线⽅程为3x -y -4=0. 曲线y =g (x )在x =1处的切线⽅程为y -g (1)=3(x -1).得y +6=3(x -1),即切线⽅程为3x -y -9=0,所以,两条切线不是同⼀条直线.12.设函数f (x )=x 3+ax 2-9x -1,当曲线y =f (x )斜率最⼩的切线与直线12x +y =6平⾏时,求a 的值.解:f ′(x )=3x 2+2ax -9=3x +a 32-9-a 23,即当x =-a 3时,函数f ′(x )取得最⼩值-9-a 23,因斜率最⼩的切线与12x +y =6平⾏,即该切线的斜率为-12,所以-9-a 23=-12,即a 2=9,即a =±3.1.(2012·商丘⼆模)等⽐数列{a n }中,a 1=2,a 8=4,f (x )=x (x -a 1)(x -a 2)…(x -a 8),f ′(x )为函数f (x )的导函数,则f ′(0)=( )A .0B .26C .29D .212解析:选D ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8),∴f ′(x )=x ′(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′=(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′,∴f ′(0)=(-a 1)·(-a 2)·…·(-a 8)+0=a 1·a 2·…·a 8=(a 1·a 8)4=(2×4)4=(23)4=212. 2.已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1π2+f 2π2+…+f 2 012π2=________. 解析:f 2(x )=f 1′(x )=cos x -sin x , f 3(x )=(cos x -sin x )′=-sin x -cos x , f 4(x )=-cos x +sin x ,f 5(x )=sin x +cos x ,以此类推,可得出f n (x )=f n +4(x ),⼜∵f 1(x )+f 2(x )+f 3(x )+f 4(x )=0,∴f 1π2+f 2π2+…+f 2 012π2=503f 1π2+f 2π2+f 3π2+f 4π2=0. 答案:03.已知函数f (x )=x 3-3x 及y =f (x )上⼀点P (1,-2),过点P 作直线l ,根据以下条件求l 的⽅程.(1)直线l 和y =f (x )相切且以P 为切点; (2)直线l 和y =f (x )相切且切点异于P .解:(1)由f (x )=x 3-3x 得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0,故所求的直线⽅程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另⼀点(x 0,y 0),则f ′(x 0)=3x 20-3. ⼜直线过(x 0,y 0),P (1,-2),故其斜率可表⽰为y 0-(-2)x 0-1=x 30-3x 0+2x 0-1,所以x 30-3x 0+2x 0-1=3x 20-3,即x 30-3x 0+2=3(x 20-1)(x 0-1).解得x 0=1(舍去)或x 0=-12,故所求直线的斜率为k =314-1=-94. 所以l 的⽅程为y -(-2)=-94(x -1),即9x +4y -1=0.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线⽅程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任⼀点处的切线与直线x =0和直线y =x 所围成的三⾓形⾯积为定值,并求此定值.解:(1)⽅程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.⼜f ′(x )=a +bx2,则2a -b 2=12,a +b 4=74,解得?a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上任⼀点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线⽅程为y -y 0=1+3x 20·(x -x 0),即y -x 0-3x 0=1+3x 20(x -x 0).令x =0得y =-6x 0,从⽽得切线与直线x =0的交点坐标为0,-6x 0.令y =x 得y =x =2x 0,从⽽得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三⾓形⾯积为12-6x 0|2x 0|=6. 故曲线y =f (x )上任⼀点处的切线与直线x =0,y =x 所围成的三⾓形的⾯积为定值,此定值为6.【基础⾃测】1.(2013全国⾼考)已知曲线124++=ax x y 在点)2,1(+-a 处的切线的斜率为8,则a =()A.9B.6C.-9D.-62.(2014宁夏⼀模)如果过曲线12++=x x y 上的点P 处的切线平⾏于直线2+=x y ,那么点P 的左标为()A.(1,0)B.(0,-1) B.(0,1) D.(-1,0)3.(2013惠州⼀模)设P 为曲线C :322++=x x y 上的点,且曲线C 在点P 处的切线倾斜⾓的取值范围为]4 ,0[π,则点P 横坐标的取值范围为()A.]21,1[-- B.]0,1[- C.]1,0[ D.]1,21[4.(2013宁夏联考)已知⼆次函数c bx ax x f ++=2)(的导数为)('x f ,且0)0('>f ,对于任意实数x 都有0)(≥x f ,则)0()1('f f 的最⼩值为() A.3 B.25 C.2 D.23.)1()1(lim,2)1(1)(1'的值求处可导,且在】设函数【例hh f h f f x x f --+==x f D. x f x f B. x f xx f x x f x x f )()(.C )()(.A )()(lim ,)(000'0'000--?-?-)等于(则处可导在【变式】设函数.)0,1()2(1)1(.123的切线⽅程求曲线过点处的切线⽅程;求曲线在】已知曲线【例--=+=x x y。
高中数学分数阶导数
分数阶导数1引言我们都熟悉的导数的定义。
通常记作1()()df x D f x dx 或 222()()d f x D f x dx 或这些都是很容易理解的。
我们同样也熟悉一些有关导数的性质,例如[()()]()()D f x f y Df x Df y +=+但是像这样的记号1/21/21/2()D ()d f x f x dx或者又代表什么意思呢?大多数的读者之前肯定没有遇到过导数的阶数是1/2的。
因为几乎没有任何教科书会提到它。
然而,这个概念早在18世纪,Leibnitz 已经开始探讨。
在之后的岁月里,包括L’Hospital, Euler,Lagrange, Laplace, Riemann, Fourier, Liouville 等数学大家和其他一些数学家也出现过或者研究过的概念。
现在,关于“分数微积分”的文献已经大量存在。
近期关于“分数微积分”的两本研究生教材也出版了,就是参考文献[9]和[11]。
此外,两篇在会议上发表的论文[7]和[14]也被收录。
Wheeler 在文献[15]已编制了一些可读性较强,较易理解的资料,虽然这些都还没有正式出版。
本论文的目的是想用一种亲和的口吻去介绍分数阶微积分。
而不是像平常教科书里面的从定义-引理-定理的方法介绍它。
我们寻找了一个新的想法去介绍分数阶导数。
首先我们从熟悉的n 阶导数的例子开始,比如D n axn axe a e =。
然后用其他数字取代自然数字n 。
这种方式,感觉像是侦探一样,步步深入。
我们将寻求蕴含在这个构思里面的数学结构。
我们在探讨了各种思路,对分数阶导数的概念后,才对分数阶导数给出正式定义。
(如果想快速浏览它的正式定义,请参见米勒的优秀论文,参考文献[8]。
)随着探究的深入,我们会不时地让读者去思考一些问题。
对这些问题的答案将在本文的最后一节呈现。
那到底什么是一个分数阶导数呢?让我们一起来看看吧……2指数函数的分数阶导数我们将首先研究指数函数ax e 的导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 所以 x= 是函数 f(x)的极小值点,极大值点不存在. e
规律方法 3
1.本例2中区间确定,但函数解析式不确定,
因此应讨论每个极值点与区间的关系,求解时可画出每一类情况 的大致图象,数形结合求解. 2.求函数 fx在[a,b]上的最值的步骤如下:,1求 fx在a, b内的极值; 2将 fx的各极值与端点处的函数值 fa、fb比较,其中最 大的一个是最大值,最小的一个是最小值.
考向三 [040] 利用导数研究函数的最值 (2014· 广州模拟)已知函数 f(x)=xln x, (1)求函数 f(x)的极值点;
【思路点拨】 定最小值.
讨论极值点同区间[1,e]的关系,进而确
【尝试解答】
(1)f′(x)=ln x+1,x>0,
1 而 f′(x)>0⇔ln x+1>0⇔x> , e 1 f′(x)<0⇔ln x+1<0⇔0<x< , e 所以
a 3 ∴f(x)min=f(e)=1- = . e 2 e ∴a=- (舍). 2 ③当-e<a<-1 时,令 f′(x)=0, 得 x=-a, 当 1<x<-a 时,f′(x)<0, f(x)在(1,-a)上递减. 同理,f(x)在(-a,e)上递增. 3 ∴f(x)min=f(-a)=ln(-a)+1= , 2 ∴a=- e. 综上,a=- e.
第十一节
导数的应用(一)
考向二 [039]
利用导数研究函数的极值
(2013· 福建高考)已知函数 f(x)=x-aln x(a∈R). (1)当 a=2 时,求曲线 y=f(x)在点 A(1,f(1))处的切线方程; (2)求函数 f(x)的极值.
【思路点拨】
(1)首先确定定义域,再利用导数求切线
【名师寄语】 1.求函数的单调区间, 转化为解不等式 f′x >0 和 f′x<0,考查了转化与化归思想. 2.判断函数在给定区间[0,k]上的单调性,需要考虑 f′x= 0 的根和区间端点的大小,求函数的最大值,需要比较 f0和 fk 的大小,都考查了分类讨论思想的应用. 3.比较区间端点 k 和函数 f′x的零点 ln2k的大小及 ek 与 k2+k+1 的大小时,均构造了函数,并借助导数解决,需要较强 的分析问题和解决问题的能力.
规律方法 2 1.本例在求解时,常因忽略函数的定义域0,+ ∞,而忘记讨论参数 a≤0 的情形. 2.可导函数 y=fx在点 x0 处取得极值的充要条件是 f′x0 =0,且在 x0 左侧与右侧 f′x的符号不同.特别注意,导数为零 的点不一定是极值点. 3.若 fx在a,b内有极值,那么 fx在a,b内绝不是单调 函数,即在某区间上单调增或减的函数没有极值.
对点训练
(1)(2012· 重庆高考)设函数 f(x)在 R 上可导,其导
函数为 f′(x), 且函数 y=(1-x)f′(x)的图象如图 2-11-3 所示, 则下列结论中一定成立的是( )
A.函数 f(x)有极大值 f(2)和极小值 f(1) B.函数 f(x)有极大值 f(-2)和极小值 f(1) C.函数 f(x)有极大值 f(2)和极小值 f(-2) D.函数 f(x)有极大值 f(-2)和极小值 f(2)
对点训练
a 已知函数 f(x)=ln x-x.
(1)若 a>0,试判断 f(x)在其定义域内的单调性; (2)当 a=-2 时,求 f(x)的最小值; 3 (3)若 f(x)在[1,e]上的最小值为 ,求 a 的值. 2
【解】
(1)f(x)的定义域为(0,+∞),
1 a x+ a f′(x)= + 2= 2 . x x x ∵a>0,∴f′(x)>0. 故 f(x)在(0,+∞)上是单调递增函数. x-2 2 (2)当 a=-2 时,f(x)=ln x+x,f′(x)= 2 . x 当 x∈(0,2)时,f′(x)<0,当 x∈(2,+∞)时,f′(x)>0, ∴f(x)在(0,2)上为减函数,在(2,+∞)上为增函数. ∴f(x)min=f(2)=ln 2+1.
———
(12 分)(2013· 广东高考)设函数 f(x)=(x-1)ex-kx2(k ∈R). (1)当 k=1 时,求函数 f(x)的单调区间; (2)当
1 k∈2,1时,求函数
f(x)在[0,k]上的最大值 M.
【规范解答】
(1)当 k=1 时,f(x)=(x-1)ex-x2,
a x- a (2)由 f′(x)=1- = ,x>0 知: x x ①当 a≤0 时,f′(x)>0,函数 f(x)为(0,+∞)上的增函数, 函数 f(x)无极值; ②当 a>0 时,由 f′(x)=0,解得 x=a. 又当 x∈(0,a)时,f′(x)<0; 当 x∈(a,+∞)时,f′(x)>0, 从而函数 f(x)在 x=a 处取得极小值, 且极小值为 f(a)=a-aln a,无极大值. 综上,当 a≤0 时,函数 f(x)无极值; 当 a>0 时,函数 f(x)在 x=a 处取得极小值 a-aln a,无极 大值.
规范解答之三
利用导数解答函数的最值
利用导数解答函数最值的一般步骤:第一步:利用 f′(x)>0 或 f′(x)<0 求单调区间;第二步:解 f′(x)=0 得两个根 x1x2; 第三步:比较两根同区间端点的大小;第四步:求极值;第五步: 比较极值同端点值的大小.
———
[1 个示范例]
———
[1 个规范练]
斜率及其方程;(2)先求出函数导数,再讨论字母a的取值以确 定单调性.
a 【尝试解答】 函数 f(x)的定义域为(0, +∞), f′(x)=1- . x 2 (1)当 a=2 时,f(x)=x-2ln x,f′(x)=1-x(x>0), 因而 f(1)=1,f′(1)=-1, 所以曲线 y=f(x)在点 A(1,f(1))处的切线方程为 y-1=-(x -1),即 x+y-2=0.
f′(x)=ex+(x-1)ex-2x=x(ex-2). 由 f′(x)=0,解得 x1=0,x2=ln 2>0. 由 f′(x)>0,得 x<0 或 x>ln 2. 由 f′(x)<0,得 0<x<ln 2.2 分 所以函数 f(x)的单调增区间为(-∞,0)和(ln 2,+∞), 单调减区间为(0,ln 2).3 分
x+a (3)f′(x)= 2 , x ①当 a≥-1 时,对任意 x∈[1,e], f′(x)≥0,此时 f(x)在[1,e]上为增函数, 3 ∴f(x)min=f(1)=-a= , 2 3 ∴a=- (舍). 2 ②当 a≤-e 时,对任意 x∈[1,e], f′(x)≤0,此时 f(x)在[1,e]上为减函数.
图2-11-3
3 (2)(2014· 潍坊模拟)已知函数 f(x)=ax -3x +1- (a∈R 且 a
3 2a≠0),求函数 源自(x)的极大值与极小值.【解析】 >0; 当-2<x<1 时,y=(1-x)f′(x)<0,得 f′(x)<0; 当 1<x<2 时,y=(1-x)f′(x)>0,得 f′(x)<0; 当 x>2 时,y=(1-x)f′(x)<0,得 f′(x)>0, (1)当 x<-2 时,y=(1-x)f′(x)>0,得 f′(x)