【附20套中考模拟试题】湖北省潜江市十校联考2019-2020学年中考数学模拟试卷含解析
2019-2020年湖北省中考数学各地区模拟试题分类(武汉市专版)(二)——《数与式》(含解析)
2020年湖北省中考数学各地区模拟试题分类(武汉市专版)(二)——《数与式》一.选择题1.(2020•江岸区校级模拟)有76个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是1,第二个数是﹣1,那么这76个数的积是()A.(﹣2)23B.(﹣2)24C.(﹣2)25D.(﹣2)26 2.(2020•汉阳区校级模拟)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得,7+71+72+…+72019+72020的结果的个位数是()A.0 B.1 C.7 D.8 3.(2020•江岸区校级模拟)若在实数范围内有意义,则x的取值范围是()A.x<B.x<2 C.x≥D.x≤4.(2020•汉阳区校级模拟)式子在实数范围内有意义,x的取值范围是()A.x≠﹣5 B.x≥5C.x>﹣5 D.x≥﹣5 5.(2020•硚口区二模)观察下列算式:a1==5,a2==11,a3==19,…,它有一定的规律性,把第n个算式的结果记为a n,则+++…+的值是()A.B.C.D.6.(2020•武汉模拟)将某物质从﹣2℃升高6℃是()A.﹣8℃B.4℃C.﹣4℃D.8℃7.(2020•武汉模拟)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,试利用上述规律判断算式:3+32+33+34+…+32020结果的末位数字是()A.0 B.1 C.3 D.7 8.(2020•武汉模拟)如图所示,在这个运算程序当中,若开始输入的x是2,则经过2021次输出的结果是()A.1 B.3 C.4 D.8 9.(2020•武汉模拟)古希腊数学家把1、3、6、10、15、21、…叫做三角形数,它有一定的规律性.若把第一个三角形数记为a1,第二个三角形数记为a2,…第n个三角形数记为a n,则的值是()A.B.C.D.二.填空题10.(2020•武汉模拟)计算:+的值为.11.(2020•武汉模拟)计算:=.12.(2020•江岸区校级模拟)计算的结果是.13.(2020•武汉模拟)计算:(1﹣)•=.14.(2020•武汉模拟)﹣=.15.(2020•武昌区模拟)化简:+的结果是.16.(2020•武汉模拟)计算:+的值为.17.(2020•武汉模拟)计算:的结果是.18.(2020•洪山区模拟)化简+的结果是.19.(2020•武汉模拟)计算的结果为.三.解答题20.(2020•武汉模拟)计算:(2x2)4﹣x•x3•x4.21.(2020•武汉模拟)计算:3x5+(2x2)2•x﹣2x3•x2.22.(2020•武汉模拟)计算:3a2•a4+(﹣2a2)3+8a8÷2a2.23.(2020•武昌区模拟)计算:2x3•x3+(3x3)2﹣8x6.24.(2020•青山区模拟)计算:a3•a4•a+(﹣2a4)2.25.(2020•武汉模拟)计算:n2•n4+4(n2)3﹣5n3•n2 26.(2020•硚口区模拟)计算:a2a4﹣a8÷a2+(3a3)2.27.(2020•武汉模拟)计算:m4n2+2m2⋅m4+(m2)3﹣(m2n)228.(2020•江岸区校级模拟)计算:(1)﹣|1﹣|﹣1(2)2a2•a4﹣(2a3)2+3a6参考答案一.选择题1.解:根据据题意写出前面一些数:1,﹣1,﹣2,﹣1,1,2,1,﹣1,经观察发现从左向右数每排列六个数后,从第七个数开始重复出现,即这76个数是由1,﹣1,﹣2,﹣1,1,2这6个数组成的数组重复排列而成,而1×(﹣1)×(﹣2)×(﹣1)×1×2=﹣4,又76=12×6+4,故这76个数的积是:(﹣4)12×(﹣2)=(﹣2)25.故选:C.2.解:由71=7,72=49,73=343,74=2401,75=16807,…,可得:个位数4个数一循环,且4个数一循环的个位数字之和为7+9+3+1=20,∵2020÷4=505,∴7+71+72+…+72020=7+505×0=7,故选:C.3.解:由题意得,1﹣2x≥0,解得x≤.故选:D.4.解:由题意得:5+x≥0,解得:x≥﹣5,故选:D.5.解:观察算式:a1==5,a2==11,a3==19,…,发现11﹣5=6,19﹣11=8,猜测下一个数比19大10,即29,验证:a4==29,故依次猜测a5=41,a6=55,a7=71,且验证正确;∴+++…+=++++++=++++++=(1﹣+﹣+﹣+﹣+﹣+﹣+﹣)=(1++﹣﹣﹣)=×=.故选:C.6.解:﹣2+6=4(℃).故选:B.7.解:观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,发现规律:末位数字为:3,9,7,1,3,9,7,…,每4个数一组循环,所以2020÷4=505,而3+9+7+1=20,20×505=10100.所以算式:3+32+33+34+…+32020结果的末位数字是0.故选:A.8.解:把x=2代入得:2÷2=1,把x=1代入得:1+5=6,把x=6代入得:6÷2=3,把x=3代入得:3+5=8,把x=8代入得:8÷2=4,把x=4代入得:4÷2=2,把x=2代入得:2÷2=1,以此类推,∵2021÷6=336…5,∴经过2021次输出的结果是4.故选:C.9.解:,,,,,,……由上可知,,∴===,故选:D.二.填空题(共10小题)10.解:原式=+=,故答案为:.11.解:原式=+=+==.故答案为:.12.解:原式=,=,=.故答案为:.13.解:(1﹣)•===2,故答案为:2.14.解:原式=﹣==﹣=﹣.故答案为:﹣.15.解:原式=﹣===,故答案为:.16.解:===,故答案为.17.解:原式===,故答案为:18.解:+=+==;故答案为:.19.解:原式=﹣=﹣==﹣=﹣.故答案为:﹣.三.解答题(共9小题)20.解:原式=16x8﹣x8=15x8.21.解:原式=3x5+4x5﹣2x5=5x5.22.解:原式=3a6﹣8a6+4a6=﹣a6.23.解:2x3•x3+(3x3)2﹣8x6=2x6+9x6﹣8x6=3x6.24.解:a3•a4•a+(﹣2a4)2=a8+4a8=5a8.25.解:n2•n4+4(n2)3﹣5n3•n2=n6+4n6﹣5n5=5n6﹣5n5.26.解:原式=a6﹣a6+9a6=9a627.解:原式=m4n2+2m6+m6﹣m4n2,=3m6.28.解:(1)原式=2﹣(﹣1)﹣1 =2﹣+1﹣1=;(2)原式=2a6﹣4a6+3a6=a6.。
2019-2020年中考数学模拟测试试题(不等式与不等式组)(二)
2019-2020年中考数学模拟测试试题(不等式与不等式组)(二)一、选择题1.在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是()A.10人B.11人C.12人D.13人2.地球正面临第六次生物大灭绝,据科学家预测,到2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝,2012年底,长江江豚数量仅剩约1000头,其数量年平均下降的百分率在13%~15%范围内,由此预测,2013年底剩下江豚的数量可能为()头.A.970 B.860 C.750 D.7203.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是()A.40 B.45 C.51 D.56二、填空题4.对非负实数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n﹣≤x<n+,则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若()=4,则实数x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2013x)=m+(2013x);⑤(x+y)=(x)+(y);其中,正确的结论有(填写所有正确的序号).三、解答题5.5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨.(1)小明一共有多少种可能的购买方案?列出所有方案;(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率.6.为了抓住2013年凉都消夏文化节的商机,某商场决定购进甲、乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.(1)购进甲乙两种纪念品每件各需要多少元?(2)该商场决定购进甲乙两种纪念品100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时又不能超过6430元,则该商场共有几种进货方案?(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?7.定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.(1)如果[a]=﹣2,那么a的取值范围是.(2)如果[]=3,求满足条件的所有正整数x.8.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.9.某文具店准备购进甲、乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲、乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?10.某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?11.某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商场内消费满一定金额后,按下表获得相应的返还金额.消费金额(元)300﹣400 400﹣500500﹣600600﹣700700﹣900…返还金额(元)30 60 100 130 150 …根据上述促销方案,顾客在该商场购物可以获得双重优惠,例如:若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1﹣80%)+30=110(元).(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠不少于226元,那么该商品的标价至少为多少元?12.某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价;(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?13.青海新闻网讯:西宁市为加大向国家环境保护模范城市大步迈进的步伐,积极推进城市绿地、主题公园、休闲场地建设.园林局利用甲种花卉和乙种花卉搭配成A、B两种园艺造型摆放在夏都大道两侧.搭配数量如下表所示:甲种花卉(盆)乙种花卉(盆)A种园艺造型(个)80盆40盆B种园艺造型(个)50盆90盆(1)已知搭配一个A种园艺造型和一个B种园艺造型共需500元.若园林局搭配A种园艺造型32个,B种园艺造型18个共投入11800元.则A、B两种园艺造型的单价分别是多少元?(2)如果搭配A、B两种园艺造型共50个,某校学生课外小组承接了搭配方案的设计,其中甲种花卉不超过3490盆,乙种花卉不超过2950盆,问符合题意的搭配方案有几种?请你帮忙设计出来.14.某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)12 10月污水处理能力(吨/月)200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.15.某校九(3)班去大冶茗山乡花卉基地参加社会实践活动,该基地有玫瑰花和薰衣草两种花卉,活动后,小明编制了一道数学题:花卉基地有甲乙两家种植户,种植面积与卖花总收入如下表.(假设不同种植户种植的同种花卉每亩卖花平均收入相等)种植户玫瑰花种植面积(亩)薰衣草种植面积(亩)卖花总收入(元)甲 5 3 33500乙 3 7 43500(1)试求玫瑰花,薰衣草每亩卖花的平均收入各是多少?(2)甲、乙种植户计划合租30亩地用来种植玫瑰花和薰衣草,根据市场调查,要求玫瑰花的种植面积大于薰衣草的种植面积(两种花的种植面积均为整数亩),花卉基地对种植玫瑰花的种植给予补贴,种植玫瑰花的面积不超过15亩的部分,每亩补贴100元;超过15亩但不超过20亩的部分,每亩补贴200元;超过20亩的部分每亩补贴300元.为了使总收入不低于127500元,则他们有几种种植方案?16.为落实国家“三农”政策,某地政府组织40辆汽车装运A、B、C三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题:农产品种类 A B C每辆汽车的装载量(吨) 4 5 6(1)如果装运C种农产品需13辆汽车,那么装运A、B两种农产品各需多少辆汽车?(2)如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种?写出每种装运方案.17.在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分.(1)小李考了60分,那么小李答对了多少道题?(2)小王获得二等奖(75~85分),请你算算小王答对了几道题?18.为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资.现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:甲种货车乙种货车载货量(吨/辆)45 30租金(元/辆)400 300如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.19.设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值.表2a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a220.在校园文化建设中,某学校原计划按每班5幅订购了“名人字画”共90幅.由于新学期班数增加,决定从阅览室中取若干幅“名人字画”一起分发,如果每班分4幅,则剩下17幅;如果每班分5幅,则最后一班不足3幅,但不少于1幅.(1)该校原有的班数是多少个?(2)新学期所增加的班数是多少个?21.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?22.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?23.“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?24.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)25.某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?26.雅安地震后,政府为安置灾民,从某厂调拨了用于搭建板房的板材5600m2和铝材2210m2,计划用这些材料在某安置点搭建甲、乙两种规格的板房共100间,若搭建一间甲型板房或一间乙型板房所需板材和铝材的数量如下表所示:板房规格板材数量(m2)铝材数量(m2)甲型40 30乙型60 20请你根据以上信息,设计出甲、乙两种板房的搭建方案.27.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.。
2019-2020年中考数学模拟试卷(四)(I)
2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。
湖北省潜江市十校联考20xx届九年级的数学上期中试题含答案.doc
湖北省潜江市十校联考2019 届九年级数学上期中试题含答案( 时间 120 分,满分120分;请你把答案写在答题卡上)一、选择题(每小题 3 分,共 30 分,在每小题给出的四个选项中,只有一个选项正确,).1.抛物线y x24x m2 5 (m是常数)的顶点在()A.第一象限B.第二象限 C .第三象限D.第四象限2.下面四个手机应用图标中,属于中心对称图形的是()A. B. C. D.第9题3. 在⊙ O中,弦 AB的长为 6,圆心 O到 AB的距离为4,则⊙ O的半径为()A.10B.6 C.5 D.44. 若二次函数y=x 2+mx的对称轴是x=3,则关于x 的方程 x2+mx=7的解为()A. x1=0, x2=6 B . x1=1, x2=7 C .x1=1, x2=﹣ 7 D . x1=﹣1, x2=75. 下列说法正确的是()A. 将抛物线y x2向左平移4个单位后,再向下平移 2 个单位,则此时抛物线的解析式是y=( x- 4)2-2B.方程 x2+2x+3=0 有两个不相等的实数根C.半圆是弧,但弧不一定是半圆.D.平分弦的直径垂直于弦,并且平分这条弦所对的两条弧6.某商品现在的售价为每件60 元,每星期可卖出300 件.市场调查反映,如果调整商品售价,每降价 1 元,每星期可多卖出20 件.设每件商品降价x 元后,每星期售出商品的总销售额为y 元,则 y 与 x 的关系式为()A. y=60( 300+20x )B. y= (60﹣ x)( 300+20x) C. y=300( 60﹣ 20x)D. y= ( 60 ﹣x)( 300﹣ 20x )7. 某商店今年 1 月份的销售额是 2 万元, 3 月份的销售额是 4.5 万元,从 1 月份到 3 月份,该店销售额平均每月的增长率是()A .20% B .25% C.50% D .62.5%28. 已知抛物线y=x -2mx-4 ( m> 0)的顶点 M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为()A.(1,-5)B.(3,-13)C.(2,-8)D.( 4, -20 )9. 如图,在Rt △ ABC中,∠ ACB=90°,将△ABC绕顶点 C 逆时针旋转得到△A'B'C , M是 BC的中点, P 是 A'B' 的中点,连接PM.若 BC=2,∠ BAC=30°,则线段P M的最大值是()A. 4B. 3C. 2D. 1第10题第12题第14题第16题10. 如图,抛物线y1=(x+1)2+1与y2=a(x﹣4)2﹣3交于点A( 1, 3),过点 A 作 x 轴的平行线,分别交两条抛物线于B、 C 两点,且D、 E 分别为顶点.则下列结论:①a=;② AC=AE;③△ ABD 是等腰直角三角形;④当x> 1 时, y1> y2其中正确结论的个数是()A .1个 B.2个 C.3个 D.4个二、填空题(每小题 3 分,共 18 分)11.若点 M( 3, a-2 ), N( b, a)关于原点对称,则a+b=.12.一副三角尺按如图的位置摆放(顶点 C 与 F 重合,边CA与边 FE 叠合,顶点B、 C、 D 在一条直线上).将三角尺DEF绕着点 F 按顺时针方向旋转n°后( 0< n< 180 ),如果EF∥AB,那么 n 的值是.13.关于 x 的一元二次方程(a-1 ) x2+( 2a+1) x+a=0 有两个不相等的实数根,则 a 的取值范围是14.若将图中的抛物线 y=x 2-2x+c 向上平移,使它经过点( 2, 0),则此时的抛物线位于x 轴下方的图象对应x 的取值范围是.15 . 已知⊙O 的半径为10,弦 AB∥CD, AB=12,CD=16,则 AB 和 CD的距离为.16.如图,把正方形铁片OABC置于平面直角坐标系中,顶点 A 的坐标为( 3, 0),点P( 1 , 2 )在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,则正方形铁片连续旋转次后,点 P的坐标为.三、解答题(共72 分)17.(本题 6 分)根据要求,解答下列问题.仔细观察小聪同学所求的三个方程的解.①方程 x2-2x+1=0的解为 x1=1, x2=1;②方程 x2-3x+2=0的解为 x1=1, x2=2;③方程 x2-4x+3=0的解为 x1=1, x2=3;(1)根据以上方程特征及其解的特征,请猜想:①方程x2-9x +8=0的解为________________________;②关于x 的方程________________________ 的解为x1= 1,x2=n.(2)请用配方法解方程x2-9x+ 8= 0,以验证猜想结论的正确性.18.(本题 6 分)已知:如图, AB是⊙O 的直径, CD是⊙O 的弦, AB, CD的延长线交于 E,若AB=2DE,∠ C=40°,求∠E及∠ AOC的度数.19. (本题 7 分)如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点 A 的坐标为( 2,2)请解答下列问题:(1)画出△ ABC 关于 y 轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ ABC 绕点 B 逆时针旋转 90°后得到的△A2B2C2,并写出 A2的坐标.(3)画出△A2B2C2关于原点 O成中心对称的△A3B3C3,并写出 A3的坐标.20.( 7 分)已知关于 x 的一元二次方程 x2-6x+m+4=0 有两个实数根 x1,x2.(1)求 m的取值范围;(2)若 x1, x2满足 3x1=|x 2|+2 ,求 m的值.21.(8分)如图,有一座拱桥是圆弧形,它的跨度AB=60 米,拱高PD=18 米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30 米时,要采取紧急措施,若拱顶离水面只有 4 米,即 PE=4 米时,是否要采取紧急措施?22.(8分)如图,已知抛物线y=﹣ x2+mx+3与 x 轴交于点A、 B 两点,与 y 轴交于 C 点,点 B的坐标为( 3, 0),抛物线与直线y=﹣x+3 交于 C、 D 两点.连接BD、 AD.(1)求 m的值.(2)抛物线上有一点 P,满足 S△ABP=4S△ABD,求点 P 的坐标.23.( 8 分)工人师傅用一块长为 10dm,宽为 6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2 时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为 0.5 元,底面每平方分米的费用为 2 元,裁掉的正方形边长多大时,总费用最低,最低为多少?24.(10分)已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,BAO90 ,AC∥OP交 OM于 C, D为 OB的中点, DE⊥ DC交 MN于 E.(1)如图 1,若点B在OP上,则①AC OE ( 填“<”,“=”或“>” ) ;②线段CA、CO、 CD满足的等量关系式是;(2) 将图 1 中的等腰 Rt△ABO绕O点顺时针旋转( 0 45 ),如图2,那么(1)中的结论②是否成立?请说明理由;(3) 将图 1 中的等腰 Rt△ABO绕O点顺时针旋转( 45 90 ),请你在图 3 中画出图形,并直接写出线段CA、CO、 CD满足的等量关系式;M图 1 E 图 2N 图 3N25.(12分)如图,在平面直角坐标系中,Rt △ ABC的三个顶点分别是A(﹣ 8, 3), B(﹣4, 0), C(﹣ 4, 3),∠ ABC=α °.抛物线y= x2+bx+c 经过点 C,且对称轴为x=﹣,并与 y 轴交于点G.(1)求抛物线的解析式及点G的坐标;(2)将 Rt△ ABC沿 x 轴向右平移m个单位,使 B 点移到点E,然后将三角形绕点 E 顺时针旋转α °得到△ DEF.若点 F 恰好落在抛物线上.①求m的值;②连接 CG交 x 轴于点 H,连接 FG,过 B 作 BP∥FG,交 CG于点 P,求证: PH=GH.九年级 11 月数学月考参考答案一、选择题(每小题 3 分,共 30 分)题号 1 2 3 4 5 6 7 8 9 10 答案 A B C D C B C C B B二.填空题(每小题 3 分,共 18 分)11 .-212. __45___ ;13.a>-1且a≠1; 14. 0 < x < 2 ;815.14 或 2; 16.(6053,2)三.解答下列各题(共8 小题,满分72 分 )17.解:( 1)①x1= 1,x2= 8;-----1分②x2-(1+ n) x+ n=0.----3分(2)x2-9x+ 8=0x2-9x=-8x2-9x+81=-8+81 4 4(x-9) 2=492 4∴x-9=±7.2 2∴x1=1, x2=8.-----------6分18.解:连接OD,∵OC=OD,∠C=40°,∴∠ODC=∠C=40°,∵AB=2DE ,OD= 1AB ,2∴OD=DE ,∵∠ODC 是△DOE 的外角,∴∠E= ∠1∠ODC=20°,EOD=2∵∠AOC是△COE的外角,∴∠ AOC=∠C+∠E=40°+20°=60°.-- -----------------------6分19.解:( 1)画出△ ABC关于 y 轴对称的△ A1B1C1,如图所示,此时 A1的坐标为(-2 , 2 );- ----------------- 1 分( 2)画出△ ABC 绕点 B 逆时针旋转90°后得到的△ A B C ,如图所示,此时 A 的坐标为2 2 2 2(4, 0);---------------------- 4 分(3)画出△ A2B2C2 关于原点O 成中心对称的△ A3B3C3,如图所示,此时A3的坐标为( -4 ,0).------------------------- 7 分20. 解:(1)∵关于x 的一元二次方程x2-6x+m+4=0 有两个实数根 x1, x2 ,∴△= (-6 )2-4 (m+4 )=20- 4m≥0,解得:m≤5,∴m 的取值范围为m≤5.---------------3 分( 2 )∵关于x 的一元二次方程 x2-6x+m+4=0 有两个实数根x1, x2 ,∴x1 +x2=6 ①,x1?x2=m+4 ②.∵3x1=|x 2|+2 ,当x ≥0时,有3x =x2 +2 ③,2 1联立①③解得:x1=2 ,x2=4 ,∴8=m+4 ,m=4 ;当x2 <0 时,有3x1 =-x 2+2 ④,联立①④解得:x1=-2,x2=8(不合题意,舍去).∴符合条件的m的值为 4. -----------7分21.解:(1)连结OA,由题意得:AD= 1AB=30 ,OD= (r-18 )2在Rt △ ADO 中,由勾股定理得:r 2=302+ (r-18 ) 2 ,解得,r=34 ;- -------------4 分( 2 )连结OA′,∵OE=OP-PE=30 ,∴ 在Rt △ A′EO2 2 2 2 2 2,中,由勾股定理得: A′E=A′O-OE ,即: A′E=34 -30解得:A′E=16 .∴A′B′=32 .∵A′B′=32 >30 ,∴不需要采取紧急措施.--------------8 分22.解:( 1)∵抛物线 y=﹣ x2+mx+3过( 3, 0),∴0=﹣ 9+3m+3,∴m=2 -- ---------------------3分(2)由,得,,∴D(,﹣),∵S△ABP=4S△ABD,∴AB×|y P|=4 × AB×,∴|y P|=9 , y P=±9,当 y=9 时,﹣ x2+2x+3=9,无实数解,2 , x =1﹣,当 y=﹣ 9 时,﹣ x +2x+3=﹣ 9, x =1+1 2∴P( 1+ ,﹣ 9)或 P( 1﹣,﹣ 9). -------------------------- 8 分23. 解:( 1 )如图所示:设裁掉的正方形的边长为xdm ,由题意可得(10-2x )(6-2x )=12 ,即x2-8x+12=0 ,解得x=2 或x=6 (舍去),答:裁掉的正方形的边长为2dm,底面积为2 -----------------------------4 分12dm;( 2 )∵长不大于宽的五倍,∴10- 2x≤5(6-2x ),解得0 <x≤2.5 ,设总费用为w 元,由题意可知w=0.5×2x ( 16-4x ) +2 ( 10-2x )(6-2x )2( x-6 )2,=4x -48x+120=4 -24∵对称轴为x=6 ,开口向上,∴当0 <x≤2.5 时,w 随x 的增大而减小,∴ 当x=2.5 时, w 有最小值,最小值为25 元, ----------------------- 8 分答:当裁掉边长为 2.5dm 的正方形时,总费用最低,最低费用为25 元.24. ( 1)①AC=OE;②CA+CO= 2CD; - ------------------- 3 分(2)结论②仍然成立.理由:连接AD.∵△ OAB是等腰直角三角形,且 D 为 OB的中点∴AD⊥ OB,AD=DO ∴∠ ADO=90°∴∠ ADC+∠CDO=90°∵DE⊥ CDMA C B∴∠ CDE=∠ODE+∠ CDO=90°∴∠ ADC=∠ODE∵AC⊥ MNDO P E∴∠ ACO=90°∴∠ CAD+∠DOC=360° -90 ° -90 ° =180°∵∠ DOE+∠DOC=180°∴∠ CAD=∠DOE在△ ACD和△ DOE中∠ ADC=∠ ODE∠ DAC=∠ DOEAD=DO∴△ ACD≌△ DOE( ASA)∴AC=OE, CD=DE∵∠ CDE=90°∴△ CDE是等腰直角三角形∴OE+CO=2CD∴CA+CO= 2CD - -------------------------------------7分(3)如右图所示,CO-CA= 2CDM解析:连接 AD,B先证明△ ACD≌△ DOF( ASA),得 CA=OF, CD=DF; C A然后证明△ CDF是等腰直角三角形,得:DFCO-OF= 2CD,所以CO-CA= 2CD- -------------10 分O EPN25.解:( 1)根据题意得:解得:∴抛物线的解析式为:y= x2+ x,点G(0,﹣);-----------------------4分(2)①过 F 作 FM⊥y 轴,交 DE于 M,交 y 轴于 N,由题意可知: AC=4,BC=3,则 AB=5, FM= ,∵Rt △ ABC沿 x 轴向右平移 m个单位,使 B 点移到点 E,∴E(﹣ 4+m, 0), OE=MN=4﹣m, FN=﹣(4﹣m)=m﹣,在 Rt △ FME中,由勾股定理得:EM==,∴F( m﹣,),∵F 抛物线上,∴=(m﹣)2+(m﹣)﹣,25m﹣8m﹣ 36=0,m=﹣2(舍),; ------------------- ---------------------8 分1②易求得FG的解析式为:y= x﹣,CG解析式为: y= ﹣x﹣,∴x﹣ =0, x=1,则 Q( 1, 0),﹣x﹣ =0, x=﹣ 1.5 ,则 H(﹣ 1.5 , 0),∴B H=4﹣ 1.5=2.5 , HQ=1.5+1=2.5 ,∴BH=QH,∵BP∥ FG,∴∠ PBH=∠GQH,∠ BPH=∠ QGH,∴△ BPH≌△ QGH,∴PH=GH.-------------------------- ----------------12 分。
最新2019-2020年湖北省中考数学模拟试卷(有答案)
湖北省中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个数:﹣2,﹣0.6,,中,绝对值最小的是()A.﹣2B.﹣0.6C.D.2.据统计,我市常住人口为268.93万人,用科学记数法表示268.93万人为()A.268.93×104人B.2.6893×107人C.2.6893×106人D.0.26893×107人3.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,逆时针旋转∠α,要使这个∠α最小时,旋转后的图形也能与原图形完全重合,则这个图形是()A.B.C.D.4.六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.5.化简5(2x﹣3)﹣4(3﹣2x)之后,可得下列哪一个结果()A.2x﹣27B.8x﹣15C.12x﹣15D.18x﹣276.二次根式在实数范围内有意义,则x的取值范围是()A.x≥1B.x≤1C.x>1D.x<17.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线AB′,则点B′的坐标为()A.(4,2)B.(3,1)C.(2,4)D.(4,3)8.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE的延长线于点E,则DE的长为()A.B.C.D.9.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数在第一象限的图象经过点B,则△OAC和△BAD的面积之差S△OAC ﹣S△BAD为()A.2k B.6k C.D.k10.在△ABC中,E、F是BC边上的三等分点,BM是AC边上的中线,AE、AF分BM为三段的长分别是x、y、z,若这三段有x>y>z,则x:y:z等于()A.3:2:1B.4:2:1C.5:2:1D.5:3:2二、填空题(本大题共6小题,每小题3分,共18分)11.在实数范围内分解因式:a4﹣4=.12.分式方程的解为.13.周末,张三、李四两人在磁湖游玩,张三在湖心岛P处观看李四在湖中划船(如图),小船从P处出发,沿北偏东60°方向划行200米到A处,接着小船向正南方向划行一段时间到B处.在B处李四观测张三所在的P处在北偏西45°方向上,这时张三与李四相距米(保留根号)14.某校组织了主题为“经典诵读”的小视频征集活动,现从中随机抽取部分作品,按A、B、C、D四个等级进行评价,并根据结果绘制了如下两副不完整的统计图.若该校共征集到800份作品,请估计等级为A的作品约有份.15.如图,一个半径为r的圆形纸片在边长为a(a≥2r)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是.16.如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3、…、△A n A n+1B n均为等边三角形,点A1、A2、A3、…、A n+1在x轴的正半轴上依次排列,点B1、B2、B3、…、B n在直线OD上依次排列,那么B2019的坐标为.三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(7分)18.(7分)先化简,再求代数式的值,其中|x|=1.19.(7分)已知是二元一次方程组的解,求的值.20.(7分)已知关于x的方程kx2+(1﹣k)x﹣1=0(1)若方程有两个不等实根,求k的取值范围.(2)设x1、x2是方程kx2+(1﹣k)x﹣1=0的两个根,记,S的值能为4吗?若能,求出此时k的值,请说明理由.21.(8分)如图,∠B=∠C=90°,AE平分∠BAD,DE平分∠CDA,且AE与DE交BC于E.求证:(1)BE=CE(2)AE⊥DE22.(8分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.(1)表述出所有可能出现的结果(2)小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.23.(8分)为了丰富村民业余文化生活,某开发区某村民委员会动员村民自愿集资建议一个书、报、刊阅览室.经预算,一共需要筹资50000元,其中一部分用于购买桌、凳、柜凳设施,另一部分用于购买书、报、刊.(1)村委会计划,购买书、报、刊的资金不少于购买桌、凳、柜资金的4倍,问最多用多少资金购买桌、凳、柜凳设施?(2)经初步统计,有250户村民自愿参与集资,那么平均每户需要资金200元.开发区管委会了解情况后,赠送了一批阅览室设施和书、报、刊.这样,只需参与户共集资36000元.经村委会进一步宣传,自愿参与的户数在250户的基础上增加了m%(其中m>0).则每户平均集资的资金在200元的基础上减少了2m%,求m的值.24.(10分)如图,△ABC内接于⊙O,CD是⊙O的直径,过C作射线CE交AB的延长线于点E,且∠BAC=∠ECB.(1)求证:CE是⊙O的切线.(2)若AB=6,CE=4,求BE的长.(3)求证:EB:EA=CB2:CA2.25.(10分)如图,抛物线与x轴交于A、B两点,与y轴交于C点,且B(2,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论.(3)点M(0,m)是y轴上的一个动点,当AM+DM的值最小时,求m的值.2019年湖北省黄石市中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.【解答】解:∵|﹣2|=2,|﹣0.6|=0.6,||=,||=,∵,所以绝对值最小的是,故选:C.【点评】此题考查了实数的大小比较,以及绝对值的意义,注意先运算出各项的绝对值.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:268.93万用科学记数法表示应记为2.6893×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】求出各旋转对称图形的最小旋转角度,继而可作出判断.【解答】解:A、最小旋转角度==72°;B、最小旋转角度==120°;C、最小旋转角度==90°;D、最小旋转角度==180°;综上可得:旋转一定角度后,能与原图形完全重合,且旋转角度最小的是A.故选:A.【点评】本题考查了旋转对称图形的知识,求出各图形的最小旋转角度是解题关键.4.【分析】俯视图有3列,从左到右正方形个数分别是2,1,2.【解答】解:俯视图从左到右分别是2,1,2个正方形,如图所示:.故选:B.【点评】本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.5.【分析】把原式的第二项提取符号后,提取公因式合并即可得到值.【解答】解:5(2x﹣3)﹣4(3﹣2x),=5(2x﹣3)+4(2x﹣3),=9(2x﹣3),=18x﹣27.故选:D.【点评】此题考查了合并同类项的方法,考查了去括号添括号的法则,是一道基础题.6.【分析】根据二次根式有意义的条件可得1﹣x≥0,再解不等式即可.【解答】解:由题意得:1﹣x≥0,解得:x≤1,故选:B.【点评】此题主要考查了二次根式有意义的条件,二次根式中的被开方数是非负数.7.【分析】画出旋转后的图形位置,根据图形求解【解答】解:AB旋转后位置如图所示.B′(4,2).故选:A.【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心A,旋转方向逆时针,旋转角度90°,通过画图得B′坐标.8.【分析】设CE=x,连接AE,由线段垂直平分线的性质可知AE=BE=BC+CE,在Rt△ACE中,利用勾股定理即可求出CE的长度,再在Rt△BDE中求出DE即可.【解答】解:设CE =x ,连接AE .∵DE 是线段AB 的垂直平分线,∴AE =BE =BC +CE =3+x ,∴在Rt △ACE 中,AE 2=AC 2+CE 2,即(3+x )2=42+x 2,解得x =.在Rt △ABC 中,AB ==5,∴BD =AD =,在Rt △BDE 中,DE ==, 故选:B .【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.9.【分析】设△OAC 和△BAD 的直角边长分别为a 、b ,结合等腰直角三角形的性质及图象可得出点B 的坐标,根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B 的坐标即可得出结论.【解答】解:设△OAC 和△BAD 的直角边长分别为a 、b ,则点B 的坐标为(a +b ,a ﹣b ).∵点B 在反比例函数的第一象限图象上, ∴(a +b )×(a ﹣b )=a 2﹣b 2=k .∴S △OAC ﹣S △BAD =a 2﹣b 2=(a 2﹣b 2)=.故选:C .【点评】本题考查了反比例函数系数k 的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a 2﹣b 2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.10.【分析】如图,作MH ∥BC 交AE 于H ,交AF 于G ,设AE 交BM 于K ,AF 交BM 于J .首先证明HG =MG =CF ,再利用平行线分线段成比例定理构建方程组即可解决问题.【解答】解:如图,作MH ∥BC 交AE 于H ,交AF 于G ,设AE 交BM 于K ,AF 交BM 于J .∵MH ∥BC ,∴====,∵BE =EF =CF ,∴HG =MG =CF ,∴==,∴y +z =2x ,∴==,∴x +y =2z ,∴x =z ,y =z ,∴x :y :z =5:3:2,故选:D .【点评】本题考查平行线分线段成本定理定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先把a 4﹣4=(a 2)2﹣22,利用平方差公式因式分解,再把分解后的a 2﹣2进一步利用平方差分解得出结果.【解答】解:a 4﹣4=(a 2)2﹣22=(a 2+2)(a 2﹣2)=(a 2+2)(a +)(a ﹣).故答案为:(a 2+2)(a +)(a ﹣). 【点评】此题主要考查利用平方差公式因式分解:a 2﹣b 2=(a +b )(a ﹣b ).12.【分析】找出最简公分母为(x+1)(x﹣1),去分母后转化为整式方程,求出方程的解得到x 的值,经检验即可得到原分式方程的解.【解答】解:去分母得:x+1﹣2x=x2﹣1,整理得:x2+x﹣2=0,即(x﹣1)(x+2)=0,可得x﹣1=0或x+2=0,解得:x=1或x=﹣2,经检验x=1是增根.则原分式方程的解为x=﹣2.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.【分析】作PD⊥AB于点D,分别在直角三角形PAD和直角三角形PBD中求得PD和PB即可求得结论.【解答】解:作PD⊥AB于点D,由已知得PA=200米,∠APD=30°,∠B=45°,在Rt△PAD中,由cos30°=,得PD=PA cos30°=200×=100米,在Rt△PBD中,由sin45°=,得PB===100(米).故答案为:100.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并求解.14.【分析】求出A占的百分比,乘以800即可得到结果.【解答】解:根据题意得:30÷25%=120(份),则抽取了120份作品;根据题意得:800×=240(份),则估计等级为A的作品约有240份.故答案为:240.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.15.【分析】过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得r,四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.【解答】解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连结AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,AD=r,∴.由.∵由题意,∠DO1E=120°,得,∴圆形纸片不能接触到的部分的面积为3()=(3﹣π)r2.故答案为:.【点评】本题考查了面积的计算、等边三角形的性质和切线的性质,是基础知识要熟练掌握.16.【分析】根据等边三角形的性质和∠B1OA2=30°,得∠B1OA2=∠A1B1O=30°,得到OA2=2OA1=2,同理求得OA n=2n﹣1,根据含30°角的直角三角形的性质可求得△A n B n A n+1的边长,得到点B2019的坐标.【解答】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠B1OA2=30°,∴∠B1OA2=∠A1B1O=30°,∴OA2=2OA1=2,同理可得,OA n=2n﹣1,∵∠B n OA n+1=30°,∠B n A n A n+1=60°,∴∠B n OA n+1=∠OB n A n=30°,∴B n A n=OA n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,则可求得其高为×2n﹣1=×2n﹣2,∴点B n的横坐标为×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,∴点B n的坐标为(3×2n﹣2,×2n﹣2),∴点B2019的坐标为(3×22017,×22017),.故答案为(3×22017,×22017).【点评】本题主要考查等边三角形的性质和含30°角的直角三角形的性质,根据条件找到等边三角形的边长和OA1的关系是解题的关键.三、解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.【分析】直接利用特殊角的三角函数值以及负指数幂的性质等分别化简得出答案.【解答】解:原式=2﹣﹣+﹣1=.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】直接利用分式的混合运算法则化简,进而结合绝对值的性质得出x的值,即可代入求出答案.【解答】解:原式=×=,∵|x|=1,∴x=1(不合题意舍去)或﹣1,故原式==﹣.【点评】此题主要考查了分式的化简求值,正确掌握相关运算法则是解题关键.19.【分析】把代入二元一次方程组中,得到关于m、n的二元一次方程组,解得m、n,再代入中便可求得结果.【解答】解:把代入二元一次方程组中,得,解得,,∴原式=.【点评】本题主要考查了二元一次方程组的解的应用,解二元一次方程组,求立方根,关键是代入方程组的解重新建立m、n的二元一次方程组.是一个基础题,细心一点就可以解决问题.20.【分析】(1)根据题意得一元二次方程的定义和判别式的意义得到k≠0且△=(1﹣k)2﹣4k ×(﹣1)>0,然后求出它们的公共部分即可;(2)利用根与系数的关系得到x1+x2=﹣,x1x2=﹣,利用S=+x1+x2=+x1+x2=4得到﹣6(﹣)+(﹣)•(﹣)=0,然后解关于k的方程可得到满足条件的k的值.【解答】解:(1)根据题意得k≠0且△=(1﹣k)2﹣4k×(﹣1)>0解得k≠0且k≠﹣1;(2)能.根据题意得x1+x2=﹣,x1x2=﹣,∵S=+x1+x2=+x1+x2=4,∴(x1+x2)2﹣6x1x2+x1x2(x1+x2)=0,即﹣6(﹣)+(﹣)•(﹣)=0,整理得k2+3k+2=0,解得k1=﹣1,k2=﹣2,∵k≠0且k≠﹣1;∴k=﹣2时,S的值能为4.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.21.【分析】(1)过E作EF⊥AD,利用角平分线的性质解答即可;(2)根据全等三角形的判定和性质解答即可.【解答】证明:(1)过E作EF⊥AD,∵∠B=∠C=90°,AE平分∠BAD,DE平分∠CDA,∴EF=CE,EF=EB,∴CE=EB;(2)∵∠B=∠C=90°,AE平分∠BAD,DE平分∠CDA,∴∠CDE=∠FDE,∠FAE=∠BAE,在△EFD与△ECD中,∴△EFD≌△ECD(AAS),∴∠CED=∠FED,同理可得:∠FEA=∠BEA,∵∠CED+∠FED+∠FEA+∠BEA=180°,∴∠DEA=90°,∴DE⊥AE.【点评】本题考查角平分线的性质与判定,解题的关键是熟练运用角平分线的性质与判定,本题属于基础题型.22.【分析】(1)利用树状图列出所有等可能结果;(2)结合树状图,利用概率公式分别计算出两种规则中小黄、小石赢的概率,比较大小即可得出答案.【解答】解:(1)画树状图如下:(2)小黄想要在游戏中获胜,会选择规则1.由树状图知,共有9种等可能结果,若按规则1:小黄赢的概率为,小石赢的概率为;若按规则2:小黄赢的概率为,小石赢的概率为;小黄想要在游戏中获胜,会选择规则1.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)设用于购买桌、凳、柜凳设施的为x元,则购买书、报、刊的有(50000﹣x)元,利用“购买书、报、刊的资金不少于购买桌、凳、柜资金的4倍”,列出不等式求解即可;(2)根据“愿参与的户数在250户的基础上增加了m%(其中m>0).则每户平均集资的资金在200元的基础上减少了2m%,且总集资额为360000元”列出方程求解即可.【解答】解:(1)设用于购买桌、凳、柜凳设施的为x元,则购买书、报、刊的有(50000﹣x)元,根据题意得:50000﹣x≥4x,解得:x≤10000.答:最多用10000元购买桌、凳、柜凳等设施;(2)根据题意得:250(1+m%)×200(1﹣2m%)=36000解得:m=20或a=﹣70(舍去),所以m的值是20.【点评】本题考查了一元二次方程的应用及一元一次不等式的应用,解题的关键是从题目中整理出等量关系和不等关系,难度不大.24.【分析】(1)连BD,则∠DBC=90°,由∠BAC=∠ECB=∠CDB.证得∠OCE=90°,故结论得证;(2)证△CBE∽△ACE,得出比例线段即可求出BE长;(3)由(2)可得,,两式相乘即可得证.【解答】证明:(1)连BD,∵CD是⊙O的直径,∴∠DBC=90°,∴∠D+∠DCB=90°,∵∠BAC=∠ECB,∠BAC=∠D.∴∠DCB+∠BCE=90°,即∠OCE=90°,∵OC是圆的半径,∴CE是⊙O的切线;解:(2)∵∠BAC=∠ECB,∠CEB=∠AEC,∴△CBE∽△ACE,∴,∵AB=6,CE=4,设BE=x,∴42=x(x+6),解得:x1=2,x2=﹣8(舍),∴BE=2;证明:(3)∵△CBE∽△ACE,∴,,①、②相乘得:.【点评】此题考查了切线的判定、相似三角形的判定与性质.注意掌握辅助线的作法,注意方程思想的应用.25.【分析】(1)将点B坐标代入解析式求得b的值即可得到函数解析式,再将函数解析式配方成顶点式可得答案;(2)先根据函数解析式求得点A和点C的坐标,从而得出AB2=100,AC2=82+42=80,BC2=42+22=20,再根据勾股定理逆定理可得答案;(3)点A(﹣8,0)关于y轴的对称点A′坐标为(8,0),连接A′D,与y轴的交点即为所求点M,依据待定系数法求出A′D所在直线解析式,再求出x=0时y的值即可得.【解答】解:(1)将点B(2,0)代入,得:﹣1+2b+4=0,解得:b=﹣,∴y=﹣x2﹣x+4=﹣(x+3)2+,∴顶点D的坐标为(﹣3,);(2)△ABC是直角三角形,当y=0时,﹣x2﹣x+4=0,解得:x1=﹣8,x2=2,∴A(﹣8,0),当x=0时,y=4,即C(0,4),则AB2=100,AC2=82+42=80,BC2=42+22=20,∵AB2=AC2+BC2,∴△ABC是直角三角形.(3)点A(﹣8,0)关于y轴的对称点A′坐标为(8,0),如图,连接A′D,与y轴的交点即为所求点M,设A′D所在直线为y=kx+p,将A′(8,0),D(﹣3,)代入,得:,解得:,∴y=﹣x+,当x=0时,y=,即m=.【点评】本题是二次函数的综合问题,解题的关键是掌握待定系数法求二次函数和一次函数解析式、勾股定理逆定理及轴对称最短路线问题.。
〔精品〕2019年湖北省潜江市中考数学一模试卷及答案.Word
2019年湖北省潜江市中考数学一模试卷一、选择题(每小题3分,共30分)1.(3分)9的算术平方根是()A.3B.9C.±3D.±92.(3分)下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个3.(3分)下列计算正确的是()A.a2•a3=a6B.(a2)2=a4C.a8÷a4=a2D.(ab)3=ab3 4.(3分)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°5.(3分)下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大6.(3分)“六一”儿童节快到了,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种儿童玩具赠送给某幼儿园,则可供小芳妈妈选择的购买方案有()A.4种B.5种C.6种D.7种7.(3分)在平面直角坐标系中,线段AB两个端点的坐标分别为A(6,8),B(10,2),若以原点O为位似中心,在第一象限内将线段AB缩短为原来的后得到线段CD,则点A的对应点C的坐标为()A.(5,1)B.(4,3)C.(3,4)D.(1,5)8.(3分)一个圆锥的主视图是边长为4cm的正三角形,则这个圆锥的侧面积等于()A.16πcm2B.12πcm2C.8πcm2D.4πcm29.(3分)如果关于x的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a、b组成的有序数对(a,b)共有()A.3个B.4个C.5个D.6个10.(3分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②BC=DC;③∠ABD+∠ECB=45°;④BD⊥CE.其中正确的结论是()A.①②③④B.②④C.①②③D.①③④二、填空题(每小题3分,共18分)11.(3分)在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为.12.(3分)目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为米.13.(3分)对于任意实数a、b,定义:a◆b=a2+ab+b2.若方程(x◆2)﹣5=0的两根记为m、n,则m2+n2=.14.(3分)如图,∠AOB=30°,点P是∠AOB内的一定点,且OP=6,若点M,N分别是射线OA,OB上异于点O的动点,则△PMN周长的最小值是.15.(3分)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是m.16.(3分)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=.三、解答题(共72分)17.(10分)(1)计算:|﹣2|+20130﹣(﹣)﹣1+3tan30°(2)先化简,再求值:÷(﹣x﹣2),其中|x|=2.18.(6分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(6分)如图所示,在某海域,一艘指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1小时)20.(10分)文化是一个国家、一个民族的灵魂,近年来,央视推出《中国诗词大会》、《中国成语大会》、《朗读者》、《经曲咏流传》等一系列文化栏目.为了解学生对这些栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《经曲咏流传》(记为A)、《中国诗词大会》(记为B)、《中国成语大会》(记为C)、《朗读者》(记为D)中选择自己最喜爱的一个栏目,也可以写出一个自己喜爱的其他文化栏目(记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将条形统计图补充完整,并求出扇形统计图中“B”所在扇形圆心角的度数;(3)若选择“E”的学生中有2名女生,其余为男生,现从选择“E”的学生中随机选出两名学生参加座谈,请用列表法或画树状图的方法求出刚好选到同性别学生的概率.21.(8分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.22.(10分)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;(3)在(2)的条件下,该商店如何进货才能获得最大利润?此时最大利润是多少元?23.(10分)如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系;(2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.24.(12分)已知抛物线y=x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.2019年湖北省潜江市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.【解答】解:∵32=9,∴9的算术平方根是3.故选:A.2.【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C.3.【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、幂的乘方运算法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)2=a4,正确;C、a8÷a4=a4,故此选项错误;D、(ab)3=a3b3,故此选项错误;故选:B.4.【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB 可得答案.【解答】解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.5.【分析】根据概率的意义,事件发生可能性的大小,可得答案.【解答】解:A、明天降雨的概率是50%表示明天有可能降雨,此选项错误;B、了解全国快递包裹产生的包装垃圾数量适合采用抽样调查方式,此选项错误;C、掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是随机事件,此选项错误;D、一组数据的方差越大,则这组数据的波动也越大,此选项正确;故选:D.6.【分析】设购买80元的儿童玩具数量为x,购买120元的儿童玩具数量为y,根据总费用是1000元列出方程,求得正整数x、y的值即可.【解答】解:设购买80元的儿童玩具数量为x,购买120元的儿童玩具数量为y,依题意得:80x+120y=1000,整理,得y=.因为x是正整数,所以当x=2时,y=7.当x=5时,y=5.当x=8时,y=3.当x=11时,y=1.即有4种购买方案.故选:A.7.【分析】利用位似图形的性质,结合两图形的位似比进而得出C点坐标.【解答】解:∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的横坐标和纵坐标的一半,又∵A(6,8),∴端点C的坐标为(3,4).故选:C.8.【分析】根据视图的意义得到圆锥的母线长为4,底面圆的半径为2,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:根据题意得圆锥的母线长为4,底面圆的半径为2,所以这个圆锥的侧面积=×4×2π×2=8π(cm2).故选:C.9.【分析】求出不等式组的解集,根据已知求出1≤2、3<4,求出2<a≤4、9≤b<12,即可得出答案.【解答】解:解不等式2x﹣a≥0,得:x≥,解不等式3x﹣b≤0,得:x≤,∵不等式组的整数解仅有x=2、x=3,则1≤2、3<4,解得:2<a≤4、9≤b<12,则a=3时,b=9、10、11;当a=4时,b=9、10、11;所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,故选:D.10.【分析】∠DAE=∠BAC=90°,AD=AE,AB=AC,∠DAB=∠AEC,△AEC≌△DAE (SAS),BD=CE,①正确;由①可知∠DBA=∠BCE,则∠ABD+∠ECB=45°;③正确;由①全等可知∠AEC=∠BDA=45°,∠DEC=90°,④正确;【解答】解:∵∠DAE=∠BAC=90°,AD=AE,AB=AC,∴∠DAE+∠EAB=∠BAC+∠EAB,∴∠DAB=∠AEC,∴△AEC≌△DAE(SAS),∴BD=CE,①正确;∵∠DBA=∠BCE,∴∠ABD+∠ECB=45°;③正确;∵∠AEC=∠BDA=45°,∴∠DEC=90°,∴BD⊥CE,∴④正确;故选:D.二、填空题(每小题3分,共18分)11.【分析】利用频率估计概率,然后解方程即可.【解答】解:设原来红球个数为x个;则有=,解得x=20.故答案为20.12.【分析】由1纳米=10﹣9米,可得出16纳米=1.6×10﹣8米,此题得解.【解答】解:∵1纳米=10﹣9米,∴16纳米=1.6×10﹣8米.故答案为:1.6×10﹣8.13.【分析】根据新定义可得出m、n为方程x2+2x﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m2+n2=(m+n)2﹣2mn中即可得出结论.【解答】解:∵(x◆2)﹣5=x2+2x+4﹣5,∴m、n为方程x2+2x﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m2+n2=(m+n)2﹣2mn=6.故答案为:6.14.【分析】作点P关于OB的对称点P',作点P关于OA的对称点P'',连接P'P'',则P'P''的长就是△PMN周长的最小值;通过对称性可知△P'OP''是等边三角形;【解答】解作点P关于OB的对称点P',作点P关于OA的对称点P'',连接P'P'',则P'P''的长就是△PMN周长的最小值;在△OP'P''中,OP'=OP'',∠AOB=30°,∴∠P'OP''=60°,∵OP=6,∴P'P''=6;故答案为6;15.【分析】由于飞机着陆,不会倒着跑,所以当y取得最大值时,t也取得最大值,求得t 的取值范围即可,结合取值范围求得最后4s滑行的距离.【解答】解:当y取得最大值时,飞机停下来,则y=60t﹣1.5t2=﹣1.5(t﹣20)2+600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当t=16时,y=576,所以600﹣576=24(米)故答案是:24.16.【分析】根据S n数的变化找出S n的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.【解答】解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.三、解答题(共72分)17.【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质、负指数幂的性质分别化简得出答案;(2)首先利用分式的混合运算法则进而化简得出答案.【解答】解:(1)原式=2﹣+1+3+,=6;(2)原式=÷[﹣]=÷=•=,∵|x|=2,∴x=±2,x=2舍去,当x=﹣2时,原式==﹣.18.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.19.【分析】延长AB交南北轴于点D,则AB⊥CD于点D,根据直角三角形的性质和三角函数解答即可.【解答】解:因为A在B的正西方,延长AB交南北轴于点D,则AB⊥CD于点D∵∠BCD=45°,BD⊥CD∴BD=CD在Rt△BDC中,∵cos∠BCD=,BC=60海里即cos45°=,解得CD=海里∴BD=CD=海里在Rt△ADC中,∵tan∠ACD=即tan60°==,解得AD=海里∵AB=AD﹣BD∴AB=﹣=30()海里∵海监船A的航行速度为30海里/小时则渔船在B处需要等待的时间为==≈2.45﹣1.41=1.04≈1.0小时∴渔船在B处需要等待1.0小时20.【分析】(1)由A栏目人数及其所占百分比可得总人数;(2)总人数乘以D栏目所占百分比求得其人数,再用总人数减去其他栏目人数求得B 的人数即可补全图形,用360°乘以B人数所占比例可得;(3)列表得出所有等可能结果,然后利用概率的计算公式即可求解【解答】解:(1)30÷20%=150(人),∴共调查了150名学生.(2)D:50%×150=75(人),B:150﹣30﹣75﹣24﹣6=15(人)补全条形图如图所示.扇形统计图中“B”所在扇形圆心角的度数为.(3)记选择“E”的同学中的2名女生分别为N1,N2,4名男生分别为M1,M2,M3,M4,列表如下:N1N2M1M2M3M4 N1(N1,N2)(N1,M1)(N1,M2)(N1,M3)(N1,M4)N2(N2,N1)(N2,M1)(N2,M2)(N2,M3)(N2,M4)M1(M1,N1)(M1,N2)(M1,M2)(M1,M3)(M1,M4)M2(M2,N1)(M2,N2)(M2,M1)(M2,M3)(M2,M4)M3(M3,N1)(M3,N2)(M3,M1)(M3,M2)(M3,M4)M4(M4,N1)(M4,N2)(M4,M1)(M4,M2)(M4,M3)∵共有30种等可能的结果,其中,恰好是同性别学生(记为事件F)的有14种情况,∴.21.【分析】(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.【解答】(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴=,即=,∴BP=7.22.【分析】(1)设A、B两种型号电动自行车的进货单价分别为x元(x+500)元,构建分式方程即可解决问题;(2)根据总利润=A型的利润+B型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题;【解答】解:(1)设A、B两种型号电动自行车的进货单价分别为x元(x+500)元.由题意:=,解得x=2500,经检验:x=2500是分式方程的解.答:A、B两种型号电动自行车的进货单价分别为2500元3000元.(2)y=300m+500(30﹣m)=﹣200m+15000;(3)设购进A型电动自行车m辆,∵最多投入8万元购进A、B两种型号的电动自行车共30辆,A、B两种型号电动自行车的进货单价分别为2500元、3000元,∴2500m+3000(30﹣m)≤80000,解得:m≥20,∴m的取值范围是:20≤m≤30,∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,∴m=20时,y有最大值,最大值为11000元.23.【分析】(1)延长EM交AD于H,证明△FME≌△AMH,得到HM=EM,根据等腰直角三角形的性质可得结论;(2)根据正方形的性质得到点A、E、C在同一条直线上,根据直角三角形斜边上的中线是斜边的一半证明即可;(3)根据题意画出完整的图形,根据平行线分线段成比例定理、等腰三角形的性质证明即可.【解答】解:(1)如图1,结论:CM=EM,CM⊥EM.理由:∵AD∥EF,AD∥BC,∴BC∥EF,∴∠EFM=∠HBM,在△FME和△BMH中,,∴△FME≌△BMH,∴HM=EM,EF=BH,∵CD=BC,∴CE=CH,∵∠HCE=90°,HM=EM,∴CM=ME,CM⊥EM.(2)如图2,连接BD,∵四边形ABCD和四边形EDGF是正方形,∴∠FDE=45°,∠CBD=45°,∴点B、E、D在同一条直线上,∵∠BCF=90°,∠BEF=90°,M为BF的中点,∴CM=BF,EM=BF,∴CM=ME,∵∠EFD=45°,∴∠EFC=135°,∵CM=FM=ME,∴∠MCF=∠MFC,∠MFE=∠MEF,∴∠MCF+∠MEF=135°,∴∠CME=360°﹣135°﹣135°=90°,∴CM⊥ME.(3)如图3,连接DF,MG,作MN⊥CD于N,在△EDM和△GDM中,,∴△EDM≌△GDM,∴ME=MG,∠MED=∠MGD,∵M为BF的中点,FG∥MN∥BC,∴GN=NC,又MN⊥CD,∴MC=ME,∴MD=ME,∠MCG=∠MGC,∵∠MGC+∠MGD=180°,∴∠MCG+∠MED=180°,∴∠CME+∠CDE=180°,∵∠CDE=90°,∴∠CME=90°,∴(1)中的结论成立.24.【分析】(1)利用待定系数法求抛物线的解析式;(2)令y=0求抛物线与x轴的交点C的坐标,作△POB和△PBC的高线,根据面积相等可得OE=CF,证明△OEG≌△CFG,则OG=CG=2,根据三角函数列式可得P的坐标,利用待定系数法求一次函数AP和BC的解析式,k相等则两直线平行;(3)先利用概率的知识分析A,B,C,E中的三点为顶点的三角形,有两个三角形与△ABE有可能相似,即△ABC和△BCE,①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,根据存在公共角∠BAE=∠BAC,可得△ABE∽△ACB,列比例式可得E的坐标,利用待定系数法求直线BE的解析式,与抛物线列方程组可得交点D的坐标;②当△ABE与以B,C、E中的三点为顶点的三角形相似,如图3,同理可得结论.【解答】解:(1)把点A(﹣2,0),B(0、﹣4)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线的解析式为:y=x2﹣x﹣4;(2)当y=0时,x2﹣x﹣4=0,解得:x=﹣2或4,∴C(4,0),如图1,过O作OE⊥BP于E,过C作CF⊥BP于F,设PB交x轴于G,∵S△PBO=S△PBC,∴,∴OE=CF,易得△OEG≌△CFG,∴OG=CG=2,设P(x,x2﹣x﹣4),过P作PM⊥y轴于M,tan∠PBM===,∴BM=2PM,∴4+x2﹣x﹣4=2x,x2﹣6x=0,x1=0(舍),x2=6,∴P(6,8),易得AP的解析式为:y=x+2,BC的解析式为:y=x﹣4,∴AP∥BC;(3)以A,B,C,E中的三点为顶点的三角形有△ABC、△ABE、△ACE、△BCE,四种,其中△ABE重合,不符合条件,△ACE不能构成三角形,∴当△ABE与以A,B,C,E中的三点为顶点的三角形相似,存在两个三角形:△ABC 和△BCE,①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,∵∠BAE=∠BAC,∠ABE≠∠ABC,∴∠ABE=∠ACB=45°,∴△ABE∽△ACB,∴,∴,∴AE=,OE=﹣2=∴E(,0),∵B(0,﹣4),易得BE:y=3x﹣4,则x2﹣x﹣4=3x﹣4,x1=0(舍),x2=8,∴D(8,20);②当△ABE与以B,C、E中的三点为顶点的三角形相似,如图3,此时E在C的左边,∵∠BEA=∠BEC,∴当∠ABE=∠BCE时,△ABE∽△BCE,∴==,设BE=2m,CE=4m,Rt△BOE中,由勾股定理得:BE2=OE2+OB2,∴,3m2﹣8m+8=0,(m﹣2)(3m﹣2)=0,m1=2,m2=,∴OE=4m﹣4=12或,∵OE=<2,∠AEB或∠BEC是钝角,此时△ABE与以B,C、E中的三点为顶点的三角形不相似,如图4,∴E(﹣12,0);同理得BE的解析式为:y=﹣x﹣4,﹣x﹣4=x2﹣x﹣4,x=或0(舍)∴D(,﹣);同理可得E在C的右边时,△ABE∽△BCE,∴=,设AE=2m,BE=4m,Rt△BOE中,由勾股定理得:BE2=OE2+OB2,∴,3m2+2m﹣5=0,(m+)(3m﹣)=0,m1=﹣,m2=,∴OE=﹣12(舍)或,∵OE=<4,∠BEC是钝角,此时△ABE与以B,C、E中的三点为顶点的三角形不相似,综上,点D的坐标为(8,20)或(,﹣).。
2019-2020年湖北省中考数学各地区模拟试题分类(武汉市专版)(二)——《方程与不等式》含解析
2019-2020年湖北省中考数学各地区模拟试题分类(武汉市专版)(二)——《方程与不等式》一.选择题1.(2020•武汉模拟)方程4x2=81的一次项系数为()A.4 B.0 C.81 D.﹣81 2.(2020•武汉模拟)我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,裁一张边长为1的正方形纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落在线段EA上,折出点B的新位置F,因而EF=EB,类似地,在AB上折出点M,使AM=AF,表示方程x2+x﹣1=0的一个正根的线段是()A.线段BM B.线段AM C.线段BE D.线段AE 3.(2020•青山区模拟)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:今有甲种袋子中装有黄金9枚(每枚黄金重量相同),乙种袋子中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲种袋子比乙种袋子轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,则可建立方程为()A.B.C.D.4.(2020•武汉模拟)如果m、n是一元二次方程x2+x=4的两个实数根,那么多项式2n2﹣mn﹣2m的值是()A.16 B.14 C.10 D.6 5.(2020•武汉模拟)关于x的方程2x2+3x﹣7=0的根的情况,正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根6.(2020•武汉模拟)将关于x的一元二次方程x(x+2)=5化成一般式后,a、b、c的值分别是()A.1,2,5 B.1,﹣2,﹣5 C.1,﹣2,5 D.1,2,﹣5 7.(2020•武汉模拟)若x1,x2是一元二次方程x2﹣3x+2=0的两根,则x1+x2+x1x2的值是()A.﹣1 B.﹣5 C.5 D.1 8.(2020•武汉模拟)栖树一群鸦,鸦树不知数;三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何?歌谣大意是:一群乌鸦落在一片树上,如果三个乌鸦落在一棵树上,那么就有五个乌鸦没有树可落;如果五个乌鸦落在一棵树上,那么就有一棵树没有落乌鸦,请问乌鸦和树各多少?若设乌鸦有x只,树有y棵,由题意可列方程组()A.B.C.D.9.(2020•硚口区模拟)我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.10.(2020•武汉模拟)某生产车间共90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使1个螺栓配套2个螺帽,应如何分配工人才能使每天生产的螺栓和螺帽刚好配套,设生产螺栓x人,生产螺帽y人,由题意列方程组()A.B.C.D.11.(2020•江汉区校级一模)若关于x的不等式2x﹣a≤0的正整数解是1,2,3,则a的取值范围是()A.6<a<7 B.7<a<8 C.6≤a<7 D.6≤a<8 12.(2020•武汉模拟)关于x的方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m≥3 C.m≤3且m≠2 D.m<3 13.(2020•武汉模拟)中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9 B.3(x+2)=2x﹣9C.+2=D.﹣2=二.填空题14.(2020•武汉模拟)已知3是一元二次方程x2+m=0的一个根,则该方程的另一个根是.15.(2020•武汉模拟)如果关于x的一元二次方程mx2+4x﹣1=0没有实数根,那么m的取值范围是.16.(2020•武汉模拟)已知,如图是一个三角形点阵,从上向下数有无数多行,其中第一行有一个点,第二行有两个点,…,第n行有n个点,容易发现,三角形点阵中前4行的点数和是10.若三角形点阵中前a行的点数之和为300,则a的值为.17.(2020•武汉模拟)一元二次方程x(x﹣5)=0的根为.18.(2020•武汉模拟)为响应全民阅读活动,某校面向社会开放图书馆.自开放以来,进馆人次逐月增加,第一个月进馆200人次,前三个月累计进馆872人次.若进馆人次的月增长率相同,为求进馆人次的月增长率.设进馆人次的月增长率为x,依题意可列方程为.19.(2020•武汉模拟)若x=1为方程x2﹣m=0的一个根,则m的值为.20.(2020•武昌区校级模拟)已知﹣3是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是三.解答题21.(2020•硚口区模拟)解方程:3(2x+3)=11x﹣6.22.(2020•武汉模拟)解一元二次方程:x2+2x﹣1=0.23.(2020•武汉模拟)已知3是一元二次方程x2﹣2x+a=0的一个根,求a的值和方程的另一根.24.(2020•硚口区模拟)为了抓住武汉园博园元宵灯会的商机,某商店决定购进A、B两种艺术纪念品.若购进A种纪念品8件,B种纪念品3件,需要95元,若购进A种纪念品5件,B种纪念品6件,需要80元.(1)求购进A,B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过765元,那么该商店共有几种进货方案?25.(2019•江夏区校级模拟)商场从厂家购进了A,B两种型号的空气净化器,已知一台A 型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)商场决定用不超过14000元从厂家购进A、B两种型号的空气净化器共10台,且B 型空气净化器的台数少于A型空气净化器的台数的2倍,问商场有几种进货方案?如果这10台空气净化器在进价的基础上都加价50%销售并售完,采用上面哪一方案利润最大.(3)为了增大B型空气净化器的销量,电器商社决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天电器商社销售B型空气净化器的利润为3200元,请问电器商社应将B型空气净化器的售价定为多少元?26.(2019•东西湖区模拟)某商店计划一次购进两种型号的手机共110部,销售一部A型手机比销售一部B型手机获得的利润多50元,销售相同数量的A型手机和B型手机获得的利润分别为3000元和2000元,其中A型手机的进货量不超过B型手机的2倍,且商店最多购进B型手机50台.(1)求每部A型手机和B型手机的销售利润分别为多少元?(2)设购进B型手机n部,销售手机的总利润为y元,怎么进货才能使销售总利润最大?(3)实际进货时,厂家对B型手机出厂价下调m(30<m<70)元.若商店保持两种手机的售价不变,请设计出手机销售总利润最大的进货方案.27.(2019•武汉一模)母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒.已知A、B两种礼盒的单价比为2:3,单价和为200元(1)求A、B两种礼盒的单价分别是多少元?(2)该店主进这两种礼盒花费不超过9720元,B种礼盒的数量是A种礼盒数量的2倍多1个,且B种礼盒的数量不低57个,共有几种进货方案?28.(2019•青山区模拟)为迎接军运会,市政府准备采购若干套健身器材免费提供给社区,经考察,某体育器材公司有A,B两种型号的健身器可供选择.(1)体育器材公司2017年每套A型健身器的售价为2.5万元,经过连续两年降价,2019年每套售价为1.6万元,求每套A型健身器年平均下降率n;(2)2019年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项费总计不超过112万元,不少于110万元.采购合同规定:每套A型健身器售价为1.6万元,每套B型健身器售价为1.5(1﹣n)万元.①有几种采购方案?②安装完成后,若每套A型和B型健身器一年的养护费分别是购买价的a%(5≤a≤8)和10%.市政府计划支出W万元进行养护.问每年养护费的最低费用为多少?29.(2019•硚口区模拟)某公司根据市场需求销售A、B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划用不超过9.8万元购进A,B两种型号的净水器共50台,其中A型、B 型净水器每台售价分别为2500元、2180元,设A型净水器为x台.①求x的取值范围.②若公司决定从销售A型净水器的利润中每台捐献a(100<a<150)元给贫困村饮水改造爱心工程,求售完这50台净水器后获得的最大利润.参考答案一.选择题1.解:方程4x2=81的一般形式是4x2﹣81=0,它的一次项系数是0,故选:B.2.解:设AM=AF=x,由题意知EF=BE=,在Rt△ABE中,AB2+BE2=AE2,即1+()2=(x+)2,整理得x2+x﹣1=0,即AM为方程x2+x﹣1=0的一个正数根.故选:B.3.解:设每枚黄金重x两,每枚白银重y两,依题意,得:.故选:C.4.解:∵n是一元二次方程x2+x=4的根,∴n2+n=4,即n2=﹣n+4,∵m、n是一元二次方程x2+x=4的两个实数根,∴m+n=﹣1,mn=﹣4,∴2n2﹣mn﹣2m=2(﹣n+4)﹣mn﹣2m=﹣2(m+n)﹣mn+8=2+4+8=14.故选:B.5.解:由题意可知:△=9+4×2×7>0,故选:A.6.解:方程整理得:x2+2x﹣5=0,则a,b,c的值分别是1,2,﹣5,故选:D.7.解:∵x1,x2是一元二次方程x2﹣3x+2=0的两根,∴x1+x2+x1x2=3+2=5.故选:C.8.解:设诗句中谈到的鸦为x只,树为y棵,则可列出方程组为:.故选:D.9.解:设大马有x匹,小马有y匹,由题意得:,故选:D.10.解:设生产螺栓x人,生产螺帽y人,根据总人数可得方程x+y=90;根据生产的零件个数可得方程2×15x=24y,可得方程组:.故选:C.11.解:解不等式2x﹣a≤0,得:x≤,∵不等式2x﹣a≤0的正整数解是1,2,3,∴3≤<4,解得:6≤a<8,故选:D.12.解:当m﹣2=0,即m=2时,方程变形为2x+1=0,解得x=﹣;当m﹣2≠0,则△=22﹣4(m﹣2)≥0,解得m≤3且m≠2,综上所述,m的范围为m≤3.故选:A.13.解:设有x辆车,则可列方程:3(x﹣2)=2x+9.故选:A.二.填空题(共7小题)14.解:将x=3代入方程,得:9+m=0,则m=﹣9,∴方程为x2﹣9=0,解得x=±3,∴方程的另一个根为﹣3,故答案为:﹣3.15.解:根据题意得m≠0且△=42﹣4m×(﹣1)<0,解得m<﹣4.故答案为:m<﹣4.16.解:依题意,得:1+2+3+…+a=300,整理,得:a2+a﹣600=0,解得:a1=24,a2=﹣25(不合题意,舍去).故答案为:24.17.解:方程x(x﹣5)=0,可得x=0或x﹣5=0,解得:x1=0,x2=5,故答案为:x1=0,x2=518.解:设进馆人次的月平均增长率为x,则由题意得:200+200(1+x)+200(1+x)2=872,故答案为:200+200(1+x)+200(1+x)2=872.19.解:将x=1代入x2﹣m=0,m=1,故答案为:1.20.解:设方程的另一根为a,∵﹣3是一元二次方程x2﹣4x+c=0的一个根,∴﹣3+a=4,解得a=7,故答案为:7.三.解答题(共9小题)21.解:3(2x+3)=11x﹣6,6x+9=11x﹣6,9+6=11x﹣6x,15=5x,x=3.22.解:方程变形得:x2+2x=1,配方得:x2+2x+1=2,即(x+1)2=2,开方得:x+1=±,解得:x1=﹣1+,x2=﹣1﹣.23.解:将x=3代入x2﹣2x+a=0中得32﹣6+a=0,解得a=﹣3,将a=﹣3代入x2﹣2x+a=0中得:x2﹣2x﹣3=0,解得x1=3,x2=﹣1,所以a=﹣3,方程的另一根为﹣1.24.解:(1)设A、B两种纪念品的价格分别为x元和y元,则,解得.答:A、B两种纪念品的价格分别为10元和5元.(2)设购买A种纪念品t件,则购买B种纪念品(100﹣t)件,则750≤5t+500≤765,解得50≤t≤53,∵t为正整数,∴t=50,51,52,53,即有四种方案.第一种方案:购A种纪念品50件,B种纪念品50件;第二种方案:购A种纪念品51件,B种纪念品49件;第三种方案:购A种纪念品52件,B种纪念品48件;第四种方案:购A种纪念品53件,B种纪念品47件.25.解:(1)设每台B型空气净化器的进价为x元,则每台A型净化器的进价为(x+300)元,根据题意得:,解得:x=1200,经检验,x=1200是原方程的根,∴x+300=1500.答:每台B型空气净化器的进价为1200元,每台A型空气净化器的进价为1500元.(2)设A型空气净化器购进x台,则B型空气净化器(10﹣x)台.由1500x+1200(10﹣x)≤14000和10﹣x<2x解得x的范围<x≤,可取4,5,6三种方案.当x=6时,y最大=6900元.(3)设B型空气净化器的售价为x元,根据题意得:(x﹣1200)(4+)=3200,整理得:(x﹣1600)2=0,解得:x1=x2=1600.答:电器商社应将B型空气净化器的售价定为1600元.26.解:(1)设每部A型手机的销售利润为x元,每部B型手机的销售利润为y元,根据题意,得:,答:每部A型手机的销售利润为150元,每部B型手机的销售利润为100元;(2)设购进B型手机n部,则购进A型手机(110﹣n)部,则y=150(110﹣n)+100n=﹣50n+16500,其中,110﹣n≤2n,即n≥36,∴y关于n的函数关系式为y=﹣50n+16500 (36≤n≤50);∵﹣50<0,∴y随n的增大而减小,∵n≥36,且n为整数,∴当n=37时,y取得最大值,最大值为﹣50×37+16500=14650(元),答:购进A型手机73部、B型手机37部时,才能使销售总利润最大;(3)设购进B型手机n部,则购进A型手机(110﹣n)部,根据题意,得:y=150(110﹣n)+(100+m)n=(m﹣50)n+16500,其中,36≤n≤50(n为整数),①当30<m<50时,y随n的增大而减小,∴当n=37时,y取得最大值,即购进A型手机73部、B型手机37部时销售总利润最大;②当m=50时,m﹣50=0,y=16500,即商店购进B型电脑数量满足36≤n≤50的整数时,均获得最大利润;③当50<m<70时,y随n的增大而增大,∴当n=50时,y取得最大值,即购进A型手机60部、B型手机50部时销售总利润最大.27.解:(1)设A种礼盒单价为x元,B种礼盒单价为y元,依据题意得:,答:A种礼盒单价为80元,B种礼盒单价为120元;(2)设购进A种礼盒a个,B种礼盒(2a+1)个,依据题意可得:,解得:28≤a≤30,∵a的值为整数,∴a的值为:28、29、30,∴共有三种进货方案.28.解:(1)依题意列方程,2.5(1﹣n)2=1.6(1﹣n)2=1﹣n=±1﹣n=或1﹣n=﹣解得,n=或n=∵0<n<1∴n=.(2)①设采购A型号健身器材x套,采购B型号健身器材则(80﹣x)套,采购专项总费用为y元.依题意,y=1.6x+1.5(1﹣n)(80﹣x).把n=代入上式得,y=1.6x+1.2(80﹣x)整理得,y=0.4x+96.由题意,110≤y≤112∴110≤0.4x+96≤112.解得,35≤x≤40.又∵x应为整数∴x=35,36,37,38,39,40.故有6套方案.②依题意,W=1.6•a%x+1.2×10%(80﹣x)整理得,W=(1.6•a%﹣0.12)x+9.6.∵5≤a≤8∴﹣0.04≤1.6•a%﹣0.12≤0.0008故当a=5时,即W=﹣0.04x+9.6时应有W的最小值.又∵﹣0.04<0∴W随x的增大而减小∴当x=40时,由W的最小值为8.答:(1)年平均下降率为.(2)①有6种方案.②每年养护费的最低费用为8万元.29.解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m﹣200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m﹣200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)①根据题意得:2000x+1800(50﹣x)≤98000,解得:x≤40∴x的取值范围为:0≤x≤40且为x整数;②总利润w=(2500﹣2000)x+(2180﹣1800)(50﹣x)﹣ax=(120﹣a)x+19000,∵100<a<150,∴i).当100<a<120时,120﹣a>0,w随x增大而增大,∴当x=40时,w取最大值,最大值为(120﹣a)×40+19000=23800﹣40a,ii).当a=120时,w为一个定值w=0+19000=19000,iii)当120<a<150时,120﹣a<0,w随x的增大而减小,∴当x=0时,w取最大值,其最大值为:(120﹣a)×0+19000=19000,综上,当100<a<120时,19000<23800﹣40a<19800,∴售完这50台净水器后获得的最大利润为23800﹣40a.。
2024届湖北省潜江市十校联考中考一模数学试题含解析
2024届湖北省潜江市十校联考中考一模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.化简221121211x x x x ÷+--++的结果是( ) A .1B .12C .11x x -+D .222(1)x x -+2.下列实数中,在2和3之间的是( ) A .πB .2π-C .325D .3283.已知3x +y =6,则xy 的最大值为( ) A .2B .3C .4D .64.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大. A .3B .4C .5D .65.等腰三角形底角与顶角之间的函数关系是( ) A .正比例函数 B .一次函数C .反比例函数D .二次函数6.﹣12的绝对值是( ) A .﹣12 B .12C .﹣2D .27.如图,点A 、B 、C 在⊙O 上,∠OAB=25°,则∠ACB 的度数是( )A .135°B .115°C .65°D .50°8.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是A.B.C.D.9.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE10.运用乘法公式计算(4+x)(4﹣x)的结果是()A.x2﹣16 B.16﹣x2C.16﹣8x+x2D.8﹣x211.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A.74 B.44 C.42 D.4012.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:人数 2 3 4 1分数80 85 90 95则得分的众数和中位数分别是()A.90和87.5 B.95和85 C.90和85 D.85和87.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,四边形ABCD中,AD=CD,∠B=2∠D=120°,∠C=75°.则AD BC=14.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_______.15.请写出一个一次函数的解析式,满足过点(1,0),且y随x的增大而减小_____.16.如图,在平面直角坐标系中,函数y=kx(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为___________.17.函数y=13x-+1x-的自变量x的取值范围是_____.18.因式分解:a2b-4ab+4b=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).20.(6分)如图,在直角坐标系中△ABC的A、B、C三点坐标A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧),画出△A′B′C′关于y轴对称的△A′'B′'C′';(2)写出点A'的坐标.21.(6分)小丁每天从某报社以每份0.5元买进报纸200分,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元.(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);(2)如果每月以30天计算,小丁每天至少要买多少份报纸才能保证每月收入不低于2000元?22.(8分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.23.(8分)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN 上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的距离.24.(10分)小明遇到这样一个问题:已知:1b ca-=. 求证:240b ac -≥. 经过思考,小明的证明过程如下: ∵1b ca-=,∴b c a -=.∴0a b c -+=.接下来,小明想:若把1x =-带入一元二次方程20ax bx c ++=(a ≠0),恰好得到0a b c -+=.这说明一元二次方程20ax bx c ++=有根,且一个根是1x =-.所以,根据一元二次方程根的判别式的知识易证:240b ac -≥.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目: 已知:42a cb+=-. 求证:24b ac ≥.请你参考上面的方法,写出小明所编题目的证明过程. 25.(10分)如图,四边形ABCD 的四个顶点分别在反比例函数y=与y=(x >0,0<m <n )的图象上,对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为1. (1)当m=1,n=20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.26.(12分)如图,已知AB 是⊙O 的弦,C 是 AB 的中点,AB=8,AC= 25,求⊙O 半径的长.27.(12分)如图,AB 为⊙O 直径,过⊙O 外的点D 作DE ⊥OA 于点E ,射线DC 切⊙O 于点C 、交AB 的延长线于点P ,连接AC 交DE 于点F ,作CH ⊥AB 于点H . (1)求证:∠D =2∠A ; (2)若HB =2,cos D =35,请求出AC 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、A 【解题分析】 原式=()()111x x +-•(x –1)2+21x +=11x x -++21x +=11x x ++=1,故选A . 2、C 【解题分析】分析:先求出每个数的范围,逐一分析得出选项. 详解:A 、3<π<4,故本选项不符合题意;B 、1<π−2<2,故本选项不符合题意;C 、325<3,故本选项符合题意;D、3<328<4,故本选项不符合题意;故选C.点睛:本题考查了估算无理数的大小,能估算出每个数的范围是解本题的关键.3、B【解题分析】根据已知方程得到y=-1x+6,将其代入所求的代数式后得到:xy=-1x2+6x,利用配方法求该式的最值.【题目详解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值为1.故选B.【题目点拨】考查了二次函数的最值,解题时,利用配方法和非负数的性质求得xy的最大值.4、C【解题分析】解:甲和乙盒中1个小球任意摸出一球编号为1、2、3、1的概率各为,其中得到的编号相加后得到的值为{2,3,1,5,6,7,8}和为2的只有1+1;和为3的有1+2;2+1;和为1的有1+3;2+2;3+1;和为5的有1+1;2+3;3+2;1+1;和为6的有2+1;1+2;和为7的有3+1;1+3;和为8的有1+1.故p(5)最大,故选C.5、B【解题分析】根据一次函数的定义,可得答案.【题目详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【题目点拨】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.6、B【解题分析】根据求绝对值的法则,直接计算即可解答.【题目详解】111()222-=--=,故选:B.【题目点拨】本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.7、B【解题分析】由OA=OB得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P= 12∠AOB,然后根据圆内接四边形的性质求解.【题目详解】解:在圆上取点P,连接PA、PB. ∵OA=OB,∴∠OAB=∠OBA=25°,∴∠AOB=180°−2×25°=130°,∴∠P=12∠AOB=65°,∴∠ACB=180°−∠P=115°.故选B.【题目点拨】本题考查的是圆,熟练掌握圆周角定理是解题的关键.8、D【解题分析】本题主要考查二次函数的解析式【题目详解】解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为. 故选D.【题目点拨】本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.9、A【解题分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【题目详解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,故选A.【题目点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10、B【解题分析】根据平方差公式计算即可得解.【题目详解】222(4)(4)416x x x x+-=-=-,故选:B.【题目点拨】本题主要考查了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.11、C【解题分析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.12、A【解题分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.解:在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数,那么由中位数的定义可知,这组数据的中位数是87.5;故选:A.“点睛”本题考查了众数、中位数的知识,掌握各知识点的概念是解答本题的关键.注意中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13【解题分析】连接AC,过点C作CE⊥AB的延长线于点E,,如图,先在Rt△BEC中根据含30度的直角三角形三边的关系计算出BC、CE,判断△AEC为等腰直角三角形,所以∠BAC=45°,,利用AD ACBC BC=即可求解.【题目详解】连接AC,过点C 作CE ⊥AB 的延长线于点E,∵∠ABC=2∠D=120°, ∴∠D=60°, ∵AD =CD, ∴△ADC 是等边三角形,∵∠D+∠DAB+∠ABC+∠DCB=360°, ∴∠ACB=∠DCB-∠DCA=75°-60°=15°, ∠BAC=180°-∠ABC-∠ACB=180°-120°-15°=45°,∴AE=CE,∠EBC=45°+15°=60°, ∴∠BCE=90°-60°=30°,设BE=x,则BC=2x,CE=223BE CE x +=,在RT △AEC 中,AC=()222236BE CE xx +==,∴6622AD AC x BC BC x ===,故答案为62.【题目点拨】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.合理作辅助线是解题的关键. 14、20 【解题分析】根据抛物线的解析式结合抛物线过点B 、C ,即可得出点C 的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB 的长度,套用平行四边形的面积公式即可得出菱形ABCD 的面积. 【题目详解】 抛物线的对称轴为x=-522b a =-. ∵抛物线y=-x 2-1x+c 经过点B 、C ,且点B 在y 轴上,BC ∥x 轴, ∴点C 的横坐标为-1. ∵四边形ABCD 为菱形, ∴AB=BC=AD=1,∴点D 的坐标为(-2,0),OA=2. 在Rt △ABC 中,AB=1,OA=2, ∴22AB OA -,∴S 菱形ABCD =AD•OB=1×4=3.故答案为3. 【题目点拨】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键. 15、y=﹣x+1 【解题分析】根据题意可以得到k 的正负情况,然后写出一个符合要求的解析式即可解答本题. 【题目详解】∵一次函数y 随x 的增大而减小, ∴k <0,∵一次函数的解析式,过点(1,0), ∴满足条件的一个函数解析式是y=-x+1, 故答案为y=-x+1. 【题目点拨】本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合要去即可. 16、(4,12). 【解题分析】 由于函数y=kx(x >0常数k >0)的图象经过点A (1,1),把(1,1)代入解析式求出k=1,然后得到AC=1.设B 点的横坐标是m ,则AC 边上的高是(m-1),根据三角形的面积公式得到关于m 的方程,从而求出,然后把m 的值代入y=2x,即可求得B 的纵坐标,最后就求出了点B 的坐标. 【题目详解】 ∵函数y=kx(x >0、常数k >0)的图象经过点A (1,1), ∴把(1,1)代入解析式得到1=1k , ∴k=1,设B 点的横坐标是m , 则AC 边上的高是(m-1), ∵AC=1∴根据三角形的面积公式得到12×1•(m-1)=3, ∴m=4,把m=4代入y=2x, ∴B 的纵坐标是12, ∴点B 的坐标是(4,12). 故答案为(4,12). 【题目点拨】解答本题的关键是根据已知坐标系中点的坐标,可以表示图形中线段的长度.根据三角形的面积公式即可解答. 17、x≥1且x≠3 【解题分析】根据二次根式的有意义和分式有意义的条件,列出不等式求解即可. 【题目详解】根据二次根式和分式有意义的条件可得:1030,x x -≥⎧⎨-≠⎩解得:1x ≥且 3.x ≠ 故答案为:1x ≥且 3.x ≠ 【题目点拨】考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.18、2(2)b a -【解题分析】先提公因式b ,然后再运用完全平方公式进行分解即可. 【题目详解】 a 2b ﹣4ab+4b =b (a 2﹣4a+4) =b (a ﹣2)2, 故答案为b (a ﹣2)2. 【题目点拨】本题考查了利用提公因式法与公式法分解因式,熟练掌握完全平方公式的结构特征是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、CD的长度为173﹣17cm.【解题分析】在直角三角形中用三角函数求出FD,BE的长,而FC=AE=AB+BE,而CD=FC-FD,从而得到答案. 【题目详解】解:由题意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=BE EC,∴BE=ECtan30°=51×33=173(cm);∴CF=AE=34+BE=(34+173)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,则CD=FC﹣FD=34+173﹣51=173﹣17,答:CD的长度为173﹣17cm.【题目点拨】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.20、(1)见解析;(2)点A'的坐标为(-3,3)【解题分析】解:(1)A B C''',△A′'B′'C′'如图所示.(2)点A'的坐标为(-3,3).21、(1)y=0.8x﹣60(0≤x≤200)(2)159份【解题分析】解:(1)y=(1﹣0.5)x﹣(0.5﹣0.2)(200﹣x)=0.8x﹣60(0≤x≤200).(2)根据题意得:30(0.8x﹣60)≥2000,解得x≥1 1383.∴小丁每天至少要买159份报纸才能保证每月收入不低于2000元.(1)因为小丁每天从某市报社以每份0.5元买出报纸200份,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,所以如果小丁平均每天卖出报纸x份,纯收入为y元,则y=(1﹣0.5)x﹣(0.5﹣0.2)(200﹣x)即y=0.8x﹣60,其中0≤x≤200且x为整数.(2)因为每月以30天计,根据题意可得30(0.8x﹣60)≥2000,解之求解即可.22、(1)平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 100(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解题分析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 100(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些.(3)∵,222222S7085100851008575858085160=-+-+-+-+-=高中队()()()()(),∴2S 初中队<2S 高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答. (2)根据平均数和中位数的统计意义分析得出即可. (3)分别求出初中、高中部的方差比较即可. 23、1.5千米 【解题分析】先根据相似三角形的判定得出△ABC ∽△AMN,再利用相似三角形的性质解答即可 【题目详解】在△ABC 与△AMN 中,305549AC AB ==,151.89AM AN ==, ∴AC AM AB AN=,∵∠A=∠A ,∴△ABC ∽△ANM , ∴AC AMBC MN=,即30145MN=,解得MN=1.5(千米) ,因此,M 、N 两点之间的直线距离是1.5千米. 【题目点拨】此题考查相似三角形的应用,解题关键在于掌握运算法则 24、证明见解析 【解题分析】 解:∵42a cb+=-,∴42a c b +=-.∴420a b c ++=. ∴2x =是一元二次方程20ax bx c ++=的根. ∴240b ac -≥,∴24b ac ≥.25、(1)①直线AB 的解析式为y=﹣x+3;理由见解析;②四边形ABCD 是菱形,(2)四边形ABCD 能是正方形,理由见解析.【解题分析】分析:(1)①先确定出点A ,B 坐标,再利用待定系数法即可得出结论; ②先确定出点D 坐标,进而确定出点P 坐标,进而求出PA ,PC ,即可得出结论;(2)先确定出B (1,),进而得出A (1-t ,+t ),即:(1-t )(+t )=m ,即可得出点D (1,8-),即可得出结论.详解:(1)①如图1,∵m=1,∴反比例函数为y=,当x=1时,y=1,∴B(1,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=-x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(1,1),∵BD∥y轴,∴D(1,5),∵点P是线段BD的中点,∴P(1,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=1-=,PC=-1=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,∴PA=PB=PC=PD,(设为t,t≠0),当x=1时,y==,∴B(1,),∴A(1-t,+t),∴(1-t)(+t)=m,∴t=1-,∴点D的纵坐标为+2t=+2(1-)=8-,∴D(1,8-),∴1(8-)=n,∴m+n=2.点睛:此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.26、5【解题分析】试题分析:连接OC 交AB 于D ,连接OA ,由垂径定理得OD 垂直平分AB ,设⊙O 的半径为r , 在△ACD 中,利用勾股定理求得CD=2,在△OAD 中,由OA 2=OD 2+AD 2,代入相关数量求解即可得. 试题解析:连接OC 交AB 于D ,连接OA , 由垂径定理得OD 垂直平分AB , 设⊙O 的半径为r ,在△ACD 中,CD 2+AD 2=AC 2,CD=2,在△OAD 中,OA 2=OD 2+AD 2,r 2=(r-2)2+16, 解得r=5, ∴☉O 的半径为5.27、(1)证明见解析;(2)5. 【解题分析】(1)连接OC ,根据切线的性质得到90OCP ∠=︒,根据垂直的定义得到90DEP ∠=︒,得到COB D ∠=∠,然后根据圆周角定理证明即可; (2)设O 的半径为r ,根据余弦的定义、勾股定理计算即可.【题目详解】 (1)连接OC . ∵射线DC 切O 于点C ,90OCP ∴∠=︒.DE AP ⊥,90DEP ∴∠=︒,90P D ∴∠+∠=︒,90P COB ∠+∠=︒,COB D ∴∠=∠,由圆周角定理得:2COB A ∠=∠,2D A ∴∠=∠;(2)由(1)可知:90OCP ∠=︒,COP D ∠=∠,3cos cos 5COP D ∴∠=∠=,CH OP ⊥,90CHO ∴∠=︒,设O 的半径为r ,则2OH r =-,在Rt CHO ∆中,23cos 5OH r HOC OC r -∠===,5r ∴=,523OH ∴=-=,∴由勾股定理可知:4CH =,1028AH AB HB ∴=-=-=. 在Rt AHC ∆中,90CHA =︒∠,由勾股定理可知:2245AC AH CH =+=【题目点拨】本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键.。
2024届湖北省潜江市十校联考中考数学四模试卷含解析
2024届湖北省潜江市十校联考中考数学四模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列几何体中,三视图有两个相同而另一个不同的是()A.(1)(2)B.(2)(3)C.(2)(4)D.(3)(4)2.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为()A.603n mile B.602n mile C.303n mile D.302n mile3.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分4.下列计算正确的是()A.(a2)3=a6B.a2•a3=a6C.a3+a4=a7D.(ab)3=ab35.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F,S△AEF=3,则S△FCD 为()A.6 B.9 C.12 D.276.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A.0.21×108B.21×106C.2.1×107D.2.1×1067.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC 的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.258.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为()A.120°B.110°C.100°D.80°9.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣310.如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y (m),y与x的函数关系如图2所示.有以下结论:①图1中a的值为500;②乙车的速度为35 m/s;③图1中线段EF应表示为5005x;④图2中函数图象与x轴交点的横坐标为1.其中所有的正确结论是()A .①④B .②③C .①②④D .①③④二、填空题(共7小题,每小题3分,满分21分)11.已知一组数据﹣3、3,﹣2、1、3、0、4、x 的平均数是1,则众数是_____.12.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.13.一组数据:1,2,a ,4,5的平均数为3,则a=_____.14.如图,AB 为⊙O 的弦,C 为弦AB 上一点,设AC =m ,BC =n(m >n),将弦AB 绕圆心O 旋转一周,若线段BC 扫过的面积为(m 2﹣n 2)π,则mn=______15.如图,在△ABC 中,AB=5cm ,AC=3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为 cm . 16.如图,反比例函数y =kx(x <0)的图象经过点A (﹣2,2),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B '在此反比例函数的图象上,则t 的值是( )A .1+5B .4+2C .42-D .-1+517.分式方程34xx +=1的解为_________. 三、解答题(共7小题,满分69分) 18.(10分)解不等式组:,并把解集在数轴上表示出来.19.(5分)观察下列等式: 第1个等式:a 1212=+,第2个等式:a 23223=+第3个等式:a 332+3 第4个等式:a 4525=+-2,…按上述规律,回答以下问题:请写出第n 个等式:a n =__________.a 1+a 2+a 3+…+a n =_________. 20.(8分)鲜丰水果店计划用12元/盒的进价购进一款水果礼盒以备销售.()1据调查,当该种水果礼盒的售价为14元/盒时,月销量为980盒,每盒售价每增长1元,月销量就相应减少30盒,若使水果礼盒的月销量不低于800盒,每盒售价应不高于多少元?()2在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了25%,而每盒水果礼盒的售价比(1)中最高售价减少了1%5m ,月销量比(1)中最低月销量800盒增加了%m ,结果该月水果店销售该水果礼盒的利润达到了4000元,求m 的值.21.(10分)如图,在Rt ΔABC 中,C 90∠=,AD 平分BAC ∠,交BC 于点D ,点O在AB 上,O 经过A,D 两点,交AB 于点E ,交AC 于点F .求证:BC 是O 的切线;若O 的半径是2cm ,F 是弧AD 的中点,求阴影部分的面积(结果保留π和根号). 22.(10分)问题探究(1)如图①,在矩形ABCD 中,AB=3,BC=4,如果BC 边上存在点P ,使△APD 为等腰三角形,那么请画出满足条件的一个等腰三角形△APD ,并求出此时BP 的长;(2)如图②,在△ABC 中,∠ABC=60°,BC=12,AD 是BC 边上的高,E 、F 分别为边AB 、AC 的中点,当AD=6时,BC 边上存在一点Q ,使∠EQF=90°,求此时BQ 的长; 问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE ,山庄保卫人员想在线段CD 上选一点M 安装监控装置,用来监视边AB ,现只要使∠AMB 大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m ,AE=400m ,ED=285m ,CD=340m ,问在线段CD 上是否存在点M ,使∠AMB=60°?若存在,请求出符合条件的DM 的长,若不存在,请说明理由.23.(12分)已知,在平面直角坐标系xOy 中,抛物线L :y=x 2-4x+3与x 轴交于A ,B 两点(点A 在点B 的左侧),顶点为C .(1)求点C和点A的坐标.(2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),①当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有______个交点;②若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:______;③当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标.24.(14分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:成绩分组频数频率50≤x<60 8 0.1660≤x<70 12 a70≤x<80 ■0.580≤x<90 3 0.0690≤x≤100 b c合计■ 1(1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】根据三视图的定义即可解答.【题目详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B.【题目点拨】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.2、B【解题分析】如图,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60n mile,∴PE=AE=22×60=302n mile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=602n mile.故选B.3、C【解题分析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4、A【解题分析】分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案.详解:A、幂的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幂的乘法,底数不变,指数相加,原式=5a,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=33a b,计算错误;故选A.点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型.理解各种计算法则是解题的关键.5、D【解题分析】先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.【题目详解】解:∵四边形ABCD是平行四边形,AE:EB=1:2,∴AE :CD=1:3, ∵AB ∥CD , ∴∠EAF=∠DCF , ∵∠DFC=∠AFE , ∴△AEF ∽△CDF , ∵S △AEF =3,∴AEF FCDS S=3FCDS=(13)2, 解得S △FCD =1. 故选D. 【题目点拨】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键. 6、D 【解题分析】 2100000=2.1×106.点睛:对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数. 7、C 【解题分析】通过分析图象,点F 从点A 到D 用as ,此时,△FBC 的面积为a ,依此可求菱形的高DE ,再由图象可知,BD=5,应用两次勾股定理分别求BE 和a . 【题目详解】过点D 作DE ⊥BC 于点E.由图象可知,点F 由点A 到点D 用时为as ,△FBC 的面积为acm 1.. ∴AD=a. ∴12DE •AD =a . ∴DE=1.当点F从D到B∴Rt△DBE中,1=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=5 2 .故选C.【题目点拨】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.8、D【解题分析】先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.【题目详解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故选D.【题目点拨】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.9、A【解题分析】根据一元二次方程根与系数的关系和整体代入思想即可得解.【题目详解】∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故选A.【题目点拨】本题主要考查一元二次方程的根与系数的关系(韦达定理),韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.10、A【解题分析】分析:①根据图象2得出结论; ②根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论; ③根据图1,线段的和与差可表示EF的长;④利用待定系数法求直线的解析式,令y=0可得结论.详解:①y是两车的距离,所以根据图2可知:图1中a的值为500,此选项正确;②由题意得:75×20+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;③图1中:EF=a+20x-vx=500+20x-25x=500-5x.故此选项不正确;④设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得:50075125bk b=⎧⎨+=⎩,解得5500kb=-⎧⎨=⎩,∴y=-5x+500,当y=0时,-5x+500=0,x=1,即图2中函数图象与x轴交点的横坐标为1,此选项正确;其中所有的正确结论是①④;故选A.点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、3【解题分析】∵-3、3, -2、1、3、0、4、x的平均数是1,∴-3+3-2+1+3+0+4+x=8∴x=2,∴一组数据-3、3, -2、1、3、0、4、2,∴众数是3.故答案是:3.12、127或2【解题分析】由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【题目详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有'B F CFAB BC=,得到方程434x x-=,解得x=127,故BF=127;当△FB’C∽△ABC,有'B F FCAB AC=,得到方程433x x-=,解得x=2,故BF=2;综上BF的长度可以为127或2.【题目点拨】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.13、1【解题分析】依题意有:(1+2+a+4+5)÷5=1,解得a=1.故答案为1.14、152 +【解题分析】先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=πOB2-πOC2=(m2-n2)π,则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论.【题目详解】如图,连接OB、OC,以O为圆心,OC为半径画圆,则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,即S=πOB2-πOC2=(m2-n2)π,OB2-OC2=m2-n2,∵AC=m,BC=n(m>n),∴AM=m+n,过O作OD⊥AB于D,∴BD=AD=12AB=2m n+,CD=AC-AD=m-2m n+=2m n-,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,∴m2-n2=mn,m 2-mn-n 2=0,, ∵m >0,n >0,∴,∴ m n =,故答案为 【题目点拨】此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC 扫过的面积是解题的关键,是一道中等难度的题目.15、8【解题分析】试题分析:根据线段垂直平分线的性质得,BD=CD ,则AB=AD+CD ,所以,△ACD 的周长=AD+CD+AC=AB+AC ,解答出即可解:∵DE 是BC 的垂直平分线,∴BD=CD ,∴AB=AD+BD=AD+CD ,∴△ACD 的周长=AD+CD+AC=AB+AC=8cm ;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等16、A【解题分析】根据反比例函数图象上点的坐标特征由A 点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-4x,且OB=AB=2,则可判断△OAB 为等腰直角三角形,所以∠AOB=45°,再利用PQ ⊥OA 可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-4t,t),于是利用PB=PB′得t-2=|-4t|=4t,然后解方程可得到满足条件的t的值.【题目详解】如图,∵点A坐标为(-2,2),∴k=-2×2=-4,∴反比例函数解析式为y=-4x,∵OB=AB=2,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(-4t,t),∵PB=PB′,∴t-2=|-4t|=4t,整理得t2-2t-4=0,解得t1=15,5(不符合题意,舍去),∴t的值为15.故选A.【题目点拨】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.17、x =1【解题分析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 详解:两边都乘以x +4,得:3x =x +4,解得:x =1,检验:x =1时,x+4=6≠0,所以分式方程的解为x =1,故答案为:x =1.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.三、解答题(共7小题,满分69分)18、无解.【解题分析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.试题解析:由①得x≥4,由②得x <1,∴原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集.19、(1)1n a n n =++1n n + (211n +.【解题分析】 (1)根据题意可知,1 2112a ==+,23223a ==+32332a ==-+ 45225a ==+,…由此得出第n 个等式:a n 11n n n n =+++ (2)将每一个等式化简即可求得答案.【题目详解】解:(1)∵第1个等式:11a ==,第2个等式:2a ==第3个等式:3 2a ==第4个等式:4 2a ==,∴第n 个等式:a n= (2)a 1+a 2+a 3+…+a n=()()(+++++n+11.=1.【题目点拨】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.20、(1)若使水果礼盒的月销量不低于800盒,每盒售价应不高于20元;(2)m 的值为25.【解题分析】(1)设每盒售价应为x 元,根据月销量=980-30×超出14元的部分结合月销量不低于800盒,即可得出关于x 的一元一次不等式,解之取其最大值即可得出结论;(2)根据总利润=每盒利润×销售数量,即可得出关于m 的一元二次方程,解之取其正值即可得出结论.【题目详解】解:()1设每盒售价x 元.依题意得:()9803014800x --≥解得:20x ≤答:若使水果礼盒的月销量不低于800盒,每盒售价应不高于20元()2依题意:()1201%12125%5m ⎡⎤⎛⎫--⨯+ ⎪⎢⎥⎝⎭⎣⎦()8001+m%4000⨯=令:%m t =化简:240t t -=解得:10t =(舍)214t = 25m ∴=,答:m 的值为25.【题目点拨】考查一元二次方程的应用,一元一次不等式的应用,读懂题目,找出题目中的等量关系或不等关系是解题的关键.21、(1)证明见解析;(2)22)3cm π 【解题分析】(1)连接OD ,根据角平分线的定义和等腰三角形的性质可得∠ADO=∠CAD ,即可证明OD//AC ,进而可得∠ODB=90°,即可得答案;(2)根据圆周角定理可得弧AF =弧DF =弧DE ,即可证明∠BOD=60°,在Rt ΔBOD 中,利用∠BOD 的正切值可求出BD 的长,利用S 阴影=S △BOD -S 扇形DOE 即可得答案.【题目详解】(1)连接OD∵AD 平分BAC ∠,∴BAD CAD ∠∠=,∵OA OD = ,∴BAD ADO ∠∠=,∴ADO CAD ∠∠=,∴OD//AC ,∴ODB C 90∠∠==,∴OD BC ⊥又OD 是O 的半径, ∴BC 是O 的切线(2)由题意得OD 2cm =∵F 是弧AD 的中点∴弧AF =弧DF∵BAD CAD ∠∠=∴弧DE =弧DF∴弧AF =弧DF =弧DE∴1BOD 180603∠=⨯= 在Rt ΔBOD 中 ∵BD tan BOD OD ∠=∴BD OD tan BOD 2tan6023cm ∠=⋅==2ΔBOD DOE 2S S S 23πcm 3阴影扇形⎛⎫=-=- ⎪⎝⎭.【题目点拨】本题考查的是切线的判定、圆周角定理及扇形面积,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可;在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半.熟练掌握相关定理及公式是解题关键.22、(1)1;77(1)3(4)(32【解题分析】(1)由于△PAD 是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.(1)以EF 为直径作⊙O ,易证⊙O 与BC 相切,从而得到符合条件的点Q 唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ 长.(4)要满足∠AMB=40°,可构造以AB 为边的等边三角形的外接圆,该圆与线段CD 的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM 长.【题目详解】(1)①作AD 的垂直平分线交BC 于点P ,如图①,则PA=PD .∴△PAD 是等腰三角形.∵四边形ABCD 是矩形,∴AB=DC ,∠B=∠C=90°.∵PA=PD ,AB=DC ,∴Rt △ABP ≌Rt △DCP (HL ).∴BP=CP.∵BC=2,∴BP=CP=1.②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,则DA=DP′.∴△P′AD是等腰三角形.∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴22437∴BP′=27③点A为圆心,AD为半径画弧,交BC于点P″,如图①,则AD=AP″.∴△P″AD是等腰三角形.同理可得:7综上所述:在等腰三角形△ADP中,若PA=PD,则BP=1;若DP=DA,则7若AP=AD,则7(1)∵E、F分别为边AB、AC的中点,∴EF∥BC,EF=12 BC.∵BC=11,∴EF=4.以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.∵AD⊥BC,AD=4,∴EF与BC之间的距离为4.∴OQ=4∴OQ=OE=4.∴⊙O与BC相切,切点为Q.∵EF为⊙O的直径,∴∠EQF=90°.过点E作EG⊥BC,垂足为G,如图②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四边形OEGQ是正方形.∴GQ=EO=4,EG=OQ=4.∵∠B=40°,∠EGB=90°,EG=4,∴3∴3∴当∠EQF=90°时,BQ的长为3(4)在线段CD上存在点M,使∠AMB=40°.理由如下:以AB为边,在AB的右侧作等边三角形ABG,作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,过点O作OH⊥CD,垂足为H,如图③.则⊙O是△ABG的外接圆,∵△ABG是等边三角形,GP⊥AB,∴AP=PB=12 AB.∵AB=170,∴AP=145.∵ED=185,∴OH=185-145=6.∵△ABG是等边三角形,AK⊥BG,∴∠BAK=∠GAK=40°.∴OP=AP•tan40°=145×3 33∴3∴OH<OA.∴⊙O与CD相交,设交点为M,连接MA、MB,如图③.∴∠AMB=∠AGB=40°,3.∵OH⊥CD,OH=6,3∴2222=(903)150OM OH--2∵AE=200,3∴3若点M在点H的左边,则32∵420,∴DM>CD.∴点M不在线段CD上,应舍去.若点M在点H的右边,则∵420,∴DM<CD.∴点M在线段CD上.综上所述:在线段CD上存在唯一的点M,使∠AMB=40°,此时DM的长为(【题目点拨】本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键.23、(1)C(2,-1),A(1,0);(2)①3,②0<t<1,1)或(,1)或(-1,0)【解题分析】(1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;(2)①抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;②将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L 双抛图形”与直线y=3恰好有两个交点时t的取值范围;③首先证明四边形ACQP为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标.【题目详解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,∴A(1,0),B(3,0),∴抛物线的对称轴为x=2,将x=2代入抛物线的解析式得:y=-1,∴C(2,-1);(2)①将x=0代入抛物线的解析式得:y=3,∴抛物线与y轴交点坐标为(0,3),如图所示:作直线y=3,由图象可知:直线y=3与“L双抛图形”有3个交点,故答案为3;②将y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函数图象可知:当0<t<1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,故答案为0<t<1.③如图2所示:∵PQ∥AC且PQ=AC,∴四边形ACQP为平行四边形,又∵点C的纵坐标为-1,∴点P的纵坐标为1,将y=1代入抛物线的解析式得:x2-1x+3=1,解得:2或2.∴点P2,1)或(2,1),当点P(-1,0)时,也满足条件.2,1)或(2,1)或(-1,0)【题目点拨】本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键.24、(1)a=0.24,b=2,c=0.04;(2)600人;(3)25人.【解题分析】(1)利用50≤x<60的频数和频率,根据公式:频率=频数÷总数先计算出样本总人数,再分别计算出a,b,c的值;(2)先计算出竞赛分数不低于70分的频率,根据样本估计总体的思想,计算出1000名学生中竞赛成绩不低于70分的人数;(3)列树形图或列出表格,得到要求的所有情况和2名同学来自一组的情况,利用求概率公式计算出概率.【题目详解】解:(1)样本人数为:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人数为:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在选取的样本中,竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有:1000×0.6=600(人)∴这1000名学生中有600人的竞赛成绩不低于70分;(3)成绩是80分以上的同学共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A,B 从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8种情况,∴抽取的2名同学来自同一组的概率P=820=25【题目点拨】本题考查了频数、频率、总数间关系及用列表法或树形图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树形图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.。
湖北省潜江市2019-2020学年七年级上学期数学期末考试试卷及参考答案
一、单选题 1. 鼓是中国传统民族乐器.作为一种打击乐器,在我国民间被广泛流传,它发音脆亮,独具魅力.除了作为乐器外,鼓在
古代还用来传播信息.如图1是我国某少数民族的一种鼓的轮廓图,如果从上面看是图形( )
A.
B.
C.
D.
2. 生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中
A.
B.Biblioteka C.D.10. 根据以下图形变化的规律,第123个图形中黑色正方形的数量是( ).
A . 182个 B . 183个 C . 184个 D . 185个
二、填空题
11. 过度包装既浪费资源又污染环境.据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧 化碳的排放量.把数据3120000用科学记数法表示为 ________.
14.
15.
16. 17. 18.
19. 20. 21.
22.
23. 24.
(1) 如图1,如果∠AOC=50°,依题意补全图形,写出求∠DOE度数的思路(不需要写出完整的推理过程); (2) 当OD绕点O顺时针旋转一定的角度得到图2,使得直角边OC在直线AB的上方,若∠AOC=α,其他条件不变, 依题意补全图形,并求∠DOE的度数(用含α的代数式表示); (3) 当OD绕点O继续顺时针旋转一周,回到图1的位置,在旋转过程中你发现∠AOC与∠DOE(0°≤∠AOC≤180°,0°≤∠D OE≤180°)之间有怎样的数量关系?请直接写出你的发现. 参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.
2019-2020学年湖北省潜江市张金镇数学中考模拟试卷(一)(有标准答案)
湖北省潜江市张金镇数学中考模拟试卷(一)一、单选题1.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A. 5.3×103B. 5.3×104C. 5.3×107D. 5.3×108【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】5300万=53000000= .故答案为:C.【分析】科学记数法表示绝对值较大的数,一般表示成a ×10n,的形式,其中1 ≤∣a ∣<10, n是原数的整数位数减一。
2.某潜水艇停在海面下500米处,先下降200米,又上升130米,这时潜水艇停在海面下多少米处()A. 430B. 530C. 570D. 470【答案】C【考点】正数和负数的认识及应用【解析】【解答】根据题意,由下降200米用-200米表示,上升130米用+130米表示,根据题意可以列式为:(-500)+(-200)+130=-570米,即这时潜水艇停在海面下570米.故答案为:C.【分析】根据相反的量的意义可得,向上为正,向下为负,再用有理数的加法即可求解。
3.如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A. ①②③B. ①②④ C. ①③④ D. ①②③④【答案】D【考点】平行线的性质,三角形的外角性质【解析】【解答】点有4种可能位置.( 1 )如图,由∥可得( 2 )如图,过作平行线,则由∥可得( 3 )如图,由∥可得( 4 )如图,由∥可得的度数可能为故答案为:D.【分析】根据点E有4种可能的位置,因此分4种情况进行讨论。
分别画出图形根据平行线的性质及三角形的外角性质,分别计算求解即可。
2019-2020学年湖北省潜江市七年级上期末考试数学模拟试卷及答案解析
2019-2020学年湖北省潜江市七年级上期末考试数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)
1.在下列气温的变化中,能够反映温度上升5℃的是()
A.气温由﹣3℃到2℃B.气温由﹣1℃到﹣6℃
C.气温由﹣1℃到5℃D.气温由4℃到﹣1℃
2.如图所示的几何体是将一个长方体截去一部分后得到的,小明画出了该几何体的三种视图,其中正确的是()
A.主视图B.左视图
C.俯视图D.主视图和左视图
3.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是()
A.a+b>0B.ab=0C .﹣<0D .+>0
4.地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B.5.1×108C.5.1×109D.51×107
5.下列根据等式的性质变形正确的是()
A.若3x+2=2x﹣2,则x=0
B .若x=2,则x=1
C.若x=3,则x2=3x
D .若﹣1=x,则2x+1﹣1=3x
6.如图,在下列说法中错误的是()
第1 页共20 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省潜江市十校联考2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若数a ,b 在数轴上的位置如图示,则( )A .a+b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >02.函数y=ax 2+1与ay x=(a≠0)在同一平面直角坐标系中的图象可能是( ) A . B . C . D .3.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22ky (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-4.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.5.下列计算正确的是( ) A .a 4+a 5=a 9 B .(2a 2b 3)2=4a 4b 6C .﹣2a (a+3)=﹣2a 2+6aD .(2a ﹣b )2=4a 2﹣b 2 6.若x =-2 是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,则a 的值为( ) A .1或4B .-1或-4C .-1或4D .1或-47.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是( )A .①②B .②③C .①③D .②④8.下列运算正确的是( ) A .a 3•a 2=a 6B .a ﹣2=﹣21aC .33﹣23=3D .(a+2)(a ﹣2)=a 2+49.如图,一圆弧过方格的格点A 、B 、C ,在方格中建立平面直角坐标系,使点A 的坐标为(﹣3,2),则该圆弧所在圆心坐标是( )A .(0,0)B .(﹣2,1)C .(﹣2,﹣1)D .(0,﹣1)10.如图,在Rt △ABC 中,∠BAC=90°,将△ABC 绕点A 顺时针旋转90°后得到△AB′C′(点B 的对应点是点B′,点C 的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B 的大小是( )A .32°B .64°C .77°D .87°11.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩12.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果关于x 的方程x 2+2ax ﹣b 2+2=0有两个相等的实数根,且常数a 与b 互为倒数,那么a+b=_____. 14.分解因式:2x 3﹣4x 2+2x =_____.15.如图,在Rt △ABC 中,∠C=90°,AC=6,∠A=60°,点F 在边AC 上,并且CF=2,点E 为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.16.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为.17.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.18.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?20.(6分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B 的左边),点C ,D 在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?保持t=2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形的面积时,求抛物线平移的距离.21.(6分)如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直于x 轴,垂足为点B ,反比例函数y =kx(x >0)的图象经过AO 的中点C ,交AB 于点D ,且AD =1.设点A 的坐标为(4,4)则点C 的坐标为 ;若点D 的坐标为(4,n). ①求反比例函数y =kx的表达式; ②求经过C ,D 两点的直线所对应的函数解析式;在(2)的条件下,设点E 是线段CD 上的动点(不与点C ,D 重合),过点E 且平行y 轴的直线l 与反比例函数的图象交于点F ,求△OEF 面积的最大值.22.(8分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下: 17 18 16 13 24 15 28 26 18 19 22 17 16 19 32 30 16 14 15 26 15322317151528281619对这30个数据按组距3进行分组,并整理、描述和分析如下. 频数分布表 组别 一二三四五六七销售额 1619x <… 1922x <… 2225x <… 2528x <… 2831x <… 3134x <…频数7 932b2数据分析表 平均数 众数 中位数 20.318请根据以上信息解答下列问题:填空:a= ,b= ,c= ;若将月销售额不低于25万元确定为销售目标,则有 位营业员获得奖励;若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.23.(8分)如下表所示,有A 、B 两组数: 第1个数 第2个数 第3个数 第4个数 …… 第9个数 …… 第n 个数 A 组 ﹣6 ﹣5 ﹣2 …… 58 …… n 2﹣2n ﹣5 B 组14710……25……(1)A 组第4个数是 ;用含n 的代数式表示B 组第n 个数是 ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.24.(10分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的A 点和东人工岛上的B 点间的距离约为5.6千米,点C 是与西人工岛相连的大桥上的一点,A ,B ,C 在一条直线上.如图,一艘观光船沿与大桥AC 段垂直的方向航行,到达P 点时观测两个人工岛,分别测得PA ,PB 与观光船航向PD 的夹角18DPA ∠=︒,53DPB ∠=︒,求此时观光船到大桥AC 段的距离PD 的长(参考数据:180.31sin ︒≈,180.95cos ︒≈,180.33tan ︒≈,530.80sin ︒≈,530.60cos ︒≈,53 1.33tan ︒≈).25.(10分)如图,已知BD 是△ABC 的角平分线,点E 、F 分别在边AB 、BC 上,ED ∥BC ,EF ∥AC .求证:BE=CF .26.(12分)为保护环境,我市公交公司计划购买A 型和B 型两种环保节能公交车共10辆.若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.求购买A 型和B 型公交车每辆各需多少万元?预计在某线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?27.(12分)计算:3﹣1﹣cos61°﹣(121.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案. 【详解】由数轴可知:a <0<b ,a<-1,0<b<1, 所以,A.a+b<0,故原选项错误; B. ab <0,故原选项错误; C.a-b<0,故原选项错误; D. 0a b -->,正确. 故选D . 【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系. 2.B 【解析】试题分析:分a >0和a <0两种情况讨论:当a >0时,y=ax 2+1开口向上,顶点坐标为(0,1);ay x =位于第一、三象限,没有选项图象符合; 当a <0时,y=ax 2+1开口向下,顶点坐标为(0,1);ay x=位于第二、四象限,B 选项图象符合.故选B .考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用. 3.A 【解析】【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.4.A 【解析】 【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可. 【详解】由题意得:m ﹣1≠0, 解得:m≠1, 故选A . 【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程. 5.B【解析】分析:根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算. 详解:A 、a 4与a 5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、-2a(a+3)=-2a2-6a,故本选项错误;D、(2a-b)2=4a2-4ab+b2,故本选项错误;故选:B.点睛:本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.6.B【解析】【详解】试题分析:把x=﹣2代入关于x的一元二次方程x2﹣52ax+a2=0即:4+5a+a2=0解得:a=-1或-4,故答案选B.考点:一元二次方程的解;一元二次方程的解法.7.B【解析】【详解】A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选C.8.C【解析】【分析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.A 、a 3•a 2=a 5,故A 选项错误;B 、a ﹣2=21a ,故B 选项错误; C 、33﹣23=3,故C 选项正确; D 、(a+2)(a ﹣2)=a 2﹣4,故D 选项错误, 故选C . 【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键. 9.C 【解析】如图:分别作AC 与AB 的垂直平分线,相交于点O ,则点O 即是该圆弧所在圆的圆心. ∵点A 的坐标为(﹣3,2), ∴点O 的坐标为(﹣2,﹣1). 故选C . 10.C 【解析】试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A ,∴∠B=77°,故选C .考点:旋转的性质. 11.C 【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程. 【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.12.C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.±1.【解析】【分析】根据根的判别式求出△=0,求出a1+b1=1,根据完全平方公式求出即可.【详解】解:∵关于x的方程x1+1ax-b1+1=0有两个相等的实数根,∴△=(1a)1-4×1×(-b1+1)=0,即a1+b1=1,∵常数a与b互为倒数,∴ab=1,∴(a+b)1=a1+b1+1ab=1+3×1=4,∴a+b=±1,故答案为±1.【点睛】本题考查了根的判别式和解高次方程,能得出等式a1+b1=1和ab=1是解此题的关键.14.2x(x-1)2【解析】2x 3﹣4x 2+2x=222(21)2(1)x x x x x -+=- 15.23-2 . 【解析】 【分析】延长FP 交AB 于M ,当FP ⊥AB 时,点P 到AB 的距离最小.运用勾股定理求解. 【详解】解:如图,延长FP 交AB 于M ,当FP ⊥AB 时,点P 到AB 的距离最小.∵AC=6,CF=1, ∴AF=AC-CF=4, ∵∠A=60°,∠AMF=90°, ∴∠AFM=30°, ∴AM=12AF=1, ∴22AF FM -3, ∵FP=FC=1,∴3-1,∴点P 到边AB 距离的最小值是3. 故答案为3-1. 【点睛】本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P 的位置. 16.2 【解析】试题分析:由OA=1,OC=6,可得矩形OABC 的面积为6;再根据反比例函数系数k 的几何意义,可知k=6,∴反比例函数的解析式为6y x=;设正方形ADEF 的边长为a ,则点E 的坐标为(a+1,a ),∵点E 在抛物线上,∴61a a =+,整理得260a a +-=,解得2a =或3a =-(舍去),故正方形ADEF 的边长是2.考点:反比例函数系数k的几何意义.17.2 3【解析】试题解析:∵共6个数,小于5的有4个,∴P(小于5)=46=23.故答案为23.18.甲【解析】【分析】根据甲,乙两公司折线统计图中2014年、2018年的销售量,计算即可得到增长量;根据两个统计图中甲,乙两公司销售增长量即可确定答案.【详解】解:从折线统计图中可以看出:甲公司2014年的销售量约为100辆,2018年约为600辆,则从2014~2018年甲公司增长了500辆;乙公司2014年的销售量为100辆,2018年的销售量为400辆,则从2014~2018年,乙公司中销售量增长了300辆.所以这两家公司中销售量增长较快的是甲公司,故答案为:甲.【点睛】本题考查了折线统计图的相关知识,由统计图得到关键信息是解题的关键;三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1) 每次下调10% (2) 第一种方案更优惠.【解析】【分析】(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.【详解】解:(1)设平均每次下调的百分率为x,根据题意得5000×(1-x)2=4050解得x=10%或x=1.9(舍去)答:平均每次下调10%.(2)9.8折=98%,100×4050×98%=396900(元)100×4050-100×1.5×12×2=401400(元),396900<401400,所以第一种方案更优惠. 答:第一种方案更优惠. 【点睛】本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键. 20.(1)21542y x x =-+;(2)当t=1时,矩形ABCD 的周长有最大值,最大值为412;(3)抛物线向右平移的距离是1个单位. 【解析】 【分析】(1)由点E 的坐标设抛物线的交点式,再把点D 的坐标(2,1)代入计算可得; (2)由抛物线的对称性得BE=OA=t ,据此知AB=10-2t ,再由x=t 时AD=21542t t -+,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A 、B 、C 、D 及对角线交点P 的坐标,由直线GH 平分矩形的面积知直线GH 必过点P ,根据AB ∥CD 知线段OD 平移后得到的线段是GH ,由线段OD 的中点Q 平移后的对应点是P 知PQ 是△OBD 中位线,据此可得. 【详解】(1)设抛物线解析式为()10y ax x =-,Q 当2t =时,4AD =,∴点D 的坐标为()2,4,∴将点D 坐标代入解析式得164a -=,解得:14a =-, 抛物线的函数表达式为21542y x x =-+; (2)由抛物线的对称性得BE OA t ==,102AB t ∴=-,当x t =时,21542AD t t =-+, ∴矩形ABCD 的周长()2AB AD =+()215210242t t t ⎡⎤⎛⎫=-+-+ ⎪⎢⎥⎝⎭⎣⎦,21202t t =-++,()2141122t =--+,102-<Q , ∴当1t =时,矩形ABCD 的周长有最大值,最大值为412; (3)如图,当2t =时,点A 、B 、C 、D 的坐标分别为()2,0、()8,0、()8,4、()2,4,∴矩形ABCD 对角线的交点P 的坐标为()5,2, Q 直线GH 平分矩形的面积,∴点P 是GH 和BD 的中点,DP PB ∴=,由平移知,//PQ OBPQ ∴是ODB ∆的中位线,142PQ OB ∴==,所以抛物线向右平移的距离是1个单位. 【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.21. (1)C(2,2);(2)①反比例函数解析式为y =4x ;②直线CD 的解析式为y =﹣12x+1;(1)m =1时,S △OEF 最大,最大值为14. 【解析】 【分析】(1)利用中点坐标公式即可得出结论;(2)①先确定出点A 坐标,进而得出点C 坐标,将点C ,D 坐标代入反比例函数中即可得出结论; ②由n=1,求出点C ,D 坐标,利用待定系数法即可得出结论;(1)设出点E 坐标,进而表示出点F 坐标,即可建立面积与m 的函数关系式即可得出结论. 【详解】(1)∵点C 是OA 的中点,A(4,4),O(0,0),∴C 4040,22 ++⎛⎫⎪⎝⎭,∴C(2,2);故答案为(2,2);(2)①∵AD=1,D(4,n),∴A(4,n+1),∵点C是OA的中点,∴C(2,32n+),∵点C,D(4,n)在双曲线kyx=上,∴3224nkk n+⎧=⨯⎪⎨⎪=⎩,∴14nk=⎧⎨=⎩,∴反比例函数解析式为4yx=;②由①知,n=1,∴C(2,2),D(4,1),设直线CD的解析式为y=ax+b,∴2241a ba b+=⎧⎨+=⎩,∴123ab⎧=-⎪⎨⎪=⎩,∴直线CD的解析式为y=﹣12x+1;(1)如图,由(2)知,直线CD的解析式为y=﹣12x+1,设点E(m,﹣12m+1),由(2)知,C(2,2),D(4,1),∴2<m <4,∵EF ∥y 轴交双曲线4y x=于F , ∴F(m ,4m ), ∴EF =﹣12m+1﹣4m ,∴S △OEF =12(﹣12m+1﹣4m)×m =12(﹣12m 2+1m ﹣4)=﹣14(m ﹣1)2+14,∵2<m <4,∴m =1时,S △OEF 最大,最大值为14【点睛】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S △OEF 与m 的函数关系式.22. (1) 众数为15;(2) 3,4,15;8;(3) 月销售额定为18万,有一半左右的营业员能达到销售目标. 【解析】 【分析】根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a =3,b =4,再根据数据可得15出现了5次,出现次数最多,所以众数c =15;从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8; 本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标. 【详解】解:(1)在2225x <…范围内的数据有3个,在2831x <…范围内的数据有4个, 15出现的次数最大,则众数为15;(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励; 故答案为3,4,15;8;(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适. 因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标. 【点睛】本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数.并利用中位数的意义解决实际问题.23.(1)3;(2)32n -,理由见解析;理由见解析(3)不存在,理由见解析 【解析】 【分析】(1)将n=4代入n 2-2n-5中即可求解;(2)当n=1,2,3,…,9,…,时对应的数分别为3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可归纳出第n 个数是3n-2;(3)“在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n 2-2n-5=3n-2有无正整数解的问题. 【详解】解:(1))∵A 组第n 个数为n 2-2n-5, ∴A 组第4个数是42-2×4-5=3, 故答案为3;(2)第n 个数是32n -. 理由如下:∵第1个数为1,可写成3×1-2; 第2个数为4,可写成3×2-2; 第3个数为7,可写成3×3-2; 第4个数为10,可写成3×4-2; ……第9个数为25,可写成3×9-2; ∴第n 个数为3n-2; 故答案为3n-2;(3)不存在同一位置上存在两个数据相等; 由题意得,22532n n n --=-,解之得,n =由于n 是正整数,所以不存在列上两个数相等. 【点睛】本题考查了数字的变化类,正确的找出规律是解题的关键. 24.5.6千米【解析】【分析】设PD的长为x千米,DA的长为y千米,在Rt△PAD中利用正切的定义得到tan18°=yx,即y=0.33x,同样在Rt△PDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.【详解】设PD的长为x千米,DA的长为y千米,在Rt△PAD中,tan∠DPA=DA DP,即tan18°=yx,∴y=0.33x,在Rt△PDB中,tan∠DPB=64 5.6g)56x⨯-(,即tan53°=5.6yx+,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此时观光船到大桥AC段的距离PD的长为5.6千米.【点睛】本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.25.证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考点:平行四边形的判定与性质.26.(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.【解析】【详解】详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得,解得:6≤a≤8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.27.3【解析】【分析】利用零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质进行计算即可.【详解】解:原式=112311322--=【点睛】本题考查了零指数幂和绝对值的性质、特殊角的三角函数值、负指数次幂的性质,熟练掌握性质及定义是解题的关键.图2 图3 中考模拟数学试卷一、选择题:(每题3分,共计24分) 1.13-等于( ◆ ) A .3 B .31-C .-3D .312.一组数据2,4,5,5,6的众数是( ◆ ) A .2 B.4 C.5 D.63.如下左图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为( ◆ )4.如图1,已知D 、E 在△ABC 的边上,DE ∥BC ,∠B = 60°, ∠AED = 40°,则∠A 的度数为( ◆ )A .100°B .90°C .80°D .70° 5.要使式子x -2有意义,则x 的取值范围是( ◆ )A .0>xB .2-≥xC .2≥xD .2≤x 6.已知:如图2,OA,OB 是⊙O 的两条半径,且OA ⊥OB ,点C 在⊙O 上则∠ACB 的度数为( ◆ )A.45°B.35°C.25°D.20°7.对于非零的实数a 、b ,规定a ★b = 1 b - 1a .若2★(2x -1)=1,则x =( ◆ )A . 5 6B . 5 4C . 3 2D .- 168.如图3,平面直角坐标系中,⊙O 1过原点O ,且⊙O 1与⊙O 2相外切,圆心O 1与O 2在x 轴正半轴上,⊙O 1的半径O 1P 1、⊙O 2的半径O 2P 2都与x 轴垂直,且点P 1()11,x y 、P 2()22,x y 在反比例函数1y x=(x>0)的图象上,则12y y +=( ◆ )A.1B.2-1C. 2D. 2+1 13 21 A .B .C .D .图1二、填空题:(每题3分,共计30分)9.份某市社会消费品零售总额为10 500 000 000元,该零售总额数用科学计数法表示为◆(保留两位有效数字).10.分解因式 x2-36=◆.11.若x=-2,则代数式x3-x2+6的值为◆.12.端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只咸肉粽,粽子除内部馅料不同外其它均相同.小颖任意吃一个,吃到红豆粽的概率是◆.13.如图4,圆锥形冰淇淋盒的母线长是13cm,高是12cm,则该圆锥形底面圆的面积是◆.14.为落实房地产调控政策,某县加快了经济适用房的建设力度.2011年该县政府在这项建设中已投资3亿元,预计2013年投资5.88亿元,则该项投资的年平均增长率为◆.15.青年路两旁原有路灯212盏,相邻两盏灯的距离为36米,为节约用电,现计划全部更换为新型高效节能灯,且相邻两盏灯的距离变为54米,则需更换新型节能灯◆盏.16.如图5,在△ABC中,AB=AC=5,BC=6.若点P在边AC上移动,则BP的最小值是__ ◆.17.若把函数y=x的图象用E(x,x)记,函数y=2x+1的图象用E(x,2x+1)记,……则E(x,322+-xx)图象上的最低点是__ ◆.18.边长为2的等边△ABC与等边△DEF互相重合,将△ABC沿直线L向左平移m个单位长度,将△DEF 向右也平移m个单位长度,如图6,当C、E是线段BF的三等分点时,m的值为__ ◆.三、解答题:(共96分)19.(本题满分8分)(1)计算:9-(-15)0+(-1)2012.(2)解方程:2112-=-xx.20.(本题满分8分) 先化简,后求值:1)111(2-÷-+xxx,其中x=-4.21.(本题满分8分) 盒子里有3张分别写有整式x+1,x+2,3的卡片,现从中随机抽取两张,把第一次和第二次抽取到的卡片上的整式分别作为分子和分母,求则能组成分式的概率22.(本题满分8分)某校学生会准备调查七年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.图4 图6图5(1)确定调查方式时,甲同学说:“我到七年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到七年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=,b=;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是;③若该校七年级有学生560人,请你估计大约有多少学生参加武术类校本课程.23.(本题满分10分)如图,△ABC是等边三角形,且A B∥CE.(1) 求证:△ABD∽△CED;(2) 若AB=6,AD=2CD,①求E到BC的距离EH的长.②求BE的长24. (本题满分10分) 为保卫祖国的南疆,我人民解放军海军在中业岛(P地)处设立观测站,按国际惯例, 中业岛12海里范围内均为我国领海,外国船只除特许外,不得私自进入我国领海. 某日,观测员发现某国船只行驶至P地南偏西30°的A处,欲向正东方向航行至P地南偏东60°的B处,已知A、B两地相距103海里问此时是否需要向此未经特许的船只发出警告,命令其不得进入我国领海?25.(本题满分10分) 如下图,在Rt△ABC 中,∠ACB=90°,D 是AB 边上任意的一点(异于A 、B ),以BD 为直径的⊙0与边AC 相切于点E ,连结DE 并延长,与BC 的延长线交于点F.(1)求证:BD=BF; (2)若BC=12,AD=8,求BF 的长.26.(本题满分10分) 已知一次函数y 1=ax+b 的图象与反比例函数y 2=xk的图象相交于A 、B 两点,坐标分别为(—2,4)、(4,—2)。