线性代数公式手册概述

合集下载

线性代数重要公式、定理大全

线性代数重要公式、定理大全

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-;(1)22(1)n n D D -=-将D 顺时针或逆时针旋转90,所得行列式为2D ,则; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C A BCB O B==、(1)m n CA OA A BB OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 是否有AX B ⇔=解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

线性代数性质公式整理

线性代数性质公式整理

线性代数第一章行列式一、相关概念1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积的代数和,这里 是1,2,·n的一个排列。

当 是偶排列时,该项的前面带正号;当 是奇排列时,该项的前面带负号,即(1.1)这里表示对所有n阶排列求和。

式(1.1)称为n阶行列式的完全展开式。

2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。

一个排列的逆序总是称为这个排列的逆序数。

用 表示排列 的逆序数。

3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。

4.2阶与3阶行列式的展开—— ,5.余子式与代数余子式——在n阶行列式中划去 所在的第i行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式称为 的余子式,记为 ;称为 的代数余子式,记为 ,即 。

6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如,称为A的伴随矩阵,记作 。

二、行列式的性质1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。

2.两行互换位置,行列式的值变号。

特别地,两行相同(或两行成比例),行列式的值为0.3.某行如有公因子k,则可把k提出行列式记号外。

4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和:5.把某行的k倍加到另一行,行列式的值不变:6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0三、行列式展开公式n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即|A|按i行展开的展开式|A|按j列展开的展开式四、行列式的公式1.上(下)三角形行列式的值等于主对角线元素的乘积;2.关于副对角线的n阶行列式的值3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则4.范德蒙行列式5.抽象n阶方阵行列式公式 (矩阵)若A、B都是n阶矩阵,是A的伴随矩阵,若A可逆,是A的特征值:;; |AB|=|A||B|;;;;若 ,则,且特征值相同。

考研数学公式定理背诵手册(数学二):线性代数

考研数学公式定理背诵手册(数学二):线性代数

性质 3 行列式的某一行(列)中所有的元素都乘以同一数 k ,等于用数 k 乘此行列式.
推论 行列式中某一(列)的所有元素的公因子可以提到行列式符号的外面.
性质 4 行列式中如果有两行(列)元素成比例,则此行列式等于零.
性质 5 若行列式的某一列(行)的元素都是两数之和,如第 i 列的元素都是两数之和:
(2)若 A 可逆,则 A−1 亦可逆,且 ( A−1)−1 = A . (3)若 A 可逆,数 λ ≠ 0 ,则 λ A 可逆,且 (λ A)−1 = 1 A−1 .
λ (4)若 A, B 为同阶矩阵且均可逆,则 AB 亦可逆,且 ( AB)−1 = B−1A−1 .
(5)若 A 可逆,则 AΤ 亦可逆,且 ( AΤ )−1 = ( A−1)Τ .
A = O 或 B = O ;A2 = O
A=O;
109
AB = AC
B = C . 但 是 A, B 为 方 阵 , 则 有 | AB |=| BA |=| A || B | ;
| AB |= 0 ⇔| A |= 0 或| B |= 0 .
2.逆矩阵的性质
(1)若矩阵 A 是可逆的,则 A−1 是唯一的.
定理 设非齐次线性方程组 Ax = b ,其系数矩阵的秩 r( A) = r(r > 0) ,增广矩阵的秩
第二部分 线性代数
一、行 列 式
1. 行列式的重要定理及公式
定理 对换改变 n 元排列的奇偶性. 定理 任一 n 元排列与排列1 2 3 n 可以经过一系列对换互变,并且所作对换的次数 与这个 n 元排列有相同的奇偶性.
2.行列式的基本性质 性质 1 行列式与它的转置行列式相等. 性质 2 互换行列式的两行(列),行列式变号. 推论 如果行列式有两行(列)完全相同,则此行列式等于零.

线性代数知识点总结汇总

线性代数知识点总结汇总

线性代数知识点总结1 行列式(一)行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(5)一行(列)乘k加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积5、副对角线行列式的值等于副对角线元素的乘积乘6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则7、n阶(n≥2)范德蒙德行列式数学归纳法证明★8、对角线的元素为a,其余元素为b的行列式的值:(三)按行(列)展开9、按行展开定理:(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0(四)行列式公式10、行列式七大公式:(1)|kA|=k n|A|(2)|AB|=|A|·|B|(3)|A T|=|A|(4)|A-1|=|A|-1(5)|A*|=|A|n-1(6)若A的特征值λ1、λ2、……λn,则(7)若A与B相似,则|A|=|B|(五)克莱姆法则11、克莱姆法则:(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。

2 矩阵(一)矩阵的运算1、矩阵乘法注意事项:(1)矩阵乘法要求前列后行一致;(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)(3)AB=O不能推出A=O或B=O。

2011线性代数重要定理及公式手册

2011线性代数重要定理及公式手册

一、矩阵的基本运算1.AB B A +=+2.()()C B A C B A ++=++3.()A -A O+=()-=+-A B A B 4.()B A B A λλλ+=+()AA A μλμλ+=+5.()()λμλμ=A A6.00=⇔=k kA 或=A O7.()TT AA=()TT TA B A B ±=±()()TT kA k A =()TT TAB B A =转置行列式不变T A A =逆值变AA 11=-AA n λλ=8.γβαγβαγββα,,,,,,2121+=+9.()321,,ααα=A ,()321,,βββ=B ,3阶矩阵BA B A +≠+()332211,,βαβαβα+++=+B A 332211,,βαβαβα+++=+B A B A BA B A =*=*0010.()()1,=c j i E 二、有关矩阵乘法的基本运算C AB =,即1122ij i j i j in nj c a b a b a b =+++ .1.线性性质()B A B A B A A 2121+=+()2121AB AB B B A +=+()()()B A AB B A λλλ==2.结合律()()BC A C AB =3.()TTTAB B A =4.B A AB =5.lk lkAA A +=()kllk A A =()k k kB A AB =不一定成立!6.A AE =,A EA =,()kA kE A =,()kA A kE =,E BA E AB =⇔=与数的乘法的不同之处:()kkkB A AB =不一定成立!7.无交换律因式分解的障碍是交换性,一个矩阵A 的每个多项式可以因式分解,例如()()E A E A E A A +-=--33228.无消去律(矩阵和矩阵相乘)由=AB O ⇒=/A O 或=B O 由≠A O 和=⇒=/AB O B O 由≠A O 时C B AC AB =⇒/=(无左消去律)特别地,设A 可逆,则A 有消去律.左消去律:C B AC AB =⇒=右消去律:CB CA BA =⇒=如果A 列满秩,则A 有左消去律,即①00=⇒=B AB ;②C B AC AB =⇒=三、可逆矩阵的性质1.当A 可逆时,⑴TA 也可逆,且()()1TT 1A A --=;⑵k A 也可逆,且()()kk A A11--=;⑶数0≠λ,A λ也可逆,()111--=A A λλ.2.若A ,B 是两个n 阶可逆矩阵,则AB 也可逆,且()111---=A B AB 推论:设A ,B 是两个n 阶矩阵,则E BA E AB =⇔=3.命题:初等矩阵都可逆,且()()()j i E j i E ,,1=-;()()()⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-c i E c i E 11;()()()()()c j i E c j i E -=-,,1.4.命题:准对角矩阵kkA A A A 0000000002211 =可逆⇔每个ii A 都可逆,记11221111000000000----=kkA A A A .5.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()R =A n (是满秩矩阵)⇔A 的行(列)向量组线性无关;⇔齐次方程组=0Ax 没有非零解;⇔R ∀∈n b ,Ax b =总有唯一解;⇔A 与E等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是R n 的一组基;⇔A 是R n 中某两组基的过渡矩阵.6.逆矩阵的求法①1A A A*-=②1()()A E E A -−−−−→ 初等行变换③11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦TT T T T A B A C C D BD ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦④12111121n a a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦21111211na a na a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⑤11111221n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11121211n nA A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦四、伴随矩阵的基本性质:1.EA A A AA ==**2.当A 可逆时,E A A A =*(求逆矩阵的伴随矩阵法)()()⎪⎪⎭⎫ ⎝⎛==----A A A A A 1111*3.伴随矩阵的其他性质1*-=A A A ⑵()(),**TT A A =⑶()**1A ccA n -=,⑷()*,**A B AB =⑸()()kkA A **=,2=n 时,()A A =**,⎪⎪⎭⎫⎝⎛--=a c b d A *.⑺伴随矩阵的特征值:*1*(,)AA AX X A A A A X X λλλ- == ⇒ =.4.关于矩阵右上肩记号:T ,k ,1-,*⑴任何两个的次序可交换,如()()TT**AA =,11()()--=T T A A ,()()**11--=A A ⑵()()111,---==A B AB A B AB TTT,()***A B AB =但()k k kA B AB =不一定成立!五、线性表示全课程的理论基础:线性表示→线性相关性→极大无关组和秩→矩阵的秩1.⑴s ααα,,,021 →⑵si αααα,,,21 →⑶βααααααβ=+++⇔→s s s x x x 221121,,,有解()βααα=⇔x s ,,,21 有解()()T1,,s x x x = β=Ax 有解,即β可用A 的列向量组表示⑷()s r r r C AB ,,,21 ==,()n A ααα,,,21 =,则n s r r r ααα,,,,,,2121 →.⑸s t αααβββ,,,,,,2121 →,则存在矩阵C ,使得()()Cs t αααβββ,,,,,,2121 =2.线性表示关系有传递性当p s t r r r ,,,,,,,,,212121 →→αααβββ,则p t r r r ,,,,,,2121 →βββ.3.等价关系:如果sααα,,,21 与tβββ,,,21 互相可表示t s βββααα,,,,,,2121 ←→,记作t s βββααα,,,,,,2121 ≅.4.线性相关如果向量组12,,,s ααα 中有向量可以用其它的s -1个向量线性表示,就说12,,,s ααα 线性相关.如果向量组12,,,s ααα 中每个向量都不可以用其它的s -1个向量线性表示,就说12,,,s ααα 线性无关.⑴1=s ,单个向量α,0=αx ,α相关0=⇔α⑵2=s ,21,αα相关⇔对应分量成比例即21,αα相关nn b a b a b a :::2211===⇔①()n A ααα,,,21 =,=0Ax 有非零解0=⇔A ②如果n s >,则s ααα,,,21 一定相关,=0Ax 的方程个数<n 未知数个数s ③如果s ααα,,,21 无关,则它的每一个部分组都无关④如果s ααα,,,21 无关,而βααα,,,,21s 相关,则sαααβ,,,21 →⑤当s ααβ,,1 →时,表示方式唯一s αα 1⇔无关(表示方式不唯一s αα 1⇔相关)⑥若s t ααββ,,,,11 →,并且s t >,则t ββ,,1 一定线性相关⑦s ααα,,,21 “线性相关还是无关”就是向量方程11220s s x x x ααα+++= “有没有非零解”.5.各性质的逆否形式⑴如果s ααα,,,21 无关,则ns ≤⑵如果s ααα,,,21 有相关的部分组,则它自己一定也相关⑶如果s αα 1无关,而s ααβ,,1 →/,则βαα,,,1s 无关⑷如果s t ααββ 11→,t ββ 1无关,则s t ≤推论:若两个无关向量组s αα 1与t ββ 1等价,则t s =6.极大无关组⑴设s ααα,,,21 是n 维向量组,12,,,ααα 是它的一个部分组.如果①12,,,r ααα 线性无关,②12,,,r ααα 就称12,,,r ααα 为s ααα,,,21 的一个最大无关组.称12,,,r ααα 中所包含向量的个数为s ααα,,,21 的秩.记作R (s ααα,,,21 ).⑵①s ααα,,,21 无关⇔()sR s =ααα,,,21 ②()()s s s R R ααβααααααβ,,,,,,,,,12121 =⇔→另一种说法:取s ααα,,,21 的一个最大无关组()*,()*也是βααα,,,,21s 的最大无关组⇔()β,*相关.③β可用s αα,,1 唯一表示()()s R R s s ==⇔ααβαα,,,,,11 ④()()s t s s t R R ααββααααββ,,,,,,,,,,,11111 =⇔→()()s t R R ααββ,,,,11 ≤⇒⑤⇔≅t s ββαα,,,,11 ()()()t t s s R R R ββββαααα,,,,,1111 ==⑶矩阵与向量组的对比矩阵的秩如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r .记作()R A r=向量组的秩向量组12,,,n ααα 的最大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n R ααα 矩阵等价A 经过有限次初等变换化为B .记作:A B= 向量组等价12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示.记作()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅ 7.矩阵的秩的简单性质⑴①A 行满秩:()m A R =,A 列满秩:()n A R =②(){}n m A R ,min 0≤≤,()00=⇔=A A R ③n 阶矩阵A 满秩:()nA R =A 满秩A ⇔的行(列)向量组线性无关0≠⇔A A ⇔可逆0=⇔Ax 只有零解,β=Ax 唯一解⑵T()()R R =A A ⑶0≠c 时,()()A R cA R =⑷若≅A B ,则()()R R =A B ⑸若P 、Q 可逆,则()()()()R R R R ===A PA AQ PAQ (可逆矩阵不影响矩阵的秩)⑹{}max (),()(,)()()R R R R R ≤≤+A B A B A B ⑺()()()R R R +≤+A B A B ⑻()()(){}B R A R AB R ,min ≤,()0()00R A k R kA k ≠⎧=⎨=⎩若若⑼如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:①B 的列向量全部是齐次方程组=0Ax 解(转置运算后的结论);②()()R R +≤A B n⑽若A 、B 均为n 阶方阵,则()()()R R R n ≥+-AB A B ;⑾,()()A R AB R B =若可逆则,,()()B R AB R A =若可逆则⑿()()A R R A R B B οο⎡⎤=+⎢⎥⎣⎦六、线性方程组1.解的性质1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,k k k k Ax Ax k k Ax k Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==- 是的解也是它的解是的解对任意也是它的解齐次方程组是的解对任意个常数也是它的解是的解是其对应的其次线性方程组的解是的解是的两个解是其对应的其次2112121122121122120(6),0(7),,,,100k k k k k k k Ax Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ==⇔-==++=⇔++=++=⇔++= 线性方程组的解是的解则也是它的解是其对应的其次线性方程组的解是的解则也是的解是的解2.解的情况判别方程:β=Ax ,即βααα=+++n n x x x 2211,有解nαααβ,,,21 →⇔()()R A R A β⇔= ()()n n R R αααβααα,,,,,,,2121 =⇔无解()()R A R A β⇔> 唯一解()()R A R A n β⇔== 无穷多解()()R A R A nβ⇔=< 3.对于方程个数m 有()(),R A m R A m β≤≤ ,①当()m A R =时,()R A m β= ,方程组一定有解②当n m <时,()n A R <,方程组不会是唯一解4.对于齐次线性方程组=0Ax ,只有零解()n A R =⇔(即A 列满秩)有非零解()nA R <⇔5.矩阵方程的解法(0A ≠):设法化成AXB XA B ==(I)或(II),A B E X −−−−→ 初等行变换(I)的解法:构造()()T T T T A X B X X=(II)的解法:将等式两边转置化为,用(I)的方法求出,再转置得七、特征值、特征向量1.两种特殊情形:(1)A 是上(下)三角矩阵,对角矩阵时,特征值即对角线上的元素.⎪⎪⎪⎭⎫ ⎝⎛*=321000**λλλA ()()()3213210**λλλλλλ---=-*-----=-x x x x x x A xE (2)()1=A R 时:A 的特征值为()0,0,,0,tr A 2.特征值的性质⑴命题:n 阶矩阵A 的特征值λ的重数()A E r n --≥λ⑵命题:设A 的特征值为n,,,21λλλ ,则②()A tr n =+++21λλλ ⑶命题:设η是A 的特征向量,特征值为λ,即ληη=A ,则①对于A 的每个多项式()A f ,()()ηηx f A f =②当A 可逆时,λη11=-A ,ηλη||*A A =⑷命题:设A 的特征值为n ,,,21λλλ ,()f x 是多项式则①()A f 的特征值为()()()n f f f ,,,21λλλ②A 可逆时,1-A 的特征值为n1,,1,121λλλ *A 的特征值为nA A A 21||,,||,||λλλ ③TA 的特征值也是n,,,21λλλ⑸1122,.m m Ak kAa b aA bEAA A A A λλλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值⑹1221,m mk kA a b aA bE Ax A x A A A Aλλλλλλλ-*⎧⎪+⎪+⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量.3.计算特征值和特征向量的一般公式⑴①λ是A 的特征值()0λη⇔-=A E ,即()λ-A E 不可逆.②η是属于λ的特征向量⇔η是齐次方程组()λ-=0A E x 的非零解规定A的特征多项式为λ-E A ,则A的特征值就是它的特征多项式的根.4.计算特征值和特征向量的具体步骤为:①计算A的特征多项式.②求出它的根,即A的特征值.③然后对每个特征值i λ,求齐次方程组()i λ-=0A E x 的非零解,即属于λ的特征向量.说明⑴n 阶矩阵的特征多项式是一个n 次多项式,一般来说求它的根是困难的,因此上述计算步骤②并不总是可行的,只能用在少数特殊矩阵上.例如用于对角矩阵和三角矩阵,得出它们的特征值就是对角线上的元素.⎪⎪⎪⎭⎫ ⎝⎛***=32100λλλA ,则()()()321321000λλλλλλλλλλλλλ---=-*--*-*--=-A E ,⑵n阶矩阵A的特征值共有n个(其中有的相同,有的是虚数),规定特征值λ的重数:即λ作为特征多项式的根的重数.A的全体不同特征值的重数和等于n.⑶λ不是A的特征值⇔0A λλ-≠⇔-A E E 可逆.0不是A的特征值⇔A可逆.5.特征值的计算设A是n阶矩阵,记A的全体特征值为n λλλ,,,21 .则))()((321333231232221131211λλλλλλλλλλ---=---------=-a a a a a a a a a A E ①令0=λ,左=A A n)1(-=-,右=n nλλλ 21)1(-.②比较两边1-n λ的系数.命题2设λ是n 阶矩阵A的特征值,则它的重数()n R A E λ≥--.应用:如果n 阶矩阵A的秩R (A)=1,(n>1),则0是A的特征值,并且重数()1n R n ≥-=-A .于是A的特征值为0,0,…,0,tr(A).6.特征值的应用①求行列式nA ,,,||21λλλ =②判别可逆性E A λ-可逆λ⇔不是A 的特征值当()0=A f 时,如果()0≠c f ,则cE A -可逆若λ是A 的特征值,则()λf 是()A f 的特征值()0=⇒λf ()c c f ⇒≠0不是A 的特征值AcE ⇔可逆.八、n 阶矩阵的相似关系当UA AU =时,A B =,而UA AU ≠时,A B ≠.1.相似关系有i )对称性:AB B A ~~⇔ii )有传递性:B A ~,C B ~,则CA ~2.命题当B A ~时,A 和B 有许多相同的性质①B A =②()()B R A R =③A ,B 的特征多项式相同,从而特征值完全一致④A 与B 的特征向量的关系:η是A 的属于λ的特征向量η1-⇔U 是B 的属于λ的特征向量.九、n 阶矩阵的对角化问题1.如果一个n 阶矩阵相似与一个对角矩阵,就说它可以对角化.并不是每个矩阵都可以对角化的.2.⑴判别法则1n 阶矩阵A可对角化⇔A有n 个线性无关的特征向量.实现方法1以A的n 个线性无关的特征向量1η,2η,…,n η为列向量,构造矩阵P=(1η,2η,…,n η),则P-1AP是对角矩阵.⑵判别法则2A可对角化⇔对于A的每个特征值λi ,其重数ki=n -r (A-λiE).实现方法2对A的每个特征值λi ,求(A-λi E)X=0的基础解系,合在一起,就是A的n个线性无关的特征向量.用它们构造矩阵P.注意:当k i =1时,k i =n -r (A-λi E)一定成立!⑶推论如果A的特征值两两不相同,则A可以对角化.3.内积,正交矩阵和实对称矩阵的对角化⑴内积的性质:①正定性:0),(≥αα,并且00),(=⇔=ααα.22221),(n a a a +++= αα.②对称性:),(),(αββα=.③线性性质:),(),(),(2121βαβαββα+=+;),(),(),(2121βαβαβαα+=+.),(),(),(βαβαβαc c c ==.(c为任意实数)⑵正交矩阵①n 阶矩阵A 称为正交矩阵,如果它是实矩阵,并且T=AA E (即1T -A =A ).②Q是正交矩阵⇔Q的列向量组是单位正交向量组⇔Q的行向量组是单位正交向量组.③正交矩阵的性质:(ⅰ)T1A A -=;(ⅱ)T TAA A A E ==;(ⅲ)A 是正交阵,则TA (或1A -)也是正交阵;(ⅳ)两个正交阵之积仍是正交阵;(ⅴ)正交阵的行列式等于1或-1.⑶施密特正交化这是把线性无关向量组改造为单位正交向量组的方法.以3个线性无关向量1α,2α,3α为例.(ⅰ)令11αβ=,1111222),(),(ββββααβ-=,1111333),(),(ββββααβ-=22223),(),(ββββα-.此时1β,2β,3β是和1α,2α,3α等价的正交非零向量组.(ⅱ)单位化:作111ββη=,222ββη=,333ββη=,则1η,2η,3η是和1α,2α,3α等价的单位正交向量组.⑷实对称矩阵的对角化如果A 是实对称矩阵,A 的特征值和特征向量有以下特点:①特征值都是实数.②对每个特征值λ,其重数=n -r (A -λE ).即实对称矩阵可对角化,③属于不同特征值的特征向量互相正交.可以用正交矩阵将实对称矩阵A 对角化,构造正交矩阵Q (使得Q -1AQ 是对角矩阵)的步骤:①求出A 的特征值;②对每个特征λ,求(A -λE )X =0的单位正交基础解系,合在一起得到A 的n 个单位正交的特征向量;③用它们为列向量构造正交矩阵Q .十、正定二次型与正定矩阵性质与判别1.可逆线性变换替换保持正定性,()n x x x f ,,,21 变为()n y y y g ,,,21 ,则它们同时正定或同时不正定.2.B A -~,则A ,B 同时正定,同时不正定.3.实对称矩阵A正定⇔正惯性指数为n ;⇔A 的特征值全大于0;⇔A 的所有顺序主子式全大于0;⇔A 合同于E ,即存在可逆矩阵Q 使T Q AQ E =;⇔存在可逆矩阵P ,使T A P P =(从而0A >);⇔存在正交矩阵,使12T 1n C AC C AC λλλ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦ (i λ大于0).⇒成为正定矩阵的必要条件:0ii a >;0A >.4.判断A 正定的三种方法:①顺序主子式法。

线性代数公式手册

线性代数公式手册
1设A为 矩阵,若 ,则对 而言必有 从而 有解.
2设 为 的解,则 当 时仍为 的解;但当 时,则为 的解.特别 为 的解; 为 的解.
3非齐次线性方程组 无解 不能由 的列向量 线性表示.
奇次线性方程组的基础解系和通解,解空间,非奇次线性方程组的通解.
1齐次方程组 恒有解(必有零解).当有非零解时,由于解向量的任意线性组合仍是该齐次方程组的解向量,因此 的全体解向量构成一个向量空间,称为该方程组的解空间,解空间的维数是 ,解空间的一组基称为齐次方程组的基础解系.
1 三者之间的关系

不一定成立,

但 不一定成立
2有关A*的结论
3)若 可逆,则
4)若 为 阶方阵,则
3有关 的结论
矩阵的初等变换,初等矩阵,矩阵的秩,矩阵等价,分块矩阵及其运算
1有关矩阵秩的结论
1)秩r(A)=行秩=列秩;
2)
3) ;
4)
5)初等变换不改变矩阵的秩
6) 特别若

7)若 存在 若 存在


8) 只有零解
2分块求逆公式



这里A,B均为可逆方阵
(
考试内容
对应公式、定理、概念
向量的概念,向量的线性组合和线性表示,向量的线性相关与线性无关
1有关向量组的线性表示
(1) 线性相关 至少有一个向量可以用其余向量线性表示.
(2) 线性无关, , 线性相关 可以由 惟一线性表示.
(3) 可以由 线性表示
(3)若 为可对角化矩阵,则其非零特征值的个数(重根重复计算)=秩( )
实对称矩阵的特征值、特征向量及相似对角阵
1相似矩阵:设 为两个 阶方阵,如果存在一个可逆矩阵 ,使得 成立,则称矩阵 相似,记为 .

线性代数公式定理大全 精简版

线性代数公式定理大全 精简版

与正交 ( , ) 0 .
是单位向量 ( , ) 1.
√ 内积的性质: ① 正定性: ( , ) 0, 且( , ) 0
② 对称性: ( , ) ( , )
③ 双线性: ( , 1 2 ) ( , 1) ( , 2 ) (1 2, ) (1, ) (2, ) (c, ) (c, ) (, c )
4
线性代数公式定理大全(精简版)
19 若两个线性无关的向量组等价,则它们包含的向量个数相等.
20 若 A 是 m n 矩阵,则 r(A) min m, n ,若 r( A) m , A 的行向量线性无关;
若 r(A) n , A 的列向量线性无关,即:
1,2 ,, n 线性无关.
线性方程组的矩阵式 Ax
√ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的 n 各元素. √ 若 A 0 ,则 0 为 A 的特征值,且 Ax 0 的基础解系即为属于 0 的线性无关的特征向量.
√ 行列式的计算:
A ① 若 A与B 都是方阵(不必同阶),则 B
A A B B
A
(1)mn
A
B
AB
B
②上三角、下三角行列式等于主对角线上元素的乘积.
③关于副对角线:
a2n1
a1n
a2n1
a1n
n ( n1)
(1) 2
a1na2n an1
an1
an1
√ 逆矩阵的求法:
① A1 A A
一. 11 矩阵的行向量组的秩等于列向量组的秩.
阶梯形矩阵的秩等于它的非零行的个数. 12 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系.
矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.

线性代数必备知识点公式

线性代数必备知识点公式

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵)⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔TA A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A = ; Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k-⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα; m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯ 可由向量组12:,,,n s s A a a a ⨯ 线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K = (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ- 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ- 线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩ ; ②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=---- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)。

线性代数重要公式定理大全

线性代数重要公式定理大全

线性代数重要公式定理大全线性代数是数学中的一个重要分支,它研究矩阵、向量、线性方程组等基本概念和性质,并运用线性代数的理论和方法解决实际问题。

在学习线性代数时,了解一些重要的公式和定理,不仅可以帮助我们更好地理解和应用线性代数的知识,还能为进一步学习和研究提供基础。

在线性代数中,有许多公式和定理与行列式、矩阵、向量、线性变换和特征值等相关。

下面我将介绍一些重要的公式和定理,希望对你的学习有所帮助。

一、行列式的公式和定理1. 行列式的定义:设有n阶方阵A,它的行列式记作,A,或det(A),定义为:A,=a₁₁A₁₁-a₁₂A₁₂+...+(-1)^(1+n)a₁ₙA₁其中,a₁₁,a₁₂,...,a₁ₙ分别是矩阵第一行元素,A₁₁,A₁₂,...,A₁ₙ是矩阵去掉第一行和第一列的余子式。

2.行列式的性质:(1)行互换改变行列式的符号,列互换改变行列式的符号。

(2)行列式相邻行(列)对换,行列式的值不变。

(3)行列式其中一行(列)中的各项都乘以同一个数k,行列式的值也乘以k。

(4)互换行列式的两行(列),行列式的值不变。

(5)若行列式的行(列)的元素都是0,那么行列式的值为0。

(6)行列式的其中一行(列)的元素都是两数之和,那么行列式的值等于两个行列式的值之和。

3.行列式的计算:(1)按第一行展开计算行列式:将行列式的第一行元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。

(2)按第一列展开计算行列式:将行列式的第一列元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。

4.行列式的性质定理:(1)拉普拉斯定理:行列式等于它的每一行(列)的元素与其所对应的代数余子式的乘积之和。

(2)行(列)对阵定理:行列式的值等于它的转置矩阵的值。

(3)行列式的转置等于行列式的值不变。

二、矩阵的公式和定理1.矩阵的定义:将一个复数域上的m行n列数排成一个长方形,并按照一定的顺序进行排列,这个排列称为一个m×n矩阵,其中m是矩阵的行数,n是矩阵的列数。

线性代数公式大全

线性代数公式大全

线性代数公式大全第一章 行列式1.逆序数 1.1 定义n 个互不相等的正整数任意一种排列为:12n i i i ⋅⋅⋅,规定由小到大为标准次序,当某两个元素的先后次序与标准次序不同时,就说有一个逆序数,该排列全部逆序数的总合用()12n i i i τ⋅⋅⋅表示,()12n i i i τ⋅⋅⋅等于它所有数字中后面小于前面数字的个数之和。

1.2 性质一个排列中任意两个元素对换,排列改变奇偶性,即 ()211ττ=-。

证明如下:设排列为111l m n a a ab b bc c ,作m 次相邻对换后,变成111l m n a a abb b c c ,再作1m +次相邻对换后,变成111l m n a a bb b ac c ,共经过21m +次相邻对换,而对不同大小的两元素每次相邻对换逆序数要么增加1 ,要么减少1 ,相当于()211ττ=-,也就是排列必改变改变奇偶性,21m +次相邻对换后()()2121111m τττ+=-=-,故原命题成立。

2.n 阶行列式的5大性质性质1:转置(行与列顺次互换)其值不变。

性质2:互换任意两行(列)其值变号。

性质3:任意某行(列)可提出公因子到行列式符号外。

性质4:任意行列式可按某行(列)分解为两个行列式之和。

性质5:把行列式某行(列)λ倍后再加到另一行(列),其值不变。

行列式的五大性质全部可通过其定义证明;而以后对行列式的运算主要是利用这五个性质。

对性质4的重要拓展: 设n 阶同型矩阵,()()(); ij ij ij ij A a B b A B a b ==⇒+=+,而行列式只是就某一列分解,所以,A B +应当是2n个行列式之和,即A B A B+≠+。

韦达定理的一般形式为:()121201201110; ; 1n nnn n n n n n n n n i i j i i i j i n n n a a aa x a xa xa x x x x a a a ------=≠==++++=⇒=-==-∑∑∏一、行列式定义 1.定义111212122212n n n n nna a a a a a a a a n n nj j j j j j a a a 221211)()1(τ∑-=其中逆序数 ()121nj j j j τ=后面的1j 小的数的个数 2j +后面比2j 小的数的个数+1n j -+后面比1n j -小的数的个数.2.三角形行列式1112122200n n nna a a a aa 11212212000n n nna a a a a a =1122nn a aa=1211000n n n nn nna a a a a -111212122100n n a a a a a a =()()12112111n n n n n a a a τ-⋅⎡⎤⎣⎦-=-()()1212111n n n n n a a a --=-二、行列式性质和展开定理1.会熟练运用行列式性质,进行行列式计算. 2.展开定理1122i k i k in kn ik a A a A a A A δ+++=A A a A a A a jk nk nj k j k j δ=+++2211三、重要公式 设A 是n 阶方阵,则 1.T A A =2.11A A--=3.1*n A A-=4.n kA k A =5.AB A B =,其中B 也是n 阶方阵6.设B 为m 阶方阵,则00A C A A B B CB ==()10mnAC A A BB CB==-7.范德蒙行列式()1222212111112111n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏四.有关结论 1.对于,n n n n A B ⨯⨯(1)00A A ⇒==⇐ (2) A B A B⇒==⇐2.A 为n 阶可逆矩阵A E A E ⇔→⇔→行变列变(A 与E 等价)0AX ⇔=只有惟一零解AX b ⇔=有惟一解(克莱姆法则) A ⇔的行(列)向量组线性无关 A ⇔的n 个特征值0,1,2,,i i n λ≠=⇔A 可写成若干个初等矩阵的乘积 ⇔)()(B r AB r = ⇔A A T 是正定矩阵⇔A 是n R 中某两组基之间的过渡矩阵3.A 为n 阶不可逆矩阵0=A 0AX ⇔=有非零解 ⇔n A r <)( ⇔0是A 的特征值 ⇔A A -=4.若A 为n 阶矩阵,)2,1(n i i =λ为A 的n 个特征值,则∏==ni i A 1λ5.若B A ~,则B A =行列式的基本计算方法:1. 应用行列式的性质化简行列式(例如化为三角形行列式就是一个常用方法)。

线性代数重要公式、定理大全

线性代数重要公式、定理大全

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A CA B C B O B==、(1)m n C A O AA B B O B C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A = ; Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k-⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ; ③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα; m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯ 可由向量组12:,,,n s s A a a a ⨯ 线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K = (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ- 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ- 线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩ ; ②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=---- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。

历史上最全的线性代数性质定理公式全总结

历史上最全的线性代数性质定理公式全总结

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确注:全体n 维实向量构成的集合nR 叫做n 维向量空间.注 ()()a b r aE bA n aE bA aE bA x οολ+<⎧⎪+=⇔+=⎨⎪⎩有非零解=-√ 关于12,,,n e e e ⋅⋅⋅: ①称为n的标准基,n中的自然基,单位坐标向量87p 教材;②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr =E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.1212121112121222()1212()n n nn n j j j n j j nj j j j n n nna a a a a a D a a a a a a τ==-∑1√ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.②若A B 与都是方阵(不必同阶),则==()mn A O A A OA B O B O B B OA A A BB OB O*==**=-1(拉普拉斯展开式)③上三角、下三角、主对角行列式等于主对角线上元素的乘积.④关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a Oa O---*==-1 (即:所有取自不同行不同列的n 个元素的乘积的代数和)⑤范德蒙德行列式:()1222212111112nijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭称为m n ⨯矩阵.记作:()ij m n A a ⨯=或m n A ⨯()1121112222*12n Tn ijnnnn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法:① 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号 ②1()()A E E A -−−−−→初等行变换③1231111213a a a a a a -⎛⎫⎛⎫⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3211111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭√ 方阵的幂的性质:mnm nA A A += ()()m n mnA A =√ 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅, 则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b b b c c c b b b ααα⎛⎫⎪⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i iA c β=(,,)i s =1,2⇔i β为iAx c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅=⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵.同理:C 的行向量能由B 的行向量线性表示,TA 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⇔111122*********22211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩√ 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量;√用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.√ 分块矩阵的转置矩阵:TTT TT A B A C C D B D ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫=⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭*(1)(1)mn mn A A B BB A **⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关114p 教材.⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余n -1个向量线性表示. 向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余n -1个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=.⑨ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一.⑩ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0⑪ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系; 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ; 对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r .记作()r A r =向量组12,,,n ααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααA 经过有限次初等变换化为B . 记作:A B =12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅ ⑫ 矩阵A 与B 等价⇔PAQ B =,,P Q 可逆⇔()(),,,r A r B A B A B =≠>为同型矩阵作为向量组等价,即:秩相等的向量组不一定等价. 矩阵A与B作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒矩阵A 与B 等价.⑬ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔AX B =有解⇔12(,,,)=n r ααα⋅⋅⋅1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;p 教材94,例10⑯ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑰ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑱ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑲ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关;若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关. √ 矩阵的秩的性质:①()A O r A ≠⇔若≥1 ()0A O r A =⇔=若 0≤()m n r A ⨯≤min(,)m n ②()()()T T r A r A r A A ==p 教材101,例15③()()r kA r A k =≠ 若0④()(),,()0m n n s r A r B n A B r AB B Ax ⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB ≤{}min (),()r A r B⑥()()()()A r AB r B B r AB r A ⇒=⇒=若可逆若可逆 即:可逆矩阵不影响矩阵的秩.⑦若()()()m n Ax r AB r B r A n AB O B OA AB AC B C ο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩ 只有零解在矩阵乘法中有左消去律;若()()()n s r AB r B r B n B ⨯=⎧=⇒⎨⎩ 在矩阵乘法中有右消去律.⑧()r rE O E O r A r A A OO OO ⎛⎫⎛⎫=⇒⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型. ⑨()r A B ±≤()()r A r B + {}max (),()r A r B ≤(,)r A B ≤()()r A r B +p 教材70⑩()()A O O A r r A r B O B B O ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭ ()()A C r r A r B O B ⎛⎫≠+ ⎪⎝⎭。

线性代数公式定理总结

线性代数公式定理总结

线性代数公式定理总结线性代数是一门研究向量空间及其变换的数学学科。

它在各个领域,尤其是科学、工程和计算机科学中具有广泛的应用。

线性代数的重要基础是一系列公式和定理,它们构成了这门学科的核心。

一. 向量运算向量是线性代数中的基本概念之一。

在计算和研究中,经常需要对向量进行运算。

常见的向量运算有加法、减法、乘法和除法。

1. 向量加法:向量加法是将两个向量的对应分量相加得到一个新的向量。

例如,对于向量a=[a1, a2, a3]和向量b=[b1, b2, b3],它们的和为c=[a1+b1, a2+b2, a3+b3]。

2. 向量减法:向量减法是将两个向量的对应分量相减得到一个新的向量。

例如,对于向量a=[a1, a2, a3]和向量b=[b1, b2, b3],它们的差为c=[a1-b1, a2-b2, a3-b3]。

3. 向量乘法:向量乘法有两种形式,内积和外积。

- 内积:内积也称为点积,是两个向量的对应分量相乘后再相加。

例如,对于向量a=[a1, a2, a3]和向量b=[b1, b2, b3],它们的内积为a·b=a1*b1+a2*b2+a3*b3。

内积有许多重要的性质,例如满足交换律和分配律。

- 外积:外积也称为叉积,是两个向量通过向量运算得到一个新的向量。

外积的结果是垂直于原来两个向量的向量。

外积在计算机图形学和物理学等领域中被广泛应用。

4. 向量除法:向量除法是将一个向量的对应分量除以另一个向量的对应分量得到一个新的向量。

例如,对于向量a=[a1, a2, a3]和向量b=[b1, b2, b3],它们的商为c=[a1/b1, a2/b2, a3/b3]。

注意,这里的除法是按元素进行的。

二. 矩阵运算矩阵是线性代数中另一个重要的概念。

矩阵是一个由元素组成的矩形阵列。

与向量类似,矩阵可以进行加法、减法、乘法和除法运算。

1. 矩阵加法:矩阵加法是将两个矩阵的对应元素相加得到一个新的矩阵。

线性代数公式总结

线性代数公式总结

线性代数公式总结线性代数是数学中的一个分支,主要研究向量、向量空间、矩阵、线性方程组等概念和性质。

线性代数公式总结如下:1.向量加法和标量乘法:- 向量加法:如果u和v是n维向量,则它们的和为u + v = (u1 + v1, u2 + v2, ..., un + vn)- 标量乘法:如果k是一个实数,则k乘以向量v的结果为kv = (k*v1, k*v2, ..., k*vn)2.线性方程组:-n个未知数的线性方程组可以用矩阵和向量表示:Ax=b,其中A是一个m×n的矩阵,x是一个n维列向量,b是一个m维列向量。

- 如果Ax = b有唯一解,则A的行列式不为零。

行列式表示为det(A)。

-矩阵的逆:如果矩阵A的行列式不为零,则存在矩阵A的逆矩阵A^-1,使得AA^-1=A^-1A=I,其中I是单位矩阵。

3.向量空间和线性无关性:- 向量空间是指由向量的线性组合构成的集合,满足以下性质:对于任意的向量u和v以及任意的标量k和l,ku + lv仍然在向量空间内。

- 向量v1, v2, ..., vn是线性无关的,如果方程k1v1 + k2v2+ ... + knvn = 0只有零解。

- 如果一组向量v1, v2, ..., vn张成一个向量空间V,则称这组向量是V的基。

4.矩阵的运算:- 矩阵的加法:如果A和B是相同大小的矩阵,则它们的和为A + B = (aij + bij),其中aij和bij分别是矩阵A和B对应位置的元素。

- 矩阵的乘法:如果A是m×n的矩阵,B是n×p的矩阵,它们的乘积为C = AB,其中C是m×p的矩阵,其中C的元素cij可以表示为cij= Σ(k=1 to n) aikbk,其中aik是矩阵A的元素,bk是矩阵B的元素。

5.特征值和特征向量:-如果矩阵A乘以向量v得到一个与v方向相同的向量,那么v是A的特征向量,对应的乘积结果是特征值λ,即Av=λv。

线性代数公式定理大全(精简版)

线性代数公式定理大全(精简版)
1 2 3 4 5 6 7
零向量是任何向量的线性组合,零向量与任何同维实向量正交. 单个零向量线性相关;单个非零向量线性无关. 部分相关,整体必相关;整体无关,部分必无关. 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. 两个向量线性相关 对应元素成比例;两两正交的非零向量组线性无关. 向量组 1 , 2 , , n 中任一向量 i (1 ≤ i ≤ n) 都是此向量组的线性组合. 向量组 1 , 2 , , n 线性相关 向量组中至少有一个向量可由其余 n 1 个向量线性表示.
1
1
b a 1 an A2 1
AT A B T C D B
T
CT DT a2 an a1
1
a2
a11
1 a2
1 a1
伴随矩阵的性质: ( A ) A

n2
A
( AB) பைடு நூலகம் A


(kA) k

n 1
A

A A

n 1
( A1 ) ( A ) 1 (A ) (A )
T T
√ 矩阵方程的解法:设法化成(I)AX B 当 A 0 时,
初等行变换 (I)的解法:构造(A B) (E X )
(当B为一列时, 即为克莱姆法则)
(II)的解法:将等式两边转置化为AT X T BT , 用(I)的方法求出X T,再转置得X
√ Ax 和 Bx 同解( A, B 列向量个数相同),则: ① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系. √ 判断1 , 2 , , s 是 Ax 0 的基础解系的条件: ① 1 , 2 , , s 线性无关; ② 1 , 2 , , s 是 Ax 0 的解; ③ s n r ( A) 每个解向量中自由变量的个数 .

线性代数公式定理大全2016

线性代数公式定理大全2016

线性代数公式大全第一章 行列式1.逆序数 1.1 定义n 个互不相等的正整数任意一种排列为:12n i i i ⋅⋅⋅,规定由小到大为标准次序,当某两个元素的先后次序与标准次序不同时,就说有一个逆序数,该排列全部逆序数的总合用()12n i i i τ⋅⋅⋅表示,()12n i i i τ⋅⋅⋅等于它所有数字中后面小于前面数字的个数之和。

1.2 性质一个排列中任意两个元素对换,排列改变奇偶性,即 ()211ττ=-。

证明如下:设排列为111l m n a a ab b bc c ,作m 次相邻对换后,变成111l m n a a abb b c c ,再作1m +次相邻对换后,变成111l m n a a bb b ac c ,共经过21m +次相邻对换,而对不同大小的两元素每次相邻对换逆序数要么增加1 ,要么减少1 ,相当于()211ττ=-,也就是排列必改变改变奇偶性,21m +次相邻对换后()()2121111m τττ+=-=-,故原命题成立。

2.n 阶行列式的5大性质性质1:转置(行与列顺次互换)其值不变。

性质2:互换任意两行(列)其值变号。

性质3:任意某行(列)可提出公因子到行列式符号外。

性质4:任意行列式可按某行(列)分解为两个行列式之和。

性质5:把行列式某行(列)λ倍后再加到另一行(列),其值不变。

行列式的五大性质全部可通过其定义证明;而以后对行列式的运算主要是利用这五个性质。

4的重要拓展: 设n 阶同型矩阵,()()(); ij ij ij ij A a B b A B a b ==⇒+=+,而行列式只是就某一列分解,所以,A B +应当是2n个行列式之和,即A B A B+≠+。

()121201201110; ; 1n nnn nn n n n n n n i i j i i i j i n n n a a aa x a x a xa x x x x a a a ------=≠==++++=⇒=-==-∑∑∏一、行列式定义 1.定义111212122212n n n n nna a a a a a a a a n n nj j j j j j a a a 221211)()1(τ∑-=其中逆序数 ()121n j j j j τ=后面的1j 小的数的个数 2j +后面比2j 小的数的个数+1n j -+后面比1n j -小的数的个数.2.三角形行列式1112122200n n nna a a a a a 11212212000n n nna a a a a a =1122nn a a a =1211000n n n nn nna a a a a -1112121221n n a a a a a a =()()12112111n n n n n a a a τ-⋅⎡⎤⎣⎦-=-()()1212111n n n n n a a a --=-二、行列式性质和展开定理1.会熟练运用行列式性质,进行行列式计算. 2.展开定理1122i k i k in kn ik a A a A a A A δ+++=A A a A a A a jk nk nj k j k j δ=+++2211三、重要公式 设A 是n 阶方阵,则1.T A A=2.11A A --= 3.1*n A A-=4.n kA k A =5.AB A B =,其中B 也是n 阶方阵6.设B 为m 阶方阵,则0A C A A B B C B ==()010mnA CA AB BC B==-7.德蒙行列式()1222212111112111n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏四.有关结论 1.对于,n n n n A B ⨯⨯(1)00A A ⇒==⇐ (2) A B A B⇒==⇐2.A 为n 阶可逆矩阵A E A E ⇔→⇔→行变列变(A 与E 等价)0AX ⇔=只有惟一零解AX b ⇔=有惟一解(克莱姆法则) A ⇔的行(列)向量组线性无关 A ⇔的n 个特征值0,1,2,,i i n λ≠=⇔A 可写成若干个初等矩阵的乘积 ⇔)()(B r AB r = ⇔A A T 是正定矩阵⇔A 是n R 中某两组基之间的过渡矩阵3.A 为n 阶不可逆矩阵0=A 0AX ⇔=有非零解⇔n A r <)(⇔0是A 的特征值⇔A A -=4.若A 为n 阶矩阵,)2,1(n i i =λ为A 的n 个特征值,则∏==ni i A 1λ5.若B A ~,则B A =行列式的基本计算方法:1. 应用行列式的性质化简行列式(例如化为三角形行列式就是一个常用方法)。

线性代数公式定理

线性代数公式定理

线代公式定理章一、行列式1、n 阶行列式(1)(定义)由自然数1,2,···,n 组成的一个有序数组称为一个n 阶排列,记为j 1j 2…j n .(2)(定义)在一个排列中,若一个较大的数排在一个较小的数的前面,则称这两个数构成一个逆序.一个排列中所有逆序的总数称为这个排列的逆序数.用τ(j 1j 2…j n )表示排列j 1,j 2,…,j n 的逆序数.逆序数是偶数的排列称为偶排列,逆序数是奇数的排列称为奇排列。

(3)(定义)把一个排列中某两个数的位置互换,而其余的数不动,就得到一个新的排列,这种变换称为排列的一个对换。

(4)(定理)一次对换改变排列奇偶性。

(5)(推论)任何一个n 阶排列都可以通过对换化成标准排列,并且所作对换的次数的奇偶性与该排列的奇偶性相同。

(6)三阶行列式的计算:I 沙路法 II 对角线法则(7)三角行列式的计算:下(上)三角形行列式的值等于主对角线 上元素的乘积,即nna a a Λ2211=nnn n a a a a a a ΛM M M ΛΛ212221110002、行列式的性质(1)(性质)行列式与它的转置行列式相等,即。

(2)(性质)如果行列式某一行(列)元素有公因数k, 则k可以提到行列式符号外边。

(3)(推论)如果行列式中某一行(列)元素全为零, 那么行列式等于零。

(4)(性质)如果行列式中两行(列)互换,那么行列式只改变一个符号。

(5)(推论)若行列式中有两行(列)相同, 则行列式的值为零。

(6)(推论)如果行列式中两行(列)的对应元素成比例,那么行列式值为 0。

(7)(性质)如果行列式某行(列)的各元素都可以写成两数之和, 则此行列式等于两个行列式的和。

(8)(性质)如果将行列式中某行(列)的各元素同乘一数k后,加到另一行(列)的各对应元素上,则行列式的值不变。

(9)(性质)若a ij=a ji(i,j=1,2,…,n) ,则称行列式 D为对称的;若a ij=-a ji(i,j=1,2,…,n) ,则称行列式D为反对称. 由定义易知,在反对称行列式中, a ii=0(i=1,2,…,n)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录
线性代数 (1)
(一) 行列式 (1)
(二)矩阵 (2)
(三) 向量 (5)
(四)线性方程组 (8)
(五)矩阵的特征值和特征向量 (10)
(六)二次型 (11)
线性代数
(一) 行列式
212n n
n
nn A ⎪⎪⎪⎭
n 阶方阵,则
||||.A B
1
1
12
11n n
x -=
=,)n 是A 的(二)矩阵
a ⎥
⎥⎥⎦
阶矩阵或
(三) 向量
量线性表示.
2,
,s αα惟一线性表示.
12,,
,ααα12(,r αα=有关向量组的线性相关性
n 个n 维向量12
,n ααα线性相关
维向量线性相关或一组向量线性相关,去掉某些分量后仍线性相关量线性表示. 2,
,s αα惟一线性表示.
12,,αα12(,,
,r αα=)r =,则A 的秩()r A 与A 的行列向量组的线性
变换公式为
c ⎥
=⎥⎥⎦
2,,n αα到基,1(,)T Y y y =即
2222x y αβ++++
CY Y C X ==或 22T T a b αββα++=β
,则12,γγ是规范正交向量组
(,s ββ-
(四)线性方程组
2n n a x +,则方程组有唯一解
n
D
=
),A b m =从而2,
s x 为1s k +=时仍为s k +
+=则为0Ax =的解312()x x -+恒有解(必有零解2,,t ηη是,t η线性无关;0的任一解都可以由的通解,其中1k
(五)矩阵的特征值和特征向量
0A ⇔没有特征值s α,若
122k αα++
22n A α++B ,则 1
,,*
*.T B A B A B -
1
1
|||,,()()n
n
ii ii i i B A b r A r B =====∑∑
,B C
D ,则O D ⎢⎢⎥⎣⎣⎦
B ,则()(),()(
)f A f B f A f B ,其中阶方阵A 的多项式.
为可对角化矩阵,则其非零特征值的个数B 则有
T B
1B -(A 若(k
B k 为正整数E A E λ-=(六)二次型
元二次型,简称二次型2,,n n A x a a ⎥
=⎢⎥⎥
⎢⎥⎥
⎦⎣⎦
量形式f 其中A 称二次型与对称矩阵一一对应,并把矩阵2r
ACy d y =∑
p -为负惯性指数,且规范型唯一,n λ⎪⎪⎪⎪⎭
0a >,且。

相关文档
最新文档