面板数据模型PPT
合集下载
面板数据模型经典PPT
02
该模型假设个体和时间特定效应是固定的,不会随着解释变量的变化 而变化。
03
固定效应模型可以通过固定效应估计量来估计变量的影响,该估计量 不受个体和时间特定效应的影响。
04
固定效应模型可以通过各种方法进行估计,包括最小二乘法、广义最 小二乘法、工具变量法和随机效应法等。
随机效应模型
01 02 03 04
面板数据模型经典
• 面板数据模型概述 • 面板数据模型的类型 • 面板数据模型的估计方法 • 面板数据模型的检验与诊断 • 面板数据模型的应用案例
01
面板数据模型概述
定义与特点
定义
面板数据模型是一种统计分析方法, 用于分析时间序列和截面数据的混合 数据集。
特点
能够同时考虑时间和个体效应对因变 量的影响,提供更全面的分析视角, 有助于揭示数据背后的复杂关系。
面板数据模型的适用场景
01
面板数据模型适用于分析长时间跨度下多个个体或 经济实体的数据,如国家、地区或公司等。
02
当需要探究时间趋势和个体差异对因变量的影响时, 面板数据模型是理想的选择。
03
在经济学、社会学、生物学等领域,面板数据模型 被广泛应用于实证研究。
面板数据模型与其他模型的比较
01
与时间序列模型相 比
其他领域的应用案例
总结词
除了上述领域外,面板数据模型还广泛应用 于金融、环境科学、医学和交通等领域,为 各领域的科学研究和实践提供了重要的方法 和工具。
详细描述
在金融领域,面板数据模型被用于股票价格 、收益率和风险评估等方面;在环境科学领 域,面板数据模型被用于研究气候变化、环 境污染和生态平衡等方面;在医学领域,面 板数据模型被用于疾病诊断、治疗方法和药 物研发等方面;在交通领域,面板数据模型 被用于交通流量、交通规划和交通安全等方
该模型假设个体和时间特定效应是固定的,不会随着解释变量的变化 而变化。
03
固定效应模型可以通过固定效应估计量来估计变量的影响,该估计量 不受个体和时间特定效应的影响。
04
固定效应模型可以通过各种方法进行估计,包括最小二乘法、广义最 小二乘法、工具变量法和随机效应法等。
随机效应模型
01 02 03 04
面板数据模型经典
• 面板数据模型概述 • 面板数据模型的类型 • 面板数据模型的估计方法 • 面板数据模型的检验与诊断 • 面板数据模型的应用案例
01
面板数据模型概述
定义与特点
定义
面板数据模型是一种统计分析方法, 用于分析时间序列和截面数据的混合 数据集。
特点
能够同时考虑时间和个体效应对因变 量的影响,提供更全面的分析视角, 有助于揭示数据背后的复杂关系。
面板数据模型的适用场景
01
面板数据模型适用于分析长时间跨度下多个个体或 经济实体的数据,如国家、地区或公司等。
02
当需要探究时间趋势和个体差异对因变量的影响时, 面板数据模型是理想的选择。
03
在经济学、社会学、生物学等领域,面板数据模型 被广泛应用于实证研究。
面板数据模型与其他模型的比较
01
与时间序列模型相 比
其他领域的应用案例
总结词
除了上述领域外,面板数据模型还广泛应用 于金融、环境科学、医学和交通等领域,为 各领域的科学研究和实践提供了重要的方法 和工具。
详细描述
在金融领域,面板数据模型被用于股票价格 、收益率和风险评估等方面;在环境科学领 域,面板数据模型被用于研究气候变化、环 境污染和生态平衡等方面;在医学领域,面 板数据模型被用于疾病诊断、治疗方法和药 物研发等方面;在交通领域,面板数据模型 被用于交通流量、交通规划和交通安全等方
第7章 面板数据模型课件
面板数据的优点
(1)可以控制个体异质性 可以克服未观测到的异质性(unobserved heterogeneity)这种遗漏变量问题。这个异质性是指在面 板数据样本期间内取值恒定的某些遗漏变量。 (2)面板数据模型容易避免多重共线性问题 • 面板数据具有更多的信息; • 面板数据具有更大的变异; • 面板数据的变量间更弱的共线性; • 面板数据模型具有更大的自由度以及更高的效率。 (3)与纯横截面数据或时间序列数据相比,面板数据模型 允许构建并检验更复杂的行为模型。
例 1 表 1 中展示的数据就是一个面板数据的例子。 表 1 华东地区各省市 GDP 历史数据 1995 1996 1997 1998 2462.57 2902.20 3360.21 3688.20 上海 江苏 浙江 安徽 福建 江西 5155.25 3524.79 2003.66 2191.27 1244.04 6004.21 4146.06 2339.25 2583.83 1517.26 6680.34 4638.24 2669.95 3000.36 1715.18 7199.95 4987.50 2805.45 3286.56 1851.98
yit yi ( X it X i ) +随机误差项
其中, y i 和 X i 代表各自变量个体的均值。 上式中,OLS 估计量主要利用的是个体变量对其均值偏离的信 息,随机误差项也仅反映对其个体均值的偏离波动,这是该估计 量被称为组内估计量的原因。
第二步,估计参数α 。由于已经得到了β 的估计值,所以α 的估 计就变得比较简单。
ˆ ) ˆ ( D D ) 1 D (Y X w
ˆ ˆ 其实就是用自变量和解释变量的个体均值和 w 按下列模型计
算出的误差项:
第八章面板数据模型计量经济学ppt课件
29
第五节 变系数回归模型
前面所介绍的变截距模型中,横截面成员的个 体影响是用变化的截距来反映的,即用变化的截距 来反映模型中忽略的反映个体差异的变量的影响。 然而现实中变化的经济结构或不同的社会经济背景 等因素有时会导致反映经济结构的参数随着横截面 个体的变化而变化。因此,当现实数据不支持变截 距模型时,便需要考虑这种系数随横截面个体的变 化而改变的变系数模型。
(4) E (wit wis )
2 v
(t
s)
方差成分GLS法
普通OLS估计虽然仍是E无(w偏itw和is一) 致E估(v计i ,u但it)(其vi不再uis)
有 对效随机估效计应,模因型此进,行一估般计用E。广(v义i2 最v小iu二is 乘v法iui(t GuLituSi)s)
v2
28
随机效应变截距模型的估计 EViews按下列步骤估计随机效应变截距模型(个体)
Y 11eTX 11U 1
11
y11
Y1
y
12
y 1T
1 1
1
1
1
1eT
1
1
x111 u i 1 x 211
X1
U i x112 u
i
2
x 212
x11T u i T x 21T
i
xxKK112112 ii
x11 x12
xK1TK
i
x1T
Y 11eTX 11U 1
9
第二节 面板数据回归模型概述 一、面板数据回归模型的一般形式
K
yit i x ki kit uit k1
其中,i=1, 2, …,N 表示个N个体; t =1, 2, …,T 表 示T个时期;yit为被解释变量, 表示第i个个体在 t 时 期的观测值;xkit 是解释变量, 表示第k个解释变量
第五节 变系数回归模型
前面所介绍的变截距模型中,横截面成员的个 体影响是用变化的截距来反映的,即用变化的截距 来反映模型中忽略的反映个体差异的变量的影响。 然而现实中变化的经济结构或不同的社会经济背景 等因素有时会导致反映经济结构的参数随着横截面 个体的变化而变化。因此,当现实数据不支持变截 距模型时,便需要考虑这种系数随横截面个体的变 化而改变的变系数模型。
(4) E (wit wis )
2 v
(t
s)
方差成分GLS法
普通OLS估计虽然仍是E无(w偏itw和is一) 致E估(v计i ,u但it)(其vi不再uis)
有 对效随机估效计应,模因型此进,行一估般计用E。广(v义i2 最v小iu二is 乘v法iui(t GuLituSi)s)
v2
28
随机效应变截距模型的估计 EViews按下列步骤估计随机效应变截距模型(个体)
Y 11eTX 11U 1
11
y11
Y1
y
12
y 1T
1 1
1
1
1
1eT
1
1
x111 u i 1 x 211
X1
U i x112 u
i
2
x 212
x11T u i T x 21T
i
xxKK112112 ii
x11 x12
xK1TK
i
x1T
Y 11eTX 11U 1
9
第二节 面板数据回归模型概述 一、面板数据回归模型的一般形式
K
yit i x ki kit uit k1
其中,i=1, 2, …,N 表示个N个体; t =1, 2, …,T 表 示T个时期;yit为被解释变量, 表示第i个个体在 t 时 期的观测值;xkit 是解释变量, 表示第k个解释变量
PPT-第12章-面板数据-计量经济学及Stata应用
可通过检验这些时间虚拟变量的联合显著性来判断是否应使用 双向固定效应模型。
如果仅考虑个体固定效应,称为“单向固定效应”(One-way FE)。
有时为节省参数(比如,时间维度T 较大),可引入时间趋势项, 以替代上述(T 1)个时间虚拟变量:
yit xit zi t ui it (12.12)
xit 可以随个体及时间而变(time-varying)。
扰动项由(ui it ) 两部分构成,称为“复合扰动项”(composite
error term)。
不可观测的随机变量ui 是代表个体异质性的截距项,即“个体效 应”(individual effects)。
9
it 为随个体与时间而改变的扰动项,称为“idiosyncratic error”。 一般假设{it}为独立同分布,且与ui 不相关。
8
这种模型称为“个体效应模型”(individual-specific effects model):
yit xit zi ui it (i 1, ,n; t 1, ,T ) (12.1)
zi为不随时间而变(time invariant)的个体特征( zit zi , t ),比如性 别;
反之,则称为“非平衡面板”(unbalanced panel)。主要关注平衡 面板,但在本章第 11 节讨论非平衡面板。
3
面板数据的主要优点如下。
(1) 有助于解决遗漏变量问题: 遗漏变量常由不可观测的个体差异或“异质性”(heterogeneity) 造成(比如个体能力)。 如果个体差异“不随时间而改变”(time invariant),则面板数据 提供了解决遗漏变量问题的又一利器。
如果T 较大,n较小,则称为“长面板”(long panel)。
如果仅考虑个体固定效应,称为“单向固定效应”(One-way FE)。
有时为节省参数(比如,时间维度T 较大),可引入时间趋势项, 以替代上述(T 1)个时间虚拟变量:
yit xit zi t ui it (12.12)
xit 可以随个体及时间而变(time-varying)。
扰动项由(ui it ) 两部分构成,称为“复合扰动项”(composite
error term)。
不可观测的随机变量ui 是代表个体异质性的截距项,即“个体效 应”(individual effects)。
9
it 为随个体与时间而改变的扰动项,称为“idiosyncratic error”。 一般假设{it}为独立同分布,且与ui 不相关。
8
这种模型称为“个体效应模型”(individual-specific effects model):
yit xit zi ui it (i 1, ,n; t 1, ,T ) (12.1)
zi为不随时间而变(time invariant)的个体特征( zit zi , t ),比如性 别;
反之,则称为“非平衡面板”(unbalanced panel)。主要关注平衡 面板,但在本章第 11 节讨论非平衡面板。
3
面板数据的主要优点如下。
(1) 有助于解决遗漏变量问题: 遗漏变量常由不可观测的个体差异或“异质性”(heterogeneity) 造成(比如个体能力)。 如果个体差异“不随时间而改变”(time invariant),则面板数据 提供了解决遗漏变量问题的又一利器。
如果T 较大,n较小,则称为“长面板”(long panel)。
01面板数据分析PPT课件
12 i
变截距模型:
12 i
24
最简单的模型就是忽略数据集中每个横截 面个体可能有的特殊效应,而简单的将模 型视为横截面数据堆积的模型,即混合横 截面模型。 注意:尽管我们可以将横截面数据简单的 堆积起来用普通回归模型进行处理,但此 时丧失了分析个体特殊效应的机会。
25
2. 面板数据模型的设定检验
检验统计量:
F (S S R R S S R U R )/k S S R U R/(n 1 n 2 2 k)
F (k,n 1 n 2 2 k)
31
面板数据模型的设定检验
假定模型1、2和3的残差分别为S2、S3和S1。 构造F统计量
F 1 ( S S 1 2 /[ N S T 1 ) /[N (N (k 1 ) 1 k )] ] F [(N 1 )k ,N (T k 1 )] F 2 ( S 3 S 1 / S [ 1 N ) T /[ ( N N ( 1 k ) ( k 1 ) ] 1 ) ]F [ ( N 1 ) ( k 1 ) ,N ( T k 1 ) ]
H2 :1 2 N
1 2 N
26
检验步骤:
首先对假设H2进行检验,如果H2成立,则无 需进行下一步检验,并选择模型(2);
如果拒绝H2 ,则需对假设H1进行检验; 如果拒绝H1 ,则选择模型(3);如果不能拒绝
假设H1 ,则选择模型(1);
检验思路:
以Chow检验为基础;
27
Chow检验
;
有N个横截面,即
;
时间指标
。
变量: ——因变量在横截面i和时间t上的观测值;
——第k个解释变量在横截面i和时间t上的观测值;
第i个横截面的数据为
其中 是在横截面i和时间t上的随机误差项。
变截距模型:
12 i
24
最简单的模型就是忽略数据集中每个横截 面个体可能有的特殊效应,而简单的将模 型视为横截面数据堆积的模型,即混合横 截面模型。 注意:尽管我们可以将横截面数据简单的 堆积起来用普通回归模型进行处理,但此 时丧失了分析个体特殊效应的机会。
25
2. 面板数据模型的设定检验
检验统计量:
F (S S R R S S R U R )/k S S R U R/(n 1 n 2 2 k)
F (k,n 1 n 2 2 k)
31
面板数据模型的设定检验
假定模型1、2和3的残差分别为S2、S3和S1。 构造F统计量
F 1 ( S S 1 2 /[ N S T 1 ) /[N (N (k 1 ) 1 k )] ] F [(N 1 )k ,N (T k 1 )] F 2 ( S 3 S 1 / S [ 1 N ) T /[ ( N N ( 1 k ) ( k 1 ) ] 1 ) ]F [ ( N 1 ) ( k 1 ) ,N ( T k 1 ) ]
H2 :1 2 N
1 2 N
26
检验步骤:
首先对假设H2进行检验,如果H2成立,则无 需进行下一步检验,并选择模型(2);
如果拒绝H2 ,则需对假设H1进行检验; 如果拒绝H1 ,则选择模型(3);如果不能拒绝
假设H1 ,则选择模型(1);
检验思路:
以Chow检验为基础;
27
Chow检验
;
有N个横截面,即
;
时间指标
。
变量: ——因变量在横截面i和时间t上的观测值;
——第k个解释变量在横截面i和时间t上的观测值;
第i个横截面的数据为
其中 是在横截面i和时间t上的随机误差项。
《面板数据分析》课件
面板数据分析的步骤
1
数据描述
对数据进行描述性统计,确定数据在时间和个体方面的特征。
2
ห้องสมุดไป่ตู้
分类讨论
分析不同情况下个体间行为的差异和影响因素,如何影响个体行为的内部因素和外部 环境。
3
建模和估计
根据分类讨论的结论,运用面板数据模型建立样本分布,通过极大似然法和广义矩估 计法进行参数估计。
4
结果解释
对估计的结果进行解释,如何分析因素对个体行为的影响和相关关系等。
生产领域
跟踪生产的进度和效果,寻找 提高生产效率的方法。
总结和展望
总结
面板数据分析是一种高通量数据分析方法,通 过对个体间微观差异的捕捉和分析,提高了分 析数据的精确性,研究结果更具有真实性和普 遍性。
展望
随着数据分析和研究技术的不断发展,面板数 据分析将进一步被广泛接受和使用,为各行各 业的发展与创新提供支持。
《面板数据分析》PPT课 件
欢迎各位来到《面板数据分析》课件。本课程将向大家介绍如何运用面板数 据分析各种数据,并运用不同的分析方法提升数据的价值。
面板数据的定义和特点
什么是面板数据?
面板数据指的是在一定时间内,对相同个体做重复观测所得到的数据。
面板数据的特点
相对于横截面数据和时间序列数据,面板数据能够更精确地反映个体间的差异和发展。
面板数据模型的建立
线性回归模型
用于研究数值型因变量和数值 型自变量之间的关系。
逻辑回归模型
用于研究分类因变量和数值型 自变量之间的关系。
混合效应模型
考虑组间差异和个体内部差异, 更为精确地分析面板数据的特 点。
面板数据分析的常用方法
1 固定效应模型
第4讲面板数据模型-PPT文档资料
第4讲 面板数据模型
计量经济学
Econometrics
李平
2019年1月
© School of Management, 2005
第4讲 面板数据模型
主要内容
面板数据(Panel data) 固定效应 随机效应 固定效应和随机效应模型的比较
© School of Management, 2005
若所有的级差截距和基础斜率系数都显著,就可 以得出结论:4家公司的投资函数各不相同,从而 说明这4家公司的数据不能一视同仁,而要区别对 待,单独估计每家公司的X对Y的影响关系
© School of Management, 2005
© School of Management, 2005
第4讲 面板数据模型
混合回归(PLS)
所有系数都不随时间和个体的变化而变化
Y X Xu 1 2 2 3 3
直接用OLS估计
© School of Management, 2005
双击
单击
存在的问题:假设4家不同的公司的截距项和斜率系数 都完全相同,这是相当严格的假设,很可能扭曲了4个 公司Y和X之间关系的真实情况
© School of Management, 2005
例子:投资理论研究
为研究实际总投资(I)对实际资本存量(CAP)和企业 实际价值(PL)的关系,收集了4个公司,即通用电气 (GE)、通用汽车(GM)、美国钢铁(US)和西屋 (WEST),20年(1935-1954)的数据,共80个观测值。
1 9 22 i t 33 i t i t
D U M 5 3 X Xu
U M 3 5 , D U M 3 6 , . . . , D U M 3 5 其中 D 表示时间虚拟变量, 0 表示将1954年的截距项作为基准 由于考虑了回归模型随时间的改变,因此称为时间效 应模型(一个问题:自由度的损失)
计量经济学
Econometrics
李平
2019年1月
© School of Management, 2005
第4讲 面板数据模型
主要内容
面板数据(Panel data) 固定效应 随机效应 固定效应和随机效应模型的比较
© School of Management, 2005
若所有的级差截距和基础斜率系数都显著,就可 以得出结论:4家公司的投资函数各不相同,从而 说明这4家公司的数据不能一视同仁,而要区别对 待,单独估计每家公司的X对Y的影响关系
© School of Management, 2005
© School of Management, 2005
第4讲 面板数据模型
混合回归(PLS)
所有系数都不随时间和个体的变化而变化
Y X Xu 1 2 2 3 3
直接用OLS估计
© School of Management, 2005
双击
单击
存在的问题:假设4家不同的公司的截距项和斜率系数 都完全相同,这是相当严格的假设,很可能扭曲了4个 公司Y和X之间关系的真实情况
© School of Management, 2005
例子:投资理论研究
为研究实际总投资(I)对实际资本存量(CAP)和企业 实际价值(PL)的关系,收集了4个公司,即通用电气 (GE)、通用汽车(GM)、美国钢铁(US)和西屋 (WEST),20年(1935-1954)的数据,共80个观测值。
1 9 22 i t 33 i t i t
D U M 5 3 X Xu
U M 3 5 , D U M 3 6 , . . . , D U M 3 5 其中 D 表示时间虚拟变量, 0 表示将1954年的截距项作为基准 由于考虑了回归模型随时间的改变,因此称为时间效 应模型(一个问题:自由度的损失)
面板数据模型经典_PPT
bji为第i截面上的第j个解释变量的模型参数;ai为常数项或截距项,代
表第i横截面(第i个体的影响);解释变量数为j=l,2,…,k;截面数为 i=1,2,…,N;时间长度为t=1,2,…,T。其中,N表示个体截面成员 的个数,T表示每个截面成员的观测时期总数,k表示解释变量的个数。 则单方程面板数据模型一般形式可写成:
福建省、河北省、黑龙江省、吉林省、江苏省、江西省、
辽宁省、内蒙古自治区、山东省、上海市、山西省、天津 市、浙江省。
11000 10000 9000 8000 7000 6000 5000 4000 3000 2000 1996 1997 1998 1999 2000 2001 CPSD CPSH CPSX CPTJ CPZJ 2002
对于平衡的面板数据,即在每一个截面单元上具有相同个数的观测 值,模型样本观测数据的总数等于NT。 当N=1且T很大时,就是所熟悉的时间序列数据;当T=1而N很大时, 就只有截面数据。 面板数据模型划分为3种类型: (1)无个体影响的不变系数模型:ai=aj=a,bi=bj=b
这种情形意味着模型在横截面上无个体影响、无结构变化,可将模 型简单地视为是横截面数据堆积的模型。这种模型与一般的回归模型无 本质区别,只要随机扰动项服从经典基本假设条件,就可以采用OLS法 进行估计(共有k+1个参数需要估计),该模型也被称为联合回归模型 (pooled regression model)。 (2)变截距模型:ai≠aj,bi=bj=b
表11.3.1结果表明,回归系数显著不为0,调整后的样本决 定系数达0.98,说明模型的拟合优度较高。从结果看,平均消
费倾向为0.76,表明15个省级地区的人均消费支出平均占收入
的76%。 (4)变截距模型
面板数据模型PPT课件
第5页/共99页
浙江 山西 山东 辽宁 江苏 黑龙江 福建 安徽 1996 1998 2000 2002
14000 12000 10000 8000 6000 4000 2000 0
安徽 北京 福建 河北 黑龙江 吉林 江苏 江西 辽宁 内蒙古 山东 上海 山西 天津 浙江
面板数据散点图 15 个地区 7 年人均消费对收入的面板数据散点图见图 6 和图 7。
9000
8000
7000
6000
5000
4000
3000
2000 2000 4000 6000 8000
IP_T 10000 12000 14000
图8 图9
第8页/共99页
2.面板数据模型分类 用面板数据建立的模型通常有 3 种,即混合模型、固定效应模型和随机效应模型。 2.1 混合模型(Pooled model)。 如果一个面板数据模型定义为,
注意: (1)在 EViews 输出结果中i 是以一个不变的常数部分和随个体变化的部分相加而成。 (2)在 EViews 5.0 以上版本个体固定效应对话框中的回归因子选项中填不填 c 输出结 果都会有固定常数项。
第11页/共99页
第4章 面板数据模型
2.2.1 个体固定效应模型(entity fixed effects model)
如果模型是正确设定的,解释变量与误差项不相关,即 Cov(Xit,it) = 0。那么无论是 N,还是 T,模型参数的混合最小二乘估计量(Pooled OLS)都是一致估计量。
以案例 1(file:5panel02)为例得到的混合模型估计结果如下:
LnCPit = 0.0187 + 0.9694 LnIPit +it (0.2) (79.2) R2 = 0.984, SSE = 0.1702, DW = 0.62
浙江 山西 山东 辽宁 江苏 黑龙江 福建 安徽 1996 1998 2000 2002
14000 12000 10000 8000 6000 4000 2000 0
安徽 北京 福建 河北 黑龙江 吉林 江苏 江西 辽宁 内蒙古 山东 上海 山西 天津 浙江
面板数据散点图 15 个地区 7 年人均消费对收入的面板数据散点图见图 6 和图 7。
9000
8000
7000
6000
5000
4000
3000
2000 2000 4000 6000 8000
IP_T 10000 12000 14000
图8 图9
第8页/共99页
2.面板数据模型分类 用面板数据建立的模型通常有 3 种,即混合模型、固定效应模型和随机效应模型。 2.1 混合模型(Pooled model)。 如果一个面板数据模型定义为,
注意: (1)在 EViews 输出结果中i 是以一个不变的常数部分和随个体变化的部分相加而成。 (2)在 EViews 5.0 以上版本个体固定效应对话框中的回归因子选项中填不填 c 输出结 果都会有固定常数项。
第11页/共99页
第4章 面板数据模型
2.2.1 个体固定效应模型(entity fixed effects model)
如果模型是正确设定的,解释变量与误差项不相关,即 Cov(Xit,it) = 0。那么无论是 N,还是 T,模型参数的混合最小二乘估计量(Pooled OLS)都是一致估计量。
以案例 1(file:5panel02)为例得到的混合模型估计结果如下:
LnCPit = 0.0187 + 0.9694 LnIPit +it (0.2) (79.2) R2 = 0.984, SSE = 0.1702, DW = 0.62
面板数据分析方法 ppt课件
(14.1.3)
it i t uit
i 1,2, N t 1,2,T
面板数据:多个观测对象的时间序列数据所组 成的样本数据。
i 反映不随时间变化的个体上的差异性,
被称为个体效应
t 反映不随个体变化的时间上的差异性,
被称为时间效应。
ppt课件 33
第二节 面板数据的模型形式
11,000 10,000 9,000 8,000 7,000 6,000 5,000 4,000 3,000 IP 2,000 3,000 5,000 7,000 9,000 11,000 13,000 CP_1996 CP_1997 CP_1998 CP_1999 CP_2000 CP_2001 CP_2002
安徽 北京 福建 河北 黑龙江 吉林 江苏 江西 辽宁 内蒙古 山东 上海 山西 天津 浙江
14000 12000 10000 8000 6000 4000 2000 0 1996 1997 1998 1999 2000 2001
浙江 山西 山东 辽宁 江苏
山西
14000 12000 10000 8000 6000 4000 2000
ppt课件
16
二、面板数据的分类
2.微观面板数据与宏观面板数据 微观面板数据一般指一段时期内不同个体或者家庭 的调查数据,其数据中往往个体单位较多,即 N较大( 通常均为几百或上千)而时期数 T较短(最短为两个时 期,最长一般不超过20个时期)。
ppt课件
17
二、面板数据的分类
2.微观面板数据与宏观面板数据 宏观面板数据通常为一段时间内不同国家或地区的 数据集合,其个体单位数量N不大(一般为7-200)而时 期数T较长(一般为20-60年)。
it i t uit
i 1,2, N t 1,2,T
面板数据:多个观测对象的时间序列数据所组 成的样本数据。
i 反映不随时间变化的个体上的差异性,
被称为个体效应
t 反映不随个体变化的时间上的差异性,
被称为时间效应。
ppt课件 33
第二节 面板数据的模型形式
11,000 10,000 9,000 8,000 7,000 6,000 5,000 4,000 3,000 IP 2,000 3,000 5,000 7,000 9,000 11,000 13,000 CP_1996 CP_1997 CP_1998 CP_1999 CP_2000 CP_2001 CP_2002
安徽 北京 福建 河北 黑龙江 吉林 江苏 江西 辽宁 内蒙古 山东 上海 山西 天津 浙江
14000 12000 10000 8000 6000 4000 2000 0 1996 1997 1998 1999 2000 2001
浙江 山西 山东 辽宁 江苏
山西
14000 12000 10000 8000 6000 4000 2000
ppt课件
16
二、面板数据的分类
2.微观面板数据与宏观面板数据 微观面板数据一般指一段时期内不同个体或者家庭 的调查数据,其数据中往往个体单位较多,即 N较大( 通常均为几百或上千)而时期数 T较短(最短为两个时 期,最长一般不超过20个时期)。
ppt课件
17
二、面板数据的分类
2.微观面板数据与宏观面板数据 宏观面板数据通常为一段时间内不同国家或地区的 数据集合,其个体单位数量N不大(一般为7-200)而时 期数T较长(一般为20-60年)。
第七讲 面板数据模型(Fixed Effect, Random Effect)
Y
it
+ D
2
it 2
... n D itn
X
it
it
3. 对固定效应的模型(2)设定和估计
Y
it
i
t
X
it
it
(1)设定(不含截距项,引进n+T-1个虚拟变量)
Y
it
1 D it1 ... n D itn
2
H
its
基本模型横截面对y的干扰混合影响截距项随机的模型可以改写为其中随机效应模型randomeffect固定效应模型fixedeffect或lsdv截距项模型模型非随机的由截距项体现个体差异截距项模型模型非随机的对模型1不同个体的差异与t无关对同一个个体
第八章 面板数据模型(Panel Data )
• 问题和动机
当 E (Y X it
it
i
X
it
it
对模型(1)
X时
*
*
X 从不同的个体来看 E (Y
) i
) k kt
X
*
E (Y
it
) E (Y kt ) i k
不同个体的差异与 t 无关
对同一个个体:
E (Y
it
) E (Y is ) i i 0
支出合计 C 1741.09 3552.07 4753.23 3479.17 2050.89 1475.16 1357.43 2703.36 1649.18 1554.59 1098.39 1127.37 1330.45 1123.71 1943.3 4147.3 5669.57 4285.13 2319.52 1583.31 1644.79 2927.35 1801.63 1770.56 1185.17 1336.85 1563.15 1030.13
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(9) (10)
计算步骤:
计量经济学,面板数据模型,1王7 少平
▪ 引入虚拟变量:
▪ ▪
D i,i1,2,L,N
D i 1 表示第i个观测个体 D i 0 表示不是第i个观测个体。
则模型(10)可表述为:
Y i t0 1 D 1 N D N 1 X i tu it
(11)
▪ 为解决虚拟变量的完全多重共线性,可直接估计模型:
计量经济学,面板数据模型,1王9 少平
四、静态面板-随机效应GLS估计
Yit 12X2it LkXkit it it i t uit
i1,2,L,N t1,2,L,T
(14)
随机效应:个体效应或时间效应与模型中的解释变量不相关
OLS估计量:
无偏的,但估计量有较大的方差。
本质问题:
个体(或时间)效应导致了误差项自相关。
数协方差矩阵估计量; ˆ R ,ˆ R 分别为回归系数的GLS估计系数,估计系数
协方差矩阵估计量。
计量经济学,面板数据模型,2王3 少平
五、Hausman检验
若随机效应为真时,豪斯曼检验统计量:
H~2(K)
自由度K为模型中解释变量(不包括截距项)的个数。
计量经济学,面板数据模型,2王4 少平
(3)
计量经济学,面板数据模型,1王0 少平
三、面板数据模型及其分类
动态面板数据模型
Yit 1 X 2 2it LkXkit Yit1it it i t uit
i1,2,L,N t1,2,L,T
(4)
例如:
Iit12F it3 C itIit 1it u it (5)
i 1 ,2 ,L,N t 1 ,2 ,L,T
计量经济学,面板数据模型,2王6 少平
2. LSDV估计的有偏和非一致性
模型(17)可以表示为: Y i t 1 D 1 N D N Y i , t 1 u it
等价于模型:
Y* i,t
Y *
*
i,t1 it
其中:
Y* i,t1
Yi,t1
1 T
T
Yi,t
t1
* it
▪
个体效应或时间效应与模型中的解释变量不相关
计量经济学,面板数据模型,1王3 少平
四、静态面板-混合OLS估计
▪ 1、面板混合OLS估计:直接把各时间序列或各横截 面数据混合起来进行估计。
▪ 个体和时间效应为0
Yit 12X2itLkXkituit
i1,2,L,N t1,2,L,T
(7)
▪ U满足经典假设
计量经济学,面板数据模型,1王1 少平
四、静态面板数据模型估计
面板数据一般模型:
Yit 12X2it LkXkit it it i t uit
i1,2,L,N t1,2,L,T
(6)
i 反映不随时间变化的个体上的差异性,被称为个体效应 t 反映不随个体变化的时间上的差异性,被称为时间效应
计量经济学,面板数据模型,2王5 少平
六、动态面板-内生性问题
1. GLS估计的有偏和非一致性
(1)解释变量 Y i,t 1与误差项 it 都包含个体效应 i 。
(2)进行差分变换,Yi,t1Yi,t1Yi,t2与 ituitui,t1 ,都
包含共同因素 u i ,t 1 ,无法消除解释变量的内生性问题。
要得到 的一致估计量:需为 Y i ,t 1 寻找适当的工具变
量。 GMM以工具变量为基础,核心思想在于利用正交条件
估计未知参数。
计量经济学,面板数据模型,2王8 少平
六、动态面板-IV估计
工具变量选择的条件:
(1)与 it 不相关,
(2)而 Y i , t 1 与相关。 思考:Yi1,Yi2,L,Yi,t2 能作为 Y i , t 1 工具变量使用吗?
相关,以便进行OLS估计。
计量经济学,面板数据模型,1王6 少平
四、静态面板-固定效应LSDV估计
针对如下模型:
Y it12 X 2 it L kX k itit iti u it
i 1 ,2 ,L ,Nt 1 ,2 ,L ,T
简化:
Yit 12X2itit
it iuit
i1,2,L,N t1,2,L,T
▪
有偏的,非一致的。
▪ 本质问题:
▪
个体效应(或时间效应)的内生性。
▪ 其BLUE是最小二乘虚拟变量(LSDV)法。
计量经济学,面板数据模型,1王5 少平
四、静态面板-固定效应LSDV估计
LSDV估计方法:
基本思想:
通过虚拟变量把个体效应(和时间效应)从误差
项中分离出来,使分离后剩余的误差项与解释变量不
计量经济学,面板数据模型,2王9 少平
六、动态面板-IV估计
工具变量选择的方法:
对模型(18)取一阶差分:Y itY i,t 1it,iti u it
Yit Yi,t1it
(19)
因为 ituitui,t1已经剔除了个体效应 i 同时对 u it , u i,t 1 来说,Yi1,Yi2,L,Yi,t2 都是前定变量
主要分两类:
静态面板数据模型
动态面板数据模型
计量经济学,面板数据模型,王9 少平
三、面板数据模型及其分类
静态面板模型:
Yit 12X2it LkXkit it it i t uit
i1,2,L,N t1,2,L,T
(2)
例如:
Iit 12F it3C itituit
i1,2,L,N t1,2,L,T
面板数据模型
王少平
2012年12月
1
前言
什么是面板数据(Panel Data) 面板数据的特征与优势 面板数据模型及其分类 静态面板数据模型估计及性质 固定效应随机效应检验:Hausman检验 动态面板数据模型GMM估计及性质 总结
计量经济学,面板数据模型,王2 少平
一、什么是面板数据
it
1 T
T
it
t1
显然,Y
i
* ,t
1
和
* i ,t
是相关的,都包含误差
i,t1
计量经济学,面板数据模型,2王7 少平
六、动态面板-广义矩估计GMM
动态面板数据模型: Yit Yi,t1 it it i uit
其中:u it 为经典误差项, E (i)0E (iuit)0
(18)
固定效应:如果个体效应或时间效应与模型中的解释变量相关
随机效应:如果个体效应或时间效应与模型中的解释变量不相 关
计量经济学,面板数据模型,2王1 少平
五、Hausman检验
固定效应模型:LSDV估计量无偏;GLS估计量有偏。 随机效应模型:LSDV和GLS估计量都无偏,但LSDV估
计量有较大方差。 固定效应模型:LSDV和GLS的估计结果有较大差异。 随机效应模型:LSDV和GLS的估计结果比较接近。
六、动态面板数据模型
▪ 动态面板模型:解释变量中包含被解释变量的滞后 项。
▪ 一般形式:
Yit 1 X 2 2it LkXkit Yit1it it i t uit
i1,2,L,N t1,2,L,T
(17)
▪ 动态面板数据模型:存在固有的内生性。
GLS估计和LSDV估计:有偏的非一致的。
其BLUE的估计方法是广义最小二乘法(GLS)。
计量经济学,面板数据模型,2王0 少平
五、Hausman检验
面板数据一般模型:
Yit 12X2it LkXkit it it i t uit
i1,2,L,N t1,2,L,T
(15)
i 反映不随时间变化的个体上的差异性,被称为个体效应 t 反映不随个体变化的时间上的差异性,被称为时间效应
Y i,t 2ˆ it N 1 Ti
Y i,t 2 (Y it ˆY i,t 1 ) 0
t
可得到 的IV估计量 ˆ
Yi,t2Yit
ˆ i t
Y Y i,t2 i,t1
it
计量经济学,面板数据模型,3王1 少平
六、动态面板-IV估计
思考:只选取Y i ,t 2 作为模型(18)中 Yi,t 1 的工具变量的 局限性?
固定效应:个体效应或时间效应与模型中的解释变量相关 随机效应:个体效应或时间效应与模型中的解释变量不相关
12
四、静态面板数据模型估计
▪ 1、面板混合OLS估计:
▪
假定个体效应和时间效应为0
▪ 2、固定效应面板数据模型LSDV估计:
▪
个体效应或时间效应与模型中的解释变量相关
▪ 3、随机效应面板数据模型GLS估计:
▪ 面板数据:
▪
多个观测对象的时间序列数据所组成的样
本数据。
计量经济学,面板数据模型,王3 少平
一、什么是面板数据
例如:4个公司20年的数据 变量:
投资(I) 厂商价值(F)、厂房设备存量(C) 4个公司: 通用电气(GE)、通用汽车(GM)、 美国钢铁(US)、西屋(Westing house) 20年: 1935-1954
计量经济学,面板数据模型,王4 少平
计量经济学,面板数据模型,王5 少平
二、面板数据的特征及优势
面板数据的基本特征:其数据结构的二维性。
t\i 1 2 N
横
时
1 X 11 X 21 X N1
截
间
2 X 12 X 22 X N 2
面序数源自列T X 1T X 2T X NT
据
数
据
变量X的面板数据结构
Y i t 1 * D 1 L N * D N 1 X i t u i t
(12)
如果 u it 是经典误差项,可以直接对(12)进行OLS估计。并 且