无线传播模型基本理论

合集下载

无线电波传播模型的建立与分析

无线电波传播模型的建立与分析

无线电波传播模型的建立与分析无线电波传播是一个现代通信领域的重要问题,其模型的建立和分析是无线电通信系统设计和优化的关键环节之一。

无线电波传播模型是通过模拟和预测无线电波在空间中传播的方式来描述无线电信号的强度、时延、多径效应等参数的一种理论模型。

在无线电通信系统设计和优化中,对无线电波传播模型的分析和建立具有重要意义。

一、无线电波传播模型的类型目前,无线电波传播模型主要有以下几种类型:1. 经验模型:这种模型基于实验数据的统计分析,不涉及具体的理论解释,适用于严密的实验条件下,通过多次测量和统计分析得到的实验数据建立模型。

2. 理论模型:这种模型基于适当的数学和物理理论解释,通过研究电磁波在不同介质中的传播规律,推导出适当的数学关系式来描述无线电波传播规律。

3. 数据库模型:这种模型基于大量的实测数据建立,通过采集大量的数据,并运用统计分析方法,得到数据之间的相关性和规律,从而建立模型。

4. 混合模型:这种模型是现代无线电波传播模型种类中最为普遍使用的一种,它利用多种模型来解决特定问题,具有更好的预测精度和应用范围。

二、无线电波传播模型的参数无线电波传播模型中常用的参数有:功率衰减、时延、多径效应、相位扰动、相位偏差等。

其中功率衰减是评价无线电信号的信号强度和信号可靠性的主要指标,表明信号在距离的变化中所遭受的信号损耗。

时延是无线电信号所需要的时间来传播到一个特定的位置,它是衡量无线电信号传输速度的重要参数之一。

多径效应是无线电信号在传播过程中经历多条路径到达接收端,产生多个接收信号的现象。

相位扰动是因为无线电信号在传播过程中,由于信号要经过多条不同路经随机相位旋转引起的波幅的变化。

相位偏差是由于空气折射率的变化引起的,它是描述信号相位和真实传播距离的差异。

三、无线电波传播模型的建立无线电波传播模型的建立,需要进行场强反射和绕射的研究,分析场强随距离的变化关系,并且建立空间场强分布模型。

场强反射和绕射的研究涉及几何、电磁、电子与材料学等诸多领域。

无线通信基本原理PPT课件

无线通信基本原理PPT课件
波束形成天线采用智能天线, 基站的智能天线形成多个波束覆盖 整个小区,智能天线可定位于每个 MS。
MS MS
BTS MS
41
移动通信基本原理
一、蜂窝理论 二、网络结构 三、多址技术 四、概念辨析
42
a)话务量概念
话务量的严格定义应该叫做话务强度,是电 话系统业务多少的度量,它与单位时间(一般取 忙时1小时)内的呼叫次数n及呼叫占用信道的平 均时间(T)成正比。
• 在分配成语音信道后,基站和移动台就会同时地连续不断地发射 • FDMA通常是窄带系统,TACS为代表,每信道25kHz带宽 • FDMA比TDMA简单,同步和组帧比特少,系统开销小
• FDMA需要精确的RF滤波器,需要双工器(单天线)
• 非线性效应:许多信道共享一个天线,功率放大器的非线性会产生交 调频率(IM),产生额外的RF辐射
18
无线传播模型和校正
随着网络规模的扩大,对通信质量要求的提高,网络规划、 覆盖预测已不可能靠手工运算来完成。通过计算机应用传播模 型就能够很好的解决这一问题。通过模型进行预测能够得到误 差在10dB以内的路径损耗的本地均值。
·移动通信中用到的传播模型有很多,常见的有:
● Hata-Okumura模型 ● Walfisch-Ikegami模型 ● Planet通用模型 不同的模型有不同的特点,有各自的适用范围。
39
• CDMA:Code Division Multiple Access 码分多

频率
时间
码字
CDMA
所有用户在同一时间、同一频段上、根据编码获 得业务信道
40
SDMA(Space Division Multiple Access):空分多 址

第3章 无线传播理论与模型

第3章 无线传播理论与模型

传播途径
无线电波可通过多种方式从发射天线传播到接收天线:直射波或地面反 射波、绕射波、对流层反射波、电离层反射波。如图所示。 还有了一种:表面波的传播方式,主要利用左边这两种。
学习完本课程,您应该能够:

掌握无线传播理论基本知识
掌握传播模型的作用,记住几种常用模型的名称和适用范围。


理解链路预算的基本参数和计算方法。
了解一些产品在覆盖规划中如何应用

无线传播理论概述
电磁波传播的机理是多种多样的,但总体上可以归结为反射、绕射和散 射。大多数蜂窝无线系统运作在城区,发射机和接收机之间一般不存在 直接视距路径,且存在高层建筑,因此产生了绕射损耗。此外由于不同 物体的多路径反射,经过不同长度路径的电磁波相互作用产生了多径损 耗,同时也存在随着发射机和接收机之间距离的不断增加而引起电磁强 度的衰减。 对传播模型的研究,传统上集中于给定范围内平均接收场强的预测,和 特定位臵附近场强的变化。对于预测平均场强并用于估计无线覆盖范围 的传播模型,由于它们描述的是发射机和接收机之间(T-R)长距离( 几百米或几千米)上的场强变化,所以被称为大尺度传播模型。另一方 面,描述短距离(几个波长)或短时间(秒级)内的接收场强的快速波 动的传播模型,称为小尺度衰减模型。
无线传播理论概述
当移动台在极小的范围内移动时,可能引起瞬时接收场强的快速波动, 即小尺度衰减。其原因是接收信号为不同方向信号的合成。由于相位变 化的随机性,其合成信号变化范围很大。在小尺度衰减中,当接收机移 动距离与波长相当时,其接收场强可以发生3或4个数量级(30dB或 40dB)的变化。当移动台远离发射机时,当地平均场强逐渐减弱,该 平均接收场强由大尺度传播模型预测。典型地,当地平均接收场强由从 5 到40 范围内信号测量平均值计算得到,对于频段从1GHz到2GHz的蜂 窝系统,相应测量在1米到10米范围内。

传播模型

传播模型

74第四章 室外传播模型4.1 室外无线传播概述在无线通信系统中,电波通常在非规则非单一的环境中传播。

在估计信道损耗时,需要考虑传播路径上的地形地貌,也要考虑到建筑物、树木、电线杆等阻挡物[1]。

不同的室外传播环境模型适用于不同的环境,图4-1-1显示了在不同的环境下接收信号强度的不同。

接收信号强度距离图4-1-1 不同环境下接收信号的变化 从图4-1-1中可以看出,随着距离的增大,接收信号强度逐渐减小,然而衰减的速率是不同的:空间自由传播的情况下衰减速率最小,其次是开阔地和郊区,城区的衰减速率最大。

一般来说,接收功率r P 与距离d 的指数n d -成正比,在空间自由传播环境中2=n ,在其他情况下有43≤≤n 。

图4-1-1只是给出了接收信号强度随距离变化的趋势,然而在实际无线传播中它们并不是线性关系(如图4-1-2所示):接收信号强度距离图4-1-2 接收信号强度与距离的非线形关系第4章室外传播模型75 图4-1-2(采用的是对数坐标)中当发射机和接收机间的距离较小时为视距传输即2n,=此时包络服从莱斯分布,以小尺度衰落为主;当距离增大时有4≤n,此时以大尺度衰落3≤为主,包络服从瑞利衰落。

当然,由于地形不同,转折点的位置也是不同的[25],如图4-1-3所示:(a)(b)图4-1-3 (a)城区(b)郊区的接收信号与距离的非线性关系f1937MHz,发送天线高度为8.7m,接收天图4-1-3给出了在城区和郊区分别对频率=线高度为 1.6m 的情况进行实测,得到的接收信号和距离的关系。

在城区图中,转折点在d=1000m 附近,而在郊区图中,转折点在d=100m 附近。

在实际的传播环境中,从覆盖区域来分,室外传播环境可以分为两类:宏蜂窝模型和微蜂窝模型。

宏蜂窝传播模型假设传输功率可达到几十瓦特;蜂窝半径为几十公里。

相比之下,微蜂窝传播模型的覆盖范围则小一些(200m~1000m ),在微蜂窝传播传播模型中假定基站不高(3m~10m ),发射功率有限(10mW~1W),所预测的区域也只在基站附近。

CDMA知识要点1(CDMA基本原理)

CDMA知识要点1(CDMA基本原理)

CDMA知识要点1(CDMA基本原理)CDMA知识要点⼀、⽆线传播理论: (2)1. UHF(ultra high frequence)超⾼频300~3000MHZ (2)2. 慢衰落与快衰落的概念 (2)3. 对抗衰落,基站采取的措施是采⽤时间分集、空间分集(极化分集)和频率分集的办法(2)4. 绕射损耗和穿透损耗 (2)5.常见的⼏种传播模型: (2)6.CW测试的概念: (2)⼆、天线理论: (2)1.天线分类 (2)2.天线的性能指标 (3)3.dBd 和 dBi的区别,以及dBm的概念 (3)4. 波束宽度 (3)5.天线选型 (3)6. 天线下倾⾓与覆盖距离的计算公式 (3)三、CDMA基本原理: (5)1. CDMA (code division multiply access)码分多址接⼊。

(5)2.扩频通信的原理 (5)3.CDMA采⽤直序扩频频 (Direct Sequence Spread Spectrum) (5)4.⼏个常见概念 (5)5.系统框图 (6)6.三种码(短码、长码、WALSH码): (7)四、CDMA信道: (7)1. IS-95中的前向信道和反向信道 (7)五、CDMA关键技术: (10)1. 功率控制技术 (10)2. Rake接收 (11)3.软切换/更软切换的概念 (11)六移动台⾏为 (12)1. 移动台初始化 (12)2.移动台空闲态 (12)3. 接⼊过程 (13)4. 掉话 (16)七、基站硬件 (17)1.系列基站 (17)⼋、切换算法: (18)1. CDMA切换的分类 (18)2. 导频集 (18)3. CDMA切换的主要参数 (18)4. 搜索窗⼝参数 (19)5. 切换算法可以分为以下的类型: (21)6 软切换动态门限 (21)7. 软切换过程 (22)⼋功率控制 (23)1. Radio Configuration简称为RC (23)2. 功控分类 (23)3. 反向功控 (24)4. 前向功控 (24)九负荷控制 (26)1. 前向负荷计算 (26)2. 反向负荷控制之准⼊算法描述 (28)⼗、系统消息 (29)1. 在CDMA系统中,⼏乎所有的呼叫流程由消息驱动 (29)2. 常见的消息 (29)3. 6种必选消息 (31)⼀、⽆线传播理论:1. UHF(ultra high frequence)超⾼频300~3000MHZ2. 慢衰落与快衰落的概念慢衰落:由障碍物阻挡造成阴影效应,接收信号强度下降,但该场强中值随地理改变变化缓慢,故称慢衰落。

无线射频基础知识-无线传播原理与传播模型

无线射频基础知识-无线传播原理与传播模型


P波段:230~1000MHz; L波段:1000MHz~2000MHz;

大家熟知的GPS系统,其工作频率就在此波段(1575MHz左右);

S波段:2000MHz~4000MHz; C波段:4000MHz~8000MHz;目前主要用于卫星电视转播; X波段:8000MHz~12.5GHz;目前主要用于微波中继; Ku波段:12.5GHz~18GHz;目前主要用于微波中继和卫星电视转播; K波段:18GHz~26.5GHz; Ka波段:26.5GHz~40GHz; 频率越低,传播损耗越小,覆盖距离越远,绕射能力越强。但是,低频段频率 资源紧张,系统容量有限,因此主要应用于广播、电视、寻呼等系统。 高频段频率资源丰富,系统容量大;但是频率越高,传播损耗越大,覆盖距离 越近,绕射能力越弱。另外频率越高,技术难度越大,系统的成本也相应提高。
慢衰落损耗是由于在电波传播路径上受到建筑物及山丘等的阻挡所产生的阴影 效应而产生的损耗。它反映了中等范围内数百波长量级接收电平的均值变化而 产生的损耗,一般遵从对数正态分布。 快衰落损耗是由于多径传播而产生的损耗,它反映微观小范围内数十波长量级 接收电平的均值变化而产生的损耗,一般遵从瑞利分布或莱斯分布。快衰落又 可以细分为以下3类:
从公式可以推导出以下结论:


无线电波在地面传播时,在同样的传播距离上,其传播损耗比自由空间传播时 要大得多:当取值为4时,距离d加倍,传播损耗增加12dB,即:信号衰减16 倍; 增加天线高度,可以减少传播损耗。

华为技术有限公司 版权所有 未经许可不得扩散
无线射频基础知识-无线传播原理与传播模型

在规划和建设一个移动通信网时,从频段的确定、频率分配、无线电波的覆盖范围、计 算通信概率及系统间的电磁干扰,直到最终确定无线设备的参数,都必须依靠对电波传 播特性的研究、了解和据此得到的传播模型进行场强预测。

什么是信道模型?

什么是信道模型?

什么是信道模型?信道模型是通信领域中的关键概念之一。

它描述了在无线通信系统中,信号如何通过传输介质(如大气、海水、金属导线等)进行传播的过程。

信道模型对于理解和优化无线通信系统的性能具有重要意义。

接下来,我们将从三个方面来介绍信道模型。

一、信道传播的基本原理1. 外界噪声:在信道传播过程中,会受到来自外界的干扰和噪声。

这些噪声源包括大气电离层的效应、电磁辐射以及其他无线电设备的干扰。

通过对噪声特性的研究和建模,可以帮助我们更好地理解和处理这些噪声对通信质量的影响。

2. 多径效应:无线信号在传播过程中会经历多次反射、散射和绕射等现象,导致接收端接收到多个传播路径上的信号。

这就是所谓的多径效应。

由于不同路径的信号具有不同的传播延迟和相位差,会造成信号间的相互干扰和衰减。

深入研究多径效应的特性和建立合适的数学模型,有助于优化无线通信系统的设计和性能。

3. 信号衰减:信号随着距离的增加会逐渐衰减。

衰减的原因包括自由空间路径损耗、多径传播引起的功率损耗以及其他物理因素。

准确地描述和量化信号衰减的模型,可以帮助我们预测和补偿信号强度的变化,提高通信系统的覆盖范围和性能。

二、信道模型的分类1. 统计信道模型:统计信道模型是根据实际测量数据和统计规律建立的。

根据测量数据中的信号强度、信号衰减和相位等信息,通过数学模型来描述信道的统计特性。

统计信道模型的优势在于可以对多个传播环境和场景进行研究,并得到一种适用于广泛应用的信道模型。

2. 几何信道模型:几何信道模型将信道传播过程抽象为几何空间中的点和面的运动。

通过建立几何模型,可以计算信号传播的路径损耗、多径效应和信号衰减等参数。

几何信道模型适用于研究特定区域的信道传播特性,例如城市环境或室内场景。

三、信道模型的应用1. 通信系统设计:信道模型提供了一种理论和方法,可以指导无线通信系统的设计和优化。

通过准确地建立信道模型,可以预测信号质量、容量和传输速率等关键性能指标,从而选择合适的调制技术、编码方案和传输方式。

无线电波传播原理及主要传播模型

无线电波传播原理及主要传播模型

无线电波传播原理1无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析1.1 电磁场与电磁波基础1820年奥斯特电磁1831年法拉第磁电产生产生变化的电场磁场变化的磁场电场激发?电磁场理论麦克斯韦在总结前人工作的基础上,提出了著名的电磁场理论(经典电磁场理论),指出变化电场和变化磁场形成了统一的电磁场,预言电磁场能以波动的形式在空间传播,称为电磁波;并得到电磁波在真空中传播的速度等于光速,从而断定光在本质上就是一种电磁波。

后来,赫兹用振荡电路产生了电磁波,使麦克斯韦的学说得到了实验证明,为电学和光学奠定了统一的基础。

因此,麦克斯韦的经典电磁场理论是人类对电磁规律的历史性总结,是19世纪物理学发展的最辉煌成就,是物理学发展史上一个重要的里程碑。

电磁波的诞生赫兹----德国物理学家赫兹对人类伟大的贡献是用实验证实了电磁波的存在,发现了光电效应。

1888年,成了近代科学史上的一座里程碑。

开创了无线电电子技术的新纪元。

赫兹用各种实验,证明了不仅电磁波的性质和光波相同,而且传播速度也相同,并可发生反射、折射、干涉、衍射和偏振等现象,即电磁波服从一般波动所具有的一切规律。

如果空间的电场或磁场变化是周期性的,我们用周期和频率来描述变化快慢。

电磁场变化过程中产生的电磁波的频率等于电磁场的变化频率;电磁波在传播中从一种介质进入另一种介质时,其频率不会发生改变,但其传播速度会发生改变。

电磁波的应用从1888年赫兹用实验证明了电磁波的存在,1895年俄国科学家波波夫发明了第一个无线电报系统。

1914年语音通信成为可能。

1920年商业无线电广播开始使用。

20世纪30年代发明了雷达。

40年代雷达和通讯得到飞速发展,自50年代第一颗人造卫星上天,卫星通讯事业得到迅猛发展。

如今电磁波已在通讯、遥感、空间控测、军事应用、科学研究等诸多方面得到广泛的应用。

无线电通信的起源1897 年:马可尼完成无线通信试验——电报发收两端距离为18 海里试验是在固定站与一艘拖船之间进行的20 世纪初:两次世界大战导致无线通信蓬勃发展步话机、对讲机等1941 年美陆军就开始装备步话机短波波段,电子管电磁波分类-按传输方式电磁波分类-按传输方式电磁波分类-按波长电磁波分类-按波长各波段电磁波特点长波通信:沿地面传播,衰减小、穿透能力强 中波通信:地波传播及夜晚电离层反射传播 短波通信:天波传播,适合远距离传输超短波通信:直线传播,视距通信,广播电视、移动通信微波通信:工作频带宽,长距离接力通信第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析传播途径①建筑物反射波②绕射波③直射波④地面反射波①建筑物反射波②绕射波③直射波④地面反射波第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析1.3 无线传播环境•问题:移动通信比较固定通信有那些特殊性呢?•多径无线传播无线路径是一个很复杂的传播媒介•手机发射功率有限手机的发射功率客观限制了蜂窝小区的服务范围手机电池寿命和对人体危害决定了发射功率大小•频率资源有限带宽一定信道编码等占用额外频率资源频率需要被重复利用==> 产生同频干扰•用户行为的不确定性第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析无线信道分析在移动通信研究中的意义无线通信系统的信道十分复杂:9地理环境的复杂性和多样性9用户移动的随机性9多径传播无线信道是制约移动通信质量的主要因素无线信道是研究各种技术的主要推动力量无线信道的建模对于整个移动通信系统仿真的正确性和可靠性有着举足轻重的意义1.4 无线信道分析•无线信道中的损耗一般分为三个层次:—大尺度(又称路径损耗)【path loss】—中等尺度(阴影衰落、慢衰落)【shadowing】—小尺度衰落(快衰落)【fast fading】无线信道分析场强平均值随距离增加而衰减(路径损耗,大尺度衰落)•电磁波在空间传播的损耗场强中值呈慢速变化(慢衰落,阴影衰落,中等尺度衰落)•由地形地貌导致场强瞬时值呈快速变化(快衰落,小尺度衰落)•多径效应——由移动体周围的局部散射体引起的多径传播,表现为快衰落•多普勒效应——由移动体的运动引起,多径条件下引起频谱展宽三种衰落区别•大尺度衰落主要是路径损耗,可用自由空间传播模型来近似;其特点是:慢变,信道在很长时间内可以认为是恒定的,而且衰落的幅度很小。

5.无线电波传播的基本理论(V0.2)

5.无线电波传播的基本理论(V0.2)
L = K1 + K 2 Log10 (d ) + K 3 H ms + K 4 Log10 H ms + K 5 Log10 ( H eff ) + K 6 H eff Log10 (d m ) + K 7 ( LDIFF ) + K clutter
移动台距基站的距离 绕射损耗
d
LDIFF
H eff 基站天线的有效高度
6
反射
在平地面上传播的双射线模型
7
多径衰落
多径衰落
当接收机在可引起反射、绕射的复杂环境下移动时, 当接收机在可引起反射、绕射的复杂环境下移动时, 在不到一个波长范围内会出现几十分贝的电平变化和激烈的相位摆动
8
绕射
当接收机和发射机之 间的无线路径被物体 的边缘阻挡时发生绕 射。 绕射使得无线电信号能够传播 到阻挡物后面。 到阻挡物后面。
通常基于几何绕射理论 )、物理光学 (GTD)、物理光学 )、 (PO)的射线跟踪或其 ) 他精确方法。 他精确方法。
29
三类小区
宏小区(宏蜂窝) 宏小区(宏蜂窝)
覆盖范围通常大于1Km 覆盖范围通常大于 高发射功率,大于20W 高发射功率,大于 高增益天线10dBi~20dBi 高增益天线 ~ 天线高过周围环境 常用于郊区、农村、 常用于郊区、农村、公路等 解决覆盖问题 通常采用经验传播模型或半 确定性经验传播模型进行预 测
16
陆地移动通信中的无线信号
小尺度衰落 小尺度上信号包络的变化是描述多径衰落的, 小尺度上信号包络的变化是描述多径衰落的, 通常服从瑞利概率密度函数, 通常服从瑞利概率密度函数,因而也称为瑞利 衰落。 衰落。 中尺度衰落 中尺度的传播机制描述的是阴影衰落, 中尺度的传播机制描述的是阴影衰落, 当以分贝表示时, 当以分贝表示时,这种变化趋向于正态 高斯)分布, (高斯)分布,通常称为对数正态衰落 大尺度衰落 大尺度的传播机制描述的 是区域均值, 是区域均值,具有幂定律 传播特征, 传播特征,即中值信号功 率与距离长度增加的某次 幂成反比变化

无线传播理论基础和移动通信基础知识

无线传播理论基础和移动通信基础知识
-15-
电波的极化
E
xH
天线
y
天线
H
x
E
z
垂直极化v
Ev
E
Eh z
水平极化h
-16-
电波的极化
电波的极化经反射或绕射后会发生偏转。 一般地面,墙面或金属板面,对平行于其表面的极化波会
反转180,而垂直于前进方向的极化波在出射时仍旧垂直 于前进方向。 如果极化对反射面而言,成一个不等于0或180度的角度, 则可以分解成一个垂直于前进方向和一个平行与反射面的 方向的两个分量。经反射后,水平方向的分量旋转180度, 则在出射方向上,两个分量的合成波将不同于入射波的极 化。
4d 2
-11-
点辐射源的波前与功率密度
所谓点辐射源,是指从一定距离以外看这个点时,自观 测点看辐射源的各点距离几乎相等。而且点辐射源没有 方向性(即所有方向上的辐射功率密度均相等)。实际 上是不存在的。如果距离辐射源(譬如说是发射天线) 很远,则由于自观测点至辐射源各点距离差可以忽略不 计,因而可以把自辐射源辐射出来的电波波前看成球面。
=1。或者
P =ExHy /2=Ex2/2 (W/m2)。
-8-
波印廷矢量和功率密度
• P =ExHy /2=Ex2/2 (W/m2)分母中的2表示Ex和Hy
都是正弦波的幅度,其有效值
EeffEEx/ 2

HeffHHy/ 2
所以波印廷矢量代表的功率密度就可以表示为
P =E2/
-9-
点辐射源的波前与功率密度
-17-
电波的极化
如果电波的极化方向和绕射障碍物的边缘不成90角, 经绕射后,其极化也会发生偏转。
这就是在移动通信中,电波传播以阴影区为主的情况下, 多反射或绕射波,在到达接收点时,其极化不一定总是 天线的极化方向的原因。

无线传播信道模型理论

无线传播信道模型理论

-1.00
13.00 5.00 -2.90 -2.50 -2.50 0
Dense urban
High Building
5
16
无线传播模型
应用环境 最低接收功率 备注:手机接收电平=天线口功率-路 径传播损耗 大楼室内 -70dBm 手 机 灵 敏 度 -102dBm , 快 衰 落 保 护 3dB , 慢 衰 落 保 护 7dB , 穿 透 损 耗 16dB,干扰保护2dB,环境噪声2dB 小卧车内,或市 -80dBm 手 机 灵 敏 度 -102dBm , 快 衰 落 保 护
街道墙壁有铝的支架比没有铝的支架产生更大的衰减。 只在天花板加隔离的建筑物比天花板和内部划软件模型(一)
Ploss=K1+K2lgd+K3(Hms)+K4lg(Hms)+K5lg(Heff)+K6lg(Heff)lg(d)+K7+Kclutter
K参数 参考值
区一般建筑物一
层室内 室外 -90dBm
3dB , 慢 衰 落 保 护 5dB , 穿 透 损 耗
10dB,干扰保护2dB,环境噪声2dB 手 机 灵 敏 度 -102dBm , 快 衰 落 保 护
3dB,慢衰落保护5dB,干扰保护2dB
,环境噪声2dB
模型校正
• 目的:通过连续波(CW)测试,校正传播模型参数,增加 无线覆盖预测的准确性。即将连续波测试结果与预测结果 相比较,调整模型中的K参数,使模型符合实际地理环境。 • 采样符合李氏定律:40波长,采样50个样点 • 校正方法:最小方差法
构(钢、玻璃、砖等)、楼层高度、建筑物相对于基站的走向、窗户区所占 的百分比等的函数。由于变量的复杂性,建筑物的损耗只能在周围环境的基 础上统计预测。我们可以有以下一些结论

无线电波传播原理及主要传播模型

无线电波传播原理及主要传播模型

无线电波传播原理1无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析1.1 电磁场与电磁波基础1820年奥斯特电磁1831年法拉第磁电产生产生变化的电场磁场变化的磁场电场激发?电磁场理论麦克斯韦在总结前人工作的基础上,提出了著名的电磁场理论(经典电磁场理论),指出变化电场和变化磁场形成了统一的电磁场,预言电磁场能以波动的形式在空间传播,称为电磁波;并得到电磁波在真空中传播的速度等于光速,从而断定光在本质上就是一种电磁波。

后来,赫兹用振荡电路产生了电磁波,使麦克斯韦的学说得到了实验证明,为电学和光学奠定了统一的基础。

因此,麦克斯韦的经典电磁场理论是人类对电磁规律的历史性总结,是19世纪物理学发展的最辉煌成就,是物理学发展史上一个重要的里程碑。

电磁波的诞生赫兹----德国物理学家赫兹对人类伟大的贡献是用实验证实了电磁波的存在,发现了光电效应。

1888年,成了近代科学史上的一座里程碑。

开创了无线电电子技术的新纪元。

赫兹用各种实验,证明了不仅电磁波的性质和光波相同,而且传播速度也相同,并可发生反射、折射、干涉、衍射和偏振等现象,即电磁波服从一般波动所具有的一切规律。

如果空间的电场或磁场变化是周期性的,我们用周期和频率来描述变化快慢。

电磁场变化过程中产生的电磁波的频率等于电磁场的变化频率;电磁波在传播中从一种介质进入另一种介质时,其频率不会发生改变,但其传播速度会发生改变。

电磁波的应用从1888年赫兹用实验证明了电磁波的存在,1895年俄国科学家波波夫发明了第一个无线电报系统。

1914年语音通信成为可能。

1920年商业无线电广播开始使用。

20世纪30年代发明了雷达。

40年代雷达和通讯得到飞速发展,自50年代第一颗人造卫星上天,卫星通讯事业得到迅猛发展。

如今电磁波已在通讯、遥感、空间控测、军事应用、科学研究等诸多方面得到广泛的应用。

无线电通信的起源1897 年:马可尼完成无线通信试验——电报发收两端距离为18 海里试验是在固定站与一艘拖船之间进行的20 世纪初:两次世界大战导致无线通信蓬勃发展步话机、对讲机等1941 年美陆军就开始装备步话机短波波段,电子管电磁波分类-按传输方式电磁波分类-按传输方式电磁波分类-按波长电磁波分类-按波长各波段电磁波特点长波通信:沿地面传播,衰减小、穿透能力强 中波通信:地波传播及夜晚电离层反射传播 短波通信:天波传播,适合远距离传输超短波通信:直线传播,视距通信,广播电视、移动通信微波通信:工作频带宽,长距离接力通信第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析传播途径①建筑物反射波②绕射波③直射波④地面反射波①建筑物反射波②绕射波③直射波④地面反射波第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析1.3 无线传播环境•问题:移动通信比较固定通信有那些特殊性呢?•多径无线传播无线路径是一个很复杂的传播媒介•手机发射功率有限手机的发射功率客观限制了蜂窝小区的服务范围手机电池寿命和对人体危害决定了发射功率大小•频率资源有限带宽一定信道编码等占用额外频率资源频率需要被重复利用==> 产生同频干扰•用户行为的不确定性第1讲无线电波传播原理• 1.1 电磁场与电磁波基础• 1.2 无线电波传播原理• 1.3 无线传播环境• 1.4 无线信道分析无线信道分析在移动通信研究中的意义无线通信系统的信道十分复杂:9地理环境的复杂性和多样性9用户移动的随机性9多径传播无线信道是制约移动通信质量的主要因素无线信道是研究各种技术的主要推动力量无线信道的建模对于整个移动通信系统仿真的正确性和可靠性有着举足轻重的意义1.4 无线信道分析•无线信道中的损耗一般分为三个层次:—大尺度(又称路径损耗)【path loss】—中等尺度(阴影衰落、慢衰落)【shadowing】—小尺度衰落(快衰落)【fast fading】无线信道分析场强平均值随距离增加而衰减(路径损耗,大尺度衰落)•电磁波在空间传播的损耗场强中值呈慢速变化(慢衰落,阴影衰落,中等尺度衰落)•由地形地貌导致场强瞬时值呈快速变化(快衰落,小尺度衰落)•多径效应——由移动体周围的局部散射体引起的多径传播,表现为快衰落•多普勒效应——由移动体的运动引起,多径条件下引起频谱展宽三种衰落区别•大尺度衰落主要是路径损耗,可用自由空间传播模型来近似;其特点是:慢变,信道在很长时间内可以认为是恒定的,而且衰落的幅度很小。

无线传播模型

无线传播模型

2.2无线传播模型2.2.1无线传播机制•直射波:指在自由空间中,电磁波沿直线传播而不被吸收,且不发生反射、折射和散射等现象而直接到达接收点的传播方式。

92.2无线传播模型2.2.1无线传播机制•反射波:指从其他物体反射后到达接收点的传播信号,反射波信号强度次于直射波。

12.2.1无线传播机制•绕射波:指从障碍物绕射后到达接收点的传播信号。

通常,绕射波的强度与反射波相当。

112.2.1无线传播机制•散射波:当波穿行的介质中存在小于波长的物体并且单位体积内物体的个数非常巨大时,会发生散射,散射波信号强度相对较弱。

Wireless and Mobile Networks Technology Zhenzhou Tang @ Wenzhou University 1 22.2.2 自由空间传播模型为了给通信系统的规划和设计提供依据,人们通过理论分析或实测等方法,对电磁波在某些特定环境下的传播特性进行统计分析,从而总结和建立了一些具有普遍性的数学模型。

我们将这些模型称为无线传播模型(Propagation Model )。

自由空间传播模型(Free Space Propagation Model )是最简单、理想情况的无线电波传播模型。

PG G λ2P (d)= t t r r (4π)2 d 2 L⎡⎛ 4πd⎫2 ⎤10 l og P r = 10 log P t + 10 log G t + 10 log G r- 10 log L - 10 log ⎢ ⎢⎣⎝ ⎪ ⎥λ ⎭ ⎥⎦Wireless and Mobile Networks Technology Zhenzhou Tang @ Wenzhou University132.2.2自由空间传播模型自由空间路径损耗用于描述信号衰减,定义为有效发射功率和接收功率之间的差值,不包括天线增益PL(dB) = 10log P tPr=-147.56 + 20 log d + 20 log fWireless and Mobile Networks Technology Zhenzhou Tang @ Wenzhou University 1 42.2.3 双线地面反射模型双线地面反射模型(Two-ray Ground Reflection Propagation Model ) 除了考虑直线传播路径外, 还考虑了地面反射路径PG Gh 2 h 2 P r (d ) = t t r t r d 4 L双线地面反射模型在描述短距离情况时的效果并不准确。

无线信道的传输模型

无线信道的传输模型

24.04.2020
B
28
❖ 远近效应:由于接收用户的随机移动性,移
动用户与基站之间的距离也是在随机变化,
若各移动用户发射信号功率一样,那么到达
基站时信号的强弱将不同,离基站近者信号
强,离基站远者信号弱。通信系统中的非线
性将进一步加重信号强弱的不平衡性,甚至
出现了以强压弱的现象,并使弱者,即离基
站较远的用户产生掉话(通信中断)现象,通常
信道的传输模型
信道模型的分类
信道的传播模型可以分为: ❖ 大尺度传播模型和小尺度衰落。
24.04.2020
B
2
大尺度传播模型
定义:
❖ 描述了长距离内接收信号的强度的缓慢变化, 这些变化是由发射天线和接收天线之间传播 路径上的障碍物遮挡造成的。
主要的模型代表有:
Lee 模型、Okumura-Hata模型、 COST231-Hata模型、Walfisch-Ikegami模 型(WIM)、室内传播模型
❖ ◆定义: 由于移动信道中直射、反射和折射现
象的同时存在,使得发射信号通过不同的传播 路径,形成幅度、相位及到达时间相互区别的 多个信号而到达接收台;并且不同多径成分的 相位、幅度等都是随机、独立变化的;接收到 的信号由大量具有随机幅度,相位和到达角度 的平面波组成。这些多径分量在接收天线进行 矢量组合,从而使接收信号失真或衰落。
多径效应:由移动体周围的局部散射体引起的 多径传播,表现为快衰落
多普勒效应:由于移动体的运动速度和方向引 起,多径条件下,引起多普勒频谱展宽
远近效应:由于接收用户的随机移动性,移动 用户与基站之间的距离也是在随机变化,若各 移动用户发射信号功率一样,那么到达基站时 信号的强弱将不同,离基站近者信号强,离基 站远者信号弱。通信系统中的非线性将进一步 加重信号强弱的不平衡性,甚至出现了以强压
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陆地移动通信中的任何一次通信, 陆地移动通信中的任何一次通信,其衰落都必然 包含这三种成分, 包含这三种成分,传播模型的研究对象是中尺度 的慢衰落变化
中ห้องสมุดไป่ตู้移动通信集团设计院有限公司 3
快衰落和慢衰落
接收功率(dBm) 接收功率 -20
快衰落 慢衰落
-40
-60
10
20
30
距离(m) 距离
慢衰落在几十个波长的长度上呈现比较慢的变化趋势、 慢衰落在几十个波长的长度上呈现比较慢的变化趋势、快衰落 则是叠加在其上的快变化成分
中国移动通信集团设计院有限公司
12
第二节 模型校正的必要性
校正前后的误差对比
未经校正的模型预测误差普遍在20dB左右, 未经校正的模型预测误差普遍在20dB左右,校正后的模型预测误差大部分 20dB左右 都在10dB以内 10dB以内。 都在10dB以内。
中国移动通信集团设计院有限公司 13
第二节 模型校正的必要性
中国移动通信集团设计院有限公司
9
传播模型介绍
规划软件中标准宏小区传播模型
Ploss=K1+K2logd+K3(Hms)+K4log(Hms)+K5log(Heff)+ K6log(Heff)log(d)+K7diffn+Kclutter 其中: 其中: • Ploss: Ploss: 路径损耗 (dB) • 基站到移动台之间的距离(km) d: 基站到移动台之间的距离(km) • Hms: 移动台所在地面上的高度( Hms: 移动台所在地面上的高度(m)。 • Heff: 基站天线的有效高度( Heff: 基站天线的有效高度(m)。 • Diffn: 使用Epstein Peterson、Deygout或Bullington的等效刃 Diffn: 使用Epstein Peterson、Deygout或Bullington的等效刃 形衍射方法计算的衍射损耗。 形衍射方法计算的衍射损耗。
中国移动通信集团设计院有限公司
14
第三节 模型校正的原理
利用随机过程的理论分析移动通信的传播可以表示为
r ( x) = m( x)ro ( x)
其中: 其中: •x为距离, x为距离, •r(x)为接收信号, 为接收信号, •ro(x) 为瑞利衰落, 为瑞利衰落, 为本地均值, •m(x) 为本地均值,也就是长期衰落和空间传播损耗的合成
中国移动通信集团设计院有限公司
8
传播模型介绍
Cost231-Hata模型 Cost231-Hata模型
L(Urban) = 46.3 + 33.9 log F − 13.82 log Hb + (44.9 − 6.55 log Hb) log d − a ( Hm) + Cm
其中: 其中: L(Urban)为平坦市区的中值传播损耗(dB) L(Urban)为平坦市区的中值传播损耗(dB) 为平坦市区的中值传播损耗 为频率,范围1500MHz1500MHz F为频率,范围1500MHz-2000MHz Hb为基站天线高度 范围30 200m 为基站天线高度, 30Hb为基站天线高度,范围30-200m Hm为移动台天线高度 范围1 10m 为移动台天线高度, Hm为移动台天线高度,范围1-10m 为传播距离,范围1 20km d为传播距离,范围1-20km a(Hm)为移动台天线修正因子 a(Hm)为移动台天线修正因子 0dB,对于中小城市、 Cm = 0dB,对于中小城市、郊区 3dB, Cm = 3dB,对于大城市
中国移动通信集团设计院有限公司
11
第二节 模型校正的必要性
统计模型的先天不足 每一个模型的提出都与提出人/厂商所在的地区有关系, 每一个模型的提出都与提出人/厂商所在的地区有关系,每一个 模型都只是客观上反映了进行模型修正的这些地区, 模型都只是客观上反映了进行模型修正的这些地区,而事实上 由于各个地区,各个不同的城市,其地物地貌有着很大的不同, 由于各个地区,各个不同的城市,其地物地貌有着很大的不同, 特别在我国,地域广阔,地理类型多样, 特别在我国,地域广阔,地理类型多样,各地的地形地貌千差 万别,这就决定了当要把一个模型应用到其他地区时, 万别,这就决定了当要把一个模型应用到其他地区时,必须对 模型的一些参数进行修改,也就是需要模型校正工作。 模型的一些参数进行修改,也就是需要模型校正工作。
中国移动通信集团设计院有限公司
5
传播模型介绍
两种模型的比较 • 确定性模型适合室内或微小区的模型预测,但由于其应用比 确定性模型适合室内或微小区的模型预测, 较复杂,计算量很大,所以目前较少使用, 较复杂,计算量很大,所以目前较少使用,比较有代表性如射线 跟踪法; 跟踪法; • 统计模型适用于宏蜂窝信号的预测,它的研究历史悠久,是 统计模型适用于宏蜂窝信号的预测,它的研究历史悠久, 一种比较成熟的技术,它得到了包括国际电联(ITU)、 )、欧洲电 一种比较成熟的技术,它得到了包括国际电联(ITU)、欧洲电 信标准化组织(ETSI)以及许多著名通信厂商的认可与采用, 信标准化组织(ETSI)以及许多著名通信厂商的认可与采用,目 前比较著名的,应用较广泛的模型大多是统计模型, 前比较著名的,应用较广泛的模型大多是统计模型,比如 Okumura模型 Hata模型 模型、 模型、 模型。 Okumura模型、Hata模型、Egli 模型。
中国移动通信集团设计院有限公司
16
第四节 模型校正的方法 CW波采样测试 CW波采样测试
求出区域的本地均值
再利用本地均值对模型参数加以校正
中国移动通信集团设计院有限公司
17
谢谢
中国移动通信集团设计院有限公司
18
中国移动通信集团设计院有限公司 6
传播模型分类
• 平坦地面宏蜂窝电波传播模型 OkumuraOkumura-Hata COST 231 General Model • 丘陵与山地 Egli • 微蜂窝电波传播模型 WalfishWalfish-Ikegami RayRay-Tracing • 室内覆盖电波传播模型
中国移动通信集团设计院有限公司
7
传播模型介绍
OkumuraOkumura-Hata 模型
L(Urban) = 69.55 + 26.16 log F − 13.82 log Hb + (44.9 − 6.55 log Hb) log d − a( Hm)
其中: 其中: • L(Urban)为平坦市区的中值传播损耗 dB) 为平坦市区的中值传播损耗( L(Urban)为平坦市区的中值传播损耗(dB) • F为频率,范围150MHz-1500MHz 为频率,范围150MHz150MHz • Hb为基站天线高度,范围30-200m Hb为基站天线高度 范围30 200m 为基站天线高度, 30• Hm为移动台天线高度,范围1-10m Hm为移动台天线高度 范围1 10m 为移动台天线高度, • d为传播距离,范围1-20km 为传播距离,范围1 20km • a(Hm)为移动台天线修正因子 a(Hm)为移动台天线修正因子
2
衰落组成
• 幅度衰减较大的路径损耗——大尺度衰落 幅度衰减较大的路径损耗—— ——大尺度衰落 • 伴随中等幅度衰减的具有对数正态分布特性的慢变化成分,俗 伴随中等幅度衰减的具有对数正态分布特性的慢变化成分, 称阴影衰落—— ——中尺度衰落 称阴影衰落——中尺度衰落 • 多径衰落,又称快衰落—— ——小尺度衰落 多径衰落,又称快衰落——小尺度衰落
中国移动通信集团设计院有限公司
10
传播模型介绍
参数含义
k2: k1 & k2: K3: K3: K4: K4: K5: K5: K6: K6: 截距和斜率 移动天线的高度因数 Hms的 Hata的 Hms的Okumura Hata的Multiplying Factor 有效天线高度增益 (Heff)Log(d)。这是log(Heff)log(d) log(Heff)log(d)值的 Log (Heff)Log(d)。这是log(Heff)log(d)值的 Hata类型的 类型的Multiplying Okumura Hata类型的Multiplying Factor K7: K7: 衍射系数 Clutter_Loss: Clutter_Loss:地物损耗参数
模型校正的意义 •有利于对一个新的服务覆盖地区的信号进行仿真预测 有利于对一个新的服务覆盖地区的信号进行仿真预测 •可以大大降低进行实际路测所需的时间、人力和资金 可以大大降低进行实际路测所需的时间、 可以大大降低进行实际路测所需的时间 •可以为网络规划提供有力的依据 可以为网络规划提供有力的依据 •可以对现有网络的信号覆盖情况进行分析,为网络的优化提供 可以对现有网络的信号覆盖情况进行分析, 可以对现有网络的信号覆盖情况进行分析 重要的参考依据 •可以节省大量的基站建设、运行维护成本 可以节省大量的基站建设、 可以节省大量的基站建设 •可以提高网络的服务质量 可以提高网络的服务质量
中国移动通信集团设计院有限公司
15
第三节 模型校正的原理
m(x) 可以表示为: 可以表示为:
1 m( x ) = 2l
x +l
x −l
∫ r ( y)dy
其中2L为平均采样区间长度,也叫本征长度 其中2 为平均采样区间长度, 根据著名的李氏定理, 根据著名的李氏定理,当2L取40个波长,采样点为30~50个 40个波长,采样点为30~50个 个波长 30 消除快衰落、保留慢衰落” 时,能有效 “消除快衰落、保留慢衰落”,从而找出本地 环境对信号传播的慢衰落变化趋势,达到模型校正的目的。 环境对信号传播的慢衰落变化趋势,达到模型校正的目的。
无线传播模型基本理论
中国移动通信集团设计院有限公司无线所 2008年3月 年 月
Module und Variations_E
相关文档
最新文档