最新整理北师大版九年级数学下册期检测题及答案
(常考题)北师大版初中数学九年级数学下册第三单元《圆》检测(有答案解析)(1)
一、选择题1.将一枚飞镖投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )A .12B .25C .35D .23 2.О的半径为5,cm 点Р到圆心O 的距离为7,cm 则点P 与О的位置关系是( ) A .在圆上 B .在圆内 C .在圆外 D .不确定 3.如图,AB 是⊙O 的直径,∠BOD =120°,点C 为弧BD 的中点,AC 交OD 于点E ,DE =1,则AE 的长为( )A .3B .5C .23D .25 4.如图,O 是ABC 的外接圆,其半径为3cm ,若3BC cm =,则A ∠的度数是( )A .10︒B .15︒C .20︒D .30︒5.如图,在半径为1的⊙O 中,将劣弧AB 沿弦AB 翻折,使折叠后的AB 恰好与OB 、OA 相切,则劣弧AB 的长为( )A .12πB .13π C .14π D .16π 6.下列关于正多边形的叙述,正确的是( )A .正七边形既是轴对称图形又是中心对称图形B .存在一个正多边形,它的外角和为720︒C .任何正多边形都有一个外接圆D .不存在每个外角都是对应每个内角两倍的正多边形7.如图,AB 是O 的直径,CD 是O 的弦,30,3ACD AD ∠=︒=,下列说法错误的是( )A .30B ∠=︒B .60BAD ∠=︒C .23BD = D .23AB = 8.已知:O 的半径为2,3OA =,则正确的图形可能为( )A .B .C .D .9.如图.PA ,PB 是⊙O 的两条切线,切点分别为A ,B ,连接OA ,OB ,OP ,AB .若 OA =1,∠APB =60°,则△PAB 的周长为( )A .3B .4C .3D .3 10.如图,已知⊙O 的直径8CD =,AB 是⊙O 的弦,AB CD ⊥,垂足为M ,2OM =,则AB 的长为( )A .2B .23C .4D .43 11.如图,O 的直径为10,弦AB 的长为6,P 为弦AB 上的动点,则线段OP 长的取值范围是( )A .35OP ≤≤B .45OP <<C .45OP ≤≤D .35OP <<12.如图,在Rt △ABC 中,∠C =90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当AC =4,BC =3时,则阴影部分的面积为( )A .6B .6πC .52π D .12二、填空题13.如图,四边形ABCD 是O 的内接四边形,且AC BD ⊥, OF CD ⊥,垂足分别为E F 、,若52OF =,则AB =_____.14.如图,圆O 是△ABC 的外接圆,BC=2,∠BAC=30°,则圆O 的直径为___________.15.如图,在ABC 中,90ACB ∠=︒,60A ∠=︒,2AC =,ABC 绕顶点C 逆时针旋转60︒得到A B C '',点A 的对应点A '恰好落在AB 上,连接A B '',则图中阴影部分的面积为__________.16.如图,在平面直角坐标系中,过点()11,0A 作x 轴的垂线交直线y x =于点B ,以О为圆心,1OB 为半径作弧,交x 轴于点2A ;过点2A 作x 轴的垂线交直线y x =于点2B ,以O 为圆心,2OB 为半径作弧,交x 轴于点3A ;过点3A 作x 轴的垂线交直线y x =于点3B ,以О为圆心,3OB 为半径作弧,交x 轴于点4A ,……,按此做法进行下去,设由11A B ,12A A ,弧21A B 围成的图形面积记为1S ,由22A B ,23A A ,弧32A B 围成的图形面积记为2S ,由33A B ,34A A ,弧43A B 围成的图形面积记为3S ,……,那么2020S 为_______:17.如图,半径为2的O 中有弦AB ,以AB 为折痕对折,劣弧恰好经过圆心O ,则弦AB 的长度为__________.18.如图,在平面直角坐标系中,D 是直线6y x =-+上的一个动点,O 的半径为2,过点D 作O 的切线,切点为A ,则AD 长度的最小值为____________.19.如图,已知O 的半径为2,ABC 内接于O ,135ACB ∠=︒,则弓形ACB (阴影部分)的面积为_____________.20.如图,将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心,O 用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为____________________cm .(结果用含根号的式子表示)三、解答题21.已知关于x 的一元二次方程x 2+2mx ﹣n 2+5=0.(1)当m =1时,该一元二次方程的一个根是1,求n 的值;(2)若该一元二次方程有两个相等的实数根.①求m 、n 满足的关系式;②在x 轴上取点H ,使得OH =|m |,过点H 作x 轴的垂线l ,在垂线l 上取点P ,使得PH =|n |,则点P 到点(3,4)的距离最小值是 .22.如图,在Rt △ABC 中∠B =30°,∠ACB =90°,AB =6.延长CA 到O ,使AO =AC ,以O 为圆心,OA 长为半径作⊙O 交BA 延长线于点D ,连结OD ,CD .(1)求扇形OAD 的面积.(2)判断CD 与⊙O 的位置关系,并说明理由.23.已知,如图,在ABC 中,90C ∠=︒,D 为BC 边中点.(1)尺规作图:以AC 为直径作O ,交AB 于点E (保留作图痕迹,不需写作法); (2)连接DE ,求证:DE 为O 的切线.24.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的ABC ∆,且90B ∠=︒.(1)将ABC ∆绕点O 顺时针旋转90°后得到EFG ∆(其中,,A B C 三点旋转后的对应点分别是,,E F G ),画出EFG ∆.(2)设EFG ∆的内切圆的半径为r ,EFG ∆的外接圆的半径为R ,则r R=__________.25.如图,点E 是ABC 的内心,AE 的延长线和ABC 的外接圆O 相交于点D ,过D 作直线//DG BC .(1)求证:DG 是O 的切线;(2)求证:DE CD =;(3)若25DE =,8BC =,求O 的半径.26.如图,已知AB 是O 的直径,BC AB ⊥,连接OC ,弦//AD OC ,直线CD 交BA 的延长线于点E .(1)求证:CD 是O 的切线; (2)若2DE BC =,O 的半径为2,求线段EA 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】算出白色区域的面积与整个图形的面积之比即为所求概率.【详解】解:如图,过点A 作AG BF ⊥于点G∵ 六边形ABCDEF 为正六边形,∴BAF=120∠︒,=60FAG ∠︒设正六边形的边长为a ,则32322a a AG FG a ==⨯=,BF=2 ∴ 空白部分的面积为:213333322ABFa a S S a ==⨯⨯⨯=△空白 正六边形的面积为:22333642S a a =⨯=六 ∴飞镖落在白色区域的概率为:2233a 14=233S P S a ==空白六 故选:A【点睛】本题考查概率的求解,确定白色区域面积占整个图形面积的占比是解题的关键. 2.C解析:C【分析】根据点与圆的位置关系的判定方法进行判断;【详解】∵O 的半径为5cm ,点P 到圆心O 的距离为7cm ,∴OP >O 的半径,∴点P 在O 外; 故答案选C .【点睛】本题主要考查了点与圆的位置关系,准确判断是解题的关键.3.A解析:A【分析】连接AD,可证∠ODA=∠OAD=∠AOD=60°,根据弧中点,得出∠DAC=30°,△ADE是直角三角形,用勾股定理求AE即可.【详解】解:连接AD,∵∠BOD=120°,AB是⊙O的直径,∴∠AOD=60°,∵OA=OD,∴∠OAD=∠ODA =60°,∵点C为弧BD的中点,∴∠CAD=∠BAC=30°,∴∠AED=90°,∵DE=1,∴AD=2DE=2,AE=2222AD DE-=-=,213故选:A.【点睛】本题考查了圆周角的性质、勾股定理,解题关键是通过连接弦构造直角三角形,并通过弧相等导出30°角.4.D解析:D【分析】连接OB、OC,则判断△OBC是等边三角形,则∠BOC=60°,再根据圆周角定理,即可得到答案.【详解】解:连接OB、OC,如图:∵3OB OC BC cm ===,∴△OBC 是等边三角形,∴∠BOC=60°,∴∠BAC=30°,故选:D .【点睛】本题考查了圆周角定理,等边三角形的判定和性质,解题的关键是熟练掌握圆周角定理进行解题.5.A解析:A【分析】如图画出折叠后AB 所在的⊙O ',连O 'B ,O 'A ,根据题意可得O 'B ⊥OB 、O 'A ⊥OA ,且OB=OA=O 'B=O 'A,得到四边形O 'BOA 是正方形,即∠O=90°,最后根据弧长公式计算即可.【详解】解:如图:画出折叠后AB 所在的⊙O ',连O 'B ,O 'A∵AB 恰好与OA 、OB 相切∴O 'B ⊥OB 、O 'A ⊥OA∵OB=OA=O 'B=O 'A,∴四边形O 'BOA 是正方形∴∠O=90°∴劣弧AB 的长为9011801802n r πππ︒⨯⨯==︒. 故选择:A .【点睛】本题考查了折叠的性质、正方形的判定与性质、弧长公式等知识点,其中掌握弧长公式和折叠的性质是解答本题的关键.6.C解析:C【分析】根据中心对称图形、轴对称图形的定义、多边形外角和定理、正多边形的性质对各选项逐一判断即可得答案.【详解】A.正七边形是轴对称图形,不是中心对称图形,故该选项错误,B.任意多边形的外角和都等于360°,故该选项错误,C.任何正多边形都有一个外接圆,故该选项正确,D.∵正三角形的每个外角为120°,对应的每个内角为60°,∴存在每个外角都是对应每个内角两倍的正多边形,故该选项错误,故选:C.【点睛】本题考查正多边形的性质、中心对称图形、轴对称图形的定义及多边形外角和定理,熟练掌握相关性质及定理是解题关键.7.C解析:C【分析】根据圆周角定理得到∠ADB=90°,∠B=∠ACD=30°,再利用互余可计算出∠BAD的度数,然后利用含30度的直角三角形三边的关系求出BD、AB的长即可.【详解】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°-∠B=90°-30°=60°,故选项A、B不符合题意,在Rt△ADB中,,故选项C符合题意,选项D不符合题意,故选:C.【点睛】本题考查了圆周角定理以及含30°角的直角三角形的性质等知识;熟练掌握圆周角定理是解题的关键.8.C解析:C【分析】根据圆的半径和OA的大小确定点A与圆的位置关系,从而作出判断即可.【详解】∵根据图的意义,得OA=2,与OA=3矛盾,∴A选项错误;∵根据图的意义,得OA<2,与OA=3矛盾,∴B选项错误;∵根据图的意义,得OA>2,且离圆较近,与OA=3相符,∴C选项正确;∵根据图的意义,得OA>2,且离圆较远,与OA=3不符合,∴D选项错误;故选C.【点睛】本题考查了点与圆的位置关系,熟练掌握圆心到点的距离与圆的半径的大小比较是解题的关键.9.C解析:C【分析】根据切线的性质和切线长定理证明△PAB是等边三角形,PA⊥AO,根据直角三角形性质求出PA,问题得解.【详解】解:∵PA,PB是⊙O的两条切线,∠APB=60°,∴PA=PB,∠APO=1∠APB=30°,PA⊥AO,2∴△PAB是等边三角形,∵PA⊥AO,∠APO==30°,∴OP=2OA=2,∴PA=∴△PAB的周长为故选:C【点睛】本题考查了切线长定理,切线的性质,等边三角形的判定,含30°角直角三角形性质,勾股定理等知识,考查知识点较多,熟知相关定理并能熟练运用是解题关键.10.D解析:D【分析】连接OB,根据勾股定理计算BM=AB=2BM计算即可.【详解】∵直径8CD =,AB CD ⊥,2OM =∴BM=22OB OM -=2242-=23,根据垂径定理,得AB=2BM=43,故选D .【点睛】本题考查了垂径定理,勾股定理,熟练掌握连接半径构造直角三角形,灵活运用垂径定理和勾股定理求解是解题的关键.11.C解析:C【分析】由垂线段最短可知当OP ⊥AB 时最短,当OP 是半径时最长.根据垂径定理求最短长度.【详解】解:如图,连接OA ,作OP ⊥AB 于P ,∵⊙O 的直径为10,∴半径为5,∴OP 的最大值为5,∵OP ⊥AB 于P ,∴AP=BP ,∵AB=6,∴AP=3,在Rt △AOP 中,OP=222594OA AP -=-=;此时OP 最短,所以OP 长的取值范围是4≤OP≤5.故选:C .本题考查了垂径定理、勾股定理,解题的关键是确定OP 的最小值,所以求OP 的范围问题又被转化为求弦的弦心距问题,而解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r ,弦长为a ,这条弦的弦心距为d ,则有等式r 2=d 2+(2a )2成立,知道这三个量中的任意两个,就可以求出另外一个. 12.A解析:A【分析】先根据勾股定理求出AB ,然后根据S 阴影=S 半圆AC +S 半圆BC +S △ABC -S 半圆AB 计算即可.【详解】根据勾股定理可得5=∴S 阴影=S 半圆AC +S 半圆BC +S △ABC -S 半圆AB =22211112222222AC BC AB AC BC πππ⎛⎫⎛⎫⎛⎫++•- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()222141115343222222πππ⎛⎫⎛⎫⨯⨯+⨯⨯+⨯⨯-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=6故选A .【点睛】此题考查的是求不规则图形的面积,掌握用勾股定理解直角三角形、半圆的面积公式和三角形的面积公式是解决此题的关键. 二、填空题13.【分析】连接DO 并延长与⊙O 相交于点G 连接BGCG 由AC ⊥BDDG 是直径可得∠DBG=90°=∠DCG 可证AC ∥BG 可得可得AB=CG 由OF ⊥CD 可证OF ∥CG 可证△DOF ∽△DGC 由性质由OF=可解析:【分析】连接DO 并延长,与⊙O 相交于点G ,连接BG ,CG ,由AC ⊥BD , DG 是直径,可得∠DBG=90°=∠DCG 可证AC ∥BG ,可得AB CG =,可得AB=CG ,由OF ⊥CD ,可证OF ∥CG ,可证△DOF ∽△DGC ,由性质DO OF 1==DG CG 2,由OF=52,可求CG 5=2OF=2=52⨯即可. 【详解】解:如图,连接DO 并延长,与⊙O 相交于点G ,连接BG ,CG ,∵AC ⊥BD ,DG 是直径,∴∠DBG=90°=∠DCG,∴BG⊥DB,∴AC∥BG,∴AB CG=,∴AB=CG,∵OF⊥CD,∴OF∥CG,∴∠DOG=∠DGC∴△DOF∽△DGC,,∴DO OF1==,DG CG2∵OF=5,2∴CG5=2OF=2=5⨯,2所以AB=CG=5.故答案为:5.【点睛】本题考查平行弦的性质,圆的性质,直径所对圆周角的性质,相似三角形的判定与性质,掌握平行弦的性质,圆的性质,直径所对圆周角的性质,相似三角形的判定与性质是解题关键.14.4【分析】延长BO交⊙O于E连接CE根据圆周角定理得到∠E=∠A=30°∠ECB=90°根据直角三角形的性质即可得到结论【详解】解:延长BO交⊙O于E连接CE则∠E=∠A=30°∠ECB=90°∴B解析:4【分析】延长BO交⊙O于E,连接CE,根据圆周角定理得到∠E=∠A=30°,∠ECB=90°,根据直角三角形的性质即可得到结论.【详解】解:延长BO 交⊙O 于E ,连接CE ,则∠E=∠A=30°,∠ECB=90°,∴BE=2BC=2×2=4.故答案为:4.【点睛】本题考查了圆周角定理,直角三角形的性质,正确的作出辅助线是解题的关键. 15.【分析】先分别求解然后根据进行求解即可【详解】由题意知在中∴∴由题意旋转角为即:且∴为等边三角形设交于点∵∴∴四边形为梯形又∵∴则在中∴∴∴故答案为:【点睛】本题考查旋转的性质以及扇形面积计算相关问 解析:23π【分析】先分别求解ABC S ,BCB S '扇形,AA B C S ''梯形,然后根据ABC BCB AA B C S S S S '''=+-△阴影扇形梯形进行求解即可.【详解】由题意知,在Rt ABC 中,30ABC ∠=︒,∴24AB AC ==,23BC = ∴112232322ABC S AC BC ==⨯⨯=△, 由题意,旋转角为60︒,即:60ACA BCB ''∠=∠=︒,且AC A C '=,23BC B C '==,∴ACA '为等边三角形,2A C '=,30A CD '∠=︒,设A B ''交BC 于点D ,∵60A CA D '∠=∠=︒,∴60ACA CA D ''∠=∠=︒,∴//AC A B '',四边形AA B C ''为梯形,又∵90ACB ∠=︒,∴90CDA '∠=︒,则在Rt CDA '△中,112A D A C ''==,3CD = ∴()()112433322AABC S AC A B CD ''''=+=⨯+=梯形∴()260232360BCB S ππ'⨯==扇形,∴2323323ABC BCB AA B C S S S S ππ'''=+-=+-=-△阴影扇形梯形,故答案为:23π-.【点睛】本题考查旋转的性质以及扇形面积计算相关问题,灵活对不规则图形进行转换,运用规则图形的面积进行求解是解题关键.16.【分析】根据点A 的取法罗列出部分点A 的横坐标由此可发现规律即的横坐标为:再结合已知即可得到答案【详解】观察发现规律:的横坐标为:的横坐标为:的横坐标为:的横坐标为:的横坐标为:故答案为:【点睛】本题 解析:2017201822π-【分析】根据点A 的取法,罗列出部分点A 的横坐标,由此可发现规律,即n A 的横坐标为:)12n -,再结合已知即可得到答案.【详解】 观察,发现规律:1A 的横坐标为:1,2A 23A 的横坐标为:22,⋯,∴n A 的横坐标为:12n - n B ∴的横坐标为:12n -404020192019201720182020452122223602S ππ⨯⨯∴=-⨯⨯=⋅-故答案为:2017201822π⋅-.【点睛】本题考查了一次函数图像上点的坐标特征以及规律型中的点的变换,解题关键是找出n A 的横坐标为:12n -这一规律.17.【分析】如果过O作OC⊥AB于D交折叠前的于C根据折叠后劣弧恰好经过圆心O根据垂径定理及勾股定理即可求出AD的长进而求出AB的长【详解】解:如图过O作OC⊥AB于D交折叠前的于C∵的半径为又∵折叠后解析:23【分析】如果过O作OC⊥AB于D,交折叠前的AB于C,根据折叠后劣弧恰好经过圆心O,根据垂径定理及勾股定理即可求出AD的长,进而求出AB的长.【详解】解:如图,过O作OC⊥AB于D,交折叠前的AB于C,∵O的半径为2,又∵折叠后劣弧恰好经过圆心O,∴OA=OC=2,∴OD=CD=1,在Rt△OAD中,∵OA=2,OD=1,∴2222-=-OA OD213AB=2AD=3故答案为:3【点睛】本题考查了垂径定理和勾股定理的综合运用,利用好条件:劣弧折叠后恰好经过圆心O是解题的关键.18.4【分析】当OD与直线y=-x+6垂直时连接AOAD此时OD最小AD也最小根据等腰直角三角形的性质得到OD根据勾股定理即可得到结论【详解】解:如图∵DA为切线∴OA⊥DAOA=∴当OD最小时AD的值解析:4【分析】当OD与直线y=-x+6垂直时,连接AO,AD,此时OD最小,AD也最小,根据等腰直角三角形的性质得到OD,根据勾股定理即可得到结论.【详解】解:如图∵DA 为切线,∴OA ⊥DA ,2∴当OD 最小时,AD 的值最小.∴当OD 与直线y=−x+6垂直时,AD 的值最小,如图,设y=−x+6交x ,y 轴于B ,C ,B(6,0),C(0,6),∴OB=OC=6.∵∠BOC= 90°,∴△OBC 为等腰直角三角形,∴22OB OC +2 ,∴OD=122 即OD 的最小值为2在Rt △OAD 中,AD 最小值22OD OA -()()22322164-==故答案为:4【点睛】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题. 19.【分析】根据圆内接四边形对角互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB 的度数然后根据弓形ACB 的面积=S 扇形OAB-S △OAB 得出结果即可【详解】解:设点D 为优弧AB 上一点连接ADBDOA解析:2π-【分析】根据圆内接四边形对角互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据弓形ACB 的面积=S 扇形OAB -S △OAB 得出结果即可.【详解】解:设点D 为优弧AB 上一点,连接AD 、BD 、OA 、OB ,如图所示,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴弓形ACB 的面积=S 扇形OAB -S △OAB =29021223602π⨯⨯-⨯⨯=2π-, 故答案为:2π-.【点睛】本题主要考查求弓形的面积,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.【分析】作OC ⊥AB 根据折叠的性质得OD 等于半径的一半即OA =2OD 再根据含30°的直角三角形三边的关系得∠OAD =30°同理∠OBD =30°所以∠AOB =120°则利用弧长公式算出弧AB 的长利用圆 解析:2【分析】作OC ⊥AB ,根据折叠的性质得OD 等于半径的一半,即OA =2OD ,再根据含30°的直角三角形三边的关系得∠OAD =30°,同理∠OBD =30°,所以∠AOB =120°,则利用弧长公式算出弧AB 的长,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,得到圆锥的底面圆的半径,从而结合勾股定理求高即可.【详解】如图,过O 点作OC ⊥AB ,垂足为D ,交⊙O 于点C , 由折叠的性质可知,1122OD OC OA ==, 由此可得,在Rt AOD △中,30OAD ∠=︒,同理可得30OBD ∠=︒,在AOB 中,由三角形内角和定理,得180120AOB OAD OBD ∠=︒-∠-∠=︒. ∴弧AB 的长为()12032180cm ππ⨯=. 设围成的圆锥的底面半径为r cm ,则22ππ=r ,∴1r cm =.∴圆锥的高为()22-=.3122cm故答案为:22.【点睛】本题考查了折叠的性质,弧长公式的计算,直角三角形的性质等,掌握弧长公式的计算以及圆锥相关基本结论是解题的关键.三、解答题21.(1)2;(2)①m2+n2=5;②55【分析】(1)把m=1,x=1代入方程得1+2-n2+5=0,然后解关于n的方程即可;(2)①利用判别式的意义得到△=4m2-4(-n2+5)=0,从而得到m与n的关系;②利用勾股定理得到22m n+5P在以O5上,然后根据点与圆的位置关系判断点P到点(3,4)的距离最小值.【详解】解:(1)把m=1,x=1代入方程得1+2﹣n2+5=0,解得n=2,即n的值为2;(2)①根据题意得△=4m2﹣4(﹣n2+5)=0,整理得m2+n2=5;②∵OH=|m|,PH=|n|,∴OP22+5m n即点P在以O5∴原点与点(3,4)的连线与⊙O的交点P使点P到点(3,4)的距离最小,∵原点到点(3,422+5,34∴点P到点(3,4)的距离最小值是55故答案为55【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了点与圆的位置关系.22.(1)求扇形OAD的面积为32π;(2)CD与⊙O相切,理由见解析.【分析】(1)求出∠OAD=60°,得出等边三角形OAD,求出半径和圆心角,利用扇形的面积公式求得即可;(2)求出∠ADC=∠ACD=12∠OAD=30°,进而求出∠ODC=90°,即可证得CD是⊙O的切线.【详解】(1)证明:∵AB=4,∠ACB=90°,∠B=30°,∴AC=12AB=2,∠BAC=60°,∴∠OAD=∠BAC=60°,∵OD=OA,∴△OAD是等边三角形,∴∠AOD=60°,∵AO=AC=2,∴S扇形AOD=23623 602ππ⨯⨯=;(2)CD所在直线与⊙O相切,证明:∵△OAD是等边三角形,∴AD=OA,∵AO=AC,∴AD=AC,∴∠ADC=∠ACD,∵∠OAD=60°,∴∠ADC=30°,∴∠ODC=60°+30°=90°,∴OD⊥DC,∴CD是⊙O的切线.【点睛】本题考查了扇形的面积,切线的判定,含30度角的直角三角形的性质,勾股定理,等边三角形的性质和判定的应用,主要考查学生综合运用性质进行推理和计算的能力,综合性比较强,有一定的难度.23.(1)作图见解析;(2)见解析.【分析】(1)先作AC的中垂线,找到AC的中点O,然后以AC为直径作圆,与AB的交点即为所求;(2)由题意可知DE为Rt BEC△斜边BC上的中线,从而得到CD=DE,即=∠∠ECD DEC ,由OC=OE 得到OEC OCE ∠=∠,再由90ACB ∠=︒即可得到OE ⊥DE ,即可得证.【详解】(1)作图如图所示.(2)证明:如上图,连结OE ,CE , AC 为直径,90AEC ∴∠=︒, D 为BC 边中点,DE ∴为Rt BEC △斜边BC 上的中线,12DE DC DB BC ∴===, ECD DEC ∴∠=∠,OC OE =,OEC OCE ∴∠=∠,90OED OEC CED OCE DCE ACB ∴∠=∠+∠=∠+∠=∠=︒OD DE ∴⊥,DE ∴为O 的切线.【点睛】本题考查了尺规作图以及切线的判定,正确找到垂直条件是判断切线的关键. 24.(1)见解析;(2)25【分析】(1)根据旋转的性质,作出点A 、B 、C 的对应点,依次连接即可(2)结合图形,EG 为外接圆的直径,用勾股定理求出EG ,则可求R ,根据三角形内切圆的性质,和切线长定理可求得r ,进而可求得答案【详解】解(1)EFG ∆如图所示,(2)EFG ∆的内切圆的半径为r ,2EF FG EG r +-∴= 4,3EF FG ==,2222435EG EF FG =++= 43512r +-∴== EFG ∆的外接圆的半径为R1522R EG ∴== 25r R ∴= 【点睛】本题考查了旋转图形的画法,勾股定理,三角形内心性质,切线长定理,解题关键是熟练掌握基本知识,是中考常考题.25.(1)见解析;(2)见解析;(3)5【分析】(1)连接OD 交BC 于H ,如图,利用三角形内心的性质得到∠BAD=∠CAD ,则BD CD =,利用垂径定理得到OD ⊥BC ,BH=CH ,从而得到OD ⊥DG ,然后根据切线的判定定理得到结论;(2)利用三角形内心的性质,等腰三角形的判定和性质,同圆或等圆中等角对等弦,即可得到结论;(3)根据垂径定理可知OD 垂直平分BC ,在Rt BHD △利用勾股定理求出DH 长,设半径为r ,在Rt BHO 中利用勾股定理即可求解【详解】(1)证明:连接OD 交BC 于H ,如图,∵点E 是ABC 的内心,∴AD 平分BAC ∠,即BAD CAD ∠=∠,∴BD CD =,∴OD BC ,BH CH = ∵//DG BC ,∴OD DG ⊥,∴DG 是O 的切线;(2)连接BD ,如图,∵点E 是ABC 的内心,∴ABE CBE ∠=∠,∵DBC BAD ∠=∠,∴DEB BAD ABE DBC CBE DBE ∠=∠+∠=∠+∠=∠,BDE ∴为等腰三角形BD DE ∴=BAD CAD BD DC∠=∠∴= ∴DE DC =.(3)BD DC =,∴OD 垂直平分BC 90BHD BHO ∴∠=∠=︒8142BC BH BC =∴== 25DE BD ==∴在Rt BHD △中2220162DH BD BH -=-=设半径为r ,则,2OB r OH r ==-∴在Rt BHO 中,222OB OH BH =+()22242r r ∴=+-解得=5r ∴⊙O 的半径为:5.【点睛】本题考查了三角形的外接圆与内心,切线的判定定理,等腰三角形的判定和性质,垂径定理,勾股定理等知识,解题关键是熟练掌握三角形内心的性质:三角形的内心与三角形顶点的连线平分这个内角.26.(1)见解析;(2)22AE =.【分析】(1)连接OD ,通过证明△COD ≌△COB 得到90CDO CBO ∠=∠=︒即可得到结论; (2)根据全等三角形的性质,在结合平行线分线段成比例的性质,即可求解【详解】(1)如图,连接OD .∵//AD OC ,∴DAO COB ∠=∠,ADO COD ∠=∠.又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.∵OD OB =,OC OC =,∴在COD △和COB △中OD OB COD COB OC OC =⎧⎪∠=∠⎨⎪=⎩∴()SAS COD COB ≌△△, ∴90CDO CBO ∠=∠=︒.又∵点D 在O 的切线. ∴CD 是O 的切线.(2)∵COD COB ≌△△,∴CD CB =.∵2DE BC =, ∴2ED CD =.∵//AD OC ,∴DE AE CE OE=.∵O 的半径为2,∴2AE AE =+, ∴AE =【点睛】本题考查了圆切线的判定,以及平行线分线段成比例的性质,熟练掌握圆切线的判定定理是解题关键.。
最新北师大版九年级数学下册单元测试题全套及答案
解:连接AE,在Rt△ABE中,已知AB=3,BE=,∴AE==2.又∵tan∠EAB==,∴∠EAB=30°.在Rt△AEF中,∠EAF=∠EAB+∠BAC=60°,∴EF=AE·sin∠EAF=2×sin60°=2×=3(m)
最新北师大版九年级数学下册单元测试题全套及答案
本文档含本书3章的单元测试题,同时含期中,期末试题,共5套试题
第一章检测题
(时间:100分钟满分:120分)
一、精心选一选(每小题3分,共30分)
1.把△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦函数值(A)
A.不变B.缩小为原来的
C.扩大为原来的3倍D.不能确定
14.如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小角是∠A,那么tanA的值为__或__.
15.如图,CD是Rt△ABC斜边上的高,AC=4,BC=3,则cos∠BCD的值是____
,第15题图) ,第16题图) ,第17题图) ,第18题图)
16.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE,若BE=9,BC=12,则cosC=____.
A.(2,2)B.(,2-)
C.(2,4-2)D.(,4-2)
二、细心填一填(每小题3分,共24分)
11.计算:-4sin30°+(2016-π)0-22=__-2__.
12.在△ABC中,∠A,∠B的度数满足:+(-cosB)2=0,则∠C=__105°__.
13.若<cosα<1,则锐角α的范围是__0°<α<45°__.
(常考题)北师大版初中数学九年级数学下册第二单元《二次函数》检测(有答案解析)(3)
一、选择题1.已知y 是x 的二次函数,y 与x 的部分对应值如表所示,若该二次函数图象向左平移后通过原点,则应平移( ) x … 1-0 1 2 … y…343…A .1个单位B .2个单位C .3个单位D .4个单位2.如图,Rt △ABC 中,AC =BC =2,正方形CDEF 的顶点D 、F 分别在AC 、BC 边上,设CD 的长度为x ,△ABC 与正方形CDEF 重叠部分的面积为y ,则下列图象中能表示y 与x 之间的函数关系的是( )A .B .C .D .3.如图,一边靠墙(墙有足够长),其它三边用12m 长的篱笆围成一个矩形(ABCD )花园,这个花园的最大面积是( )A .18m 2B .12 m 2C .16 m 2D .22 m 24.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,在下列六个结论中:①20a b -<;②0abc <;③0a b c ++<;④0a b c -+>;⑤420a b c ++>;⑥240b ac -<.其中正确的个数有( )A .1个B .2个C .3个D .4个5.如图是二次函数()20y ax bx c a =++≠图象的一部分,对称轴是直线12x =,且经过点()20,,下列说法∶①0abc >;②240b ac -<;③1x =-是关于x 的方程20ax bx c ++=的一个根;④0a b +=.其中正确的个数为( )A .1B .2C .3D .46.已知二次函数y =ax 2+bx +c 的图象开口向上(如图),它与x 轴的两个交点分别为(﹣1,0)、(3,0).对于下列结论:①c <0;②b <0;③4a ﹣2b +c >0.其中正确的有( )A .3个B .2个C .1个D .0个7.二次函数223y x =-+在14x -≤≤内的最小值是( ) A .3B .2C .-29D .-308.二次函数()210y ax bx c a =++>的图象与x 轴的一个交点为()3,0-,对称轴为直线1x =-,一次函数()20y kx n k =+<的图象过点()3,0-和二次函数()210y ax bx c a =++>图象的顶点.下列结论:( )①0abc <;②若31x -<<-,则12y y <; ③若二次函数1y 的值大于0,则1x >;④过动点(),0P m 且垂直于x 轴的直线与函数12,y y 的图象的交点分别为,C D ,当点C 位于点D 上方时,m 的取值范围是3m <-或1m >-. 错误的是( ) A .①B .②C .③D .④9.如图,已知二次函数()20y ax bx c a =++≠的图象与x 轴交于点()1,0A -,对称轴为直线1x =,下列结论:①0abc <;②930a b c ++=;③20a b +=;④2am bm a b +<+(m 是任意实数),其中正确的是( )A .①②B .②③C .①②③D .②③④10.已知抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点(2,0),其对称轴是直线12x =.有下列结论:①0abc >;②关于x 的方程20ax bx c ++=有两个不等的实数根;③12a <-.其中正确结论的个数是( ) A .0B .1C .2D .311.已知函数223y x x =+-及一次函数y x m =-+的图象如图所示,当直线y x m =-+与函数223y x x =+-的图象有2个交点时,m 的取值范围是( )A .3m <-B .31m -<<C .134m >或3m <- D .31m -<<或134m >12.已知二次函数()()20y a x m a =->的图象经过点()1,A p -,()3,B q ,且p q <,则m 的值不可能...是( )A .2-B .C .0D .52二、填空题13.已知()11y ,,()23y ,是函数226y x x c =-++图像上的点,则1y ,2y 的大小关系是______.14.设()()y x a x b =++的图象与x 轴有m 个交点,函数(1)(1)y ax bx =++的图象与x 轴有n 个交点,则所有可能的数对(,)m n 是__________.15.现从四个数1,2,1-,3-中任意选出两个不同的数,分别作为二次函数2y ax bx =+中a ,b 的值,则所得二次函数满足开口方向向下且对称轴在y 轴右侧的概率是__________.16.已知函数y b =的图象与函数23|1|43y x x x =----的图象恰好有四个交点,则b 的取值范围是______.17.抛物线24y x x c =-++向右平移一个单位得到的抛物线恰好经过原点,则c =_____.18.已知二次函数2221y x mx m =-++(m 为常数),当自变量x 的值满足31x -≤≤-时,与其对应的函数值y 的最小值为5,则m 的值为__________.19.将抛物线2y x =-先向左平移1个单位长度,再向上平移2个单位长度后,得到的抛物线的解析式是______.20.将抛物线2610y x x =-+先向左平移2个单位长度,再向下平移1个单位长度,得到的抛物线与x 轴的交点坐标是______.三、解答题21.商店销售某商品,销售中发现,该商品每天的销售量y (个)与销售单价x (元/个)之间存在如图所示的关系,其中成本为20元/个. (1)求y 与x 之间的函数关系式.(2)为了保证每天利润不低于1300元,单价不高于30元/个,那么商品的销售单价应该定在什么范围?22.如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).若所用铁栅栏的长为40米,矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)求S与x的函数关系式,并求出矩形场地的最大面积.23.天气寒冷,某百货商场准备销售一种围巾,围巾的进货价格为每条50元,并且每条的售价不低于进货价,经过市场调查,每月的销售量y(条)与每条的售价x(元)之间满足人体所示的函数关系.(1)求每月销售y(条)与售价x(元)的函数关系式;(2)物价部门规定,该围巾的每条利润不允许高于进货价的30%,设这种围巾每月的总利润为w (元),那么售价定为多少元可获得最大利润?最大利润是多少?24.在平面直角坐标系xOy 中,二次函数y =ax 2+2x ﹣3a (a ≠0)交x 轴于A 、B 两点(点A 在点B 的左侧),且抛物线的对称轴为直线x =﹣1. (1)求此抛物线的解析式及A 、B 两点坐标;(2)若抛物线交y 轴于点C ,顶点为D ,求四边形ABCD 的面积.25.某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y (件)是每件售价x (元)(x 为正整数)的一次函数,其部分对应数据如下表所示:(1)求y 关于x 的函数解析式.(2)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润是900元?26.已知抛物线2y ax c =+经过点()0,2A 和点()1,0B -. (1)求抛物线的解析式;(2)将(1)中的抛物线平移,使其顶点坐标为()2,1,平移后的抛物线与x 轴的两个交点分别为点,C D (点C 在点D 的左边).求点,C D 的坐标;(3)将(1)中的抛物线平移,设其顶点的纵坐标为m ,平移后的抛物线与x 轴两个交点之间的距离为n .若15m <≤,直接写出n 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由表格可得点()0,3与点()2,3是关于二次函数对称轴对称的,则有二次函数的对称轴为直线0212x +==,进而可得点()1,4是二次函数的顶点,故设二次函数解析式为()214y a x =-+,然后代入点()1,0-可得二次函数解析式,最后问题可求解.【详解】解:由表格可得点()0,3与点()2,3是关于二次函数对称轴对称的,则有二次函数的对称轴为直线0212x +==, ∴点()1,4是二次函数的顶点,设二次函数解析式为()214y a x =-+,代入点()1,0-可得:1a =-,∴二次函数解析式为()214y x =--+,∵该二次函数图象向左平移后通过原点, ∴设平移后的解析式为()214y x b =--++,代入原点可得:()2014b =--++,解得:123,1b b ==-(舍去), ∴该二次函数的图象向左平移3个单位长度; 故选C . 【点睛】本题主要考查二次函数的图象与性质及平移,熟练掌握二次函数的图象与性质及平移是解题的关键.2.A解析:A 【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到2yx ;当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,利用重叠的面积等于正方形的面积减去△MNE 的面积得到()2221y x x =--,配方得到()222y x =--+,然后根据二次函数的性质对各选项进行分析判断即可. 【详解】解:当0<x≤1时,2yx ,当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,如图,CD=x ,则2AD x =-, ∵Rt △ABC 中,AC=BC=2, ∴△ADM 为等腰直角三角形,∴2DM x =-,∴()222EM x x x =--=-, ∴S △ENM ()()22122212x x =-=-, ()()2222214222y x x x x x =--=-+-=--+∴()()()22012212y x x y x x ⎧=≤⎪⎨=--+≤⎪⎩﹤﹤, 故选:A . 【点睛】本题考查动点问题的函数图象:通过看图获取信息,考查学生问题分析能力,解题的关键是分两种情况考虑:当0<x≤1和当1<x≤2.3.A解析:A 【分析】根据题意可以列出相应的函数关系式,然后化为顶点式即可解答本题. 【详解】解:设与墙垂直的矩形的边长为xm ,则这个花园的面积是:S=x (12-2x )=()222122318x x x -+=--+, ∴当x=3时,S 取得最大值,此时S=18, 故选:A . 【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答.4.D解析:D 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,利用图象判断1,-1,2所对应的y 的值,进而对所得结论进行判断. 【详解】解:①∵由函数图象开口向下可知,a <0,由函数的对称轴12b a ->-,故12b a<, ∵a <0, ∴b >2a ,∴2a -b <0,①正确;②∵a <0,对称轴在y 轴左侧,a ,b 同号,图象与y 轴交于负半轴,则c <0,故abc <0;②正确;③当x=1时,y=a+b+c <0,③正确; ④当x=-1时,y=a -b+c <0,④错误; ⑤当x=2时,y=4a+2b+c <0,⑤错误; ⑥∵图象与x 轴无交点, ∴b 2-4ac <0,⑥正确;故正确的有①②③⑥,共4个. 故选:D . 【点睛】此题主要考查了二次函数图象与系数的关系,熟练利用数形结合得出是解题关键.5.B解析:B 【分析】①根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a 、b 、c 的符号即可判断;②根据抛物线与x 轴的交点即可判断; ③根据二次函数的对称性即可判断; ④由对称轴求出=-b a 即可判断. 【详解】解:①∵二次函数的图象开口向下, ∴0a <,∵二次函数的图象交y 轴的正半轴于一点, ∴0c >, ∵对称轴是直线12x =, ∴122b a -=, ∴0b a =->, ∴0abc <.故①错误;②∵抛物线与x 轴有两个交点, ∴240b ac ->, 故②错误; ③∵对称轴为直线12x =,且经过点()2,0, ∴抛物线与x 轴的另一个交点为()1,0-,∴1x =-是关于x 的方程20ax bx c ++=的一个根,故③正确; ④∵由①中知=-b a , ∴0a b +=,故④正确;综上所述,正确的结论是③④共2个. 故选:B . 【点睛】本题考查了二次函数的图象和系数的关系的应用,注意:当0a >时,二次函数的图象开口向上,当0a <时,二次函数的图象开口向下.6.A解析:A 【分析】根据抛物线与y 轴的交点位置可对①进行判断;根据抛物线的对称性得到x =2ba-=1,则b =﹣2a <0,于是可对②进行判断;利用x =﹣2,y >0可对③进行判断. 【详解】解:∵抛物线与y 轴的交点坐标在x 轴下方, ∴c <0,所以①正确; ∵抛物线开口向上, ∴a >0,∵抛物线与x 轴的两个交点分别为(﹣1,0),(3,0), ∴抛物线的对称轴为直线x =1,即2ba-=1, ∴b =﹣2a <0,所以②正确; ∵由图象可知,当x =﹣2时,y >0, ∴4a ﹣2b +c >0,所以③正确. 故选:A . 【点睛】本题考查了二次函数图象与系数的关系,解题关键是树立数形结合思想,准确读取图象信息,认真推理判断.7.C解析:C 【分析】根据图象,直接代入计算即可解答 【详解】解:由图可知,当x=4时,函数取得最小值y 最小值=-2×16+3=-29.故选:C .【点睛】本题考查二次函数最小(大)值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.8.C解析:C【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性,以及一次函数的性质逐个进行判断,即可得出答案.【详解】解:根据题意,∵对称轴12b x a=-=-,0a >, ∴20b a =>, ∵抛物线与x 轴的一个交点为()3,0-,∴另一个交点为()1,0,∴抛物线与y 的负半轴有交点,则0c <,∴0abc <;故①正确;∵一次函数()20y kx n k =+<的图象过点()3,0-和顶点()1,a b c --+,∴若31x -<<-,则12y y <;故②正确;∵抛物线与x 轴的一个交点为()3,0-和()1,0,若二次函数1y 的值大于0,则1x >或3x <-;故③错误;由题意,当12y y >时,有3m <-或1m >-;故④正确;故选:C .【点睛】考查二次函数的图象和性质,二次函数与一元二次方程的关系,熟练掌握a 、b 、c 的值决定抛物线的位置,抛物线的对称性是解决问题的关键.9.B解析:B【分析】①抛物线开口向上,对称轴为直线x =1,即可得出a >0、b <0、c <0,进而可得出abc >0,结论①错误;②由抛物线的对称轴以及与x 轴的一个交点坐标,可得出另一交点坐标为(3,0),进而可得出9a +3b +c =0,结论②正确;③由对称轴直线x=1,可得结论③正确;④2()()0am bm a b +-+≥,可得结论④错误.综上即可得出结论.【详解】解:①∵抛物线开口向上,对称轴为直线x =1,∴a >0,12b a-=,c <0, ∴b =−2a <0,∴abc >0,结论①错误; ②∵二次函数y =ax 2+bx +c (a≠0)的图象与x 轴交于点A (−1,0),对称轴为直线x =1,∴二次函数y =ax 2+bx +c (a≠0)的图象与x 轴的另一个交点为(3,0),∴9a +3b +c =0,结论②正确;③∵对称轴为直线x =1, ∴12b a-=,即:b =−2a , ∴20a b +=,结论③正确;④∵222()()(2)(2)2am bm a b am am a a am am a +-+=---=-+22(21)(1)a m m a m =-+=-≥0,∴2am bm a b +≥+,结论④错误.综上所述,正确的结论有:②③.故选:B .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象与系数的关系、二次函数的性质以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.10.C解析:C【分析】由二次函数的对称性及题意可得该抛物线与x 轴的另一个交点坐标为()1,0-,进而可得抛物线的开口方向向下,则有a 0,b 0,c 0<>>,然后根据二次函数的性质可进行排除选项.【详解】解:∵抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点(2,0),其对称轴是直线12x =, ∴抛物线与x 轴的另一个交点的横坐标为12212⨯-=-, ∴该点坐标为()1,0-,∴抛物线的开口方向向下,即0a <,根据“左同右异”可得0b >,∴0abc <,故①错误; ∴令y=0,则关于x 的方程20ax bx c ++=的解为:122,1x x ==-,故②正确; 根据根与系数的关系可得122c x x a==-, ∴21c a =->, 解得12a <-,故③正确; ∴正确的个数有2个;故选C .【点睛】 本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 11.D解析:D【分析】作出函数223y x x =+-及一次函数y x m =-+的图象,根据图象性质讨论即可求出. 【详解】解:如图:函数223y x x =+-,当0y =时,1x =或3-, ()()3010A B ∴-,,,,当31x -<<时,223y x x =--+,当直线过点A 时,1个交点,此时()03m =--+,即3m =-,当3m >-时,有2个交点,当直线过点B 时,有3个交点,此时01m =-+,即1m =,∴1m <时有2个交点,31m ∴-<<,当直线与抛物线相切时,有3个交点,223y x x y x m ⎧=--+∴⎨=-+⎩, 由()1430m =--+=, 解得:134m =, 134m ∴>时有2个交点, 综上所述,31m -<<或134m >. 【点睛】 本题考查了一次函数与二次函数的交点问题,熟练掌握二次函数的性质是解题的关键. 12.D解析:D【分析】根据二次函数图象上点的坐标特征得到m +1<3﹣m 或m ≤﹣1,解得即可.【详解】解:∵二次函数y =a (x ﹣m )2(a >0),∴抛物线的开口向上,对称轴为直线x =m ,∵图象经过点A (﹣1,p ),B (3,q ),且p <q ,∴m +1<3﹣m 或m ≤﹣1解得m <1,故选:D .【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.二、填空题13.【分析】经过配方后确定抛物线的对称轴进而确定抛物线的增减性根据自变量的大小关系可确定函数值的大小关系【详解】解:∵∴抛物线的对称轴为∵a=-2<0∴抛物线开口向下∵1比3更接近对称轴∴故答案为:【点解析:12y y >【分析】经过配方后确定抛物线的对称轴,进而确定抛物线的增减性,根据自变量的大小关系可确定函数值的大小关系.【详解】解:∵()2223926=23222y x x c x x c x c ⎛⎫=-++--+=--++ ⎪⎝⎭ ∴抛物线的对称轴为32x =∵a=-2<0∴抛物线开口向下 ∵1比3更接近对称轴,∴12y y >故答案为:12y y >.【点睛】本题考查了二次函数值的大小比较,根据二次函数的解析式确定对称轴的位置是解题的关键.14.(11)(10)(21)(22)【分析】分别对ab 的值分类讨论根据直线和二次函数的交点式:y =a (x ﹣x1)(x ﹣x2)(abc 是常数a≠0)得出抛物线与x 轴的交点坐标情况即可求解【详解】因为是二次解析:(1,1),(1,0),(2,1),(2,2)【分析】分别对a 、b 的值分类讨论,根据直线和二次函数的交点式:y =a (x ﹣x 1)(x ﹣x 2)(a ,b ,c 是常数,a≠0),得出抛物线与x 轴的交点坐标情况,即可求解.【详解】因为()()y x a x b =++ 是二次函数,令()()y x a x b =++=0,有0x a +=或0x b +=,解得:x a =-或x b =-;对m 来说,①当a b =时,图像与x 轴有一个交点,即1m =;② 当a b 时,图像与x 轴有两个交点,即2m =;函数(1)(1)y ax bx =++:令(1)(1)0y ax bx =++=,有10ax +=或10bx +=, 对n 来说,①当0a b =≠时,关于x 的方程有一个解,图象与x 轴有1个交点,即1n =; ②当0a b 时,关于x 的方程无解,图像与x 轴没有交点,即0n =; ③当a b 且0ab =时,关于x 的方程有一个解,图象与x 轴有1个交点,即1n =; ④ 当a b 且0ab ≠时,关于x 的方程有两个不相等的解,图像与x 轴有两个交点,即2n =; 综上所述,当a b =时,1n =或0n =;当a b 时,1n =或2n =. ∴所有可能的数对(,)m n 是(1,1),(1,0),(2,1),(2,2)故答案为:(1,0)或(2,1)或(1,1)或(2,2).【点睛】本题考查了二次函数与x 轴的交点问题,解决本题的关键是正确理解二次函数的交点式. 15.【分析】把ab 所有可能的取值及满足题目的条件通过表格列出来再根据概率的定义列式求解即可【详解】解:∵二次函数满足开口方向向下即要a<0对称轴在y 轴右侧即要求∴可以列出如下表格:其中第三和第四行数字0 解析:13【分析】把a 、b 所有可能的取值及满足题目的条件通过表格列出来,再根据概率的定义列式求解即可.【详解】解:∵二次函数满足开口方向向下即要a<0,对称轴在y 轴右侧即要求02b a->, ∴可以列出如下表格:其中第三和第四行数字0表示不满足题中某个条件 , 数字1表示满足题中某个条件, ∴由题意,只有第三和第四行两个数字都为1时才满足题目所有条件,此时a 和b 的值分别为-1和1、-1和2、-3和1、-3和2共4种情况,∴所求概率为41123=, 故答案为13. 【点睛】本题考查二次函数的性质,用列表法计算概率的方法,熟练掌握列表法的步骤及题目条件的符号表示是解题关键.16.【分析】根据绝对值的意义分两种情形化简绝对值后根据图像确定b 的范围即可【详解】当x≥1时y=;当x <1时y=;∴二图像的交点为(1-6)y=的最小值为画图像如下根据图像可得直线与之间的部分有个交点∴解析:2564b -<<-【分析】根据绝对值的意义,分两种情形化简绝对值,后根据图像确定b 的范围即可.【详解】当x≥1时,y=27x x -;当x <1时,y=26x x --;∴227(1)6(1)x x x y x x x ⎧-≥=⎨--<⎩, 二图像的交点为(1,-6), y=26x x --的最小值为254-, 画图像如下,根据图像,可得直线6y =-与254y =-之间的部分有4个交点, ∴b 的取值范围为254-<b <-6, 故填254-<b <-6. 【点睛】 本题考查了图像的交点问题,利用分类思想,数形结合思想,最值思想画出图像草图是解题的关键.17.5【分析】先根据平移的规律得出平移后的解析式再根据二次函数图象上的点的特点即可得到关于c 的方程解方程即可【详解】抛物线解析式为:向右平移一个单位得到的抛物线为:抛物线恰好经过原点解得c=5故答案为: 解析:5【分析】先根据平移的规律得出平移后的解析式,再根据二次函数图象上的点的特点即可得到关于c 的方程,解方程即可.【详解】抛物线解析式为:224(2)4y x x c x c =-++=--++,向右平移一个单位得到的抛物线为:2(3)4y x c =--++,抛物线恰好经过原点, ∴20(03)4c =--++,解得c=5.故答案为:5【点睛】本题考查的是二次函数图象与几何变换,二次函数的性质以及二次函数图象上的点的坐标的特征,图象上的点的坐标适合解析式.18.-5或1【分析】利用配方法可得出:当x=m 时y 的最小值为1分m <-3-3≤m≤-1和m >-1三种情况考虑:当m <-3时由y 的最小值为5可得出关于m 的一元二次方程解之取其较小值;当-3≤m≤-1时y 的解析:-5或1【分析】利用配方法可得出:当x=m 时,y 的最小值为1.分m <-3,-3≤m≤-1和m >-1三种情况考虑:当m <-3时,由y 的最小值为5可得出关于m 的一元二次方程,解之取其较小值;当-3≤m≤-1时,y 的最小值为1,舍去;当m >-1时,由y 的最小值为5可得出关于m 的一元二次方程,解之取其较大值.综上,此题得解.【详解】解:∵y=x 2-2mx+m 2+1=(x-m )2+1,∴当x=m 时,y 的最小值为1.当m <-3时,在-3≤x≤-1中,y 随x 的增大而增大,∴9+6m+m 2+1=5,解得:m 1=-5,m 2=-1(舍去);当-3≤m≤-1时,y 的最小值为1,舍去;当m >-1时,在-3≤x≤-1中,y 随x 的增大而减小,∴1+2m+m 2+1=5,解得:m 1=-3(舍去),m 2=1.∴m 的值为-5或1.故答案为:-5或1.【点睛】本题考查了二次函数的最值以及二次函数图象上点的坐标特征,分m <-3,-3≤m≤-1和m >-1三种情况求出m 的值是解题的关键.19.【分析】根据左加右减上加下减的原则进行解答即可【详解】解:将抛物线向左平移1个单位所得直线解析式为:;再向上平移2个单位为:故答案为:【点睛】此题主要考查了二次函数图象与几何变换要求熟练掌握平移的规解析:()212y x =-++【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线2y x =-向左平移1个单位所得直线解析式为:()2+1y x =-; 再向上平移2个单位为:()2+21+y x =-.故答案为:()212y x =-++.【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减. 20.【分析】先把抛物线解析式整理出顶点式形式再根据规律求出平移后的抛物线再求出抛物线与轴的交点坐标即可【详解】解:∵∴抛物线向左平移2个单位长度再向下平移个单位长度得:∴平移后的抛物线顶点坐标为(10) 解析:()1,0【分析】先把抛物线解析式整理出顶点式形式,再根据规律求出平移后的抛物线,再求出抛物线与x 轴的交点坐标即可.【详解】解:∵22610=(3)1y x x x =-+-+,∴抛物线2610y x x =-+向左平移2个单位长度,再向下平移1个单位长度,得: 222610=(3+2)11(1)y x x x x =-+-+-=-∴平移后的抛物线顶点坐标为(1,0),即所得到的抛物线与x 轴的交点坐标为(1,0).故答案为:(1,0).【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式,本题巧妙之处在于抛物线顶点坐标在x 轴上.三、解答题21.(1)1003400y x =-+;(2)每个不低于21元且不高于30元【分析】(1)观察图形,找出点的坐标,再利用待定系数法即可求出y 与x 之间的函数关系式; (2)设每天的销售利润为w 元,根据利润=每个的利润×销售数量,即可得出w 关于x 的函数关系式,利用二次函数图象上点的坐标特征可求出当w =1300时x 的值,再利用二次函数的性质即可解决问题.【详解】解:(1)设y与x的函数关系式为y=kx+b,将(25,900),(28,600)代入y=kx+b,得25900 28600k bk b+=⎧⎨+=⎩,解得1003400kb=-⎧⎨=⎩,∴y与x的函数关系式为y=-100x+3400;(2)设该商品每天的销售利润为w元,由题意得w=(x-20)•y=(x-20)(-100x+3400)=-100x2+5400x-68000当w=1300时,即-100x2+3600x-68000=1300,解得:121x=,233x=,画出每天利润w关于销售单价x的函数关系图象如解图,又∵单价不高于30元/个,∴当该商品的销售单价每个不低于21元,且不高于30元时,可保证每天利润不低于1300元.【点睛】本题考查了待定系数法求一次函数解析式以及二次函数的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出y与x之间的函数关系式;(2)利用二次函数图象上点的坐标特征,求出当y=1300时x的值.22.(1)y=﹣2x+44(5≤x<443);(2)S=﹣2x2+44x,矩形场地的最大面积为242m2【分析】(1)根据三边铁栅栏的长度之和为40可得x+(y﹣2)+(x﹣2)=40,整理即可得出答案;(2)根据长方形面积公式列出解析式,配方成顶点即可得出答案.【详解】解:(1)根据题意,知x+(y﹣2)+(x﹣2)=40,∴y=﹣2x+44,∵墙面长为34米∴y =﹣2x+44≤34解得x≥5∵x <y∴x <﹣2x+44解得x <443∴自变量x 的取值范围是5≤x <443; (2)S =xy=x (﹣2x+44)=﹣2x 2+44x=﹣2(x ﹣11)2+242,∴当x =11时,S 取得最大值,最大值为242,即矩形场地的最大面积为242m 2.【点睛】本题主要考查二次函数的应用,找到关键描述语,找到等量关系准确的列出关系式是解决问题的关键.23.(1)y 101200x =-+(x≥50);(2)售价定为65元可获得最大利润,最大利润8250元.【分析】(1)设一次函数解析式y kx b =+ (x≥50),利用待定系数法将(60,600),(80,400)代入即得解得解析式;(2)根据题意列出函数关系式,再利用二次函数的性质求最大利润即可,注意考虑自变量的范围,围巾的每条利润不允许高于进货价的30%.【详解】解:(1)设一次函数解析式y kx b =+ (x≥50).由函数图像可知(60,600),(80,400)在函数图像上,代入即得:6006040080k b k b=+⎧⎨=+⎩ 解得:101200k b =-⎧⎨=⎩. 所以,每月销售y (条)与售价x (元)的函数关系式:y 101200x =-+(x≥50). (2)由题意得:()()=10120050w x x -+-化简得:2=10170060000w x x -+-由函数解析式可知对称轴是x=85时,x≤85时,w 随x 的增加而增大.因为,围巾的每条利润不允许高于进货价的30%,那么 x≤50×(1+30%),即x≤65. 所以,当x=65时,w 取到最大值:2=106517006560000=8250w -⨯+⨯-.所以,售价定为65元可获得最大利润,最大利润8250元.【点睛】本题考查了一次函数与二次函数在销售问题中的应用,理清题中的数量关系并熟练掌握二次函数的性质是解题的关键.24.(1)y =x 2+2x ﹣3,A (﹣3,0),B (1,0);(2)四边形ABCD 的面积是9【分析】(1)根据抛物线对称轴方程x =b2a 求得a 的值,继而确定函数解析式;将二次函数解析式转换为交点式,直接写出A 、B 两点坐标;(2)由抛物线解析式求得点C 、D 的坐标,然后利用分割法求得四边形ABCD 的面积.【详解】解:(1)根据题意知,抛物线的对称轴为x =﹣22a=﹣1,则a =1. 故该抛物线解析式是:y =x 2+2x ﹣3.因为y =x 2+2x ﹣3=(x+3)(x ﹣1),所以A (﹣3,0),B (1,0);(2)如图:由(1)知,A (﹣3,0),B (1,0),由抛物线y =x 2+2x ﹣3知,C (0,﹣3).∵y =x 2+2x ﹣3=(x+1)2﹣4,∴D (﹣1,﹣4),E (﹣1,0).∴AE =2,OC =3,OE =1,OB =1,ED =4,∴S 四边形ABCD =S △BOC +S 梯形OEDC +S △DAE =12×1×3+12(3+4)×1+12×2×4=9. 即四边形ABCD 的面积是9.【点睛】本题考查了抛物线与x 轴的交点以及二次函数的性质,得出各点的坐标是解答本题的突破口,另外注意将不规则图形的面积转化为几个规则图形的面积和进行求解.25.(1)10300y x =-+;(2)20元或21元.【分析】(1)通过表格的数据,利用待定系数法求一次函数解析式即可;(2)通过题意得到利润和售价之间的关系式,然后当利润为900元时,解方程即可得到结果.【详解】解:(1)设该一次函数的解析式为y kx b =+,由表可知15x =时150y =,16x =时140y =,∴1501514016k b k b =+⎧⎨=+⎩∴10300k b =-⎧⎨=⎩∴一次函数的解析式为10300y x =-+;(2)设利润为W ,则()()()111110300W x y x x =-=--+,∴2104103300W x x =-+-当900W =时,2900104103300x x =-+-,即2414200x x -+=,解得120x =,221x = ∴每件售价为20元或21元时,工艺品厂试销该工艺品每天获得的利润是900元.【点睛】本题考查了函数的应用问题,正确列出函数关系式是解题的关键.26.(1)222y x =-+;(2)2,0,222C D ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(3n <≤【分析】(1)把点A 、B 的坐标分别代入函数解析式,列出关于a 、c 的方程组,通过解方程求得它们的值;(2)根据平移的规律写出平移后抛物线的解析式,然后令0y =,则解关于x 的方程,即可求得点C 、D 的横坐标;(3)根据抛物线与x 轴两个交点之间的距离为21||x x -的关系来即可求n 的取值范围;【详解】解:(1)抛物线2y ax c =+经过点(0,2)A 和点(1,0)B -, ∴20c a c =⎧⎨+=⎩, 解得:22a c =-⎧⎨=⎩, ∴此抛物线的解析式为222y x =-+;(2)此抛物线平移后顶点坐标为(2,1),∴抛物线的解析式为22(2)1y x =--+,令0y =,即22(2)10x --+=,解得 122x =+,222x =-, 点C 在点D 的左边,(C ∴ 22-0),(22D +,0); (3)设平移后抛物线的解析式是22y x m =-+,该抛物线与x 轴的两交点横坐标为1x ,2x ,整理为:220x m -=.此时120x x +=,122m x x =-.则21||x x n -==.当1m =时,n =当5m =时,n =.所以,n n <≤【点睛】本题考查了待定系数法求二次函数解析式,二次函数图象的几何变换.要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.。
北师大版九年级数学下册 1.5 三角函数的应用 同步测试题(有答案)
故答案为.
14.
【答案】
【解答】
解:∵,,米,
∴,
∴,,
∴,
∴,
∴米∴学校要购买米的草皮才能正好铺满空地.
故答案为:.
15.
【答案】
【解答】
解:由于山路的坡角为度,则坡角的正弦值,
∴他在竖直方向上上升的高度(米).
16.
【答案】
【解答】
解:在中,(米).
17.
【答案】
【解答】
解:由已知得,
则斜坡的坡度.
故选.
10.
【答案】
A
【解答】
故选:.
二、
11.
【答案】
【解答】
解:在中
,
∴.
故答案为:.
12.
【答案】
海里/分
【解答】
解:作,
∵,,
∴海里,则海里,
在中,,
则,
解得,
在中,海里,
海里/分.
故答案为:海里/分.
13.
【答案】
【解答】
解:如图,在直角中,,,,
∴,.
在直角中,,,,
∴,
∴,
(参考数据:,,,.)
26.某区域平面示意图如图,点在河的一侧,和表示两条互相垂直的公路.甲勘测员在处测得点位于北偏东,乙勘测员在处测得点位于南偏西,测得,.请求出点到的距离.
参考数据:,,
参考答案
一、
1.
【答案】
B
【解答】
解:如图,
由已知得:,,米.
∵,
∴ (米).
故选.
2.
【答案】
D
【解答】
解:根据题意得:,
25.某市为了创建绿色生态城市,在城东建了“东州湖”景区,小明和小亮想测量“东州湖”东西两端、间的距离.于是,他们去了湖边,如图,在湖的南岸的水平地面上,选取了可直接到达点的一点,并测得=米,点位于点的北偏西方向,点位于点的北偏东方向.
北师大版九年级数学下册全册同步练习含答案最新版
北师大版初中数学九年级下册全册同步练习1.1锐角三角函数一、选择题1.在△ABC中,∠C=90°,BC=2,AB=3,则下列结论正确的是( ) A. sin A= B.cos A=C.sin A= D.tan A=2.如图l-2l所示的是一水库大坝横截面的一部分,坝高h=6 m,迎水坡AB=10 m,斜坡的坡角为a,则tan a的值为 ( )A. B. C. D.3.如图1-22所示,在矩形ABCD中,DE⊥AC于E,设∠ADE=a,且cos a=,AB=4,则AD的长为 ( )A.3 B.C. D.二、填空题4.如图1-23所示,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3米,cos∠BAC=,则梯子AB的长度为米.5.若a是锐角,且sin2 a+cos2 48°=1,则a= .6.如图l-24所示,在Rt△ACB中,∠C=90°,AB=3,BC=1,求∠A的三角函数值.三、计算与解答题7.如图1-25所示,在Rt△ACB中,∠ACB=90°,CD为AB边上的高,BD=3,AD =,求sin A,cos A,tan A的值.8.如图1-26所示,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=.(1)求点B的坐标;(2)求cos∠BAO的值.9.请你画出一个以BC为底边的等腰三角形ABC,使底边上的高AD=BC(1)求tan∠ABC和sin∠ABC的值;(2)在你所画的等腰三角形ABC中,假设底边BC=5米,求腰上的高BE.参考答案1.C[提示:sinA=.]2.D[提示:过A点作垂线交底部于C点,则△ACB为直角三角形,∴BC==8(m),∴tan a==.故选D.]3.B[提示:∠ADE和∠EDC互余,∴cos a=sin∠EDC=,sin∠EDC=∴EC=.由勾股定理,得DE=.在Rt△AED中,cos a=,∴AD=.故选B.]4.4[提示:在Rt△BCA中,AC=3米,cos∠BAC=,所以AB=4米,即梯子的长度为4米.]5.48°[提示:∵sin2a+cos2 a=l,∴a=48°.]6.提示:sin A=,cos A=,tan A=.7.解:∵∠ACB=90°,CD⊥AB,∴△ACD∽△CBD,∴CD2=AD·DB=16,∴CD=4,∴AC=.∴sin A==,cos A=,tan A=. 8.解:(1)如图l-27所示,作BH⊥OA,垂足为H.在Rt△OHB中,∵BO=5,sin∠BOA=,∴BH=3,∴OH=4,∴点B的坐标为(4,3). (2)∵OA=10,OH=4,∴AH=6.在Rt△AHB中,∵BH=3,∴AB=,∴cos∠BAO== .9.解:(1)根据题意画出图形,如图1-28所示,∵AB=AC,AD⊥BC,AD=BC,∴BD=B C= AD,即AD=2BD,∴AB=BD,∴tan∠ABC==2,sin∠ABC== (2)作BE⊥AC于E,在Rt△BEC中,sinC=sin∠ABC=.又∵sin C=∴故BE=(米).1.2 30°,45°,60°角的三角函数值一.选择题:1.在△ABC中,∠A,∠B都是锐角,且 sin A=,cos B=,则△ABC三个角的大小关系是()A.∠C>∠A>∠B B.∠B>∠C>∠AC.∠A>∠B>∠C D.∠C>∠B>∠A2.若0°<<90°,且|sin-|+,则tan的值等于()A. B. C. D.3.如图1—37所示,在△ABC中,∠A=30°,tan B=,AC=,则AB的长是 ( ) A.3+ B.2+C. 5 D.4.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是( ) A.a B.a C.a D.a或a二、选择题5.在Rt△ACB中,∠C=90°,AC=,AB=2,则tan= .6.若a为锐角,且sin a=,则cos a= .7.在Rt△ACB中,若∠C=90°,sin A=,b+c=6,则b= .8.(1)在△ABC中,∠C=90°,sin A=,则 cos B=________;(2)已知为锐角,且cos(90°-)=,则=________;(3)若,则锐角=________.三、计算与解答9.计算(1)sin 60°·cos 30°-.(2) 2 cos230°-2 sin 60°·cos 45°;(3) 2 sin30°-3 tan 45°+4 cos 60°;10.如图1—38所示,在Rt△ACB中,∠BCA=90°,CD是斜边上的高,∠ACD=30°,AD =1,求AC,CD,BC,BD,AB的长.11.如图1—39所示,在相距100米的A,B两处观测工厂C,测得∠BAC=60°,∠ABC=45°,则A,B两处到工厂C的距离分别是多少?12.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=,若关于x的方程(+b)x2+2ax+(-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.参考答案1. D; 2 。
(常考题)北师大版初中数学九年级数学下册第二单元《二次函数》检测(答案解析)(3)
一、选择题1.如图,一边靠墙(墙有足够长),其它三边用12m 长的篱笆围成一个矩形(ABCD )花园,这个花园的最大面积是( )A .18m 2B .12 m 2C .16 m 2D .22 m 2 2.如图在平面直角坐标系中,点A 在抛物线245y x x =-+上运动.过点A 作AC x ⊥轴于点C ,以AC 为对角线作矩形ABCD ,则对角线BD 的最小值为( )A .4B .3C .2D .13.关于二次函数22y x x =-+的最值,下列叙述正确的是( )A .当2x =时,y 有最小值0.B .当2x =时,y 有最大值0.C .当1x =时,y 有最小值1D .当1x =时,y 有最大值1 4.下列函数:①2y x =-,②3y x =,③2y x ,④234y x x =++,y 是x 的反比例函数的个数有( ).A .1个B .2个C .3个D .4个 5.已知关于x 的二次三项式()()2121m x m x m +--+的值恒为正,则m 的取值范围是( )A .18m >B .1m >-C .118m -<<D .1m 18<< 6.抛物线()2212y x =+-的对称轴是( )A .直线1x =B .直线1x =-C .直线2x =D .直线2x =- 7.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①a >0;②b >0; ③方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3;④当y >0时,x 的取值范围是﹣1<x <3;其中结论正确的个数是( )A .4个B .3个C .2个D .1个8.如图1,在等腰直角BAC 中,90BAC ∠=︒,AB AC =,点P 为AB 的中点,点M 为BC 边上一动点,作45PMN ∠=︒,射线MN 交AC 边于点N .设BM x =,CN y =,y 与x 的函数图象如图2,其顶点为(),m n ,则m n +的值为( )A .4B .332C .222+D .25+ 9.函数k y x=与()20y kx k k =-≠在同一直角坐标系中的图象大致是下图中的( ) A . B . C . D . 10.如图,二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,下列结论:①0abc <;②0a b c -+<;③2b a =-;④80ac +>.其中正确结论的个数为( )A .1个B .2个C .3个D .4个11.二次函数2y ax bx c =++的图像如图,现有以下结论:①0abc >;②42a c b +<;③320b c +<;④()(1)m am b b a m ++<≠-,其中正确结论序号为( )A .①③④B .②③④C .①②③D .①②③④ 12.在平面直角坐标系中,下列二次函数的图象开口向上的是( ) A .22y x = B .221y x x =-++ C .22y x x =-+D .20.5y x x =-+ 二、填空题13.将抛物线y =3x 2沿y 轴向上平移1个单位,所得的抛物线关系式为_____.14.二次函数()20y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()()12,0,0x x ,其中201x <<,有下列结论:①240b ac ->;②421a b c -+>-;③132x -<<-;④当m 为任意实数时,2a b am bm -≤+;⑤30a c +<.其中,正确结论的序号是(________)15.如图,单孔拱桥的形状近似抛物线形,建立如图所示的平面直角坐标系,在正常水位时,水面宽度OA 为12m ,拱桥的最高点B 到水面OA 的距离为6m .则抛物线的解析式为________.16.抛物线23(2)4=---y x 的顶点坐标是______.17.将抛物线22()1y x =-+向左平移2个单位长度,再向下平移1个单位长度,得到的抛物线解析式为______.18.抛物线212133y x x =-++与x 轴交于点A B 、,与y 轴交于点C ,则ABC 的面积为 _______.19.如图,抛物线()()1244y x x =+-与x 轴交于A B 、两点,P 是以点()0,3C 为圆心,2为半径的圆上的动点,Q 是线段PA 上靠近点A 的三等分点,连结OQ ,则线段OQ 的最大值是__________.20.道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落在同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是___________.三、解答题21.在平面直角坐标系xOy 中,二次函数y =ax 2+2x ﹣3a (a ≠0)交x 轴于A 、B 两点(点A 在点B 的左侧),且抛物线的对称轴为直线x =﹣1.(1)求此抛物线的解析式及A 、B 两点坐标;(2)若抛物线交y 轴于点C ,顶点为D ,求四边形ABCD 的面积.22.已知直线y =x +3分别交x 轴和y 轴于点A 和B ,抛物线y =ax 2+bx +c 经过点A 和B ,且抛物线的对称轴为直线x =﹣2.(1)抛物线与x 轴的另一个交点C 的坐标为 ;(2)试确定抛物线的解析式;(3)在同一平面直角坐标系中分别画出两个函数的图象(请用2B 铅笔或黑色水笔加黑加粗),观察图象,写出二次函数值小于一次函数值的自变量x 的取值范围 . 23.网络销售已经成为一种热门的销售方式.某公司在某网络平台上进行直播销售防疫包,已知防疫包的成本价格为6元/个,每日销售量y (单位:个)与销售单价x (单位:元/个)满足一次函数关系,如表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元,设公司销售防疫包的日获利为w (元).(日获利=日销售额﹣成本) x (元/个) 78 9 y (个) 4300 4200 4100x 之间的函数关系式;(2)当销售单价定为多少时,销售这种防疫包的日获利w 最大?最大利润为多少元? 24.如图,抛物线y =﹣x 2+bx +c 与x 轴交于A 、B 两点(点A 在点B 的左侧),点A 的坐标为(﹣1,0),与y 轴交于点C (0,3),作直线BC .动点P 在x 轴上运动,过点P 作PM ⊥x 轴,交抛物线于点M ,交直线BC 于点N ,设点P 的横坐标为m .(1)求抛物线的解析式和直线BC 的解析式;(2)当点P 在线段OB 上运动时,求线段MN 的最大值;(3)当点P 在线段OB 上运动时,若△CMN 是以MN 为腰的等腰直角三角形时,求m 的值;(4)当以C 、O 、M 、N 为顶点的四边形是平行四边形时,直接写出m 的值. 25.如图,在平面直角坐标系中,点()2,3A 为二次函数()220y ax bx a =+-≠与反比例函数()0k y k x=≠在第一象限的交点,已知该抛物线()220y ax bx a =+-≠与x 轴正、负半轴分别交于点E 、点D ,交y 轴负半轴于点B ,且1tan 2ADE ∠=. (1)求二次函数和反比例函数的表达式; (2)已知点M 为抛物线上一点,且在第三象限,顺次连接点D M B E 、、、,求四边形DMBE 面积的最大值.26.如图,有四张背面完全相同的卡片A ,B ,C ,D ,其中正面分别写着四个不同的函数表达式,将四张卡片洗匀正面朝下随机放在桌面上.(1)从四张卡片中随机摸出一张,摸出的卡片上的函数y 随x 的增大而减小的概率是______;(2)小亮和小强用这四张卡片做游戏,规则如下:两人同时从四张卡片中各随机抽出一张,若抽出的两张卡片上的函数增减性相同,则小亮胜;若抽出的两张卡片上的函数增减性不同,则小强胜.这个游戏公平吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据题意可以列出相应的函数关系式,然后化为顶点式即可解答本题.【详解】解:设与墙垂直的矩形的边长为xm ,则这个花园的面积是:S=x (12-2x )=()222122318x x x -+=--+,∴当x=3时,S 取得最大值,此时S=18,故选:A .【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答. 2.D解析:D【分析】先利用配方法得到抛物线的顶点坐标为(2,1),再根据矩形的性质得BD =AC ,由于AC 的长等于点A 的纵坐标,所以当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为2,从而得到BD 的最小值.【详解】解:∵y =x 2﹣4x +5=(x ﹣2)2+1,∴抛物线的顶点坐标为(2,1),∵四边形ABCD 为矩形,∴BD =AC ,而AC ⊥x 轴,∴AC 的长等于点A 的纵坐标,当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为1,∴对角线BD 的最小值为1.故选:D .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了矩形的性质.3.D解析:D【分析】先将二次函数配方成()211y x =--+,即可求解.【详解】解:()()2221221y x x x x x =-+=----+=, 二次函数的图象开口向下,当1x =时,y 有最大值1,故选:D .【点睛】本题考查二次函数的图象与性质,将二次函数解析式化为顶点式是解题的关键.4.A解析:A【分析】根据反比例函数、一次函数、二次函数的性质,对各个选项逐个分析,即可得到答案.【详解】2y x =-是一次函数,故选项①不符合题意;3y x=是反比例函数,故选项②符合题意; 2y x 是二次函数,故选项③不符合题意;234y x x =++是二次函数,故选项④不符合题意;∴y 是x 的反比例函数的个数有:1个故选:A .【点睛】本题考查了反比例函数、二次函数、一次函数的知识;解题的关键是熟练掌握反比例函数、二次函数、一次函数的定义,从而完成求解.5.A解析:A【分析】根据二次三项式()()2121m x m x m +--+的值恒为正,可设()()2121m x x y m m +--+=,从而得到1m +>0且∆<0,进而即可求得m 的取值范围.【详解】解:设()()2121m x x y m m +--+=, ∵关于x 的二次三项式()()2121m x m x m +--+的值恒为正,∴()()2121m x m x m +--+>0,∴在函数()()2121m x x y m m +--+=中, 1m +>0,且()()22141m m m ∆=--⎡⎤-+⎣⎦<0,解得:m >18故选:A【点睛】本题考查二次函数的应用,解题的关键是明确题意,利用数形结合的思想,熟练掌握二次函数的性质. 6.B解析:B【分析】根据二次函数的顶点式的性质求对称轴即可;【详解】∵ ()2212y x =+- , ∴对称轴为:x=-1,故选:B .【点睛】本题考查了二次函数顶点式的性质,正确掌握知识点是解题的关键.7.B解析:B【分析】根据抛物线与系数的关系判断即可.【详解】解:抛物线开口向下,a<0,故①错误;对称轴在y 轴右侧,a 、b 异号,b >0,故②正确;抛物线与x 轴交点为(﹣1,0),对称轴为直线x =1,根据对称性,另一个交点为(3,0),故③正确;根据图象可知,x 的取值范围是﹣1<x <3时;抛物线在x 轴上方,故④正确; 故选:B .【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.8.C解析:C【分析】首先由函数图象可直接得出4BC =,然后当M 运动至BC 中点时,y 的值最大,此时即为AC 的长,从而在等腰直角三角形中分别计算即可.【详解】根据函数图象知,当4x =时,0y =,即:4BC =,当M 运动至BC 中点时,y 的值最大,此时y 的值即为AC 的长,∵△ABC 为等腰直角三角形,M 为BC 的中点,∴△AMC 为等腰直角三角形,且122AM MC BC ===, ∴AC ==,即:函数图象中,2,m n ==, ∴2m n +=+故选:C .【点睛】本题考查二次函数的实际应用之动态几何问题,理解二次函数的基本性质以及等腰直角三角形的性质是解题关键.9.B解析:B【分析】根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.【详解】解:分两种情况讨论:①当k>0时,反比例函数k y x=在一、三象限,而二次函数()20y kx k k =-≠开口向上,与y 轴交点在原点下方,故C 选项错误,B 选项正确; ②当k<0时,反比例函数k y x=在二、四象限,而二次函数()20y kx k k =-≠开口向下,与y 轴交点在原点上方,故A 选项与D 选项错误.故选B .【点睛】 本题考查了反比例函数图象性质和二次函数图象性质.关键是根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.10.B解析:B【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】∵抛物线的开口向上,对称轴在原点的右边,与y 轴交于负半轴,∴a >0, b <0,c <0,∴abc >0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a -=,∴2b a =-; ∴结论③正确;∵二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =, ∴1312x +=, ∴11x =-,∴二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的另一个交点为(-1,0),∴0a b c -+=;∴结论②错误;∵当x=-2时,y=4a-2b+c >0, ∵12b a-=,则b=-2a ∴80a c +>,∴结论④正确;故选B .【点睛】 本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.11.A解析:A【分析】由函数图像与对称轴的方程结合可判断①,由抛物线的对称性结合点()2,42a b c --+的位置可判断②,由抛物线的图像结合点()1,a b c ++的位置,对称轴方程,可判断③,由函数的最大值可判断④,从而可得答案.【详解】 解: 图像开口向下,a ∴<0,12b x a=-=-<0, b ∴<0, 函数图像与y 轴交于正半轴,c ∴>0,abc ∴>0,故①符合题意; 抛物线与x 轴的一个交点在0~1之间,由抛物线的对称性可得:抛物线与x 轴的另一个交点在3~2--之间,∴ 当2x =-时,42y a b c =-+>0,4a c ∴+>2,b 故②不符合题意;12b x a=-=-, 2,b a ∴= 即1,2a b = 当1x =时,y a b c =++<0,12b bc ∴++<0, 32b c ∴+<0,故③符合题意; 当1x =-时,函数有最大值,y a b c =-+当1x m =≠-,2,y am bm c =++2am bm c ∴++<,a b c -+()m am b b ∴++<,a 故④符合题意.故选:.A【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.12.A解析:A【分析】二次函数y =ax 2+bx +c (a ≠0),①当a >0时,抛物线y =ax 2+bx +c (a ≠0)的开口向上;②当a <0时,抛物线y =ax 2+bx +c (a ≠0)的开口向下,据此判断即可.【详解】解:A 、∵a >0, ∴2y =的图象开口向上,故本选项符合题意;B 、∵a =﹣1<0,∴y =﹣x 2+2x +1的图象开口向下,故本选项不符合题意;C 、∵a =﹣2<0,∴y =﹣2x 2+x 的图象开口向下,故本选项不符合题意;D 、∵a =﹣0.5<0,∴y =﹣0.5x 2+x 的图象开口向下,故本选项不符合题意;故选:A .【点睛】本题考查二次函数的图象和性质,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题13.y =3x2+1【分析】根据抛物线平移规律常数项加1即可【详解】解:抛物线y =3x2沿y 轴向上平移1个单位所得的抛物线关系式为y =3x2+1故答案为:y =3x2+1【点睛】本题考查了抛物线平移的变化规解析:y =3x 2+1.【分析】根据抛物线平移规律,常数项加1即可.【详解】解:抛物线y =3x 2沿y 轴向上平移1个单位,所得的抛物线关系式为y =3x 2+1, 故答案为:y =3x 2+1.【点睛】本题考查了抛物线平移的变化规律,解题关键是准确掌握函数平移的规律,左加右减自变量,上加下减常数项.14.①③④【分析】根据函数图象与x 轴有两个交点即可判断①正确;根据对称性可得:故③正确;x=0与x=-2时的函数值相等即可判断②错误;根据对称轴为直线得到当x=-1时函数值最小故当x=m 时函数值大于等于 解析:①③④【分析】根据函数图象与x 轴有两个交点即可判断①正确;根据对称性可得:132x -<<-,故③正确;x=0与x=-2时的函数值相等,即可判断②错误;根据对称轴为直线1x =-,得到当x=-1时,函数值最小,故当x=m 时,函数值大于等于x=-1时的函数值,即2a b c am bm c -+≤++,即可判断④正确;由对称轴为直线1x =-,得到b=2a ,由图象可得:当x=1时,y>0,故a+b+c>0,代入得到3a+c>0,由此判断⑤错误.【详解】∵函数图象与x 轴的交点为()()12,0,0x x ,∴240b ac ->,故①正确;∵对称轴为直线1x =-,与x 轴的交点为()()12,0,0x x ,其中201x <<,∴132x -<<-,故③正确;根据抛物线的对称性得到:x=0与x=-2时的函数值相等,∵图象与y 轴的交点纵坐标小于-1,∴421a b c -+<-,故②错误;∵对称轴为直线1x =-,∴当x=-1时,函数值最小,故当x=m 时,函数值大于等于x=-1时的函数值,即2a b c am bm c -+≤++, ∴2a b am bm -≤+,故④正确;∵对称轴为直线1x =-, ∴12b a-=-,得b=2a , 由图象可得:当x=1时,y>0,∴a+b+c>0,∴3a+c>0,故⑤错误,故答案为:①③④.【点睛】此题考查二次函数的图象,函数图象与x 轴交点问题,利用图象判断式子的正负,函数最值,根据图象得到相关的信息是解题的关键.15.【分析】根据题意得到顶点B 的坐标为(66)设抛物线解析式为y=a (x-6)2+6将点O (00)代入求出a 即可得到函数解析式【详解】根据题意可知:顶点B 的坐标为(66)∴设抛物线解析式为y=a (x-6 解析:21(6)66y x =--+ 【分析】根据题意得到顶点B 的坐标为(6,6),设抛物线解析式为y=a (x-6)2+6,将点O (0,0)代入,求出a 即可得到函数解析式.【详解】根据题意可知:顶点B 的坐标为(6,6),∴设抛物线解析式为y=a (x-6)2+6,将点O (0,0)代入,36a+6=0,解得a=16-, ∴抛物线的解析式为21(6)66y x =--+, 故答案为:21(6)66y x =--+. 【点睛】 此题考查待定系数法求函数解析式,根据实际问题得到图象上点的坐标,设定函数解析式是解题的关键.16.【分析】根据题目中的抛物线可以写出该抛物线的顶点坐标本题得以解决【详解】解:∵物线∴该抛物线的顶点坐标为(2-4)故答案为:(2-4)【点睛】本题考查了二次函数的性质解题的关键是明确题意利用二次函数 解析:(2,4)-【分析】根据题目中的抛物线,可以写出该抛物线的顶点坐标,本题得以解决.【详解】解:∵物线23(2)4=---y x ,∴该抛物线的顶点坐标为(2,-4),故答案为:(2,-4).【点睛】本题考查了二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答. 17.【分析】根据左加右减上加下减的方法计算即可;【详解】由题可知向左平移2个单位长度可得:向下平移1个单位长度得;故答案为【点睛】本题主要考查了二次函数图象的平移准确计算是解题的关键解析:2y x 【分析】根据左加右减,上加下减的方法计算即可;【详解】由题可知,向左平移2个单位长度可得:22()2211=-++=+y x x ,向下平移1个单位长度得2211=+-=y x x ;故答案为2y x .【点睛】本题主要考查了二次函数图象的平移,准确计算是解题的关键. 18.2【分析】由与x 轴交于点AB 即y=0求出x 即得到图象与x 轴的交点坐标与y 轴交于点C 即x=0求出y 得到与y 轴的交点坐标得出ABAC 的长度从而得出△ABC 的面积;【详解】∵与x 轴交于点AB 则解得:即交点解析:2【分析】 由212133y x x =-++与x 轴交于点A 、B ,即y=0,求出x ,即得到图象与x 轴的交点坐标,与y 轴交于点C ,即x=0,求出y ,得到与y 轴的交点坐标,得出AB 、AC 的长度,从而得出△ABC 的面积;【详解】 ∵212133y x x =-++与x 轴交于点A 、B , 则2121=033x x -++, 解得:11x =- ,23x = ,即交点坐标分别为(-1,0),(3,0); ∵212133y x x =-++与y 轴交于点C , 将x=0代入得y=1,∴ 点C(0,1),∴ △ABC 的面积为:1141222AB OC ⨯⨯=⨯⨯= , 故答案为:2.【点睛】 本题主要考查了二次函数与坐标轴的交点坐标求法,进而得出有关三角形的面积,正确得出有关坐标是解题的关键.19.【分析】当BCP 三点共线且C 在BP 之间时BP 最大连接PB 此时△OAQ ∽△BAP 且相似比为1:3由此即可求得求出BP 的最大值即可求解【详解】解:如下图所示连接BP 当BCP 三点共线且C 在BP 之间时BP 最解析:73【分析】当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,连接PB ,此时△OAQ ∽△BAP ,且相似比为1:3,由此即可求得13=OQ BP ,求出BP 的最大值即可求解. 【详解】解:如下图所示,连接BP ,当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,令()()12404=+-=y x x ,求得1224,==x x , ∴B(4,0),A(-2,0),∵21===63AO AQ AB AP,且∠QAO=∠PAB , ∴△OAQ ∽△BAP ,∴13=OQ BP ,故只要BP 最大,则OQ 就最大,此时BP 最大值为:224327+=++=BC CP ,∴OQ 的最大值为:73. 【点睛】本题考查了抛物线与x 轴的交点坐标,相似三角形的性质和判定,本题的关键是根据圆的基本性质,确定BP 的最大值,进而求解. 20.4【分析】根据抛物线形状建立二次函数模型以AB 中点为原点建立坐标系xOy 通过已知线段长度求出A(10)B(-1O)由二次函数的性质确定y =ax2-a 利用PQ =EF 建立等式求出二次函数中的参数a 即可得解析:4【分析】根据抛物线形状建立二次函数模型,以AB 中点为原点,建立坐标系xOy ,通过已知线段长度求出A(1,0),B(-1,O),由二次函数的性质确定y =ax 2-a ,利用PQ =EF 建立等式,求出二次函数中的参数a ,即可得出EF 的值.【详解】解:如图,令P 下方的点为H ,以AB 中点为原点,建立坐标系xOy ,则A(1,0),B(-1,O),设抛物线的方程为y=ax 2+bx+c∴抛物线的对称轴为x=0,则2b a-=0,即b =0. ∴y =ax 2 +c .将A(1,0)代入得a+c =0,则c =-a .∴y =ax 2-a . ∵OH =2×15×12=0.2,则点H 的坐标为(-0.2,0) 同理可得:点F 的坐标为(-0.6,0).∴PH =a×(-0.2)2-a =-0.96aEF =a×(-0.6)2-a =-0.64a .又∵PQ =EF =1-(-0.96a )=-0.64a∴1+0.96a =-0.64a .解得a =58-. ∴y =58-x 2+58. ∴EF =(58-)×(-0.6)2+58=25. 故答案为:0.4.【点睛】 本题考查了二次函数的应用,解题的关键是能在几何图形中建立适当的坐标系并结合图形的特点建立等式求出二次函数表达式.三、解答题21.(1)y =x 2+2x ﹣3,A (﹣3,0),B (1,0);(2)四边形ABCD 的面积是9【分析】(1)根据抛物线对称轴方程x =b2a 求得a 的值,继而确定函数解析式;将二次函数解析式转换为交点式,直接写出A 、B 两点坐标;(2)由抛物线解析式求得点C 、D 的坐标,然后利用分割法求得四边形ABCD 的面积.【详解】解:(1)根据题意知,抛物线的对称轴为x =﹣22a=﹣1,则a =1. 故该抛物线解析式是:y =x 2+2x ﹣3.因为y =x 2+2x ﹣3=(x+3)(x ﹣1),所以A (﹣3,0),B (1,0);(2)如图:由(1)知,A (﹣3,0),B (1,0),由抛物线y =x 2+2x ﹣3知,C (0,﹣3).∵y =x 2+2x ﹣3=(x+1)2﹣4,∴D (﹣1,﹣4),E (﹣1,0).∴AE =2,OC =3,OE =1,OB =1,ED =4,∴S四边形ABCD=S△BOC+S梯形OEDC+S△DAE=12×1×3+12(3+4)×1+12×2×4=9.即四边形ABCD的面积是9.【点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,得出各点的坐标是解答本题的突破口,另外注意将不规则图形的面积转化为几个规则图形的面积和进行求解.22.(1)(﹣1,0);(2)y=x2+4x+3;(3)﹣3<x<0.【分析】(1)先求出点B,点A坐标,由对称性可求点C坐标;(2)利用待定系数法可求解析式;(3)由图象可求解.【详解】解:(1)∵直线y=x+3分别交x轴和y轴于点A和B,∴点A(﹣3,0),点B(0,3),∵抛物线的对称轴为直线x=﹣2.抛物线与x轴的另一个交点为C,∴点C(﹣1,0),故答案为(﹣1,0);(2)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(0,3),点C(﹣1,0),∴3093ca b ca b c=⎧⎪=-+⎨⎪=-+⎩,解得:143abc=⎧⎪=⎨⎪=⎩,∴二次函数的解析式为:y=x2+4x+3;(3)如图所示:当﹣3<x<0时,二次函数值小于一次函数值,故答案为:﹣3<x<0.【点睛】本题考查了二次函数与不等式,待定系数法求解析式,求出抛物线的解析式是本题的关键.23.(1)y=﹣100x+5000(6≤x≤30);(2)当销售单价定为28元时,销售这种防疫包的日获利w最大,最大利润为48400元【分析】(1)观察可得该函数图象是一次函数,设出一次函数解析式为:()0y kx b k =+≠,把其中两点代入即可求得该函数解析式;(2)根据销售利润=每个商品的利润×销售量,把二次函数的关系式配方变为顶点式即可求得相应的最大利润.【详解】解:(1)设y 与x 的函数关系式为:()0y kx b k =+≠,把7x =,4300y =和8x =,4200y =代入得,7430084200k b k b +=⎧⎨+=⎩, 解得,1005000k b =-⎧⎨=⎩, ∴1005000y x =-+(6≤x ≤30);(2)()()61005000w x x =--+2100560030000x x =-+-()21002848400x =--+∵1000a =-<,对称轴为28x =,∴当28x =时,w 有最大值为48400元,∴当销售单价定为28时,销售这种板栗日获利最大,最大利润为48400元;【点睛】本题考查了二次函数的应用,二次函数的性质,利用函数思想解决问题是本题的关键. 24.(1)y =﹣x 2+2x +3,y =﹣x +3;(2)当m =32时,MN 有最大值,MN 的最大值为94;(3)m =2;(4)m 的值为2或32. 【分析】(1)由A 、C 两点的坐标利用待定系数法可求得抛物线解析式,则可求得B 点坐标,再利用待定系数法可求得直线BC 的解析式;(2)用m 可分别表示出N 、M 的坐标,则可表示出MN 的长,再利用二次函数的最值可求得MN 的最大值;(3)由题意可得当△CMN 是以MN 为腰的等腰直角三角形时则有MN=MC ,且MC ⊥MN ,则可求表示出M 点坐标,代入抛物线解析式可求得m 的值;(4)由条件可得出MN=OC ,结合(2)可得到关于m 的方程,可求得m 的值.【详解】解:(1)∵抛物线过A 、C 两点,∴代入抛物线解析式可得103b c c --+=⎧⎨=⎩,解得23b c =⎧⎨=⎩,∴抛物线解析式为y =﹣x 2+2x +3,令y =0可得,﹣x 2+2x +3=0,解x 1=﹣1,x 2=3, ∵B 点在A 点右侧, ∴B 点坐标为(3,0), 设直线BC 解析式为y =kx +s ,把B 、C 坐标代入可得303k s s +=⎧⎨=⎩,解得13k s =-⎧⎨=⎩,∴直线BC 解析式为y =﹣x +3;(2)∵PM ⊥x 轴,点P 的横坐标为m , ∴M (m ,﹣m 2+2m +3),N (m ,﹣m +3), ∵P 在线段OB 上运动, ∴M 点在N 点上方,∴MN =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m =﹣(m ﹣32)2+94,∴当m =32时,MN 有最大值,MN 的最大值为94;(3)∵PM ⊥x 轴,∴当△CMN 是以MN 为腰的等腰直角三角形时,则有CM ⊥MN , ∴M 点纵坐标为3,∴﹣m 2+2m +3=3,解得m =0或m =2,当m =0时,则M 、C 重合,不能构成三角形,不符合题意,舍去, ∴m =2; (4)∵PM ⊥x 轴, ∴MN ∥OC ,当以C 、O 、M 、N 为顶点的四边形是平行四边形时,则有OC =MN , 当点P 在线段OB 上时,则有MN =﹣m 2+3m , ∴﹣m 2+3m =3,此方程无实数根,当点P 不在线段OB 上时,则有MN =﹣m +3﹣(﹣m 2+2m +3)=m 2﹣3m ,∴m 2﹣3m =3,解得m =32或m =32,综上可知当以C 、O 、M 、N 为顶点的四边形是平行四边形时,m 的值为32+或【点睛】本题为二次函数的综合应用,涉及待定系数法、二次函数的最值、等腰直角三角形的判定和性质、平行四边形的性质及分类讨论思想等知识点.在(2)中用m 表示出MN 的长是解题的关键,在(3)中确定出CM ⊥MN 是解题的关键,在(4)中由平行四边形的性质得到OC=MN 是解题的关键. 25.(1)213222y x x =+-;6y x =;(2)9【分析】(1)将()2,3A 代入反比例函数解析式即可求出k 值;再根据1tan 2ADE ∠=构建直角三角形即可求出D 点坐标;再讲A 、D 两点坐标代入二次函数解析式即可求出二次函数的表达式;(2)作出辅助线后将所求四边形的面积分为三部分,即DHM △、OEB 和梯形HOBM ,分别求出后求和,即可得出面积S 与M 点横坐标m 的二次函数关系式,有函数性质即可求出四边形DMBE 面积的最大值. 【详解】解:(1)如图,过A 点作AC x ⊥轴且与x 轴交于点C ;将()2,3A 代入ky x=中,解得6k =, ∴6y x=, ∴3AC =,2OC = ∵1tan 2ADE ∠=, ∴6DC =,∴4DO DC OC =-=, ∴(4,0)D -,将A ,D 代入()220y ax bx a =+-≠中得:422316420a b a b +-=⎧⎨--=⎩解得1232a b ⎧=⎪⎪⎨⎪=⎪⎩, ∴二次函数表达式为:213222y x x =+-; (2)如图,过M 作MH x ⊥轴于H ,并设点M 的坐标为213(,2)22m m m +-, ∵M 点在第三象限 ∴213222MH m m =--+ 则+DMBE HOBM S S S S =+△DHM △OEB 四边形梯形,4212=222m MH m ++⨯++()MH ()(-)42=12mMH MH m mMH+--+=21MH m -+213=2(2)122m m m --+-+2=45m m --+2=(2)9m -++∴当2m =-时四边形DMBE 的面积最大,最大面积为9. 【点睛】本题主要考查利用待定系数法求解二次函数、反比例函数的解析式以及函数的性质和数形结合的能力,对于学生的综合能力要求较高. 26.(1)12;(2)不公平,见解析 【分析】(1)先判断出A 、B 、C 、D 四个卡片上的函数增减性,在结合概率的定义即可求解 (2)根据题意用列表法分别求出小亮和小强同时抽到函数增减性相同的概率,和增减性不同的概率,二者进行比较即可 【详解】(1)卡片A 上的函数为12y x =-,为减函数,y 随x 的增大而减小; 卡片B 上的函数为()10y x x=-<,为增函数,y 随x 的增大而增大;卡片C 上的函数为()230y x x =->,为增函数,y 随x 的增大而增大;卡片D 上的函数为5y x =-,为减函数,y 随x 的增大而减小;所以从四张卡片中随机摸出一张,摸出的卡片上的函数y 随x 的增大而减小的概率为2142= (2)不公平.理由如下,根据题意列表得:由表可知总共有12中等可能的结果,抽出的两张卡片上的函数增减性相同的概率为41123= ;抽出的两张卡片上的函数增减性不同的概率是82123=, 2133>, ∴不公平. 【点睛】本题考查了函数的性质,概率和游戏的公平性,掌握列表或树状图法展示等可能的结果是解题关键.。
北师大版九年级数学下册期末学情评估 附答案 (1)
北师大版九年级数学下册期末学情评估一、选择题(本大题共10小题,每小题3分,共30分)1.在Rt △ABC 中,∠C =90°,若AC =4,AB =5,则cos B 等于( )A.34B.35C.45D.432.如图,AB 是⊙O 的直径,∠D =40°,则∠AOC =( )A .80°B .100°C .120°D .140°(第2题) (第4题) (第5题)3.在平面直角坐标系中,将抛物线y =x 2先向右平移3个单位长度,再向上平移1个单位长度后,所得抛物线对应的函数表达式为( ) A .y =(x +3)2+1 B .y =(x -3)2-1 C .y =(x +3)2-1 D .y =(x -3)2+14.如图,小明在C 处看到西北方向的A 处有一只小猫,若小猫沿正东方向跑到B 处,测得B 在C 的北偏东α方向,且BC =a 米,则A 处与B 处之间的距离为( )A .a (cos α+sin α)米B .a (cos α-sin α)米C.⎝ ⎛⎭⎪⎫a cos α+a sin α米D.⎝ ⎛⎭⎪⎫acos α-a sin α米 5.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误的是( )A .当-1<x <2时,y <0B .a +c =bC .当x >12时,y 随x 的增大而增大D .若顶点坐标为⎝ ⎛⎭⎪⎫12,m ,则方程ax 2+bx +c =m -1有实数根6.如图,在Rt △ABC 中,∠C =90°,sin B =45,AC =5 cm ,若以点C 为圆心,2cm 长为半径作圆,则⊙C 与AB 的位置关系是( )A .相离B .相交C .相切D .相切或相交(第6题) (第7题) (第8题)7.如图,在⊙O 中,AO =3,∠C =60°,则AB ︵的长度为( )A .6πB .9πC .2πD .3π8.如图,在4×4的正方形网格中,△ABC 的顶点都在格点上,则∠BAC 的正弦值是( ) A.55B.12C.2 55D. 59.如图,半圆O 与等腰直角三角形两腰CA ,CB 分别切于D ,E 两点,直径FG在AB 上,若BG =2-1,则△ABC 的周长为( ) A .4+2 2B .6C .2+2 2D .4(第9题) (第10题)10.如图,有边长分别为1和2的两个等边三角形,开始时它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移至完全移出大三角形为止.设小三角形移动的距离为x ,两个三角形重叠部分的面积为y ,则y 关于x 的函数图象是( )二、填空题(本大题共5小题,每小题3分,共15分)11.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且c=3a,则tan A的值为________.12.如果将抛物线y=-2x2+8向下平移a个单位后恰好经过点(1,4),那么a的值为________.13.如图,⊙O的半径为9 cm,AB是弦,OC⊥AB于点C,将劣弧AB沿弦AB 折叠,交OC于点D,若D是OC的中点,则AB的长为________.(第13题)(第15题)14.已知二次函数y=ax2-2ax+c(a≠0)的图象与x轴的一个交点为(-1,0),则关于x的一元二次方程ax2-2ax+c=0的根是________.15.如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处出发以每小时20 n mile的速度沿南偏西50°方向匀速航行,1 h后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离约是______n mile(结果精确到个位,参考数据:2≈1.4,3≈1.7,6≈2.4).三、解答题(一)(本大题共3小题,每小题8分,共24分)16.计算:3tan 30°-tan2 45°+2sin 60°.17.一抛物线以(-1,9)为顶点,且经过点(-4,0),求该抛物线的解析式及抛物线与y轴的交点坐标.18.如图,在小山的东侧A 处有一热气球,由于受风力影响,它以35 m/min 的速度沿着与水平线成75°角的方向飞行,40 min 后到达C 处,此时热气球上的人发现热气球与山顶P 及小山西侧的B 处在一条直线上,同时测得B 处的俯角为30°.在A 处测得山顶P 的仰角为45°,求A 与B 间的距离及山高(结果保留根号).(第18题)四、解答题(二)(本大题共3小题,每小题9分,共27分)19.△ABC 中,∠A 、∠B 都是锐角,且⎝ ⎛⎭⎪⎫cos A -122+|tan B -1|=0.(1)分别求出△ABC 三个内角的度数; (2)若AC =2,求AB 的长度.20.如图,四边形ABCD 内接于⊙O ,∠1=∠2,延长BC 到点E ,使得CE =AB ,连接ED . (1)求证:BD =ED ;(2)若AB =5,BC =7,∠ABC =60°,求tan ∠DCB 的值.(第20题)21.某商店购进一批额温枪,每个进价为30元.若每个售价定为42元,则每周可售出160个.经调查发现,每个售价每增加1元,每周的销售量将减少10个.设每个额温枪的售价为x元(x≥42),每周的销售利润为y元.(1)求y与x的函数关系式,并直接写出x的取值范围;(2)求每个售价为多少时,每周的销售利润最大;(3)若该商店在某周销售这种额温枪获利1 600元,求这周每个额温枪的售价.五、解答题(三)(本大题共2小题,每小题12分,共24分)22.如图,AB是⊙O的直径,AD、BC分别是⊙O的切线,连接OC、OD、CD,且CO平分∠BCD.(1)求证:CD是⊙O的切线;(2)求证:OC⊥OD;(3)若⊙O的半径是2,sin∠BCD=23,且AD<BC,求tan∠BOC的值.(第22题)23.如图,在平面直角坐标系中,抛物线y=ax2+bx-6与x轴交于A,B两点,与y轴交于点C,AB=8,OA=3OB,点P是直线AC下方抛物线上的一个动点.过点P作PE∥x轴,交直线AC于点E.(1)求抛物线的解析式;(2)若点M是抛物线对称轴上的一个动点,则BM+CM的最小值是________;(3)求PE的最大值;(4)在抛物线的对称轴上找一点N,使△ACN是以AC为斜边的直角三角形,请直接写出点N的坐标.(第23题)答案一、1.B 2.B 3.D 4.A 5.D 6.A7.C8.A9.A 10.B二、11.2412.213.6 5 cm14.x1=-1,x2=315.24三、16.解:3tan 30°-tan2 45°+2sin 60°=3×33-12+2×32=3-1+ 3=2 3-1.17.解:由题意,可设抛物线的解析式为y=a(x+1)2+9,将(-4,0)代入y=a(x+1)2+9,得0=9a+9,解得a=-1,∴抛物线的解析式为y=-(x+1)2+9.令x=0,则y=8,∴抛物线与y轴的交点坐标为(0,8).18.解:过点A作AD⊥BC,垂足为D.由题意得,∠ACD=75°-30°=45°,AC=35×40=1 400(m).∴AD=AC·sin 45°=1 400×22=700 2(m).在Rt△ABD中,由题意可知,∠B=30°,∴AB=2AD=1 400 2 m.过点P作PE⊥AB,垂足为E,∴易得AE=PE,BE=3PE.∴AB=AE+BE=PE+3PE=1 400 2 m.∴PE=700(6-2)m.答:A与B间的距离是1 400 2 m,山高是700(6-2)m.四、19.解:(1)∵⎝ ⎛⎭⎪⎫cos A -122+||tan B -1=0,∴cos A -12=0,tan B -1=0, ∴cos A =12,tan B =1, 又∵∠A 、∠B 都是锐角, ∴∠A =60°,∠B =45°, ∴∠C =180°-∠A -∠B =75°. (2)过点C 作CH ⊥AB 于H , 在Rt △ACH 中,AC =2,∠A =60°, ∴AH =AC ·cos A =2×12=1, CH =AC ·sin A =2×32= 3.在Rt △CHB 中,CH =3,tan B =1, ∴BH =CH tan B =31=3, ∴AB =AH +BH =1+ 3. 20.(1)证明:∵∠1=∠2,∴AD ︵=DC ︵,∴AD =DC . ∵四边形ABCD 内接于⊙O , ∴∠BAD +∠BCD =180°, ∵∠ECD +∠BCD =180°, ∴∠BAD =∠ECD . 在△ABD 和△CED 中,⎩⎨⎧AD =CD ,∠BAD =∠ECD ,AB =CE ,∴△ABD ≌△CED ,∴BD =ED . (2)解:过点D 作DM ⊥BE 于M ,如图.(第20题)∵BC=7,CE=AB=5,∴BE=BC+EC=12,∵BD=ED,DM⊥BE,∴BM=ME=12BE=6,∴CM=BC-BM=1.∵∠ABC=60°,∠1=∠2,∴∠2=30°,∴DM=BM·tan∠2=6×33=2 3,∴tan∠DCB=DMCM=2 3.21.解:(1)根据题意知y=(x-30)[160-10(x-42)]=-10x2+880x-17 400(42≤x<58).(2)y=-10x2+880x-17 400=-10(x-44)2+1 960.∵-10<0,42≤x<58,∴当x=44时,y取得最大值,最大值为1 960.答:当每个售价为44元时,每周的销售利润最大.(3)令y=1 600,则-10(x-44)2+1 960=1 600,解得x=50或x=38(不合题意,舍去).答:这周每个额温枪的售价为50元.五、22.(1)证明:过点O作OH⊥CD于点H,如图,则∠CHO=90°,∵BC是⊙O的切线,∴∠OBC=90°,∴∠CHO=∠CBO.∵CO平分∠BCD,∴∠HCO=∠BCO,又∵OC=OC,∴△CHO≌△CBO,∴OH=OB,∴CD是⊙O的切线.(2)证明:∵AD是⊙O的切线,∴∠DAO=90°. 在Rt△DAO和Rt△DHO中,AO=HO,DO=DO,∴Rt△DAO≌Rt△DHO,∴∠AOD=∠HOD.∵△CHO≌△CBO,∴∠COH=∠COB.∵∠AOH+∠BOH=180°,∴∠DOH+∠COH=90°,∴∠DOC=90°,即OC⊥OD.(3)解:延长CD交BA的延长线于点F,如图.(第22题)∵∠OHC=∠OBC=90°,∴易得∠FOH=∠DCB,∵sin∠BCD=2 3,∴sin∠FOH=FHFO=2 3,∴可设FH=2m,FO=3m,∵OH=2,∴(3m)2-(2m)2=22,解得m=2 55(负值已舍去),∴FH=4 55,FO=6 55.∵∠FHO =∠FBC =90°,∠F =∠F ,∴△FOH ∽△FCB ,∴OH ∶FO =BC ∶FC ,∴易得2 ∶6 55=BC ∶⎝⎛⎭⎪⎫BC +4 55, 解得BC =3+5,∴tan ∠BOC =BC OB =3+52.23.解:(1)∵AB =OA +OB =8,OA =3OB ,∴OB =2,OA =6,∴A (-6,0),B (2,0).将点A ,B 的坐标代入y =ax 2+bx -6,得⎩⎨⎧36a -6b -6=0,4a +2b -6=0,解得⎩⎪⎨⎪⎧a =12,b =2.∴y =12x 2+2x -6.(2)6 2(3)令x =0,则y =-6,∴C (0,-6).设直线AC 的解析式为y =kx +m ,将点A ,C 的坐标代入,得⎩⎨⎧-6k +m =0,m =-6, 解得⎩⎨⎧k =-1,m =-6.∴y =-x -6.设P ⎝ ⎛⎭⎪⎫t ,12t 2+2t -6,其中-6<t <0, 则E ⎝ ⎛⎭⎪⎫-12t 2-2t ,12t 2+2t -6, ∴PE =-12t 2-2t -t =-12t 2-3t =-12(t +3)2+92,∴当t =-3时,PE 取得最大值92.即PE的最大值为9 2.(4)点N的坐标为(-2,17-3)或(-2,-17-3).。
2023年北师大版初中数学九年级(下)期末综合测试卷及部分答案(五套)
北师大版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在△ABC 中,若⎪⎪⎪⎪⎪⎪sin A -12+⎝ ⎛⎭⎪⎫cos B -122=0,则∠C 的度数是( ) A.30° B.45° C.60° D.90° 2.抛物线y =x 2-3x +2的对称轴是直线( ) A.x =-3 B.x =3 C.x =-32 D.x =323.把抛物线y =-2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得抛物线对应的函数表达式为( )A.y =-2(x +1)2+2 B.y =-2(x +1)2-2 C.y =-2(x -1)2+2 D.y =-2(x -1)2-2 4.2cos 45°的值等于( ) A.1 B. 2 C. 3 D.25.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦, ∠ABD =58°,则∠BCD 等于( )A.116°B.32°C.58°D.64°6.如图是某水库大坝横断面示意图,其中CD ,AB 分别表示水库上、下底面的水平线,∠ABC =120°,BC 的长是50 m ,则水库大坝的高度h 是( )A.25 3 mB.25 mC.25 2 mD.5033m7.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误..的是( ) A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-52C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大8.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接C D.若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为( )A.4π3- 3B.4π3-2 3C.π- 3D.2π3- 39.如图,半圆O 与等腰直角三角形两腰CA ,CB 分别切于D ,E 两点,直径FG 在AB 上,若BG =2-1,则△ABC 的周长为( )A.4+2 2B.6C.2+2 2D.410.如图,一艘渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20 n mile ,渔船将险情报告给位于A 处的救援船后,沿北偏西80°的方向向海岛C 靠近,同时,从A 处出发的救援船沿南偏西10°方向匀速航行,20 min 后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( )A.10 3 n mile/hB.30 n mile/hC.20 3 n mile/hD.30 3 n mile/h 二、填空题(每题3分,共30分)11.二次函数y =-x 2+bx +c 的部分图象如图所示,若y >0,则x 的取值范围是____________.12.如图,在△ABC 中,∠B =30°,AC =2,cos C =35,则AB 边的长为________.13.抛物线y =2x 2+6x +c 与x 轴的一个交点为(1,0),则这个抛物线的顶点坐标是____________.14.如图,扇形AOB 的圆心角为122°,C 是AB ︵上一点,则∠ACB =________.15.如图,直径为10的⊙A 经过点C (0,6)和点O (0,0),与x 轴的正半轴交于点D ,B 是y轴右侧圆弧上一点,则cos ∠OBC =________.16.已知⊙O 的半径为1,点P 与点O 之间的距离为d ,且关于x 的方程x 2-2x +d =0没有实数根,则点P 在__________(填“圆内”“圆上”或“圆外”).17.一个小球在空中的高度h(m )与时间t(s)满足关系式:h =20t -5t 2,那么这个小球所能达到的最大高度为________m .18.如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB 上一动点,则CM+DM 的最小值是__________.(19.如图,某公园入口处有三级台阶,每级台阶高为18 cm ,深为30 cm ,为了方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起点为C ,现设计斜坡BC 的坡度i =1∶5,则AC 的长度是________cm.20.如图,在平面直角坐标系中有一正方形AOBC ,反比例函数y =k x的图象经过正方形AOBC对角线的交点,半径为(4-22)的圆内切于△ABC ,则k 的值为________.三、解答题(21题6分,22~24题每题8分,其余每题10分,共60分) 21.计算:2sin 30°-3tan 45°·sin 45°+4cos 60°.22.如图,已知二次函数y =a (x -h)2+3的图象经过O (0,0),A (2,0)两点. (1)写出该函数图象的对称轴;(2)若将线段OA 绕点O 逆时针旋转60°到OA ′,试判断点A ′是否为该函数图象的顶点.23.如图,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,OD ∥BC ,OD 与AC 交于点E . (1)若∠D =70°,求∠CAD 的度数; (2)若AC =8,DE =2,求AB 的长.24.如图,在小山的东侧A 庄,有一热气球,由于受西风的影响,以35 m/min 的速度沿着与水平方向成75°角的方向飞行,40 min 时到达C 处,此时气球上的人发现气球与山顶P 点及小山西侧的B 庄在一条直线上,同时测得B 庄的俯角为30°.又在A 庄测得山顶P的仰角为45°,求A庄与B庄的距离及山高(结果保留根号).25.如图,以△ABC的边BC上一点O为圆心的圆经过A,C两点且与BC边交于点E.点D为下半圆弧的中点,连接AD交线段EO于点F,且AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=10,求⊙O的半径r及sin B.26.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式.(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.27.在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2+bx +5经过点M (1,3)和N (3,5).(1)试判断该抛物线与x 轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A (-2,0),且与y 轴交于点B ,同时满足以A ,O ,B 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.答案一、1.D 2.D 3.C 4.B 5.B 6.A 7.D 8.A9.A 点拨:连接OD ,OE ,易证得四边形ODCE 是正方形,△OEB 是等腰直角三角形,设OE=r ,由OB =2OE =2r ,可得方程:2-1+r =2r ,解此方程,即可求得r ,则△ABC 的周长为4+2 2.10.D 点拨:∵∠CAB =10°+20°=30°,∠CBA =80°-20°=60°,∴∠C =90°.∵AB =20 n mile ,∴AC =AB ·cos 30°=10 3 n mile.∴救援船航行的速度为103÷2060=303(n mile/h).二、11.-3<x <1 12.16513.⎝ ⎛⎭⎪⎫-32,-25214.119° 点拨:在扇形AOB 所在圆的优弧AB 上取一点D ,连接DA ,DB .∵∠AOB =122°,∴∠D =61°. ∵∠ACB +∠D =180°, ∴∠ACB =119°.15.4516.圆外 17.20 18.8 cm 19.210 点拨:过点B 作BD ⊥AC 于点D ,则AD =2×30=60(cm),BD =18×3=54(cm).由斜坡BC 的坡度i =1∶5,得CD =5BD =5×54=270(cm).∴AC =CD -AD =270-60=210(cm).20.4 点拨:设正方形OACB 的边长为a ,则AB =2a .根据直角三角形内切圆半径公式得a +a -2a2=4-22,故a =4.所以对角线交点坐标为(2,2),故k =xy =4.三、21.解:原式=2×12-3×1×22+4×12=1-322+2=3-322.22.解:(1)∵二次函数y =a (x -h )2+3的图象经过O (0,0),A (2,0)两点,∴抛物线的对称轴为直线x =1. (2)点A ′是该函数图象的顶点.理由:如图,作A ′B ⊥x 轴于点B .∵线段OA 绕点O 逆时针旋转60°到OA ′,∴OA ′=OA =2,∠AOA ′=60°.又∵A ′B ⊥x 轴,∴OB =12OA ′=1,A ′B =3OB = 3.∴A ′点的坐标为(1,3).∴点A ′是函数y =a (x -1)2+3图象的顶点. 23.解:(1)∵OA =OD ,∠D =70°,∴∠OAD =∠D =70°.∴∠AOD =180°-∠OAD -∠D =40°. ∵AB 是半圆O 的直径,∴∠C =90°. ∵OD ∥BC ,∴∠AEO =∠C =90°,即OD ⊥AC . ∴AD ︵=CD ︵. ∴∠CAD =12∠AOD =20°.(2)由(1)可知OD ⊥AC ,∴AE =12AC =12×8=4.设OA =x ,则OE =OD -DE =x -2. 在Rt △OAE 中,OE 2+AE 2=OA 2,即(x -2)2+42=x 2,解得x =5. ∴AB =2OA =10. 24.解:过点A 作AD ⊥BC ,垂足为D .在Rt △ADC 中,∠ACD =75°-30°=45°,AC =35×40=1 400(m). ∴AD =AC ·sin 45°=1 400×22=7002(m). 在Rt △ABD 中,∠B =30°, ∴AB =2AD =1 400 2 m. 过点P 作PE ⊥AB ,垂足为E , 则AE =PE ,BE =PEtan 30°=3PE .∴(3+1)PE =1 400 2. 解得PE =700(6-2)m.答:A 庄与B 庄的距离是1 400 2 m ,山高是700(6-2)m. 25.(1)证明:如图,连接AO ,DO .∵D 为下半圆弧的中点,∴∠EOD =90°. ∵AB =BF ,OA =OD ,∴∠BAF =∠BFA =∠OFD ,∠OAD =∠ADO .∴∠BAF +∠OAD =∠OFD +∠ADO =90°,即∠BAO =90°. ∴OA ⊥AB . ∴AB 是⊙O 的切线.(2)解:在Rt △OFD 中,OF =CF -OC =4-r ,OD =r ,DF =10.∵OF 2+OD 2=DF 2,∴(4-r )2+r 2=(10)2. ∴r 1=3,r 2=1(舍去).∴半径r =3.∴OA =3,OF =CF -OC =4-3=1,BO =BF +FO =AB +1. 在Rt △ABO 中,AB 2+AO 2=BO 2,∴AB 2+32=(AB +1)2.∴AB =4.∴BO =5. ∴sin B =AO BO =35.26.解:(1)y =⎩⎪⎨⎪⎧120x (0<x ≤30),[120-(x -30)]x (30<x ≤m ),[120-(m -30)]x (x >m )=⎩⎪⎨⎪⎧120x (0<x ≤30),-x 2+150x (30<x ≤m ),(150-m )x (x >m ). (2)由(1)可知,当0<x ≤30或x >m 时,y 都随着x 的增大而增大.当30<x ≤m 时,y =-x 2+150x =-(x -75)2+5 625, ∵-1<0,∴当x ≤75时,y 随着x 的增大而增大.∴为了让收取的总费用随着团队中人数的增加而增加,m 的取值范围为30<m ≤75. 27.解:(1)把M ,N 两点的坐标代入抛物线对应的函数表达式,可得:⎩⎪⎨⎪⎧a +b +5=3,9a +3b +5=5,解得⎩⎪⎨⎪⎧a =1,b =-3. ∴抛物线对应的函数表达式为y =x 2-3x +5. 令y =0,可得x 2-3x +5=0.∵Δ=(-3)2-4×1×5=9-20=-11<0, ∴该抛物线与x 轴没有交点.(2)∵△AOB 是等腰直角三角形,点A (-2,0),点B 在y 轴上,∴点B 的坐标为(0,2)或(0,-2).可设平移后的抛物线对应的函数表达式为y =x 2+mx +n .①当抛物线过A (-2,0),B (0,2)时,代入可得⎩⎪⎨⎪⎧n =2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =3,n =2.∴平移后的抛物线对应的函数表达式为y =x 2+3x +2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-32,-14,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移3个单位长度,再向下平移3个单位长度,即可获得符合条件的抛物线.②当抛物线过A (-2,0),B (0,-2)时,代入可得⎩⎪⎨⎪⎧n =-2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =1,n =-2. ∴平移后的抛物线对应的函数表达式为y =x 2+x -2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-12,-94,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移2个单位长度,再向下平移5个单位长度,即可获得符合条件的抛物线.北师大版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题。
2023年春学期北师大版九年级数学下册第二章【二次函数】检测卷附答案解析
2023年春学期九年级数学下册第二章【二次函数】检测卷一、单选题(本大题共12小题,每小题3分,共36分)1.抛物线2y ax bx c =++经过点()1,0-、()3,0,且与y 轴交于点()0,5-,则当2x =时,y 的值为()A .5-B .3-C .1-D .52.在羽毛球比赛中,某次羽毛球的运动路线呈抛物线形,羽毛球距地面的高度()m y 与水平距离()m x 之间的关系如图所示,点B 为落地点,且1m OA =,4m OB =,羽毛球到达的最高点到y 轴的距离为3m 2,那么羽毛球到达最高点时离地面的高度为()A .25m 4B .9m 4C .3m2D .25m 163.二次函数222=++y x x 的图象的对称轴是()A .=1x -B .2x =-C .1x =D .2x =4.已知二次函数()20y ax bx c a =+-≠,其中0b >、0c >,则该函数的图象可能为()A .B .C .D .5.如图,抛物线2(0)y ax bx c a =++≠的对称轴为2x =-,下列结论正确的是()A .a<0B .0c >C .当<2x -时,y 随x 的增大而减小D .当2x >-时,y 随x 的增大而减小6.已知抛物线22()1y x =-+,下列结论错误的是()A .抛物线开口向上B .抛物线的对称轴为直线2x =C .抛物线的顶点坐标为(2,1)D .当2x <时,y 随x 的增大而增大7.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是()A .有最大值4B .有最小值4C .有最大值6D .有最小值68.抛物线y =x 2+3上有两点A (x 1,y 1),B (x 2,y 2),若y 1<y 2,则下列结论正确的是()A .0≤x 1<x 2B .x 2<x 1≤0C .x 2<x 1≤0或0≤x 1<x 2D .以上都不对9.如图是拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-0.01(x -20)2+4,桥拱与桥墩AC 的交点C 恰好位于水面,且AC ⊥x 轴,若OA =5米,则桥面离水面的高度AC 为()A .5米B .4米C .2.25米D .1.25米10.下表中列出的是一个二次函数的自变量x 与函数y 的几组对应值:x …-2013…y …6-4-6-4…下列各选项中,正确的是A .这个函数的图象开口向下B .这个函数的图象与x 轴无交点C .这个函数的最小值小于-6D .当1x >时,y 的值随x 值的增大而增大11.用配方法将二次函数21242y x x =--化为2()y a x h k =-+的形式为()A .21(2)42y x =--B .21(1)32y x =--C .21(2)52y x =--D .21(2)62y x =--12.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的函数表达式为()20y ax bx c a =++≠,若此炮弹在第6秒与第13秒时的高度相等,则下列时间中炮弹所在高度最高的是()A .第7秒B .第9秒C .第11秒D .第13秒二、填空题(本大题共8小题,每小题3分,共24分)13.某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.14.如图,在平面直角坐标系中,菱形ABCD 的一边AB 在x 轴上,顶点B 在x 轴正半轴上.若抛物线y =x 2﹣5x +4经过点C 、D ,则点B 的坐标为______.15.已知二次函数2(0)y ax bx c a =++≠,图象的一部分如图所示,该函数图象经过点(2,0)-,对称轴为直线12x =-.对于下列结论:①<0abc ;②240b ac ->;③0a b c ++=;④21(2)4am bm a b +<-(其中12m ≠-);⑤若()11,A x y 和()22,B x y 均在该函数图象上,且121x x >>,则12y y >.其中正确结论的个数共有_______个.16.二次函数23y ax ax c =-+(a<0,a ,c 均为常数)的图象经过()12A y -,、()22B y ,、()30C y ,三点,则1y ,2y ,3y 的大小关系是_____.17.如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++,则铅球推出的水平距离OA 的长是_____m .18.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是_____.19.如图,一位篮球运动员投篮,球沿抛物线20.2 2.25y x x =-++运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是_________m .20.如图是一个横断面为抛物线形状的拱桥,当水面在正常水位的情况下,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .则当水位下降m=________时,水面宽为5m ?三、解答题(本大题共5小题,每小题8分,共40分)21.如图,隧道的截面由抛物线DEC 和矩形ABCD 构成,矩形的长AB 为4m ,宽BC 为3m ,以DC 所在的直线为x 轴,线段CD 的中垂线为y 轴,建立平面直角坐标系.y 轴是抛物线的对称轴,最高点E 到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面134米高处,隧道的宽度是多少?(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.22.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系.图中的抛物线2117C :1126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.23.如图,抛物线y =x 2+x ﹣2与x 轴交于A 、B 两点,与y 轴交于点C .(1)求点A ,点B 和点C 的坐标;(2)抛物线的对称轴上有一动点P ,求PB +PC 的值最小时的点P 的坐标.24.李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?25.如图,抛物线的顶点为A(h,-1),与y轴交于点B1(0,)2 ,点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,-3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时 DFQ周长的最小值及点Q的坐标.参考答案:1.A2.D3.A4.C5.C6.D7.D8.D9.C10.C11.D12.B13.126414.(2,0)15.316.132y y y <<17.1018.﹣3<x <119.420.1.12521.(1)2114y x =-+(2)23(3)能通过22.(1)213482y x x =-++;(2)12米;(3)3524b ≥.23.(1)A (﹣2,0),B (1,0),C (0,﹣2).(2)P (12-,12-)24.(1)0.28.4y x =-+(110x ≤≤且x 为整数).(2)李大爷每天应购进这种水果7箱,获得的利润最大,最大利润是140元.25.(1)()21218y x =--;(2)1(3)26,14,2⎛⎫- ⎪⎝⎭。
北师大版2019-2020学年九年级数学第二学期第三章圆检测题(含答案)
北师大版九年级数学下册第三章圆检测卷一、单选题(共10题;共30分)1.已知Rt△ABC,∠C=90°,若以斜边AB为直径作⊙O,则点C在()A. ⊙O上B. ⊙O内C. ⊙O外D. 不能确定2.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于()A. 110°B. 130°C. 120°D. 140°3.到三角形三边距离都相等的点是三角形()的交点A. 三边中垂线B. 三条中线C. 三条高D. 三条内角平分线4.如图,△ABC的三边分别切⊙O于D,E,F,若∠A=50°,则∠DEF=()A. 65°B. 50°C. 130°D. 80°5.如图,☉O内切于Rt△ABC,∠ACB=90°,若∠CBO=30°,则∠A等于( )A. 15°B. 30°C. 45°D. 60°6.如图1,在⊙O中,弦AC和BD相交于点E,弧AB=弧BC=弧CD,若∠BEC=110°,则∠BDC()A. 35°B. 45°C. 55°D. 70°7.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于()A. 25°B. 30°C. 40°D. 50°8.若圆的一条弦把圆分成度数比为1:4的两段弧,则弦所对的圆周角等于()A. 36°B. 72°C. 36°或144°D. 72°或108°9.已知⊙O的面积为9πcm2,若点O到直线l的距离为πcm,则直线l与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 无法确定10.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连结CO,AD,∠BAD=20°,则下列说法中正确的是( )A.∠BOC=2∠BADB.CE=EOC.∠OCE=40°D.AD=2OB二、填空题(共10题;共30分)11.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=6,则BE=________.12.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为________cm13.如图,AB为⨀O的弦,⨀O的半径为5,OC⊥AB于点D,交⨀O于点C,且OD=4,则弦AB的长是________.14.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AC和BD相交于点E,AC=BC,DE=2cm,AD=5cm,则⊙O的半径为是________ cm.15.已知一块直角三角形钢板的两条直角边分别为30cm、40cm,能从这块钢板上截得的最大圆的半径为________.16.如图,P是⊙O的直径AB的延长线上一点,PC、PD切⊙O于点C、D.若PA=6,⊙O的半径为2,则∠CPD=________17.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为________.18.半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为________ cm.19.如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是________.20.如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E,若∠COB=3∠AOB,OC=2 ,则图中阴影部分面积是________(结果保留π和根号)三、解答题(共8题;共60分)21.已知排水管的截面为如图所示的⊙O,半径为10,圆心O到水面的距离是6,求水面宽AB.22.如图⊙O是△ABC的外接圆,圆心O在这个三角形的高AD上,AB=10,BC=12,求⊙O的半径.23.已知如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。
北师大版九年级下册数学单元测试题全套及答案
北师大版九年级下册数学单元测试题全套及答案(含期中期末试题)第一章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如图,在Rt △ABC 中,CD 是斜边AB 上的高线,∠ACD 的正弦值是23,则ACAB 的值是( B )A.255B.23C.355D.522.在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm ,则BC 的长度为( C )A .6 cmB .7 cmC .8 cmD .9 cm3.在△ABC 中,sin B =cos(90°-∠C )=12,那么△ABC 是( A )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.如图,过点C (-2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB =( B ) A.25B.23C.52D.325.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如图所示的图形,其中AB ⊥BE ,EF ⊥BE ,AF 交BE 于点D ,点C 在BD 上,有四位同学分别测量出以下四组数据:①BC ,∠ACB ;②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( C )A .1组B .2组C .3组D .4组6.如图,在Rt △ABC 中,∠C =90°,∠A =30°,E 为线段AB 上一点,且AE ∶EB =4∶1,EF ⊥AC 于F ,连接FB ,则tan ∠CFB 的值等于( C )A.33B.233C.533D .53二、填空题(本大题共6小题,每小题3分,共18分) 7.在Rt △ABC 中 ,∠C =90°,BC =5,AB =12,则tan A =512. 8.(2019·赤峰)如图,一根竖直的木杆在离地面3.1 m 处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__8.1__m __.(参考数据:sin 38°≈0.62,cos 38°≈0.79,tan 38°≈0.78)9.(2019·咸宁) 如图,某校九(1)班数学课外活动小组在河边测量河宽AB (这段河流的两岸平行),他们在点C 测得∠ACB =30°,点D 处测得∠ADB =60°,CD =80 m ,则河宽AB 约为 __69__ m .(结果保留整数,3≈1.73)10.(2019·柳州)在△ABC 中,sin B =13,tan C =22,AB =3,则AC 的长为 3 .11.如图,小明将一张矩形纸片ABCD 沿CE 折叠,B 点恰好落在AD 边上,设此点为F ,若AB ∶BC =4∶5,则sin ∠DCF 的值为 35.12.如图,在边长为1的小正方形网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点O ,则tan ∠AOD = 2 .三、(本大题共5小题,每小题6分,共30分)13.计算:sin 30°-(cos 45°-1)0+32tan 2 30°.解:原式=12-1+32×⎝⎛⎭⎫332=12-1+12=0.14.已知Rt △ABC 中,∠C =90°,∠B =60°,a =4,解这个直角三角形.解:∠A =90°-∠B =90°-60°=30°.由tan B =ba,得b =a tan B =4tan 60°=4 3.由cos B=a c ,得c =a cos B =4cos 60°=8.所以∠A =30°,b =43,c =8. 15.已知α为锐角,且tan α是方程x 2+2x -3=0的一个根,求2sin 2α+cos 2α- 3 tan (α+15°)的值.解:解方程x 2+2x -3=0, 得x 1=1,x 2=-3.∵tan α>0,∴tan α=1,∴α=45°,∴2sin 2α+cos 2α-3tan (α+15°)=2sin 245°+cos 245°-3tan 60°=2×⎝⎛⎭⎫222+⎝⎛⎭⎫222-3×3=1+12-3=-32.16.数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°角的三角板的斜边与含30°角的三角板的长直角边相等.于是,小路同学提出一个问题:如图,将一副三角板直角顶点重合后拼放在一起,点B ,C ,E 在同一直线上.若BC =2,求AF 的长.(请你运用所学的数学知识解决这个问题)解:在Rt △ABC 中,BC =2,∠A =30°, ∴AC =BC tan A =2tan 30°=2 3. 由题意,得EF =AC =2 3. 在Rt △EFC 中,∠E =45°, ∴CF =EF·sin 45°=23×22=6, ∴AF =AC -CF =23- 6.17.(2019·通辽)两栋居民楼之间的距离CD =30 m ,楼AC 和BD 均为10层,每层楼高为3 m .上午某时刻,太阳光线GB 与水平面的夹角为30°,此刻楼BD 的影子会遮挡到AC 的第几层?(参考数据:3≈1.7,2≈1.4)解:设太阳光线GB 交AC 于点F ,过F 作FH ⊥BD 于H ,AC =BD =3×10=30 m ,FH =CD =30 m ,∠BFH =∠α=30°,在RtBFH 中,tan ∠BFH =BH FH =BH 30=33,∴BH =30×33=103≈10×1.7=17,∴FC =HD =BD -BH ≈30-17=13,∵133≈4.3,所以在四层的上面,即第五层.答:此刻楼BD 的影子会遮挡到楼AC 的5层.四、(本大题共3小题,每小题8分,共24分)18.(2019·深圳)如图所示,某施工队要测量隧道长度BC ,AD =600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角为45°,再由D 走到E 处测量,DE ∥AC ,ED =500米,测得仰角为53°,求隧道BC 的长.(sin 53°≈45,cos 53°≈ 35,tan 53°≈43)解:在RtABD 中,AB =AD =600(米),作EM ⊥AC 于M ,则AM =DE =500(米),∴BM =100米,在Rt △CEM 中,tan 53°=CM EM =CM 600=43,∴CM =800(米),∴BC =CM -BM =800-100=700(米).答:隧道BC 长为700米.19.(2019·广元)如图,某海监船以60海里/小时的速度从A 处出发沿正西方向巡逻,一可疑船只在A 的西北方向的C 处,海监船航行1.5小时到达B 处时接到报警,需巡查此可疑船只,此时可疑船只仍在B 的北偏西30°方向的C 处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/小时的速度追击,在D 处海监船追到可疑船只,D 在B 的北偏西60°方向.(以下结果保留根号)(1)求B ,C 两处之间的距离;(2)求海监船追到可疑船只所用的时间.解:(1)过点C 作CE ⊥AB 于点E ,在Rt △BCE 中,∵∠BCE =30°,∴BE =BC ×sin ∠BCE =12BC ,CE =BC ×cos ∠BCE =32BC ,在Rt △ACE 中, ∵∠A =45°.∴AE =CE =32BC ,∵AB =60×1.5=90,∴AE -BE =32BC -12BC =90,解得BC =90(3+1).故B ,C 相距(903+90)海里.(2)过点D 作DF ⊥AB 于F ,由(1),得DF =CE =32BC ,∴DF =135+453,在Rt △BDF 中,∠DBF =30°,∴BD =2DF =270+903,∴海监船追到可疑船只所用的时间为(270+903)÷90=(3+3)h.20.已知:如图,在四边形ABCD 中,∠ABC =∠ADC =90°,DE ⊥BC 于E ,连接BD.若tan C =2,BE =3,CE =2,求点B 到CD 的距离.解:过点B 作BF ⊥CD ,垂足为F ,则∠BFC =90°.∵DE ⊥BC ,∴∠DEC =∠DEB =90°,在Rt △DEC 中,∵tan C =2,EC =2,∴DE =4.在Rt △BFC 中,∵tan C =2,∴BF =2FC ,设BF =x ,则FC =12x ,∵BF 2+FC 2=BC 2,∴x 2+(12x)2=(3+2)2,解得x =25,即BF =2 5.答:点B 到CD 的距离是2 5.五、(本大题共2小题,每小题9分,共18分)21.如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上. (1)求证:△ABF ∽△DFE ;(2)若sin ∠DFE =13,求tan ∠EBC 的值.(1)证明:∵∠A =∠D =90°,∠ABF 与∠DFE 都与∠AFB 互余,∴∠ABF =∠DFE ,∴△ABF ∽△DFE ;(2)解:∵sin ∠DFE =DE EF =13,∴设DE =k .则EF =CE =3k ,AB =CD =4k ,∴DF =EF 2-DE 2=22k ,由△ABF ∽△DFE ,得AF DE =AB DF ,即AF k =4k22k ,∴AF =2k ,∴BC =AD =2k +22k =32k ,∴tan ∠EBC =CE BC =3k 32k =22. 22.小明坐于堤边垂钓,如图,河堤AC 的坡角为30°,AC 长332米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离.解:如图,延长OA 交直线BC 于点D ,∵AO 的倾斜角是60°,∴∠ODB =60°.∵∠ACD =30°,∴∠CAD =180°-∠ODB -∠ACD =90°.在Rt △ACD 中,AD =AC·tan ∠ACD =332·33=32(米).∴CD =2AD =3(米). 又∵∠O =60°,∴△BOD 为等边三角形.∴BD=OD=OA+AD=3+32=4.5(米).∴BC=BD-CD=4.5-3=1.5米.答:浮漂B与河堤下端C之间的距离为1.5米.六、(本大题共12分)23.在一次科技活动中,小明进行了模拟雷达扫描实验.表盘是△ABC,其中AB=AC,∠BAC =120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒钟旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程.小明通过实验发现,光线从AB 处旋转开始计时,旋转1秒,此时光线AP交BC边于点M,BM的长为(203-20) cm.(1)求AB的长;(2)从AB处旋转开始计时,若旋转6秒,此时光线AP与BC边的交点在什么位置?若旋转2 030秒,交点又在什么位置?请说明理由.解:(1)如图①,过A点作AD⊥BC,垂足为D.∵∠BAC=120°,AB=AC,∴∠ABC=∠C=30°.令AB=2t cm.在Rt△ABD中,AD=12AB=t,BD=32AB=3t.在Rt AMD中,∵∠AMD=∠ABC+∠BAM=45°,∴MD=AD=t.∵BM=BD-MD.即3t-t=203-20.解得t=20.∴AB=2×20=40 cm.答:AB的长为40 cm.(2)如图②,当光线旋转6秒,设AP交BC于点N,此时∠BAN=15°×6=90°.在Rt△ABN中,BN=ABcos 30°=4032=8033cm.∴光线AP旋转6秒,与BC的交点N距点B8033cm处.如图③,设光线AP旋转2 030秒后光线与BC的交点为Q.由题意可知,光线从边AB开始到第一次回到AB处需8×2=16秒,而2 030=126×16+14,即AP旋转2 030秒与旋转14秒时和BC的交点是同一个点Q.旋转14s的过程是B→C:8s,C→Q:6s,因此CQ=BN=8033cm,∵AB=AC,∠BAC=120°,∴BC=2ABcos 30°=2×40×32=40 3 cm,∴BQ=BC-CQ=403-8033=4033cm.答:光线AP旋转2 030秒后,与BC的交点Q在距点B的4033cm处.第二章检测题(BSD)(考试时间:120分钟满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知抛物线y=x2+ax+b与x轴的交点坐标为(-1,0)和(-3,0),则方程x2+ax+b=0的解是( B )A.x1=1,x2=-3 B.x1=-1,x2=-3C.x=-3 D.x=32.如图,在Rt△ABC中,∠C=90°,AC=4 cm,BC=6 cm,动点P从点C开始沿CA以1 cm/s 的速度向A点运动,同时动点Q从点C开始沿CB以2 cm/s的速度向B点运动,其中一个动点到达终点时,另一个动点也停止运动,则运动过程中所构成的△CPQ的面积y(cm2)与运动时间x(s)之间的函数图象大致是( C )3.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=-t2+24t +1.则下列说法中正确的是( D )A.点火后9 s和点火后13 s的升空高度相同B.点火后24 s火箭落于地面C.点火后10 s的升空高度为139 mD.火箭升空的最大高度为145 m4.若二次函数y=ax2+bx+c(a≠0)经过原点和第一、二、三象限,则(A)A.a>0,b>0,c=0 B.a>0,b<0,c=0C.a<0,b>0,c=0 D.a<0,b<0,c=05.(2019·烟台)已知二次函数y=ax2+bx+c(a≠0)的y与x的部分对应值如下表,下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2; ③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(B)A.2 B.36.(2019·巴中)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b -c >0,④a +b +c <0.其中正确的是( A )A .①④B .②④C .②③D .①②③④二、填空题(本大题共6小题,每小题3分,共18分)7.已知一条抛物线的开口大小与y =x 2相同但方向相反,且顶点坐标是(2,3),则该抛物线的表达式是 y =-x 2+4x -1 .8.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数表达式是y =60t -32t 2,在飞机着陆滑行中,最后4 s 滑行的距离是 24 m.9.若二次函数y =2x 2-4x -1的图象与x 轴交于A (x 1,0),B (x 2,0)两点,则1x 1+1x 2的值为 -4 .10.如图,已知△OBC 是等腰直角三角形,∠OCB =90°,若点B 的坐标为(4,0),点C 在第一象限,则经过O ,B ,C 三点的抛物线的表达式是 y =-12x 2+2x .11.已知二次函数y =ax 2+2ax +3a 2+3(a ≠0)(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值是__1__.12.如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx(a>0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a>0)交于点B.若四边形ABOC 是正方形,则b 的值是 -2 .三、(本大题共5小题,每小题6分,共30分)13.已知当x =2时,抛物线y =a(x -h)2有最大值,此抛物线过点(1,-3),求抛物线的表达式,并指出当x 为何值时,y 随x 的增大而减小.解:当x =2时,有最大值,所以h =2.此抛物线过(1,-3),所以-3=a(1-2)2,解得a =-3.此抛物线的表达式为y =-3(x -2)2.当x >2时,y 随x 的增大而减小.14.已知抛物线y =-3x 2经过平移经过点(0,0)和(1,9),求出平移后抛物线的表达式,并写出它的对称轴和顶点坐标.解:设平移后抛物线的表达式为y =-3x 2+bx +c ,将点(0,0)和(1,9)的坐标代入,得⎩⎨⎧c =0,-3+b +c =9,解得⎩⎪⎨⎪⎧b =12,c =0.∴平移后抛物线的表达式为y =-3x 2+12x.∵y =-3x 2+12x =-3(x -2)2+12,∴对称轴为直线x=2,顶点坐标为(2,12).15.已知抛物线y =-a(x -2)2+3经过点(1,2).(1)求a 的值;(2)若点A(m ,y 1),B(n ,y 2)(m >n >2)都在该抛物线上,试比较y 1与y 2的大小. 解:(1)把(1,2)代入y =-a(x -2)2+3,得2=-a(1-2)2+3,解得a =1;(2)由(1)知原抛物线的表达式为y =-(x -2)2+3,其开口向下,对称轴为直线x =2, ∴当x >2时,y 随x 的增大而减小. ∵m >n >2,∴y 1<y 2.16.如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A ,C 分别在x 轴、y 轴的正半轴上,二次函数y =-23x 2+bx +c 的图象经过B ,C 两点.(1)求该二次函数的表达式;(2)结合函数的图象探索,当y >0时,x 的取值范围.解:(1)由题意可得B(2,2),C(0,2),将B ,C 坐标代入y =-23x 2+bx +c ,解得c =2,b =43,所以二次函数的表达式是y =-23x 2+43x +2.(2)令y =0,解-23x 2+43x +2=0,得x 1=3,x 2=-1,由图象可知:y >0时,x 的取值范围是-1<x <3.17.如图,抛物线y =ax 2+bx -5(a ≠0)与x 轴交于点A(-5,0)和点B(3,0),与y 轴交于点C.(1)求该抛物线的表达式;(2)若点E 为x 轴下方抛物线上的一动点,当S △ABE =S △ABC 时,求点E 的坐标.解:(1)∵抛物线经过A ,B 两点,∴把A(-5,0),B(3,0)代入y =ax 2+bx -5,得⎩⎨⎧25a -5b -5=0,9a +3b -5=0,解得⎩⎨⎧a =13,b =23,∴该抛物线的表达式为y =13x 2+23x -5.(2)∵y =13x 2+23x -5,∴令x =0,则y =-5.∴C 点的坐标为(0,-5),∵S △ABE =S △ABC ,∴点E的纵坐标与点C 的纵坐标相等,即点E 的纵坐标为-5,令13x 2+23x -5=-5,解得x 1=-2,x 2=0(舍去),∴点E 的坐标为(-2,-5).四、(本大题共3小题,每小题8分,共24分) 18.已知二次函数y =x 2-(2m -1)x +m 2-m.(1)求证:此二次函数图象与x 轴必有两个不同的交点;(2)若此二次函数图象与直线y =x -3m +4的一个交点在y 轴上,求m 的值.(1)证明:令y =0,有x 2-(2m -1)x +m 2-m =0,Δ=b 2-4ac =(2m -1)2-4(m 2-m)=1>0,∴结论成立;(2)解:令x =0,代入y =x 2-(2m -1)x +m 2-m 与y =x -3m +4,得m 2-m =-3m +4,∴m =-1+5或-1- 5.19.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看作一点)的路线是抛物线y =-35x 2+3x +1的一部分,如图.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4 m ,在一次表演中人梯到起点A 的水平距离为4 m ,问这次表演是否成功?请说明理由.解:(1)∵y =-35x 2+3x +1=-35⎝⎛⎭⎫x -522+194,∴该演员弹跳高度的最大值为194m ; (2)当x =4时,y =-35×42+3×4+1=3.4,∴这次表演是成功的.20.如图,已知抛物线y =ax 2-4x +c 经过点A(0,-6)和B(3,-9).(1)求出抛物线的表达式;(2)写出抛物线的对称轴及顶点坐标;(3)点P(m ,m)(其中m >0)与点Q 均在抛物线上,且这两点关于抛物线的对称轴对称,求m 的值及点Q 的坐标.解:(1)依题意有⎩⎨⎧a ×02-4×0+c =-6,a ×32-4×3+c =-9,即⎩⎨⎧c =-6,9a -12+c =-3,∴⎩⎪⎨⎪⎧a =1,c =-6.∴抛物线的表达式为y =x 2-4x -6.(2)把y =x 2-4x -6配方得y =(x -2)2-10,∴对称轴为直线x =2,顶点坐标(2,-10).(3)由点P(m ,m)在抛物线上,有m =m 2-4m -6,即m 2-5m -6=0.∴m 1=6或m 2=-1(舍去),∴m =6,∴P 点的坐标为(6,6).∵点P ,Q 均在抛物线上,且关于对称轴x =2对称,∴Q 点的坐标为(-2,6). 五、(本大题共2小题,每小题9分,共18分)21.把抛物线y =12x 2平移得到抛物线m ,抛物线m 经过点A(-6,0)和原点O(0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q.(1)求顶点P 的坐标; (2)写出平移过程;(3)求图中阴影部分的面积.解:(1)设抛物线m 的表达式为y =12x 2+bx +c ,把点A(-6,0),原点O(0,0)代入,得b =3,c=0,∴抛物线m 的表达式为y =12x 2+3x =12(x +3)2-92,所以顶点P 的坐标为⎝⎛⎭⎫-3,-92. (2)把抛物线y =12x 2先向左平移3个单位长度,再向下平移92个单位长度即可得到抛物线y =12(x +3)2-92.(3)Q 点横坐标为-3,代入y =12x 2,可得Q ⎝⎛⎭⎫-3,92,图中阴影部分的面积=S △OPQ =12×3×9=272. 22.(2019·南充)在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔、一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元. (1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?解:(1)设钢笔、笔记本的单价分别为x ,y 元,根据题意得,⎩⎨⎧2x +3y =38,4x +5y =70,解得:⎩⎪⎨⎪⎧x =10,y =6.答:钢笔、笔记本的单价分别为10元,6元;(2)设钢笔的单价为a 元,购买数量为b 支,支付钢笔和笔记本的总金额为w 元, ①当30≤b ≤50时,a =10-0.1(b -30)=-0.1b +13,w =b(-0.1b +13)+6(100-b)=-0.1b 2+7b +600=-0.1(b -35)2+722.5,∵当b =30时,w =720,当b =50时,w =700, ∴当30≤b ≤50时,700≤w ≤722.5;②当50<b ≤60时,a =8,w =8b +6(100-b)=2b +600,700<w ≤720,∴当30≤b ≤60时,w 的最小值为700元.答:这次奖励一等奖学生50人时,购买的奖品总金额最少,最少为700元.六、(本大题共12分)23.(2019·新疆)如图,抛物线y =ax 2+bx +c 经过A (-1,0),B (4,0),C (0,4)三点. (1)求抛物线的表达式及顶点D 的坐标; (2)将(1)中的抛物线向下平移154个单位长度,再向左平移h (h >0)个单位长度,得到新抛物线.若新抛物线的顶点D ′在△ABC 内,求h 的取值范围;(3)点P 为线段BC 上一动点(点P 不与点B ,C 重合),过点P 作x 轴的垂线交(1)中的抛物线于点Q ,当△PQC 与△ABC 相似时,求△PQC 的面积.题图 答图解:(1)函数表达式为y =a(x +1)(x -4)=a(x 2-3x -4),即-4a =4,解得a =-1,故抛物线的表达式为y =-x 2+3x +4,顶点D(32,254);(2)抛物线向下平移154个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线的顶点D' (32-h ,52),将点A ,C 的坐标代入一次函数表达式并解得直线AC 的表达式为y =4x +4,将点D' 坐标代入直线AC 的表达式得:52=4(32-h)+4,解得h =158,故0<h<158;(3)过点P 作y 轴的平行线交抛物线和x 轴于点Q ,H ,∵OB =OC =4,∴∠PBA =∠OCB =45°=∠QPC ,直线BC 的表达式为y =-x +4,则AB =5,BC =42,AC =17,S ABC =12×5×4=10,设点Q(m ,-m 2+3m +4),点P(m ,-m +4),CP =2m ,PQ =-m 2+3m +4+m -4=-m 2+4m ,①当△CPQ ∽△CBA ,PC BC =PQ AB ,即2m42=-m 2+4m 5,解得m =114,相似比为PC BC =1116,②当△CPQ ∽△ACB ,同理可得相似比为PC AB =12225,利用面积比等于相似比的平方可得S PQC=10×(1116)2=605128或SPQC =10×(12225)2=576125. 第三章检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.已知⊙P 的半径为4,圆心P 的坐标为(1,2),点Q 的坐标为(0,5),则点Q 与⊙P 位置关系是( C )A .点Q 在⊙P 外B .点Q 在⊙P 上C .点Q 在⊙P 内D .不能确定2.如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD 等于( D ) A .20° B .40° C .50° D.80°3.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD =∠BCD ,则BD ︵的长为( C )A .πB.32πC .2πD .3π4.同一个圆的内接正六边形和外切正六边形的周长之比为( B )A .3∶4B .3∶2C .2∶ 3D .1∶25.如图,AC 是⊙O 的直径,弦BD ⊥AO 于点E ,连接BC ,过点O 作OF ⊥BC 于点F ,若BD =8 cm ,AE =2 cm ,则OF 的长度是( D )A .3 cmB . 6 cmC .2.5 cmD . 5 cm 6.如图,将正方形ABCD 绕点A 按逆时针方向旋转30°,得正方形AB 1C 1D 1,B 1C 1交CD 于点E ,AB =3,则四边形AB 1ED 的内切圆半径为( B )A .3+12B .3-32C .3+13D .3-33二、填空题(本大题共6小题,每小题3分,共18分)7.如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于69° . 8.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得AD =10 cm ,点D 在量角器上的读数为60°,则该直尺的宽度为533 cm . 9.如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与BA 的延长线交于点D ,点E 在BC ︵上(不与点B ,C 重合),连接BE ,CE.若∠D =40°,则∠BEC =115度.10.(2019·内江)如图,在平行四边形ABCD 中,AB<AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为2π3+ 3 . 11.如图,P 是反比例函数y =4x (x >0)的图象上一点,以点P 为圆心、1个单位长度为半径作⊙P ,当⊙P 与直线y =3相切时,点P 的坐标为 (1,4)或(2,2) .12.(2019·包头)如图,BD 是⊙O 的直径,A 是⊙O 外一点,点C 在⊙O 上,AC 与⊙O 相切于点C ,∠CAB =90°,若BD =6,AB =4,∠ABC =∠CBD ,则弦BC 的长为.三、(本大题共5小题,每小题6分,共30分)13.如图,⊙O 是△ABC 的外接圆,∠A =45°,BD 是直径,BD =2,连接CD ,求BC 的长.解:在⊙O 中,∵∠A =45°,∴∠D =45°. ∵BD 为⊙O 的直径, ∴∠BCD =90°, ∴BC =BD·sin 45°=2×22= 2. 14.如图,已知CD 平分∠ACB ,DE ∥AC.求证:DE =BC.证明:∵CD 平分∠ACB ,∴∠ACD =∠BCD ,∴BD ︵=AD ︵,∵DE ∥AC ,∴∠ACD =∠CDE ,∴AD ︵=CE ︵,∴BD ︵=CE ︵,∴DE ︵=BC ︵,∴DE =BC.15.如图,两个同心圆中,大圆的弦AB ,AC 分别切小圆于点D ,E ,△ABC 的周长为12 cm ,求△ADE 的周长.解:连接OD ,OE.∵AB ,AC 分别切小圆于点D ,E , ∴OD ⊥AB ,OE ⊥AC , ∴AD =DB ,AE =EC , ∴DE 是△ABC 的中位线,∴DE =12BC ,∴C △ADE =12C △ABC =12×12=6 cm .16.如图所示,⊙O 的直径AB 长为6,弦AC 的长为2,∠ACB 的平分线交⊙O 于点D ,求四边形ADBC 的面积.解:∵AB 是⊙O 的直径, ∴∠ACB =∠ADB =90°.在Rt △ABC 中,由勾股定理,得 BC =AB 2-AC 2=62-22=4 2. 又∵CD 平分∠ACB , ∴AD ︵=BD ︵,∴AD =BD.在Rt △ABD 中,由勾股定理,得AD =BD =22AB =22×6=3 2. ∴S 四边形ADBC =S △ABC +S △ABD =42+9,∴四边形ADBC 的面积为42+9.17.如图,点I 是△ABC 的内心,AI 的延长线交BC 于点D ,交△ABC 的外接圆于点E.求证:IE 2=AE·DE.证明:连接BE ,BI.∵I 为△ABC 的内心,∴∠1=∠2,∠3=∠4. 又∵∠6=∠1+∠3,∠IBE =∠4+∠5, ∠5=∠2=∠1,∴∠IBE =∠6,∴IE =BE. ∵∠5=∠1,∠E =∠E ,∴△BED∽△AEB,∴BEDE=AEBE,∴BE2=AE·DE,∴IE2=AE·DE.四、(本大题共3小题,每小题8分,共24分)18.如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,B,C 两点的坐标分别为(0,b),(1,0).(1)当b=3时,求经过B,C两点的直线的表达式;(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求出每种位置关系时b的取值范围.解:(1)直线BC表达式为y=-3x+3.(2)当BC切⊙O′于第二象限时,记切点为点D.易得DC= 5.∵BO=BD=b,∴BC=5-b.12+b2=(5-b)2,得b=25 5.同理当BC切⊙O′于第三象限D1点时,可求得b=-25 5.故当b>255或b<-255时,直线BC与⊙O′相离;当b=255或-255时,直线BC与⊙O′相切;当-255<b<255时,直线BC与⊙O′相交.19.(2018·南充)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=4.(1)求证:PC是⊙O的切线.(2)求tan∠CAB的值.(1)证明:连接OC,BC,∵⊙O的半径为3,PB=2,∴OC=OB=3,OP=OB+PB=5.∵PC=4,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线.(2)解:∵AB是直径,∴∠ACB=90° ,∴∠ACO+∠OCB=90°,∵OC⊥PC,∴∠BCP+∠OCB =90°,∴∠BCP=∠ACO.∵OA=OC,∴∠A=∠ACO,∴∠A=∠BCP,在△PBC和△PCA中,∠BCP=∠A,∠P=∠P,∴△PBC∽△PCA,∴BCAC=PBPC=24=12,∴tan∠CAB=BC AC=12.20.(齐齐哈尔中考)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.又∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∴∠DBC+∠ABD=90°,即∠ABC=90°∴BC是⊙O的切线.(2)解:∵BF=BC=2且∠ADB=90°,∴∠CBD=∠FBD,又∵OE∥BD,∴∠FBD=∠OEB.∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠DBE=∠OBE=13∠ABC=13×90°=30°,∴∠C=60°,∴AB=3BC=23,∴⊙O的半径为3,连接OD,∴阴影部分面积为S扇形OBD-S△OBD=16π×3-34×3=π2-334.五、(本大题共2小题,每小题9分,共18分)21.(2019·安顺)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E 两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:点H为CE的中点;(3)若BC=10,cos C=55,求AE的长.(1)解:DH与⊙O相切.理由:连接OD,AD,∵AB为直径,∴∠ADB=90°,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH为⊙O的切线.(2)证明:连接DE,∵A,B,D,E四点共圆,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∴CD=ED,∵DH⊥CE,∴点H为CE的中点.(3)解:CD=12BC=5,∵cos C=CDAC=55,∴AC=55,∵cos C=CHCD=55,∴CH=5,∴CE=2CH =25,∴AE =AC -CE =3 5.22.如图,在Rt △ABC 与Rt △OCD 中,∠ACB =∠DCO =90°,点O 为AB 的中点.(1)求证:∠B =∠ACD ;(2)已知点E 在AB 上,且BC 2=AB ·BE . ①若tan ∠ACD =34,BC =10,求CE 的长;②试判断CD 与以A 为圆心,AE 为半径的⊙A 的位置关系,并请说明理由.(1)证明:∵∠ACB =∠DCO =90°,∴∠ACB -∠ACO =∠DCO -∠ACO ,即∠ACD =∠OCB ; 又∵点O 是AB 的中点,∴OC =OB , ∴∠OCB =∠B , ∴∠B =∠ACD .(2)解:①∵BC 2=AB ·BE ,∴BC AB =BEBC.∵∠B =∠B ,∴△ABC ∽△CBE ,∴∠ACB =∠CEB =90°. ∵∠ACD =∠B ,∴tan ∠ACD =tan B =34,设BE =4x ,则CE =3x .由勾股定理,可知BE 2+CE 2=BC 2, ∴(4x )2+(3x )2=100,∴解得x =2,∴CE =6.②CD 与⊙A 相切.理由如下: 过点A 作AF ⊥CD 于点F .∵∠CEB =90°,∴∠B +∠ECB =90°. ∵∠ACE +∠ECB =90°,∴∠B =∠ACE .∵∠ACD =∠B ,∴∠ACD =∠ACE ,∴CA 平分∠DCE .∵AF ⊥CD ,AE ⊥CE ,∴AF =AE ,∴直线CD 与⊙A 相切.六、(本大题共12分)23.(2019·荆州)如图AB 是⊙O 的直径,点C 为⊙O 上一点,点P 是半径OB 上一动点(不与O ,B 重合),过点P 作射线l ⊥AB ,分别交弦BC ,BC ︵于D ,E 两点,在射线l 上取点F ,使FC =FD .(1)求证:FC 是⊙O 的切线; (2)当点E 是BC ︵的中点时,①若∠BAC =60°,判断O ,B ,E ,C 为顶点的四边形是什么特殊四边形,并说明理由; ②若tan ∠ABC =34,且AB =20,求DE 的长.(1)证明:连接OC ,∵OB =OC ,∴∠OBC =∠OCB ,∵PF ⊥AB ,∴∠BPD =90°,∴∠OBC +∠BDP =90°,∵FC =FD, ∴∠FCD =∠FDC ,∵∠FDC =∠BDP ,∴∠FCD =∠BDP ,∴∠OCB +∠FCD =90°,∴OC ⊥FC ,FC 是⊙O 的切线.(2)解:连接OC ,OE ,BE ,CE ,OE 与BC 交于H. ①以O ,B ,E ,C 为顶点的四边形是菱形.理由:∵AB 是直径,∴∠ACB =90°,∵∠BAC =60°,∴∠BOC =120°,∵点E 是BC ︵的中点,∴∠BOE =∠COE =60°,∵OB =OE =OC ,∴△BOE ,△COE 均为等边三角形,∴OB =BE =CE =OC ,∴四边形BOCE 是菱形.②∵AC BC =tan ∠ABC =34,设AC =3k ,BC =4k ,k>0.由AC 2+BC 2=AB 2,即(3k)2+(4k)2=202,解得k =4,∴AC =12,BC =16,∵点E 是BC ︵的中心,∴OE ⊥BC ,BH =CH =8,∵S △BOE =12OE·BH =12OB·PE ,即12×10×8=12×10×PE ,∴PE =8,又OP =OE 2-PE 2=6,∴BP =OB -OP =4,∵DP BP =tan ∠ABC =34,∴DP =34BP =3,∴DE =PE -DP =8-3=5.期中检测题(BSD)(考试时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.对于函数y =-2(x -m)2的图象,下列说法不正确的是( D ) A .开口向下 B .对称轴是x =m C .最大值为0 D .与y 轴不相交 2.在Rt △ABC 中,∠C =90°,AB =6,tan B =33,则Rt △ABC 的面积为( B ) A .9 3B .923C .9D .183.如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏西30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之间的距离(即PC 的长)为( D )A .40海里B .60海里C .203海里D .403海里4.若抛物线y =x 2+ax +b 与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点 ( B )A .(-3,-6)B .(-3,0)C .(-3,-5)D .(-3,-1)5.如图,在Rt △ABC 中,∠ACB =90°,∠A <∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处,若CD 恰好与MB 垂直,则tan A 的值为( A )A .33B . 3C .12D .136.已知抛物线y =ax 2+bx +c 的图象如图所示,则|a -b +c|+|2a +b|等于( D ) A .a +b B .a -2b C .a -b D .3a 二、填空题(本大题共6小题,每小题3分,共18分)7.某种型号的迫击炮发射炮弹时的飞行高度h(m )与飞行时间t(s )的关系满足h =-13t 2+10t ,则经过 30 s ,发射的炮弹落地爆炸.8.在△ABC 中,∠A ,∠B 都是锐角,若⎪⎪⎪⎪sin A -12+⎝⎛⎭⎫cos B -122=0,则∠C = 90° . 9.若函数y =mx 2+(m +2)x +12m +1的图象与x 轴只有一个交点,那么m 的值为 0,2或-2 .10.(2019·盐城)在△ABC 中,BC =6+2,∠C =45°,AB =2AC ,则AC 的长为__2__. 11.(2019·宿迁)若∠MAN =60°,△ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当△ABC 是锐角三角形时,BC12.已知抛物线y =23x 2+43x -2与x 轴交于A ,B 两点,与y 轴交于点C .点P 在对称轴上,当△PBC的周长最小时,点P 的坐标是⎝⎛⎭⎫-1,-43. 三、(本大题共5小题,每小题6分,共30分)13.计算:cos 60°-sin 45°+14tan 230°+cos 30°-sin 30°.解:原式=12-22+14×⎝⎛⎭⎫332+32-12=32-22+112. 14.由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中,∠A =30°,tan B =,AC =43,求AB 的长”.这时小明去翻看了标准答案,显示AB =10.你能否帮助小明通过计算说明污渍部分的内容是什么?解:过点C 作CH ⊥AB 于点H ,在Rt △ACH 中,CH =AC ·sin A =43×sin 30°=23,AH =AC ·cos A =43×cos 30°=6, ∴BH =AB -AH =4, ∴tan B =CH BH =32,∴污渍部分的内容是32. 15.(2019·凉山州)已知二次函数y =x 2+x +a 的图象与x 轴交于A (x 1,0),B (x 2,0)两点,且1x 21+1x 22=1,求a 的值.解:函数y =x 2+x +a 的图象与x 轴交于A(x 1,0),B(x 2,0)两点,∴x 1+x 2=-1,x 1·x 2 =a ,∵1x 21+1x 22=x 21+x 22x 21x 22=(x 1+x 2)2-2x 1x 2(x 1x 2)2=1-2a a 2=1,∴a =-1+ 2 或a =-1- 2. 16.在同一平面直角坐标系中,一次函数y =x -4与二次函数y =-x 2+2x +c 图象交于点A (-1,m ).(1)求m ,c 的值;(2)求二次函数图象的对称轴和顶点坐标. 解:(1)∵A 点在一次函数的图象上,∴m =-1-4=-5.∴点A 的坐标为(-1,-5),∵A 点在二次函数图象上,∴-5=-1-2+c ,解得c =-2. (2)由①可知二次函数表达式为y =-x 2+2x -2=-(x -1)2-1,∴二次函数的图象的对称轴为直线x =1,顶点坐标为(1,-1).17.如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B 处的求救者后,又发现点B 正上方点C 处还有一名求救者,在消防车上点A 处测得点B 和点C 的仰角分别为45°和65°,点A 距地面2.5米,点B 距地面10.5米,为救出点C 处的求救者,云梯需要继续上升的高度BC 约为多少米?(结果保留整数,参考数据:tan 65°≈2.1,sin 65°≈0.9,cos 65°≈0.4,2≈1.4)解:作AH ⊥CN 于点H .在Rt △ABH 中,∵∠BAH =45°,BH =10.5-2.5=8(m), ∴AH =BH =8(m), 在Rt △AHC 中,tan 65°=CH AH, ∴CH =8×2.1≈17(m),∴BC =CH -BH =17-8=9(m).四、(本大题共3小题,每小题8分,共24分)18.如图,直线y =x +2与x 轴交于点A ,与y 轴交于点B ,AB ⊥BC ,且点C 在x 轴上,若抛物线y =ax 2+bx +c 以C 为顶点,且经过点B ,求这条抛物线对应的函数表达式.解:∵直线y =x +2与x 轴交于点A ,与y 轴交于点B , ∴A (-2,0),B (0,2),∴△ABO 为等腰直角三角形.又∵AB ⊥BC ,∴△BCO 也为等腰直角三角形, ∴OC =OB =OA .∴C (2,0),设抛物线对应的函数表达式为y =a (x -2)2, 将点B (0,2)的坐标代入得2=a (0-2)2,解得a =12,∴此抛物线对应的函数表达式为y =12(x -2)2,即y =12x 2-2x +2.19.如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC.(1)求sin B 的值;(2)现需要加装支架DE ,EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.解:(1)∵BD =DC =9,AD =6, ∴AB =92+62=313.∴sin B =AD AB =6313=21313.(2)∵EF ∥AD ,BE =2AE ,∴△BEF ∽△BAD. ∴EF AD =BF BD =BE BA =23,∴EF 6=BF 9=23, ∴EF =4,BF =6,∴DF =3,∴在Rt △DEF 中,DE =42+32=5米.20.为美化校园,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD(只围AB ,BC 两边),设AB =x m .(1)若花园的面积为192 m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.解:(1)∵AB =x m ,则BC =(28-x)m ,∴x(28-x)=192,解得x 1=12,x 2=16,∴当花园的面积为192 m 2时,x 的值为12 m 或16 m .(2)由题意可得S=x(28-x)=-x2+28x=-(x-14)2+196,∵在P处有一棵树与墙CD,AD的距离分别是15 m和6 m,28-15=13,∴6≤x≤13,∴当x=13时,S最大=-(13-14)2+196=195,∴花园面积S的最大值为195 m2.五、(本大题共2小题,每小题9分,共18分)21.如图,小河上有一拱桥,拱桥及河道的截面轮廓由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的表达式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=-1128(t-19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?解:(1)抛物线的表达式为y=-364x2+11(-8≤x≤8).(2)令-1128(t-19)2+8=11-5.解得t1=35,t2=3.∴当3≤t≤35时,水面到顶点C的距离不大于5米,需禁止船只通行,禁止船只通行时间为35-3=32小时.答:禁止船只通行时间为32小时.22.(2019·岳阳)慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D,B,F在同一水平线上,参考数据:sin 62.3°≈0.89,cos 62.3°≈0.46,tan 62.3°≈1.9)(1)求小亮与塔底中心的距离BD;(用含a的式子表示)(2)若小亮与小琴相距52米,求慈氏塔的高度AB.解:(1)四边形CDBG,HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt AHE中,tan∠AEH=AHHE,则AH=HE·tan∠AEH≈1.9a,∴AG=AH-GH=1.9a-0.2,在Rt ACG中,∠ACG=45°,∴CG=AG=1.9a-0.2,∴BD=1.9a-0.2,答:小亮与塔底中心。
(北师大版)九年级数学下册(全册)章节检测卷汇总
(北师大版 )九年级|数学下册 (全册 )章节检测卷汇总北师大版九年级|数学下册单元检测第1章 -直角三角形的边角关系 (3 )附答案参考数值:41.12≈ ,73.13≈一、选择题 (每题3分 ,共30分 )1、在Rt △ABC 中 ,∠C =90° ,AC =3 ,BC =4 ,那么B cos 的值是 ( ) A 、54 B 、53 C 、43 D 、34 2、在Rt △ABC 中 ,如果各边长度都扩大为原来的2倍 ,那么锐角A 的正弦值 ( ) A 、扩大2倍 B 、缩小2倍 C 、扩大4倍D 、没有变化A 、A a c sin =B 、Aac cos =C 、A a c tan ⋅=D 、A a c sin ⋅=4.在△ABC 中 ,假设1tan =A ,22sin =B ,你认为对△ABC 最|确切的判断是 ( ) A .是等腰三角形 B .是等腰直角三角形 C .是直角三角形D .是一般锐角三角形5、等腰三角形的底角为30° ,底边长为23 ,那么腰长为 ( ) A .4B .23C .2D .226、如图1 ,在菱形ABCD 中 ,∠ABC =60° ,AC =4 ,那么BD 长为 ( ) A .83B .43C .23D .87.在△ ABC 中 ,∠C =90° ,53sin =B ,那么A cos 的值是( ) A 、53 B 、34 C 、54 D .438、如图2 ,沿AC 方向开山修路 ,为了加快施工进度 ,要在小山的另一边AC同时施工.从AC 上的一点B ,取∠ABD =145° ,BD =500米 ,∠D =55° ,要使A ,C ,E 成一直线 ,那么开挖点E 离点D 的距离是 ( ) A 、500sin55°米 B 、500cos55°米 C 、500tan55°米D 、500tan35°米9、如图3 ,在矩形ABCD 中 ,D E ⊥AC ,垂足为E ,设∠ADE =α ,且cos α =35,AB =4 , 那么AD 的长为 ( ) A 、3 B 、163C 、203D 、16510.甲、乙、丙三个梯子斜靠在一堵墙上 (梯子顶端靠墙 ) , 小明测得:甲与地面的夹角为60°;乙的底端距离墙脚3米 ,且顶端距离墙脚3米;丙的坡度为3 .那么 ,这三张梯子的倾斜程度 ( )A .甲较陡B .乙较陡C .丙较陡D .一样陡二、填空题 (每题5分 ,共25分 )11、在△ABC 中 ,∠A ,∠B ,∠C 的对边分别是a 、b 、c ,1=a ,1=b ,2=c ,那么=A sin __________12、比拟以下三角函数值的大小:︒40sin ︒50sin13、小芳为了测量旗杆高度 ,在距旗杆底部6米处测得顶端的仰角是60° ,小芳的身高不计 ,那么旗杆高 米 . (保存根号 ) 14、在ABC ∆中 ,假设90C ∠=︒ ,1sin 2A = ,2AB = ,那么ABC ∆的周长为 (保存根号 )15.如图 ,在某建筑物AC 上 ,挂着 "多彩云南〞的宣传条幅BC ,小明站在点F 处 ,看条幅顶端B ,测的仰角为︒30 ,再往条幅方向前行20米到达点E 处 ,看到条幅顶端B ,测的仰角为︒60 ,那么宣传条幅BC 的长为 米 (小明的身高不计 ,结果精确到0.1米 )三、解答题 (16题6分 ,17题9分 ,18题9分 ,19题10分 ,20题11分 )16、计算:︒+︒-︒60tan 245cos 330sin17、如图10 ,在电线杆上离地面高度5米的C点处引两根拉线固定电线杆.一根拉线AC和地面成60°角,另一根拉线BC与地面成45°角,试求两根拉线的长度. (精确到0.1米)18、某村方案开挖一条长1500米的水渠,渠道的断面为等腰梯形,渠道深0.8米,下底宽1.2米,坡角为450 (如下图) ,求挖土多少立方米.19、如图,CD是平面镜,光线从A出发经CD上点E发射后照射到B点.假设入射角为α,AC⊥CD ,BD⊥CD ,垂足分别为C、D ,且AC =3 ,BD =6 ,CD =11求tanα的值.BαAC E DD CBA20、如图,为测得峰顶A到河面B的高度h ,当游船行至|C处时测得峰顶A的仰角为α ,前进m米至|D处时测得峰顶A的仰角为β (此时C、D、B三点在同一直线上).(2)当α =45°,β =60°,m =50米时,求h的值.(精确到0.1m ,2≈1.41 ,3≈1.73 )如图,在东海中某小岛上有一灯塔A ,A塔附近方圆25海里范围内有暗礁.我海军110舰在O 点处测得A塔在其西北30°方向;再向正西方向行驶20海里到达B处,测得A塔在其西北方向45° ,如果该舰继续向西航行,是否有触礁的危险?请通过计算说明理由.答案:11、2212、< 13、3614、33+解答题 16、解:原式=3222321⋅+⨯-............3分 =62621+-....................5分 =2621+=261+...........6分17、解:根据题意 ,△CDA 和△CDB 是Rt △CD =5在Rt △CDA 中︒=60sin ACCD................................1分 ∴8.5331031032523560sin ≈==⨯=÷=︒=CD AC (米 )...................4分在Rt △CDB 中︒=45sin CBCD.................................5分 ∴1.725221021022522545sin ≈===⨯=÷=︒=CD CB (米 ) (8)分答:两根拉线AC 为5.8米 ,CB 为7.1米.....................................9分18、解:过A 、B 两点作AE ⊥DC ,BF ⊥CD ,垂足分别是E 、F..............1分那么AE =BF =0.8米 ,EF =AB =1.2米..............................2分 ∵坡角为45° ,CD//AB∴∠EDA =∠BCF =45°..................................3分 在Rt △DEA 和Rt △FCB 中8.045tan =⋅︒=DE AE ;8.045tan =⋅︒=FC BF ..................................5分 ∴DC =DE +EF +FC =0.8 +1.2 +0.8=2.8米..................................6分()150021⨯⋅+⨯=AE AB DC V ..................................7分=15008.0421⨯⨯⨯ ×1500=2400 (米3 )..................................8分答:挖出的土有2400米3..................................9分19、解:∵AC ⊥CD ,BD ⊥CD ,∴∠ACE =∠BDE =90°..................................1分∴∠A +∠AEC =90°..................................2分 又∵∠α +∠AEC =90°∴∠A =∠α..................................3分根据题意 ,∠AEC =∠BED..................................4分 ∠ACE =∠BDE∴△AEC ∽△BED..................................5分∴2163===ED CE BD AC ..................................6分 ∴2111=-CE CE ..................................8分 CE CE -=112311=CE ..................................9分∴91133113311tan tan =÷====∠AC CE A α..................................10分20、解:根据题意:△ABD 和△ABC 是Rt △在Rt △ABD 中βtan =BDh..................................1分 βtan hBD =..................................2分 在Rt △ABC 中αtan =BCAB..................................3分 αtan hC B =..................................4分又∵DC =BC -BD ∴()βααββαtan tan tan tan tan tan ⋅-=-=h h h m ..................................6分 ()αβαβtan tan tan tan -⋅=m h .......................................7分 (2 )根据 (1 )的结果可得:()3.1181335045tan 60tan 60tan 45tan 50≈-=︒-︒︒⋅︒=h ...........10分答:h 的值为:118.3米............................11分附加题解:不会触礁过A 作AC ⊥BD ,垂足为C 设AC =x在Rt △ACB 中 ,∠ABC =45° ∴︒=45tan BCACBC BC AC =︒⋅=45tan∴OC =BC +BO =AC +BO =x +20 在Rt △ACO 中 ,∠AOC =30° ∴︒=30tan OCAC3120=+x x ;203+=x x203=-x x()2013=-x()()()()73.21310131313201320≈+=+-+=-=x∵253.27>=x ,∴不会触礁 .参考题22. (6分 )某校数学兴趣小组在测量一座池塘边上A B ,两点间的距离时用了以下三种测量方法 ,如以下图所示.图中a b c ,,表示长度 ,β表示角度.请你求出AB 的长度 (用含有a b c β,,,字母的式子表示 ).(1 )______AB =______(2 )______AB =_______ (3 )______AB =_______23. (9分 )如图 ,在梯形ABCD 中 ,AD ∥BC ,∠B =90° ,AD =2 ,BC =5 ,tanC =34.(1 )求点D 到BC 边的距离; (2 )求点B 到CD 边的距离.24. (10分 )一°°方向上.之后 ,轮船继续向东航行多少海里 ,距离小岛C 最|近 ?(参考数据:sin21.3°≈925,°≈25 ,tan21.3°≈25 ,sin63.5°≈910°≈21 ,tan63.5°≈2 )(1 ) A C Bab(2 ) ACBaβ(3 ) AC Ba DEcbA BC北东北师大版九年级|数学下册单元检测第2章 -二次函数 (3 )附答案一、选择题(本大题共8小题 ,每题4分 ,共32分)1.在以下函数关系式中 ,y 是x 的二次函数的是( ).A .x y=6 B .xy =-6 C .x 2+y =6 D .y =-6x 2.抛物线①y =2x 2,②y =223x -7 ,③y =213x +5中 ,开口从大到小的顺序为( ).A .①②③B .③②①C .①③②D .②①③3.如图 ,平面直角坐标系中 ,两条抛物线有相同的对称轴 ,那么以下关系正确的选项是( ).A .m =n ,k >hB .m =n ,k <hC .m >n ,k =hD .m <n ,k =h4.在反比例函数y =a x中 ,当x >0时 ,y 随x 的增大而减小 ,那么二次函数y =ax 2-ax 的图象大致是以下图中的( ).5.如下图的二次函数y =ax 2+bx +c 的图象中 ,刘星同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a -b <0;(4)a +b +c <0.你认为其中错误的有( ).A .2个B .3个C .4个D .1个6.二次函数y =2x 2+9x +34 ,当自变量x 取两个不同的值x 1 ,x 2时 ,函数值相等 ,那么当自变量x 取x 1+x 2时的函数值与( ).C .x =14时的函数值相等D .x =94-时的函数值相等 7.函数y 1=x 2与函数y 2=12x -+3的图象如下图 ,假设y 1<y 2 ,那么自变量x 的取值范围是( ).A .32-<x <2 B .x >2或x <32- C .-2<x <32 D .x <-2或x >328.根据下表中的二次函数y =ax 2+bx +c 的自变量x 与函数y 的对应值 ,可判断该二次函数的图象与x 轴( ).x … -1 0 1 2 …y … -174--274-…A .只有一个交点B .有两个交点 ,且它们分别在y 轴两侧C .有两个交点 ,且它们均在y 轴同侧D .无交点 二、填空题(本大题共5小题 ,每题5分 ,共25分)9.把抛物线y =3x 2先向左平移3个单位长度 ,再向上平移2个单位长度 ,所得抛物线的解析式为______.10.二次函数y =x 2-mx +3的图象与x 轴的交点如下图 ,根据图中信息可得到m 的值是__________.11.二次函数的图象开口向下 ,且与y 轴的正半轴相交.请你写出一个满足条件的二次函数的关系式__________.12.假设直线y =ax -6与抛物线y =x 2-4x +3只有一个交点 ,那么a 的值是__________.13.给出以下命题:命题1.点(1,1)是双曲线y =1x 与抛物线y =x 2的一个交点. 命题2.点(1,2)是双曲线y =2x 与抛物线y =2x 2的一个交点.命题3.点(1,3)是双曲线y =3x与抛物线y =3x 2的一个交点.……请你观察上面的命题 ,猜测出命题n(n是正整数):__________________________.三、解答题(本大题共4小题 ,共43分)14.(8分)点A(1,1)在二次函数y=x2-2ax+b图象上.(1)用含a的代数式表示b;(2)如果该二次函数的图象与x轴只有一个交点 ,求这个二次函数的图象的顶点坐标.15.(10分)如图① ,是苏州某河上一座古拱桥的截面图 ,拱桥桥洞上沿是抛物线形状 ,抛物线两端点与水面的距离都是1 m ,拱桥的跨度为10 m ,桥洞与水面的最|大距离是5 m ,桥洞两侧壁上各有一盏距离水面4 m的景观灯.假设把拱桥的截面图放在平面直角坐标系中(如图②).(1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.图①图②16.(12分)如下图 ,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0) ,另一个交点为B ,且与y轴交于点C.(1)求m的值;(3)该二次函数图象上有一点D(x ,y)(其中x>0 ,y>0) ,使S△ABD=S△ABC ,求点D的坐标.17.(13分)宏达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源 ,待货物售出后再进行结算 ,未售出的由厂家负责处理).当每吨售价为260元时 ,月销售量为45吨.该经销店为提高经营利润 ,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时 ,月销售量就会增加吨.综合考虑各种因素 ,每售出一吨建筑材料共需支付厂家及其他费用100元.设每吨材料售价为x(元) ,该经销店的月利润为y(元).(1)当每吨售价是240元时 ,计算此时的月销售量;(2)求出y与x的二次函数关系式(不要求写出x的取值范围);(3)请把(2)中的二次函数配方成y=a(x-h)2+k的形式 ,并据此说明 ,该经销店要获得最|大月利润 ,售价应定为每吨多少元 ?(4)小静说: "当月利润最|大时 ,月销售额也最|大.〞你认为对吗 ?请说明理由参考答案1.答案:C2.解析:二次项系数的绝|对值越小 ,开口越大. ∵1233<-<2 ,∴抛物线的开口从大到小的顺序为③②① 答案:B 3.答案:A4.解析:在反比例函数y =ax中 ,当x >0时 ,y 随x 的增大而减小 ,所以a >0. 所以二次函数y =ax 2-ax 开口向上 ,且与x 轴交于(0,0)和(1,0)点 ,应选A . 答案:A5.解析:∵抛物线y =ax 2+bx +c 与x 轴有两个交点 , ∴b 2-4ac >0.∵抛物线y =ax 2+bx +c 与y 轴的交点坐标是(0 ,c ) , 又a <0 ,∴2a -b <0.当x =1时 ,y <0 ,即当x =1时 ,y =a +b +c <0 , ∴只有(2)错误. 答案:D6.解析:利用抛物线的对称性可知 ,x 1+x 2正好是对称轴的横坐标x 的值的2倍 ,即x 1+x 2=ba-.以对称轴为根底 ,正好与x =0时的函数值相等. 答案:B7.解析:y 1<y 2 ,即抛物线在直线下方的那局部对应的自变量x 的取值范围 ,需求出直线与抛物线的两交点坐标.答案:C8.解析:根据表中x ,y 的对应值描出函数y =ax 2+bx +c 的大致图象 ,可以看出 ,该二次函数的图象与x 轴有两个交点 ,且它们分别在y 轴两侧.答案:B9.解析:抛物线y =3x 2的顶点是(0,0) ,先向左平移3个单位长度 ,再向上平移2个单位长度后是(-3,2).所以 ,所得抛物线的解析式是y =3(x +3)2+2.答案:y =3(x +3)2+210.解析:把(1,0)的坐标代入二次函数y =x 2-mx +3的解析式 ,得1-m +3=0.解得m =4.答案:411.答案:y =-x 2-2x +3(满足条件即可 ,答案不惟一)12.解析:由题意 ,知26,43y ax y x x =-⎧⎨=-+⎩只有一个解 ,即方程x 2-(4+a )x +9=0有两个相等的实数根.所以(4+a )2-4×1×9=0. 解得a =2或a =-10. 答案:2或-1013.答案:点(1 ,n )是双曲线y =n x与抛物线y =nx 2的一个交点 14.解:(1)∵点A(1,1)在二次函数y =x 2-2ax +b 的图象上 ,∴1=1-2a +B .可得b =2A(2)根据题意 ,方程x 2-2ax +b =0有两个相等的实数根 ,∴4a 2-4b =4a 2-8a =0.解得a =0或a =2.当a =0时 ,y =x 2,这个二次函数的图象的顶点坐标是(0,0);当a =2时 ,y =x 2-4x +4=(x -2)2,这个二次函数的图象的顶点坐标为(2,0). ∴这个二次函数的图象的顶点坐标为(0,0)或(2,0).15.解:(1)抛物线的顶点坐标为(5,5) ,与y 轴的交点坐标是(0,1).设抛物线的解析式是y =a (x -5)2+5 , 把(0,1)代入y =a (x -5)2+5得a =425-. ∴y =425-(x -5)2+5(0≤x ≤10). (2)由得两盏景观灯的纵坐标都是4 , ∴4=425-(x -5)2+5. ∴425(x -5)2=1.∴x 1=152 ,x 2=52. ∴两盏景观灯间的距离为5米.16.解:(1)将(3,0)代入二次函数解析式 ,得-32+2×3+m =0.解得m =3.(2)二次函数解析式为y =-x 2+2x +3 ,令y =0 ,得-x 2+2x +3=0 解得x =3或x =-1.∴点B 的坐标为(-1,0).(3)∵S △ABD =S △ABC ,点D 在第|一象限 , ∴点C ,D 关于二次函数的对称轴对称.∵由二次函数解析式可得其对称轴为x =1 ,点C 的坐标为(0,3) ,∴点D 的坐标为(2,3).17.解:(1)45+26024010-×=60(吨).(2)y =(x -100)260457.510x -⎛⎫+⨯ ⎪⎝⎭,化简得y =234x -+315x -24 000.(3)y =234x -+315x -24 000要获得最|大月利润 ,售价应定为每吨210元.(4)小静说的不对.理由:当月利润最|大时 ,x 为210元 ,而对于月销售额W =x 260457.510x -⎛⎫+⨯ ⎪⎝⎭=34-(x -160)2+19 200来说 ,当x 为160元时 ,月销售额W 最|大.∴当x 为210元时 ,月销售额W 不是最|大. ∴小静说的不对.北师大版九年级|数学下册单元检测第3章 -圆 (3 )附答案一、选择题 (每题4分 ,共40分 )每题只有一个正确答案 ,请将正确答案的番号填在括号内.1、平行四边形的四个顶点在同一圆上 ,那么该平行四边形一定是 ( )A 、正方形B 、菱形C 、矩形D 、等腰梯形2、假设⊙A 的半径为5 ,圆心A 的坐标是(3 ,4) ,点P 的坐标是(5 ,8) ,你认为点P 的位置为 ( )3、以下所述图形中对称轴最|多的是 ( )A 、圆B 、正方形C 、正三角形D 、线段4、以下四个命题中正确的选项是 ( )A 、①②B 、②③C 、③④D 、①④5、过⊙O 外一点P 作⊙O 的两条切线PA 、PB ,切点为A 和B ,假设AB =8 ,AB 的弦心距为3 ,那么PA 的长为( ) A 、5B 、320C 、325 D 、86、如图1 ,PA 切⊙O 于A ,AB ⊥OP 于B ,假设PO =8 cm ,BO =2 cm ,那么PA 的长为( )A 、16 cmB 、48 cmC 、3 cmD 、43 cmA BOPO 1O2AB C A'C '图1 图2 图37、如图2 ,半径为1的四个圆两两相切 ,那么图中阴影局部的面积为 ()A 、4-πB 、8-πC 、(4-π)D 、4-2πA 、16πB 、38π C 、364π D 、316π 9、如图4 ,△ABC 是正三角形 ,曲线ABCDEF …叫做 "正三角形的渐开线〞 ,其中、 、、 、… 圆心依次按A 、B 、C 循环 ,它们依次相连接 ,如果AB =1 ,那么曲线CDEF 的长是 ( )A 、8πB 、6πC 、4πD 、2πBCDE FABCDE mnOOABC D图4 图5 图6 图7 10、一个圆台形物体的上底面积是下底面积的41.如图5 ,放在桌面上 ,对桌面的压强是200 帕 ,翻过来放 ,对桌面的压强是 ( )A 、50帕B 、80帕C 、600帕D 、800帕 二、填空题(每题3分 ,共30分)11、如果⊙O 的半径为r ,点P 到圆心O 的距离为d ,那么:①点P 在⊙O 外 ,那么______;②______ 那么d =r ;③______那么d <r .12、两个同心圆的直径分别为5 cm 和3 cm ,那么圆环局部的宽度为_____ cm.13、如图6,⊙O ,AB 为直径 ,AB ⊥CD ,垂足为E ,由图你还能知道哪些正确的结论?请把它们一一写出来. .14、 ,⊙O 的直径为10 cm ,点O 到直线a 的距离为d :①假设a 与⊙O 相切 ,那么d =______;②假设d =4 cm ,那么a 与⊙O 有_____个交点;③假设d =6 cm ,那么a 与⊙O 的位置关系是_____.15、两个同心圆的半径分别为3 cm 和4 cm ,大圆的弦BC 与小圆相切 ,那么BC =_____ cm. 16、如图7 ,在△ABC 中 ,AB =AC ,∠C =72° ,⊙O 过AB 两点且与BC 切于B ,与AC 交于D ,DE EF连结BD ,假设BC =5-1 ,那么AC =_____.17、要修一段如图8所示的圆弧形弯道 ,它的半径是48 m ,圆弧所对的圆心角是60° ,那么这段弯道长_____________________m(保存π).图8 图9 图10 图1118、如图9 ,两个半圆中 ,长为6的弦CD与直径AB平行且与小半圆相切 ,那么图中阴影局部的面积等于_____________.19、要制造一个圆锥形的烟囱帽 ,如图10 ,使底面半径r与母线l的比r∶l =3∶4 ,那么在剪扇形铁皮时 ,圆心角应取_____.20、将一根长24 cm的筷子 ,置于底面直径为5 cm ,高为12 cm的圆柱形水杯中(如图11).设筷子露在杯子外面的长为h cm ,那么h的取值范围是_____.三、解答题 (每题10分 ,共30分 )21、(10分)如图12,小虎牵着小狗上街 ,小虎的手臂与绳长共为2.5 m(手臂与拉直的绳子在一条直线上)手臂肩部距地面1.5 m.当小虎站立不动时 ,小狗在平整的地面上活动的最|大区域是多少 ?并画出平面图.1.5m小图1222、(10分):三角形ABC 内接于⊙O ,过点A 作直线EF .(1)如图13 ,AB 为直径 ,要使得EF 是⊙O 的切线 ,只需保证∠CAE =∠_____ ,并证明之;(2)如图14 ,AB 为⊙O 非直径的弦 ,(1)中你所添出的条件仍成立的话 ,EF 还是⊙O 的切线吗 ?假设是 ,写出证明过程;假设不是 ,请说明理由并与同学交流.A B CEFOAE F图13图1423、(10分)中华民族的科学文化历史悠久、灿烂辉煌 ,我们的祖先几千年前就能在生产实践中运用数学.1300多年前 ,我国隋代建筑的赵州石拱桥的桥拱是圆弧形(如图15).经测量 ,桥拱下的水面距拱顶6 m 时 ,水面宽34.64 m ,桥拱跨度是37.4 m ,运用你所学的知识计算出赵州桥的大致拱高.(运算时取37.4 =147 ,34.64 =203)图15参考答案一、选择题 1、C ;2、A ;3、A ;4、C ;5、B ;6、D ;7、A ;8、D ;9、C ;10、D. 二、填空题 1、d >r 点P 在⊙O 上 点P 在⊙O 内;2、1;3、C E =ED ,,AC AD CmB DmB ==;4、①5 cm ②两 ③外离;5、27;6、2;7、16π;8、29π;9、270°;10、11≤h ≤12. 三、解答题21、解:小狗在地平面上环绕跑圆的半径为225.15.2- =2.0(m).小狗活动的区域是以2.0 m 为半径的圆 ,如右图. 22、(1)ABC 证明:∵AB 为⊙O 直径, ∴∠ACB =90°.∴∠BAC +∠ABC =90°. 假设∠CAE =∠ABC . ∴∠BAC +∠CAE =90°, 即∠BAE =90° ,OA ⊥AE . ∴EF 为⊙O 的切线.(2)证明:连接AO 并延长交⊙O 于点D ,连接CD , ∴∠ADC =∠ABC . ∵AD 为⊙O 的直径, ∴∠DAC +∠ADC =90°.∵∠CAE =∠ABC =∠ADC , ∴∠DAC +∠CAE =90°. ∴∠DAE =90°, 即OA ⊥EF ,EF 为⊙O 的切线. 23、解:如图 ,设圆弧所在圆的圆心为O ,AB =37.4 =147 m, CD =34.6 =203 m, GE =6 m.在Rt △OCE 中, OE =OC -6, CE =103. ∵OC 2=CE 2+OE 2, ∴OC 2=(103)2+(OC -6)2.∴OC =28(m) . ∴OA =28. 在Rt △OAF 中 ,AF =77, ∴)m (21)77(282222=-=-=AFOA OF .∴拱高GF =28-21 =7(m) .∴FA =FN +NM -AM =82 +1.6-42 =42≈7.26.ABS 四边形ADEF =21(AF +DE )·EN =21(7.26 +1.6)×≈25.07(m 2). V 体积 =S 四边形ADEF ×××103(m 3).×103m 3的土方.北师大版九年级|数学下册单元检测第4章 -统计与概率 (3 )附答案一、选择题(本大题共8小题 ,每题5分 ,共40分)1.以下说法中 ,不正确的选项是( ).A .可以很清楚地表示出各局部同总体之间关系的统计图是条形统计图B .能清楚地反映出数量增减变化的统计图是折线统计图D .为了清楚地反映出全校人数同各年级|人数之间的关系 ,应选择扇形统计图2.某次考试中 ,某班级|的数学成绩统计图如下.以下说法错误的选项是( ).A .得分在70~80分之间的人数最|多B .该班的总人数为40C .得分在90~100分之间的人数最|少D .及格(≥60分)人数是263.如图是光明中学乒乓球队队员年龄分布的条形图.这些年龄的众数、中位数、极差依次分别是( ).A .15,15,5B .15,15.5,6 ,84.如图 ,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域 ,假设指针固定不变 ,转动这个转盘一次(如果指针指在等分线上 ,那么重新转动 ,直至|指针指在某个扇形区域内为止) ,那么指针指在甲区域内的概率是( ).5.在拼图游戏中 ,从图①中的四张纸片中 ,任取两张纸片 ,能拼成 "小房子〞(如图②)的概率等于( ).① ②A .1 B.12 C.13 D.236.小洋在一次转转盘活动中得知获得100元代金券的概率是5% ,获得50元代金券的概率是10% ,获得20元代金券的概率是20% ,无其他面额的代金券 ,那么他每转动一次转盘获得代金券金额的平均数是( ).A .14元B .16元C .18元D .20元7.如图是两个可以自由转动的转盘 ,每个转盘被分成两个扇形 ,同时转动两个转盘 ,转盘停止后 ,指针所指区域内的数字之和为4的概率是( ).A.12 B.13 C.14 D.158.甲、乙两人打赌 ,甲说: "我从去掉大小|王的一副扑克牌中任意抽取一张 ,如果是红色 ,我赢.〞乙说: "如果我抽到的是方片 ,我赢.〞甲又说: "如果我赢 ,我就弹你一下脑壳.〞乙答复: "如果我赢 ,就弹你两下〞.你认为他们的这个游戏( ).A .公平B .不公平 ,对甲有利C .不公平 ,对乙有利D .不能判断 二、填空题(本大题共4小题 ,每题5分 ,共20分)9.如图是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图 ,甲户、乙户全年食品支出费用相比__________.(填 "甲户多〞 "甲户少〞或 "无法比拟〞)10.某超市在 "六一〞期间开展有奖销售活动 ,凡购物满100元的顾客可得奖券1张.本次活动共发放奖券1 000张 ,经过摇奖产生一等奖1名 ,奖金400元;二等奖2名 ,奖金各200元;三等奖10名 ,奖金各50元.某人在这次活动中购物满100元 ,他中三等奖的概率是________.11.甲邀请乙玩一个同时抛掷两枚硬币的游戏 ,游戏的规那么如下:甲、乙轮流抛掷 ,假设同时抛出两个正面 ,乙得1分;抛出其他结果 ,甲得1分 ,谁先累积到10分 ,谁就获胜 ,你认为________(填 "甲〞或 "乙〞)获胜的可能性更大.12.今年 "五一〞节 ,益阳市某超市开展 "有奖促销〞活动 ,凡购物不少于30元的顾客均有一次转动转盘的时机(如图 ,转盘被分为8个全等的小扇形) ,当指针最|终指向数字8时 ,该顾客获一等奖;当指针最|终指向2或5时 ,该顾客获二等奖(假设指针指向分界线那么重转).经统计 ,当天发放一、二等奖奖品共600份 ,那么据此估计参与此次活动的顾客为__________人次.三、解答题(本大题共4小题 ,共40分)13.(10分)某一音响制品店一天的销售情况如下图:(1)民歌类唱片与通俗歌曲唱片销售量之比是多少 ?(2)要使读者更为直观地看出这几类音响制品的销售量之比 ,上图应作怎样的改动 ?14.(8分)如图②是中国象棋棋盘的一局部 ,图中红方有两个马 ,黑方有三个卒子和一个炮 ,按照中国象棋中马的行走规那么(马走日字 ,例如 ,按图①中的箭头方向走) ,红方的马现在走一步能吃到黑方棋子的概率是多少 ?15.(10分)从-2 ,-1,1,2这四个数中任取两个不同的数作为一次函数y=kx+b的系数k ,b ,求所得一次函数y=kx+b的图象不经过第四象限的概率.16.(12分)在一个不透明的口袋中装有4张相同的纸牌 ,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回 ,再随机摸取出一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏 ,如果两次摸出纸牌上数字之和为奇数 ,那么甲胜;如果两次摸出纸牌上数字之和为偶数 ,那么乙胜.这是个公平的游戏吗 ?请说明理由.参考答案1.答案:A2.解析:由图可知 ,及格(≥60分)人数是12+14+8+2=36 ,所以选项D错误.答案:D3.答案:A4.答案:D5.解析:运用列表法或树状图计算概率 ,注意是 "无放回〞型.答案:D6.解析:每转动一次转盘获得代金券金额的平均数是100×5%+50×10%+20×20%=14(元).答案:A7.解析:将左边的转盘分成3个相等的扇形区域 ,采取列表法或画树状图法列举所有等可能的情况 ,共有6种 ,其中指针所指区域内的数字之和为4的情况共有2种 ,所以所求概率为13.答案:B8.解析:P(甲胜)=261522= ,甲平均每次弹乙的下数为12×1=12;P(乙胜)=131524= ,乙平均每次弹甲的下数为14×2=12.因此游戏是公平的.答案:A9.答案:无法比拟10.解析:他中三等奖的概率是101 1000100=.答案:1 10011.解析:共有(正 ,正) ,(正 ,反) ,(反 ,正) ,(反 ,反)四种时机均等的情况 ,其中(正 ,正)发生的概率为14,其余情况发生的概率为34,所以甲获胜的可能性更大.答案:甲12.解析:600÷38=1 600.答案:1 60013.解:(1)民歌类唱片与通俗歌曲唱片销售量之比为80∶120=2∶3.(2)纵轴上的数值应从0开始.14.解:红方马走一步可能的走法有14种 ,其中有3种情况吃到了黑方棋子 ,所以红马现在走一步能吃到黑方棋子的概率是3 14.15.-2 -1 1 2-2 (-2 ,-1) (-2,1) (-2,2)-1 (-1 ,-2) (-1,1) (-1,2)1 (1 ,-2) (1 ,-1) (1,2)2 (2 ,-2) (2 ,-1) (2,1)由上表可知 ,共12种等可能结果 ,其中满足k>0 ,b≥0的有(1,2) ,(2,1)两种 ,所以所得一次函数y=kx+b不经过第四象限的概率是21 126=.列表法:列表如下:乙甲1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8由上表可以看出 ,摸取一张纸牌然后放回 ,再随机摸取一张纸牌 ,可能结果有16种 ,它们出现的可能性相等.(1)两次摸取纸牌上数字之和为5(记为事件A)的有4个 ,P(A)=41 164=.(2)这个游戏公平 ,理由如下:两次摸出纸牌上数字之和为奇数(记为事件B)的有8个 ,P(B)=81 162= ,两次摸出纸牌上数字之和为偶数(记为事件C)的有8个 ,P(C)=81 162= ,两次摸出纸牌上数字之和为奇数和为偶数的概率相同 ,所以这个游戏公平.。
北师大版九年级数学下册第2章测试题及参考答案
北师大版九年级数学下册第2章测试题一、选择题1.二次函数y=x2﹣4x+5的最小值是()A.﹣1B.1C.3D.52.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.03.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x+1)2+2C.y=(x﹣1)2+4D.y=(x﹣1)2+24.已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣65.如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2B.y=x2﹣x+2C.y=x2+x﹣2D.y=x2+x+26.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D.0,07.已知m,n,k为非负实数,且m﹣k+1=2k+n=1,则代数式2k2﹣8k+6的最小值为()A.﹣2B.0C.2D.2.58.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m 的值为()A.﹣B.或C.2或D.2或或9.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是()A.B.C.1D.010.如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是()A.a<0B.a﹣b+c<0C.﹣D.4ac﹣b2<﹣8a11.如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=﹣2(x﹣h)2+k,则下列结论正确的是()A.h>0,k>0B.h<0,k>0C.h<0,k<0D.h>0,k<0 12.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()A.5个B.4个C.3个D.2个二、填空题13.用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2.14.把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式.15.抛物线y=x2+1的最小值是.16.函数y=(x﹣1)2+3的最小值为.17.已知二次函数y=x2+bx+c经过点(3,0)和(4,0),则这个二次函数的解析式是.三、解答题18.已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m、n的值;(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.19.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.20.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.21.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.22.如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.23.如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.参考答案与试题解析1.二次函数y=x2﹣4x+5的最小值是()A.﹣1B.1C.3D.5【考点】H7:二次函数的最值.【专题】选择题【分析】先利用配方法将二次函数的一般式y=x2﹣4x+5变形为顶点式,再根据二次函数的性质即可求出其最小值.【解答】解:配方得:y=x2﹣4x+5=x2﹣4x+22+1=(x﹣2)2+1,当x=2时,二次函数y=x2﹣4x+5取得最小值为1.故选B.【点评】本题考查了二次函数最值的求法,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.2.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x﹣3﹣2﹣1012345y1250﹣3﹣4﹣30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.0【考点】H7:二次函数的最值;HA:抛物线与x轴的交点.【专题】选择题【分析】根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解.【解答】解;由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为﹣4;故(1)小题错误;根据表格数据,当﹣1<x<3时,y<0,所以,﹣<x<2时,y<0正确,故(2)小题正确;二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(﹣1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个.故选B.【点评】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.3.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x+1)2+2C.y=(x﹣1)2+4D.y=(x﹣1)2+2【考点】H9:二次函数的三种形式.【专题】选择题【分析】根据配方法进行整理即可得解.【解答】解:y=x2﹣2x+3,=(x2﹣2x+1)+2,=(x﹣1)2+2.故选D.【点评】本题考查了二次函数的三种形式的转化,熟记配方法的操作是解题的关键.4.已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6【考点】H7:二次函数的最值.【专题】选择题【分析】把二次函数的解析式整理成顶点式形式,然后确定出最大值.【解答】解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而增大.又∵0≤x≤,﹣2(﹣2)2+2=﹣2.5.∴当x=时,y取最大值,y最大=故选C.【点评】本题考查了二次函数的最值.确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.5.如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2B.y=x2﹣x+2C.y=x2+x﹣2D.y=x2+x+2【考点】H8:待定系数法求二次函数解析式;G6:反比例函数图象上点的坐标特征.【专题】选择题【分析】将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B 坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.【解答】解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选A.【点评】此题考查了待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.6.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D.0,0【考点】H7:二次函数的最值.【专题】选择题【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.【解答】解:抛物线的对称轴是x=1,则当x=1时,y=1﹣2﹣3=﹣4,是最小值;当x=3时,y=9﹣6﹣3=0是最大值.故选A.【点评】本题考查了二次函数的图象和性质,正确理解取得最大值和最小值的条件是关键.7.已知m,n,k为非负实数,且m﹣k+1=2k+n=1,则代数式2k2﹣8k+6的最小值为()A.﹣2B.0C.2D.2.5【考点】H7:二次函数的最值.【专题】选择题【分析】首先求出k的取值范围,进而利用二次函数增减性得出k=时,代数式2k2﹣8k+6的最小值求出即可.【解答】解:∵m,n,k为非负实数,且m﹣k+1=2k+n=1,∴m,n,k最小为0,当n=0时,k最大为:,∴0≤k,∵2k2﹣8k+6=2(k﹣2)2﹣2,∴a=2>0,∴k≤2时,代数式2k2﹣8k+6的值随k的增大而减小,∴k=时,代数式2k2﹣8k+6的最小值为:2×()2﹣8×+6=2.5.故选D.【点评】此题主要考查了二次函数的最值求法以及二次函数增减性等知识,根据二次函数增减性得出k=时,代数式2k2﹣8k+6的最小值是解题关键.8.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m 的值为()A.﹣B.或C.2或D.2或或【考点】H7:二次函数的最值.【专题】选择题【分析】根据对称轴的位置,分三种情况讨论求解即可.【解答】解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选C.【点评】本题考查了二次函数的最值问题,难点在于分情况讨论.9.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是()A.B.C.1D.0【考点】H7:二次函数的最值;F6:正比例函数的性质.【专题】选择题【分析】理解min{a,b}的含义就是取二者中的较小值,画出函数图象草图,利用函数图象的性质可得结论.【解答】解:在同一坐标系xOy中,画出函数二次函数y=﹣x2+1与正比例函数y=﹣x的图象,如图所示.设它们交于点A、B.令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x=或,∴A(,),B(,).观察图象可知:①当x≤时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而增大,其最大值为;②当<x<时,min{﹣x2+1,﹣x}=﹣x,函数值随x的增大而减小,其最大值为;③当x≥时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而减小,最大值为.综上所示,min{﹣x2+1,﹣x}的最大值是.故选A.【点评】本题考查了二次函数与正比例函数的图象与性质,充分理解定义min{a,b}和掌握函数的性质是解题的关键.10.如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是()A.a<0B.a﹣b+c<0C.﹣D.4ac﹣b2<﹣8a【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】选择题【分析】由开口方向,可确定a>0;由当x=﹣1时,y=a﹣b+c>0,可确定B错误;由对称轴在y轴右侧且在直线x=1左侧,可确定x=﹣<1;由二次函数y=ax2+bx+c的图象经过点(0,﹣2),对称轴在y轴右侧,a>0,可得最小值:<﹣2,即可确定D正确.【解答】解:A、∵开口向上,∴a>0,故本选项错误;B、∵当x=﹣1时,y=a﹣b+c>0,故本选项错误;C、∵对称轴在y轴右侧且在直线x=1左侧,∴x=﹣<1,故本选项错误;D、∵二次函数y=ax2+bx+c的图象经过点(0,﹣2),对称轴在y轴右侧,a >0,∴最小值:<﹣2,∴4ac﹣b2<﹣8a.故本选项正确.故选D.【点评】此题考查了图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.11.如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=﹣2(x﹣h)2+k,则下列结论正确的是()A.h>0,k>0B.h<0,k>0C.h<0,k<0D.h>0,k<0【考点】H4:二次函数图象与系数的关系.【专题】选择题【分析】根据抛物线所的顶点坐标在x轴的上方即可得出结论.【解答】解:∵抛物线y=﹣2(x﹣h)2+k的顶点坐标为(h,k),由图可知,抛物线的顶点坐标在第一象限,∴h>0,k>0.故选A.【点评】本题考查的是二次函数的图象与系数的关系,熟知二次函数的顶点式是解答此题的关键.12.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()A.5个B.4个C.3个D.2个【考点】H4:二次函数图象与系数的关系.【专题】选择题【分析】由抛物线的对称轴在y轴右侧,可以判定a、b异号,由此确定①正确;由抛物线与x轴有两个交点得到b2﹣4ac>0,又抛物线过点(0,1),得出c=1,由此判定②正确;由抛物线过点(﹣1,0),得出a﹣b+c=0,即a=b﹣1,由a<0得出b<1;由a<0,及ab<0,得出b>0,由此判定④正确;由a﹣b+c=0,及b>0得出a+b+c=2b>0;由b<1,c=1,a<0,得出a+b+c <a+1+1<2,由此判定③正确;由图象可知,当自变量x的取值范围在一元二次方程ax2+bx+c=0的两个根之间时,函数值y>0,由此判定⑤错误.【解答】解:∵二次函数y=ax2+bx+c(a≠0)过点(0,1)和(﹣1,0),∴c=1,a﹣b+c=0.①∵抛物线的对称轴在y轴右侧,∴x=﹣>0,∴a与b异号,∴ab<0,正确;②∵抛物线与x轴有两个不同的交点,∴b2﹣4ac>0,∵c=1,∴b2﹣4a>0,b2>4a,正确;④∵抛物线开口向下,∴a<0,∵ab<0,∴b>0.∵a﹣b+c=0,c=1,∴a=b﹣1,∵a<0,∴b﹣1<0,b<1,∴0<b<1,正确;③∵a﹣b+c=0,∴a+c=b,∴a+b+c=2b>0.∵b<1,c=1,a<0,∴a+b+c=a+b+1<a+1+1=a+2<0+2=2,∴0<a+b+c<2,正确;⑤抛物线y=ax2+bx+c与x轴的一个交点为(﹣1,0),设另一个交点为(x0,0),则x0>0,由图可知,当x0>x>﹣1时,y>0,错误;综上所述,正确的结论有①②③④.故选B.【点评】本题主要考查二次函数图象与系数之间的关系,不等式的性质,难度适中.二次函数y=ax2+bx+c(a≠0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;抛物线与x轴的交点个数,决定了b2﹣4ac的符号,此外还要注意二次函数与方程之间的转换.13.用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是64 cm2.【考点】H7:二次函数的最值.【专题】填空题【分析】设矩形的一边长是xcm,则邻边的长是(16﹣x)cm,则矩形的面积S即可表示成x的函数,根据函数的性质即可求解.【解答】解:设矩形的一边长是xcm,则邻边的长是(16﹣x)cm.则矩形的面积S=x(16﹣x),即S=﹣x2+16x,当x=﹣=﹣=8时,S有最大值是:64.故答案是:64.【点评】本题考查了二次函数的性质,求最值得问题常用的思路是转化为函数问题,利用函数的性质求解.14.把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式y=(x﹣6)2﹣36.【考点】H9:二次函数的三种形式.【专题】填空题【分析】由于二次项系数为1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=x2﹣12x=(x2﹣12x+36)﹣36=(x﹣6)2﹣36,即y=(x ﹣6)2﹣36.故答案为y=(x﹣6)2﹣36.【点评】本题考查了二次函数解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).15.抛物线y=x2+1的最小值是1.【考点】H7:二次函数的最值.【专题】填空题【分析】根据二次函数的最值问题解答即可.【解答】解:抛物线y=x2+1的最小值是1.故答案为:1.【点评】本题考查了二次函数的最值问题,是基础题,熟练掌握利用顶点式解析式求最大(或最小)值是解题的关键.16.函数y=(x﹣1)2+3的最小值为3.【考点】H7:二次函数的最值.【专题】填空题【分析】根据顶点式得到它的顶点坐标是(1,3),再根据其a>0,即抛物线的开口向上,则它的最小值是3.【解答】解:根据非负数的性质,(x﹣1)2≥0,于是当x=1时,函数y=(x﹣1)2+3的最小值y等于3.故答案为:3.【点评】本题考查了二次函数的最值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.17.已知二次函数y=x2+bx+c经过点(3,0)和(4,0),则这个二次函数的解析式是y=x2﹣7x+12.【考点】H8:待定系数法求二次函数解析式.【专题】填空题【分析】由于已知了二次函数与x轴的两交点坐标,则可设交点式易得其解析式.【解答】解:设二次函数的解析式为y=a(x﹣3)(x﹣4),而a=1,所以二次函数的解析式为y=(x﹣3)(x﹣4)=x2﹣7x+12.故答案为y=x2﹣7x+12.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.18.已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m、n的值;(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.【考点】H8:待定系数法求二次函数解析式;FA:待定系数法求一次函数解析式.【专题】解答题【分析】(1)利用对称轴公式求得m,把P(﹣3,1)代入二次函数y=x2+mx+n 得出n=3m﹣8,进而就可求得n;(2)根据(1)得出二次函数的解析式,根据已知条件,利用平行线分线段成比例定理求得B的纵坐标,代入二次函数的解析式中求得B的坐标,然后利用待定系数法就可求得一次函数的表达式.【解答】解:(1)∵对称轴是经过(﹣1,0)且平行于y轴的直线,∴﹣=﹣1,∴m=2,∵二次函数y=x2+mx+n的图象经过点P(﹣3,1),∴9﹣3m+n=1,得出n=3m﹣8.∴n=3m﹣8=﹣2;(2)∵m=2,n=﹣2,∴二次函数为y=x2+2x﹣2,作PC⊥x轴于C,BD⊥x轴于D,则PC∥BD,∴=,∵P(﹣3,1),∴PC=1,∵PA:PB=1:5,∴=,∴BD=6,∴B的纵坐标为6,代入二次函数为y=x2+2x﹣2得,6=x2+2x﹣2,解得x1=2,x2=﹣4(舍去),∴B(2,6),∴,解得,∴一次函数的表达式为y=x+4.【点评】本题考查了待定系数法求二次函数的解析式和一次函数的解析式,根据已知条件求得B的坐标是解题的关键.19.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.【考点】H8:待定系数法求二次函数解析式;H5:二次函数图象上点的坐标特征.【专题】解答题【分析】(1)根据题意确定出B与C的坐标,代入抛物线解析式求出b与c的值,即可确定出解析式;(2)把抛物线解析式化为顶点形式,找出顶点坐标,四边形ABDC面积=三角形ABC面积+三角形BCD面积,求出即可.【解答】解:(1)由已知得:C(0,4),B(4,4),把B与C坐标代入y=﹣x2+bx+c得:,解得:b=2,c=4,则解析式为y=﹣x2+2x+4;(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴抛物线顶点坐标为(2,6),=S△ABC+S△BCD=×4×4+×4×2=8+4=12.则S四边形ABDC【点评】此题考查了待定系数法求二次函数解析式,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.20.已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.【考点】H8:待定系数法求二次函数解析式;H3:二次函数的性质.【专题】解答题【分析】(1)根据抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0),直接得出抛物线的解析式为;y=﹣(x﹣3)(x+1),再整理即可,(2)根据抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,即可得出答案.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).∴抛物线的解析式为;y=﹣(x﹣3)(x+1),即y=﹣x2+2x+3,(2)∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为:(1,4).【点评】此题考查了用待定系数法求函数的解析式,用到的知识点是二次函数的解析式的形式,关键是根据题意选择合适的解析式.21.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.【考点】H8:待定系数法求二次函数解析式;H3:二次函数的性质.【专题】解答题【分析】(1)利用待定系数法求二次函数解析式即可;(2)首先求出直线与二次函数的交点坐标进而得出E,F点坐标,即可得出△DEF 的面积.【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,∴,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)根据题意得:,解得:,,∴D(4,5),对于直线y=x+1,当x=0时,y=1,∴F(0,1),对于y=x2﹣2x﹣3,当x=0时,y=﹣3,∴E(0,﹣3),∴EF=4,过点D作DM⊥y轴于点M.=EF•DM=8.∴S△DEF【点评】此题主要考查了待定系数法求二次函数解析式以及三角形面积求法等知识,利用数形结合得出D,E,F点坐标是解题关键.22.如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.【考点】H8:待定系数法求二次函数解析式;H3:二次函数的性质.【专题】解答题【分析】(1)把点A(﹣4,﹣3)代入y=x2+bx+c得16﹣4b+c=﹣3,根据对称轴是x=﹣3,求出b=6,即可得出答案,(2)根据CD∥x轴,得出点C与点D关于x=﹣3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.【解答】解:(1)把点A(﹣4,﹣3)代入y=x2+bx+c得:16﹣4b+c=﹣3,c﹣4b=﹣19,∵对称轴是x=﹣3,∴﹣=﹣3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=﹣3对称,∵点C在对称轴左侧,且CD=8,∴点C的横坐标为﹣7,∴点C的纵坐标为(﹣7)2+6×(﹣7)+5=12,∵点B的坐标为(0,5),∴△BCD中CD边上的高为12﹣5=7,∴△BCD的面积=×8×7=28.【点评】此题考查了待定系数法求二次函数的解析式、二次函数的性质,用到的知识点是二次函数的图象和性质,此题难度适中,注意掌握数形结合思想与方程思想的应用.23.如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.【考点】H8:待定系数法求二次函数解析式;H3:二次函数的性质.【专题】解答题【分析】(1)利用待定系数法把A(1,0),C(0,﹣3)代入二次函数y=x2+bx+c 中,即可算出b、c的值,进而得到函数解析式是y=x2+2x﹣3;(2)首先求出A、B两点坐标,再算出AB的长,再设P(m,n),根据△ABP 的面积为10可以计算出n的值,然后再利用二次函数解析式计算出m的值即可得到P点坐标.【解答】解:(1)∵二次函数y=x2+bx+c过点A(1,0),C(0,﹣3),∴,解得,∴二次函数的解析式为y=x2+2x﹣3;(2)∵当y=0时,x2+2x﹣3=0,解得:x1=﹣3,x2=1;∴A(1,0),B(﹣3,0),∴AB=4,设P(m,n),∵△ABP的面积为10,∴AB•|n|=10,解得:n=±5,当n=5时,m2+2m﹣3=5,解得:m=﹣4或2,∴P(﹣4,5)(2,5);当n=﹣5时,m2+2m﹣3=﹣5,方程无解,故P(﹣4,5)(2,5);【点评】此题主要考查了待定系数法求二次函数解析式,以及求点的坐标,关键是掌握凡是函数图象经过的点必能满足解析式.。
北师大版九年级下册数学《期中》测试卷及答案【完整】
北师大版九年级下册数学《期中》测试卷及答案【完整】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100 B.被抽取的100名学生家长C.被抽取的100名学生家长的意见 D.全校学生家长的意见3.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.74.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小6.正十边形的外角和为()A.180°B.360°C.720°D.1440°7.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A .50°B .60°C .80°D .100°8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1368______________.2.分解因式:2x 3﹣6x 2+4x =__________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =+.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、B7、D8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、2x(x﹣1)(x﹣2).3、24、12 5.5、40°6、2.5×10-6三、解答题(本大题共6小题,共72分)1、x=32.3、(1)相切,略;(2).4、(1)略;(2)4.95、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)3。
(北师大版)九年数学(下)综合测试卷附答案
(北师大版)九年数学(下)综合测试卷(附参考答案)(时间:120分钟满分120分)一、选择题(每小题2分,共20分)1.-2的相反数是()A.−12 B.-2 C.12D.22.如图所示、三棱柱的主视图是( )3.下列计算中正确的是()A.2a+3b=5abB.(3a3)2=6a6C. a6+a2=a3D.−3a+2a=−a4.据国家统计局公布,2015年我国国内生产总值约676700亿元,676700亿元用科学记数法表示为()A.6.767×103亿元.B.6.767×104亿元C.6.767×105亿元D.6.767×106亿元5.下列调查中,不适合采用抽样调查的是(. )A.了解沈阳市中小学生的睡眠时间B.了解沈阳市初中生的兴趣爱好C.了解沈阳市2016年中考数学第25题的答题情况D.了解“天宫二号”飞行器各零部件的质量6.有10位同学参加数学竞赛,成绩如表:则上列数据中的中位数是( )A.80B.82.5C.85D.87.57.如图,以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=3x经过点D,则正方形ABCD的面积是( )A.10B.11C.12D.138.若关于x的一元二次方程x2-x-m=0的一个根是x=1,则m的值是( )A.1B.0C.-1D.29.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE//AC,若S △BDE : S △CDE =1:3.则S △DOE : S △AOC 的值为( )A 、13B 、14C 、19D 、116(第7题图) (第9题图)10.对于抛物线y =−(x +1)2+3,下列结论:①抛物线的开口向下;②对称轴为直x=1;③顶点坐标为(-1,3);④x>1时,y 随x 的增大而减小,其中正确结论的个数为( )A.1B.2C.3D.4二.填空题(每小题3分,共18分)11.不等式5x-1≤2x 的解是__________________12.分解叫式:2x 2-8y 2=_____________________13.当x =________时,分式x 2−9x−3的值为零.14.如图,△ODC 是由△OAB 绕点O 顺时针旋转30°后得到的图形,若点D 恰好落在AB 上,且∠AOC 度数为100°,则∠DOB 的度数是____________15、小李驾驶汽车以50千米/小时的速度匀速行驶1小时后,途中靠边停车接了半小时的电话,然后继续匀速行驶,已知行驶路程y (单位:千米)与行驶时间t (单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为_____________.16.如图,矩形ABCD 中,AD =2AB ,E 、F 、G 、H 分别是AB ,BC,CD ,AD 边上的点,EG ⊥FH ,FH =2√2,则四边形EFGH 的面积为_________.(第14题图) (第15题图) (第16题图)三、解答题(第17题6分、第18、19小题各8分,共22分)17.计算:|2−tan60°|−(π−3.14)0+(−12)−2+12√1218.如图,在△ABC 中,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC ,AF 与CE 的延长线相交于点F ,连接BF.(1)求证:AF=DC ;(2)若∠BAC =90°,求证:四边形AFBD 菱形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新整理北师大版九年级数学下册期检测题及答案(时间:100分钟 满分:120分)一、精心选一选(每小题3分,共30分)1.(2016·随州)在△ABC 中,∠C =90°,若cos B =32,则sin A 的值为( B ) A. 3 B.32 C.33 D.122.下列关于抛物线y =x 2+2x +1的说法中,正确的是( D ) A .开口向下 B .对称轴为直线x =1C .与x 轴有两个交点D .顶点坐标是(-1,0) 3.若∠α为锐角且tan α=3,则tan (90°-α)等于( C ) A.1010 B .3 C.13 D.1034.将二次函数y =x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( A )A .y =(x -1)2+2B .y =(x +1)2+2C .y =-(x -1)2-2D .y =-(x +1)2-25.已知一次函数y =ax +c 与二次函数y =ax 2+bx +c ,它们在同一坐标系内的大致图象是( C )6.已知一元二次方程x 2+bx -3=0的一根为-3,在二次函数y =x 2+bx -3的图象上有三点(-45,y 1),(-54,y 2),(16,y 2),y 1,y 2,y 3的大小关系是( A )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 2<y 37.如图,机器人从A 点出发,沿着西南方向行了4个单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来点A 的坐标为( A )A .(0,22+236)B .(0,22)C .(0,236) D .(0,3)8.小敏在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分如图所示,若命中篮圈中心,则他与篮圈中心的水平距离l 是( C )A .4.6 mB .4.5 mC .4 mD .3.5 m9.一人乘雪橇沿坡比1∶3的斜坡笔直滑下,滑下的距离s(m )与时间t(s )间的关系为s =10t +2t 2,若滑到坡底的时间为4s ,则此人下降的高度为( C )A .72 mB .36 3 mC .36 mD .18 3 m10.(2015·嘉兴)如图,抛物线y =-x 2+2x +m +1交x 轴于点A(a ,0)和B(b ,0),交y 轴于点C ,抛物线的顶点为D.下列四个判断:①当x >0时,y >0;②若a =-1,则b =4;③抛物线上有两点P(x 1,y 1)和Q(x 2,y 2),若x 1<1<x 2,且x 1+x 2>2,则y 1>y 2;④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当m =2时,四边形EDFG 周长的最小值为6 2.其中正确判断的序号是( C )A .①B .②C .③D .④二、细心填一填(每小题3分,共24分)11.在△ABC 中,AC ∶BC ∶AB =3∶4∶5,则sin A +sin B =__75__.12.(2015·怀化)二次函数y =x 2+2x 的顶点坐标为__(-1,-1)__,对称轴是__直线x =-1__.13.△ABC 中,锐角A ,B 满足(sin A -32)2+|tan B -3|=0,则△ABC 是__等边三角形__.14.抛物线y =x 2-(2m -1)x -2m 与x 轴的两个交点坐标分别为A(x 1,0),B(x 2,0),且⎪⎪⎪⎪x 1x 2=1,则m 的值为__12__. 15.(2015·东营)4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播,如图,在直升机的镜头下,观察马拉松景观大道A 处的俯角为30°,B 处的俯角为45°,如果此时直升机镜头C 处的高度CD 为200米,点A ,D ,B 在同一直线上,则AB 两点的距离是米.,第15题图) ,第16题图),第17题图) ,第18题图)16.(2015·江西)如图①是小志同学书桌上的一个电子相框,将其侧面抽象为如图②所示的几何图形,已知BC =BD =15 cm ,∠CBD =40°,则点B 到CD 的距离为__14.1__cm.(参考数据:sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,计算结果精确到0.1 cm ,可用科学计算器)17.如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶,它的拱宽AB 为4 m ,拱高CO 为0.8 m .如图建立坐标系,则模板的轮廓线所在的抛物线的表达式为__y =-0.2x 2__.18.(2016·河南模拟)如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3),若平移该抛物线使其顶点P 沿直线移动到点P′(2,-2),点A 的对应点为A′,则抛物线上PA 所扫过的区域(阴影部分)的面积为__12__.三、用心做一做(共66分)19.(8分)(1)(2)0+12-tan 60°+(13)-2; (2)(1-tan 60°)2-4cos 30°.解:10+ 3 解:-1-320.(8分)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sin C 的值.解:∵在Rt △ABD 中,tan ∠BAD =BD AD =34,∴BD =AD·tan ∠BAD =12×34=9,∴CD=BC -BD =14-9=5.∴AC =AD 2+CD 2=13,∴sinC =AD AC =121321.(8分)已知锐角α关于x 的一元二次方程x 2-2x sin α+3sin α-34=0有相等的实数根,求α.解:∵关于x 的一元二次方程x 2-2xsin α+3sina -34=0有相等实数根,∴Δ=0,即(2sin α)2-4(3sin α-34)=4sin 2α-43sin α+3=0,∴sin α=32,∴α=60°22.(10分)如图,抛物线y =-x 2+bx +c 经过坐标原点,且与x 轴交于点A(-2,0). (1)求此抛物线的表达式及顶点B 的坐标;(2)在抛物线上有一点P ,满足S △AOP =3,请直接写出点P 的坐标.解:(1)将A ,O 两点的坐标代入表达式y =-x 2+bx +c ,得⎩⎨⎧c =0,-4-2b +c =0,解得⎩⎨⎧b =-2,c =0.∴此抛物线的表达式为y =-x 2-2x ,变化形式得y =-(x +1)2+1,顶点B 的坐标为(-1,1) (2)P 1(-3,-3),P 2(1,-3)23.(8分)如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C 处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上,求A,C之间的距离.(结果精确到0.1海里,参考数据:2≈1.41,3≈1.73)解:作AH⊥BC,设AH=x,则CH=x,BH=3x,由x+3x=20,解得x≈7.3,∴在Rt△AHC中,AC=2AH≈10.3,∴AC=10.3海里24.(12分)(2016·湖州模拟)某农庄计划在30亩(1亩≈666.7平方米)空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数关系如图①所示;小李种植水果所得报酬z(元)与种植面积n(亩)之间的函数关系如图②所示.(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是__140__元,小张应得的工资总额是__2_800__元;此时,小李种植水果__10__亩,小李应得的报酬是__1_500__元.(2)当10<n ≤30时,求z 与n 之间的函数关系式;(3)设农庄支付给小张和小李的总费用为W (元),当10<m ≤30时,求W 与m 之间的函数关系式.解:(2)当10<n ≤30时,z 关于n 的函数图象经过点(10,1 500),(30,3 900),设z =kn +b ,则⎩⎨⎧10k +b =1 500,30k +b =3 900,解得⎩⎨⎧k =120,b =300,∴z =120n +300(10<n ≤30) (3)当10<m ≤30时,y =-2m +180,∵m +n =30,又∵当0<n ≤10时,z =150n ;当10<n ≤20时,z =120n+300.∴当10<m ≤20时,10<n ≤20,∴W =m (-2m +180)+120n +300=m (-2m +180)+120(30-m )+300=-2m 2+60m +3 900;当20<m ≤30时,0<n ≤10,∴W =m (-2m +180)+150n =m (-2m +180)+150(30-m )=-2m 2+30m +4 500.∴W 与m 之间的函数关系式为W =⎩⎨⎧-2m 2+60m +3 900(10<m ≤20),-2m 2+30m +4 500(20<m ≤30)25.(12分)(2016·北京模拟)在平面直角坐标系xOy 中,抛物线y =mx 2-2mx -2(m ≠0)与y 轴交于点A ,其对称轴与x 轴交于点B.(1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的表达式;(3)若该抛物线在-2<x<-1这一段位于直线l 的上方,并且在2<x<3这一段位于直线AB 的下方,求该抛物线的表达式.解:(1)当x =0时,y =-2.∴点A 的坐标为(0,-2).将y =mx 2-2mx -2配方,得y =m (x -1)2-m -2.∴抛物线的对称轴为直线x =1.∴点B 的坐标为(1,0) (2)由题意,点A 关于直线x =1的对称点的坐标为(2,-2).设直线l 的表达式为y =kx +b.∵点(1,0)和(2,-2)在直线l 上,∴⎩⎨⎧0=k +b ,-2=2k +b ,解得⎩⎨⎧k =-2,b =2.∴直线l 的表达式为y =-2x +2 (3)由题意可知,抛物线关于直线x =1对称,直线AB 与直线l 也关于直线x =1对称.∵抛物线在2<x<3这一段位于直线AB 的下方,∴抛物线在-1<x<0这一段位于直线l 的下方.又∵抛物线在-2<x<-1这一段位于直线l 的上方,∴抛物线与直线l 的一个交点的横坐标为-1.∴由直线l 的表达式y =-2x +2可得这个点的坐标为(-1,4).∵抛物线y =mx 2-2mx -2经过点(-1,4),∴m =2.∴所求抛物线的表达式为y =2x 2-4x -2。