【帮帮群】中考数学综合题专题【二次函数】专题解析

合集下载

中考数学——二次函数的综合压轴题专题复习含答案解析

中考数学——二次函数的综合压轴题专题复习含答案解析

中考数学——二次函数的综合压轴题专题复习含答案解析一、二次函数1.在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),顶点为G.(1)求抛物线和直线AC的解析式;(2)如图,设E(m,0)为x轴上一动点,若△CGE和△CGO的面积满足S△CGE=S△CGO,求点E的坐标;(3)如图,设点P从点A出发,以每秒1个单位长度的速度沿x轴向右运动,运动时间为ts,点M为射线AC上一动点,过点M作MN∥x轴交抛物线对称轴右侧部分于点N.试探究点P在运动过程中,是否存在以P,M,N为顶点的三角形为等腰直角三角形?若存在,求出t的值;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=﹣x2+2x+3;直线AC解析式为:y=3x+3;(2)点E 坐标为(1,0)或(﹣7,0);(3)存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为或或.【解析】【分析】(1)用待定系数法即能求出抛物线和直线AC解析式.(2)△CGE与△CGO虽然有公共底边CG,但高不好求,故把△CGE构造在比较好求的三角形内计算.延长GC交x轴于点F,则△FGE与△FCE的差即为△CGE.(3)设M的坐标(e,3e+3),分别以M、N、P为直角顶点作分类讨论,利用等腰直角三角形的特殊线段长度关系,用e表示相关线段并列方程求解,再根据e与AP的关系求t 的值.【详解】(1)∵抛物线y=ax2+bx+c过点A(-1,0),B(3,0),C(0,3),, 解得:,∴抛物线解析式为:y=-x2+2x+3,设直线AC解析式为y=kx+3,∴-k+3=0,得:k=3,∴直线AC解析式为:y=3x+3.(2)延长GC交x轴于点F,过G作GH⊥x轴于点H,∵y=-x2+2x+3=-(x-1)2+4,∴G(1,4),GH=4,∴S△CGO=OC•x G=×3×1=,∴S△CGE=S△CGO=×=2,①若点E在x轴正半轴上,设直线CG:y=k1x+3,∴k1+3=4 得:k1=1,∴直线CG解析式:y=x+3,∴F(-3,0),∵E(m,0),∴EF=m-(-3)=m+3,∴S△CGE=S△FGE-S△FCE=EF•GH-EF•OC=EF•(GH-OC)=(m+3)•(4-3)=,∴=2,解得:m=1,∴E的坐标为(1,0).②若点E在x轴负半轴上,则点E到直线CG的距离与点(1,0)到直线CG距离相等,即点E到F的距离等于点(1,0)到F的距离,∴EF=-3-m=1-(-3)=4,解得:m=-7 即E(-7,0),综上所述,点E坐标为(1,0)或(-7,0).(3)存在以P,M,N为顶点的三角形为等腰直角三角形,设M(e,3e+3),则y N=y M=3e+3,①若∠MPN=90°,PM=PN,如图2,过点M作MQ⊥x轴于点Q,过点N作NR⊥x轴于点R,∵MN∥x轴,∴MQ=NR=3e+3,∴Rt△MQP≌Rt△NRP(HL),∴PQ=PR,∠MPQ=∠NPR=45°,∴MQ=PQ=PR=NR=3e+3,∴x N=x M+3e+3+3e+3=7e+6,即N(7e+6,3e+3),∵N在抛物线上,∴-(7e+6)2+2(7e+6)+3=3e+3,解得:e1=-1(舍去),e2=−,∵AP=t,OP=t-1,OP+OQ=PQ,∴t-1-e=3e+3,∴t=4e+4=,②若∠PMN=90°,PM=MN,如图3,∴MN=PM=3e+3,∴x N=x M+3e+3=4e+3,即N(4e+3,3e+3),∴-(4e+3)2+2(4e+3)+3=3e+3,解得:e1=-1(舍去),e2=−,∴t=AP=e-(-1)=−+1=,③若∠PNM=90°,PN=MN,如图4,∴MN=PN=3e+3,N(4e+3,3e+3),解得:e=−,∴t=AP=OA+OP=1+4e+3=,综上所述,存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为或或.【点睛】本题考查了待定系数法求函数解析式,坐标系中三角形面积计算,等腰直角三角形的性质,解一元二次方程,考查了分类讨论和方程思想.第(3)题根据等腰直角三角形的性质找到相关线段长的关系是解题关键,灵活运用因式分解法解一元二次方程能简便运算.2.如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13.(1)求抛物线的解析式;(2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC =ED,求点E的坐标;(3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由.【答案】(1)y=x2﹣2x﹣3;(2)E 113+113+3)点Q的坐标为(﹣3,12)或(2,﹣3).理由见解析.【解析】【分析】(1)由根与系数的关系可得x1+x2=m,x1•x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式;(2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=12CD=CE.利用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标;(3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛物线的解析式联立,得出方程组22333y x xy x⎧=--⎨=-+⎩,求解即可得出点Q的坐标.【详解】(1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0),∴x1+x2=m,x1•x2=﹣(m+1),∵x12+x22﹣x1x2=13,∴(x1+x2)2﹣3x1x2=13,∴m2+3(m+1)=13,即m2+3m﹣10=0,解得m1=2,m2=﹣5.∵OA<OB,∴抛物线的对称轴在y轴右侧,∴m=2,∴抛物线的解析式为y=x2﹣2x﹣3;(2)连接BE、OE.∵在Rt△BCD中,∠CBD=90°,EC=ED,∴BE=12CD=CE.令y=x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵C(0,﹣3),∴OB =OC ,又∵BE =CE ,OE =OE ,∴△OBE ≌△OCE (SSS ),∴∠BOE =∠COE ,∴点E 在第四象限的角平分线上,设E 点坐标为(m ,﹣m ),将E (m ,﹣m )代入y =x 2﹣2x ﹣3,得m =m 2﹣2m ﹣3,解得m =1132±, ∵点E 在第四象限,∴E 点坐标为(113+,﹣113+); (3)过点Q 作AC 的平行线交x 轴于点F ,连接CF ,则S △ACQ =S △ACF .∵S △ACQ =2S △AOC ,∴S △ACF =2S △AOC ,∴AF =2OA =2,∴F (1,0).∵A (﹣1,0),C (0,﹣3),∴直线AC 的解析式为y =﹣3x ﹣3.∵AC ∥FQ ,∴设直线FQ 的解析式为y =﹣3x +b ,将F (1,0)代入,得0=﹣3+b ,解得b =3,∴直线FQ 的解析式为y =﹣3x +3.联立22333y x x y x ⎧=--⎨=-+⎩, 解得11312x y =-⎧⎨=⎩,2223x y =⎧⎨=-⎩, ∴点Q 的坐标为(﹣3,12)或(2,﹣3).【点睛】本题是二次函数综合题,其中涉及到一元二次方程根与系数的关系,求二次函数的解析式,直角三角形的性质,全等三角形的判定与性质,二次函数图象上点的坐标特征,三角形的面积,一次函数图象与几何变换,待定系数法求直线的解析式,抛物线与直线交点坐标的求法,综合性较强,难度适中.利用数形结合与方程思想是解题的关键.3.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.【答案】(1)y=x2﹣4x+3;(2)94;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣3).【解析】试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴93010b cb c++=⎧⎨++=⎩,解得43bc=-⎧⎨=⎩,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣32)2+94.∵a=﹣1<0,∴当x=32时,线段PD的长度有最大值94;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1).综上所述:点P(1,0)或(2,﹣1)时,△APD能构成直角三角形;(4)由抛物线的对称性,对称轴垂直平分AB,∴MA=MB,由三角形的三边关系,|MA﹣MC|<BC,∴当M、B、C三点共线时,|MA﹣MC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k≠0),则3k bb+=⎧⎨=⎩,解得:33kb=-⎧⎨=⎩,∴直线BC的解析式为y=﹣3x+3.∵抛物线y=x2﹣4x+3的对称轴为直线x=2,∴当x=2时,y=﹣3×2+3=﹣3,∴点M (2,﹣3),即,抛物线对称轴上存在点M(2,﹣3),使|MA﹣MC|最大.点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M的位置是解题的关键.4.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x xy x⎧-++⎪⎨--⎪⎩==,解得1xy=-⎧⎨=⎩或103139xy⎧=⎪⎪⎨⎪=-⎪⎩,则此时P点坐标为(103,﹣139).综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.5.已知,点M 为二次函数2()41y x b b =--++图象的顶点,直线5y mx =+分别交x 轴正半轴,y 轴于点,A B .(1)如图1,若二次函数图象也经过点,A B ,试求出该二次函数解析式,并求出m 的值. (2)如图2,点A 坐标为(5,0),点M 在AOB ∆内,若点11(,)4C y ,23(,)4D y 都在二次函数图象上,试比较1y 与2y 的大小.【答案】(1)2(2)9y x =--+,1m =-;(2)①当102b <<时,12y y >;②当12b =时,12y y =;③当1425b <<时,12y y < 【解析】 【分析】 (1)根据一次函数表达式求出B 点坐标,然后根据B 点在抛物线上,求出b 值,从而得到二次函数表达式,再根据二次函数表达式求出A 点的坐标,最后代入一次函数求出m 值.(2)根据解方程组,可得顶点M 的纵坐标的范围,根据二次函数的性质,可得答案. 【详解】(1)如图1,∵直线5y mx =+与y 轴交于点为B ,∴点B 坐标为(0,5)又∵(0,5)B 在抛物线上,∴25(0)41b b =--++,解得2b =∴二次函数的表达式为2(2)9y x =--+ ∴当0y =时,得15=x ,21x =- ∴(5,0)A代入5y mx =+得,550m +=,∴1m =-(2)如图2,根据题意,抛物线的顶点M 为(,41)b b +,即M 点始终在直线41y x =+上,∵直线41y x =+与直线AB 交于点E ,与y 轴交于点F ,而直线AB 表达式为5y x =-+解方程组415y xy x=+⎧⎨=-+⎩,得45215xy⎧=⎪⎪⎨⎪=⎪⎩∴点421(,)55E,(0,1)F∵点M在AOB∆内,∴45b<<当点,C D关于抛物线对称轴(直线x b=)对称时,1344b b-=-,∴12b=且二次函数图象的开口向下,顶点M在直线41y x=+上综上:①当12b<<时,12y y>;②当12b=时,12y y=;③当1425b<<时,12y y<.【点睛】本题考查二次函数与一次函数的综合应用,难度系数大同学们需要认真分析即可.6.如图,在平面直角坐标系中有抛物线y=a(x﹣2)2﹣2和y=a(x﹣h)2,抛物线y=a (x﹣2)2﹣2经过原点,与x轴正半轴交于点A,与其对称轴交于点B;点P是抛物线y=a(x﹣2)2﹣2上一动点,且点P在x轴下方,过点P作x轴的垂线交抛物线y=a(x﹣h)2于点D,过点D作PD的垂线交抛物线y=a(x﹣h)2于点D′(不与点D重合),连接PD′,设点P的横坐标为m:(1)①直接写出a的值;②直接写出抛物线y=a(x﹣2)2﹣2的函数表达式的一般式;(2)当抛物线y=a(x﹣h)2经过原点时,设△PDD′与△OAB重叠部分图形周长为L:①求PDDD'的值;②直接写出L与m之间的函数关系式;(3)当h为何值时,存在点P,使以点O、A、D、D′为顶点的四边形是菱形?直接写出h 的值.【答案】(1)①12;②y =212x ﹣2x ; (2)①1;②L =2(22)(02)21(221)4(24)2m m m m π⎧+<⎪⎨-++<<⎪⎩…; (3)h =±3 【解析】 【分析】(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中计算即可;②y =212x ﹣2x ; (2)将(0,0)代入y =a (x ﹣h )2中,可求得a =12,y =12x 2,待定系数法求OB 、AB 的解析式,由点P 的横坐标为m ,即可表示出相应线段求解;(3)以点O 、A 、D 、D ′为顶点的四边形是菱形,DD ′=OA ,可知点D 的纵坐标为2,再由AD =OA =4即可求出h 的值. 【详解】解:(1)①将x =0,y =0代入y =a (x ﹣2)2﹣2中, 得:0=a (0﹣2)2﹣2, 解得:a =12; ②y =212x ﹣2x ;. (2)∵抛物线y =a (x ﹣h )2经过原点,a =12; ∴y =12x 2, ∴A (4,0),B (2,﹣2),易得:直线OB 解析式为:y =﹣x ,直线AB 解析式为:y =x ﹣4 如图1,222111,2,,,(,0),(,),,222P m m m D m m E m F m m D m m '⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,①221122,222PD m m m m DD m '⎛⎫=--== ⎪⎝⎭PD 2m 1DD 2m'∴== ②如图1,当0<m ≤2时,L =OE +EF +OF =2(22)m m m m ++=+,当2<m <4时,如图2,设PD ′交x 轴于G ,交AB 于H ,PD 交x 轴于E ,交AB 于F ,则222111,2,,,(,0),(,4),,222P m m m D m m E m F m m D m m '⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 2211(4)23422PF m m m m m ⎛⎫=---=-+- ⎪⎝⎭,2222322m 22,PG m 22m 2422FH PH PF ===-+-=-+ ∵DD ′∥EGEG PE DD PD '∴=,即:EG •PD =PE •DD ′,得:EG •(2m )=(2m ﹣12m 2)•2m ∴EG =2m ﹣12m 2,EF =4﹣m ∴L =EG +EF +FH +GH =EG +EF +PG2212242222m m m m ⎛⎫=-+-+-+ ⎪ ⎪⎝⎭221m (221)m 42+=-+++ 2(22)m(0m 2)21m (221)m 4(2m 4)L ⎧+<⎪∴=⎨+-+++<<⎪⎩…;(3)如图3,∵OADD ′为菱形 ∴AD =AO =DD ′=4, ∴PD =2,23PA =23h ∴=±【点睛】本题是二次函数综合题,考查了待定系数法求函数解析式,菱形的性质,抛物线的平移等,解题时要注意考虑分段函数表示方法.7.如图,抛物线y =ax 2+bx ﹣1(a ≠0)交x 轴于A ,B (1,0)两点,交y 轴于点C ,一次函数y =x +3的图象交坐标轴于A ,D 两点,E 为直线AD 上一点,作EF ⊥x 轴,交抛物线于点F (1)求抛物线的解析式;(2)若点F 位于直线AD 的下方,请问线段EF 是否有最大值?若有,求出最大值并求出点E 的坐标;若没有,请说明理由;(3)在平面直角坐标系内存在点G ,使得G ,E ,D ,C 为顶点的四边形为菱形,请直接写出点G 的坐标.【答案】(1)抛物线的解析式为y=13x2+23x﹣1;(2)4912,(12,72);(3)点G的坐标为(2,1),(﹣2,﹣2﹣1),2,2﹣1),(﹣4,3).【解析】【分析】(1)利用待定系数法确定函数关系式;(2)由函数图象上点的坐标特征:可设点E的坐标为(m,m+3),点F的坐标为(m,1 3m2+23m﹣1),由此得到EF=﹣13m2+13m+4,根据二次函数最值的求法解答即可;(3)分三种情形①如图1中,当EG为菱形对角线时.②如图2、3中,当EC为菱形的对角线时,③如图4中,当ED为菱形的对角线时,分别求解即可.【详解】解:(1)将y=0代入y=x+3,得x=﹣3.∴点A的坐标为(﹣3,0).设抛物线的解析式为y=a(x﹣x1)(x﹣x2),点A的坐标为(﹣3,0),点B的坐标为(1,0),∴y=a(x+3)(x﹣1).∵点C的坐标为(0,﹣1),∴﹣3a=﹣1,得a=13,∴抛物线的解析式为y=13x2+23x﹣1;(2)设点E的坐标为(m,m+3),线段EF的长度为y,则点F的坐标为(m,13m2+23m﹣1)∴y=(m+3)﹣( 13m2+23m﹣1)=﹣13m2+13m+4即y=-13(m﹣12) 2+4912,此时点E的坐标为(12,72);(3)点G的坐标为(2,1),(﹣2,﹣2﹣1),2,2﹣1),(﹣4,3).理由:①如图1,当四边形CGDE为菱形时.∴EG 垂直平分CD ∴点E 的纵坐标y =132-+=1, 将y =1带入y =x +3,得x =﹣2. ∵EG 关于y 轴对称, ∴点G 的坐标为(2,1);②如图2,当四边形CDEG 为菱形时,以点D 为圆心,DC 的长为半径作圆,交AD 于点E ,可得DC =DE ,构造菱形CDEG 设点E 的坐标为(n ,n +3), 点D 的坐标为(0,3)∴DE =22(33)n n ++-=22n ∵DE =DC =4, ∴22n =4,解得n 1=﹣22,n 2=22.∴点E 的坐标为(﹣22,﹣22+3)或(22,22+3) 将点E 向下平移4个单位长度可得点G ,点G 的坐标为(﹣22,﹣22﹣1)(如图2)或(22,22﹣1)(如图3)③如图4,“四边形CDGE 为菱形时,以点C 为圆心,以CD 的长为半径作圆,交直线AD 于点E ,设点E 的坐标为(k ,k +3),点C 的坐标为(0,﹣1). ∴EC =22(0)(31)k k -+++=22816k k ++. ∵EC =CD =4, ∴2k 2+8k +16=16, 解得k 1=0(舍去),k 2=﹣4. ∴点E 的坐标为(﹣4,﹣1) 将点E 上移1个单位长度得点G . ∴点G 的坐标为(﹣4,3).综上所述,点G 的坐标为(2,1),(﹣22,﹣22﹣1),(22,22﹣1),(﹣4,3).【点睛】本题考查二次函数综合题、轴对称变换、菱形的判定和性质等知识,解题的关键是学会利用对称解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.8.已知抛物线2(5)6y x m x m =-+-+-. (1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或 【解析】 【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论. 【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥ ∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知,方程的两根为:257m m x ()-±-=即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+ ∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0), 它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -), 由题意,可得:6166m m m 或-+=-+=- 56m m ∴==或 【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.9.如图,菱形ABCD 的边长为20cm ,∠ABC =120°,对角线AC ,BD 相交于点O ,动点P 从点A 出发,以4cm /s 的速度,沿A →B 的路线向点B 运动;过点P 作PQ ∥BD ,与AC 相交于点Q ,设运动时间为t 秒,0<t <5.(1)设四边形PQCB 的面积为S ,求S 与t 的关系式;(2)若点Q 关于O 的对称点为M ,过点P 且垂直于AB 的直线l 交菱形ABCD 的边AD (或CD )于点N ,当t 为何值时,点P 、M 、N 在一直线上?(3)直线PN 与AC 相交于H 点,连接PM ,NM ,是否存在某一时刻t ,使得直线PN 平分四边形APMN 的面积?若存在,求出t 的值;若不存在,请说明理由. 【答案】(1) S=﹣231003t +0<t <5); (2) 307;(3)见解析. 【解析】 【分析】(1)如图1,根据S=S △ABC -S △APQ ,代入可得S 与t 的关系式;(2)设PM=x ,则AM=2x ,可得3,计算x 的值,根据直角三角形30度角的性质可得3AM=AO+OM ,列方程可得t 的值;(3)存在,通过画图可知:N 在CD 上时,直线PN 平分四边形APMN 的面积,根据面积相等可得MG=AP ,由AM=AO+OM ,列式可得t 的值. 【详解】解:(1)如图1,∵四边形ABCD 是菱形, ∴∠ABD=∠DBC=12∠ABC=60°,AC ⊥BD , ∴∠OAB=30°, ∵AB=20,∴OB=10,3 由题意得:AP=4t ,∴PQ=2t ,AQ=23t , ∴S=S △ABC ﹣S △APQ , =11··22AC OB PQ AQ -, =111020322322t t ⨯⨯-⨯⨯ , =﹣23t 2+1003(0<t <5); (2)如图2,在Rt △APM 中,AP=4t , ∵点Q 关于O 的对称点为M , ∴OM=OQ , 设PM=x ,则AM=2x , ∴AP=3x=4t , ∴x=3, ∴AM=2PM=3, ∵AM=AO+OM ,∴3=103+103﹣23t ,t=307; 答:当t 为307秒时,点P 、M 、N 在一直线上; (3)存在,如图3,∵直线PN 平分四边形APMN 的面积, ∴S △APN =S △PMN ,过M 作MG ⊥PN 于G ,∴11··22PN AP PN MG = , ∴MG=AP ,易得△APH ≌△MGH ,∴3,∵AM=AO+OM ,同理可知:3﹣3,3333t ,t=3011. 答:当t 为3011秒时,使得直线PN 平分四边形APMN 的面积.【点睛】考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.10.已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【答案】(1)223y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;(3)点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,3⎛⎫- ⎪⎝⎭. 【解析】 【分析】()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;()3设点M 的坐标为()1,m ,则22CM (10)(m 3)=-+-,()22AC [01](30)10=--+-=,()22AM [11](m 0)=--+-,分AMC 90∠=o 、ACM 90∠=o 和CAM 90∠=o 三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【详解】解:()1将()1,0A -、()0,3C 代入2y x bx c =-++中, 得:{103b c c --+==,解得:{23b c ==,∴抛物线的解析式为223y x x =-++.()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.当0y =时,有2230x x -++=, 解得:11x =-,23x =,∴点B 的坐标为()3,0.Q 抛物线的解析式为2223(1)4y x x x =-++=--+, ∴抛物线的对称轴为直线1x =.设直线BC 的解析式为()0y kx d k =+≠, 将()3,0B 、()0,3C 代入y kx d =+中, 得:{303k d d +==,解得:{13k d =-=,∴直线BC 的解析式为3y x =-+. Q 当1x =时,32y x =-+=,∴当PA PC +的值最小时,点P 的坐标为()1,2.()3设点M 的坐标为()1,m ,则22(10)(3)CM m =-+-,()22[01](30)10AC =--+-=()22[11](0)AM m =--+-分三种情况考虑:①当90AMC ∠=o 时,有222AC AM CM =+,即22101(3)4m m =+-++,解得:11m =,22m =,∴点M 的坐标为()1,1或()1,2;②当90ACM ∠=o 时,有222AM AC CM =+,即224101(3)m m +=++-,解得:83m =, ∴点M 的坐标为81,3⎛⎫⎪⎝⎭;③当90CAM ∠=o 时,有222CM AM AC =+,即221(3)410m m +-=++,解得:23m =-, ∴点M 的坐标为21,.3⎛⎫- ⎪⎝⎭综上所述:当MAC V 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3⎛⎫⎪⎝⎭或21,.3⎛⎫- ⎪⎝⎭【点睛】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=o 、ACM 90∠=o 和CAM 90∠=o 三种情况,列出关于m 的方程.11.如图,直线y =﹣x +4与x 轴交于点B ,与y 轴交于点C ,抛物线y =﹣x 2+bx +c 经过B ,C 两点,与x 轴另一交点为A .点P 以每秒2个单位长度的速度在线段BC 上由点B 向点C 运动(点P 不与点B 和点C 重合),设运动时间为t 秒,过点P 作x 轴垂线交x 轴于点E ,交抛物线于点M .(1)求抛物线的解析式;(2)如图①,过点P 作y 轴垂线交y 轴于点N ,连接MN 交BC 于点Q ,当12MQ NQ =时,求t 的值;(3)如图②,连接AM 交BC 于点D ,当△PDM 是等腰三角形时,直接写出t 的值. 【答案】(1)y =﹣x 2+3x +4;(2)t 的值为12;(3)当△PDM 是等腰三角形时,t =1或t ﹣1. 【解析】 【分析】(1)求直线y=-x+4与x 轴交点B ,与y 轴交点C ,用待定系数法即求得抛物线解析式. (2)根据点B 、C 坐标求得∠OBC=45°,又PE ⊥x 轴于点E ,得到△PEB 是等腰直角三角形,由PB =求得BE=PE=t ,即可用t 表示各线段,得到点M 的横坐标,进而用m 表示点M 纵坐标,求得MP 的长.根据MP ∥CN 可证MPQ NCQ V V ∽,故有12MP MQ NC NQ ==,把用t 表示的MP 、NC 代入即得到关于t 的方程,求解即得到t 的值. (3)因为不确定等腰△PDM 的底和腰,故需分3种情况讨论:①若MD=MP ,则∠MDP=∠MPD=45°,故有∠DMP=90°,不合题意;②若DM=DP ,则∠DMP=∠MPD=45°,进而得AE=ME ,把含t 的式子代入并解方程即可;③若MP=DP ,则∠PMD=∠PDM ,由对顶角相等和两直线平行内错角相等可得∠CFD=∠PMD=∠PDM=∠CDF 进而得CF=CD .用t 表示M 的坐标,求直线AM 解析式,求得AM 与y 轴交点F 的坐标,即能用t 表示CF 的长.把直线AM 与直线BC 解析式联立方程组,解得x 的值即为点D 横坐标.过D 作y 轴垂线段DG ,得等腰直角△CDG ,用DG 即点D 横坐标,进而可用t 表示CD 的长.把含t 的式子代入CF=CD ,解方程即得到t 的值. 【详解】(1)直线y =﹣x +4中,当x =0时,y =4 ∴C (0,4)当y =﹣x +4=0时,解得:x =4 ∴B (4,0)∵抛物线y =﹣x 2+bx +c 经过B ,C 两点 ∴1640004b c c -++=⎧⎨++=⎩ 解得:34b c =⎧⎨=⎩∴抛物线解析式为y =﹣x 2+3x +4(2)∵B (4,0),C (0,4),∠BOC =90° ∴OB =OC∴∠OBC =∠OCB =45° ∵ME ⊥x 轴于点E ,PBt ∴∠BEP =90°∴Rt △BEP 中,2PE sin PBE PB ∠==∴BE PE t ==, ∴4M P P x x OE OBBE t y PE t ===﹣=﹣,== ∵点M 在抛物线上∴2243445M y t t t t +++=﹣(﹣)(﹣)=﹣, ∴24MP MP y y t t +=﹣=﹣ , ∵PN ⊥y 轴于点N∴∠PNO =∠NOE =∠PEO =90° ∴四边形ONPE 是矩形 ∴ON =PE =t ∴NC =OC ﹣ON =4﹣t ∵MP ∥CN ∴△MPQ ∽△NCQ ∴12MP MQ NC NQ == ∴24142t t t -+=-解得:12142t t =,=(点P 不与点C 重合,故舍去) ∴t 的值为12(3)∵∠PEB =90°,BE =PE ∴∠BPE =∠PBE =45° ∴∠MPD =∠BPE =45°①若MD =MP ,则∠MDP =∠MPD =45° ∴∠DMP =90°,即DM ∥x 轴,与题意矛盾 ②若DM =DP ,则∠DMP =∠MPD =45° ∵∠AEM =90° ∴AE =ME∵y =﹣x 2+3x +4=0时,解得:x 1=﹣1,x 2=4 ∴A (﹣1,0)∵由(2)得,x M =4﹣t ,ME =y M =﹣t 2+5t ∴AE =4﹣t ﹣(﹣1)=5﹣t ∴5﹣t =﹣t 2+5t解得:t 1=1,t 2=5(0<t <4,舍去)③若MP =DP ,则∠PMD =∠PDM如图,记AM 与y 轴交点为F ,过点D 作DG ⊥y 轴于点G ∴∠CFD =∠PMD =∠PDM =∠CDF ∴CF =CD∵A (﹣1,0),M (4﹣t ,﹣t 2+5t ),设直线AM 解析式为y =ax +m ∴()2045a m a t m t t -+=⎧⎨-+=-+⎩ 解得:a tm t =⎧⎨=⎩ , ∴直线AM :y tx t += ∴F (0,t ) ∴CF =OC ﹣OF =4﹣t ∵tx +t =﹣x +4,解得:41tx t -=+, ∴41D x tt DG -=+==, ∵∠CGD =90°,∠DCG =45° ∴)2421t CD DG t -+==,∴)2441t t t -+﹣ 解得:21t =﹣综上所述,当△PDM 是等腰三角形时,t =1或21t =﹣. 【点睛】本题考查了二次函数的图象与性质,解二元一次方程组和一元二次方程,等腰直角三角形的性质,相似三角形的判定和性质,涉及等腰三角形的分类讨论,要充分利用等腰的性质作为列方程的依据.12.已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.【答案】(1)抛物线的表达式为:228y x x =-++,直线AB 的表达式为:21y x =-;(2)存在,理由见解析;点P (6,16)-或(4,16)--或(17,2)+或(17,2).【解析】 【分析】(1)二次函数表达式为:y=a (x-1)2+9,即可求解; (2)S △DAC =2S △DCM ,则()()()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯V ,,即可求解;(3)分AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可. 【详解】解:(1)二次函数表达式为:()219y a x =-+, 将点A 的坐标代入上式并解得:1a =-, 故抛物线的表达式为:228y x x =-++…①, 则点()3,5B ,将点,A B 的坐标代入一次函数表达式并解得: 直线AB 的表达式为:21y x =-; (2)存在,理由:二次函数对称轴为:1x =,则点()1,1C , 过点D 作y 轴的平行线交AB 于点H ,设点()2,28D x x x -++,点(),21H x x -,∵2DAC DCM S S ∆∆=, 则()()()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯V , 解得:1x =-或5(舍去5), 故点()1,5D -;(3)设点(),0Q m 、点(),P s t ,228t s s =-++, ①当AM 是平行四边形的一条边时,点M 向左平移4个单位向下平移16个单位得到A ,同理,点(),0Q m 向左平移4个单位向下平移16个单位为()4,16m --,即为点P , 即:4m s -=,6t -=,而228t s s =-++, 解得:6s =或﹣4, 故点()6,16P -或()4,16--; ②当AM 是平行四边形的对角线时,由中点公式得:2m s +=-,2t =,而228t s s =-++, 解得:17s =±故点()17,2P 或()17,2;综上,点()6,16P -或()4,16--或()17,2或()17,2. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.13.已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =25cm .如图①,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm ²),S 与t 的函数关系如图②所示: (1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为()/v cm s .已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()2212,S cm S cm . ①求动点N 运动速度()/v cm s 的取值范围;②试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.【答案】(1)2,10;(2)①2/6/3cm s v cm s ≤<;②当154x =时,12S S ⋅取最大值2254. 【解析】 【分析】(1)由题意可知图像中0~2.5s 时,M 在AB 上运动,求出速度,2.5~7.5s 时,M 在BC 上运动,求出BC 长度;(2)①分别求出在C 点相遇和在B 点相遇时的速度,取中间速度,注意C 点相遇时的速度不能取等于;②过M 点做MH ⊥AC ,则125MH CM ==得到S 1,同时利用12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形=15,得到S 2,再得到12S S ⋅关于x 的二次函数,利用二次函数性质求得最大值 【详解】(1)5÷2.5=2/cm s ;(7.5-2.5)×2=10cm (2)①解:在C 点相遇得到方程57.5v= 在B 点相遇得到方程152.5v= ∴5=7.515=2.5vv⎧⎪⎪⎨⎪⎪⎩解得 23=5v v ⎧=⎪⎨⎪⎩。

二次函数中考题型讲解

二次函数中考题型讲解

二次函数中考题型讲解在中考数学中,二次函数是一个重要的考点,其涉及的知识点和题型都相当丰富。

二次函数中考题型讲解如下:一、求二次函数的表达式这一题型可以通过待定系数法或者平移法来解决。

例如,已知一个二次函数通过两个点,就可以设出二次函数的一般形式,再代入点的坐标来求解系数。

如果知道抛物线的顶点或者对称轴,也可以通过平移法来写出函数表达式。

二、求二次函数的顶点、对称轴和最值对于这一题型,需要掌握二次函数的性质,如顶点的坐标公式、对称轴的公式以及开口方向的判断等。

根据这些性质,可以方便地找到函数的顶点、对称轴,并求出函数的最值。

三、求二次函数与坐标轴的交点解决这一题型,可以通过令y=0然后解方程来找到与x轴的交点,令x=0找到与y轴的交点。

也可以通过判断抛物线与x轴的交点个数,利用判别式来判断。

四、求二次函数与一次函数的交点解决这一题型,可以先将两个函数联立,然后解方程组找到交点的坐标。

也可以分别求出两个函数的解析式,然后令两个解析式相等,解出x的值即为交点的横坐标。

五、求三角形的面积在二次函数中求三角形的面积是一个常见题型。

可以通过找到三角形的一边以及这边上的高,然后使用面积公式计算。

也可以通过找到三角形的三个顶点坐标,然后使用公式计算。

六、求抛物线上点的坐标对于这一题型,可以通过代入法或者作图法来解决。

代入法是将x的值代入到函数中求出y的值,作图法是通过观察图像的特点找到满足条件的点。

七、判断抛物线的开口方向以及与坐标轴的交点个数解决这一题型,可以通过观察抛物线的开口方向以及判别式的值来判断抛物线与坐标轴的交点个数。

如果抛物线向上开口且判别式大于0,那么抛物线与x 轴有两个不同的交点;如果抛物线向下开口且判别式大于0,那么抛物线与x轴有一个交点;如果抛物线向下开口且判别式小于等于0,那么抛物线与x轴没有交点。

以上就是中考数学中常见的二次函数题型以及解决方法。

在备考过程中,建议多做真题,熟悉题型和解题方法,提高解题速度和准确性。

专题12 二次函数(解析版)

专题12 二次函数(解析版)

专题12 二次函数1.二次函数的概念:一般地,自变量x 和因变量y 之间存在如下关系: y=ax 2+bx+c(a≠0,a 、b 、c 为常数),则称y 为x 的二次函数。

抛物线)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2.二次函数y=ax 2 +bx+c(a ≠0)的图像与性质(1)对称轴:2b x a=- (2)顶点坐标:24(,)24b ac b a a-- (3)与y 轴交点坐标(0,c )(4)增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大;当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小。

3.二次函数的解析式三种形式。

(1)一般式 y=ax 2+bx+c(a ≠0).已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式 2()y a x h k =-+ 224()24b ac b y a x a a-=-+ 已知图像的顶点或对称轴,通常选择顶点式。

(3)交点式 12()()y a x x x x =--专题知识回顾y x O已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式。

4.根据图像判断a,b,c 的符号(1)a 确定开口方向 :当a>0时,抛物线的开口向上;当a<0时,抛物线的开口向下。

(2)b ——对称轴与a 左同右异。

(3)抛物线与y 轴交点坐标(0,c )5.二次函数与一元二次方程的关系抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。

抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点;24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点;24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点。

(完整版)二次函数典型中考试题解析和训练.doc

(完整版)二次函数典型中考试题解析和训练.doc

二次函数典型中考试题解析和训练二次函数典型中考试题解析及训练[ 解读中考要点 ]1、二次函数一般地,形如y ax2 bx c ( a,b,c 是常数,a 0 )的函数叫做x的二次函数。

解读:在函数中注意二次项系数 a 0 ,b,c是任意的实数即可。

2、二次函数y ax2(a 0 )的性质解读:( 1)二次函数y ax 2 的图象是抛物线,它的顶点是原点,对称轴是y 轴。

(2)当a 0 时,抛物线y ax 2 的开口向上,并且向上无限延伸,顶点是它的最低点;当 a 0 时,抛物线y ax2 的开口向下,并且向下无限延伸,顶点是它的最高点。

3、二次函数y ax2 k (a 0 )的图象与性质解读:(1)二次函数y ax2 k 的图象与 y ax2 的图象的形状完全一样,可以通过平移二次函数y ax2 的图象得到y ax2 k 的图象。

当k 0 时,向上平移k 个单位长度;当k 0 时,向下平移k 个单位长度。

(2)当a0 时,抛物线的开口向上;当a0 时,抛物线的开口向下。

(3)抛物线的顶点是0, k ,对称轴是y轴。

4、二次函数y a x h 2 k ( a 0 )的图象与性质解读:( 1)它的图象与y ax2 的图象的形状完全一样,可以通过二次函数 y ax 22的图象得到 y a x hk的图象。

(2)当a0 时,抛物线的开口向上;当a0 时,抛物线的开口向下。

(3 )抛物线的顶点是h, k ,对称轴是y 轴。

5、关于二次函数y ax2 bx c (a 0 )的图象解读:( 1)二次函数y ax 2 bx c (a 0 )的图象是与y ax2 的图象的形状完全一样的一条抛物线。

(2 )抛物线 y ax 2 bx c (a 0 )的对称轴是直线 xb,顶点是b 4ac b2。

2a,4a2a(3 )当a 0 时,抛物线的开口向上,顶点是它的最低点。

当x b 时,函数有最小值4ac b2 ;当x b2a 4a 2a时, y 的值随x值的增大而减小;当xb时, y 的值随x值的增大而增大。

中考数学专题复习二次函数的综合题及答案解析

中考数学专题复习二次函数的综合题及答案解析

中考数学专题复习二次函数的综合题及答案解析一、二次函数1.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100,解得:x =40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w ,根据题意得,w =(x ﹣30)[(60﹣x )×10+100]=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6), ∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, 所以二次函数的解析式为:y =233642x x --+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+) =23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA 29n +PE 212n ++()AE 16425+=,分三种情况讨论:当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.4.二次函数y=x 2-2mx+3(m >)的图象与x 轴交于点A (a ,0)和点B (a+n ,0)(n >0且n 为整数),与y 轴交于C 点.(1)若a=1,①求二次函数关系式;②求△ABC 的面积;(2)求证:a=m-;(3)线段AB (包括A 、B )上有且只有三个点的横坐标是整数,求a 的值.【答案】(1)y=x 2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A 的坐标,然后代入二次函数的解析式,求得m 的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m ,然后根据A 、B 两点关于x=m 对称得到a+n-m=m-a ,从而确定a 、m 、n 之间的关系;(3)根据a=m-得到A (m-,0)代入y=(x-m )2-m 2+3得0=(m--m )2-m 2+3,求得m 的值即可确定a 的值.试题解析:(1)①∵a=1,∴A (1,0),代入y=x 2-2mx+3得1-2m+3=0,解得m=2,∴y=x 2-4x+3;②在y=x 2-4x+3中,当y=0时,有x 2-4x+3=0可得x=1或x=3,∴A (1,0)、B (3,0),∴AB=2再根据解析式求出C 点坐标为(0,3),∴OC=3,△ABC 的面积=×2×3=3;(2)∵y=x 2-2mx+3=(x-m )2-m 2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.5.在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.【答案】(1)A(0,﹣3),B(4,﹣3);(2)﹣3<a≤0;【解析】【分析】(1)由题意直接可求A,根据平移点的特点求B;(2)图形M与线段AB恰有两个公共点,y=a要在AB线段的上方,当函数经过点A时,AB与函数两个交点的临界点;【详解】解:(1)A(0,﹣3),B(4,﹣3);(2)当函数经过点A时,a=0,∵图形M与线段AB恰有两个公共点,∴y=a要在AB线段的上方,∴a>﹣3∴﹣3<a≤0;【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.6.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题7.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M 与O 重合,因此抛物线向右平移了3个单位, 故A'(2,4),B'(5,﹣5),∴S △OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.8.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。

中考数学压轴题专题二次函数的经典综合题及答案解析

中考数学压轴题专题二次函数的经典综合题及答案解析

一、二次函数真题与模拟题分类汇编(难题易错题)1.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?【答案】(1)足球飞行的时间是85s时,足球离地面最高,最大高度是4.5m;(2)能.【解析】试题分析:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),于是得到,求得抛物线的解析式为:y=﹣t2+5t+,当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.解:(1)由题意得:函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得:,∴抛物线的解析式为:y=﹣t2+5t+,∴当t=时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y=﹣×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.考点:二次函数的应用.2.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。

(Ⅰ)当121,3x x =-=时,求点A ,点E 的坐标;(Ⅱ)若顶点E 在直线y x =上,当点A 位置最高时,求抛物线的解析式;(Ⅲ)若11,0x b =->,当(1,0)P 满足PA PE +值最小时,求b 的值。

二次函数综合题专项讲解(经典)

二次函数综合题专项讲解(经典)

初中二次函数综合题专项讲解引言:二次函数综合题题目难度较大,也称压轴题。

解压轴题有三个步骤:认真审题;理解题意、探究解题思路;正确解答。

审题要全面审视题目的所有条件和答题要求,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计。

二次函数一般会出现在选择题(或填空题)、解答题的倒数几个题目中。

选择题和填空题时易时难。

解答题较难,一般有2—3小题。

第 1 小题通常是求解析式:这一小题简单,直接找出坐标或者用线段长度而确定坐标,进而用待定系数法求出解析式即可。

第2—3 小题通常是以动点为切入口,结合三角形、四边形、圆、平移、对称、解方程(组)与不等式(组)等知识呈现,知识面广,难度大;解这类题要善于运用转化、数形结合、分类讨论等数学思想,认真分析条件和结论、图形的几何特征与代数式的数量结构特征的关系,确定解题的思路和方法;同时需要心态平和,切记急躁:当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和在联系;既要防止钻牛角尖,又要防止轻易放弃。

一、一中13—14 学年度上期半期考试二次函数习题212.如图,直线y kx c 与抛物线y ax2bx c 的图象都经过y 轴上的 D点,抛物线与x轴交于A、B 两点,其对称轴为直线x 1 ,且OA OD.直线y kx c与x轴交于点C(点C在点B的右侧).则下列命题中正确命题的个数是().①abc 0; ② 3a b 0; ③ 1 k 0;④k a b; ⑤ ac k 0A .1 B.2 C.3 D.416.如右图是二次函数y ax2bx c 的部分图象,由图象可知ax2bx c 0时x的取值围是_______________________________________________ .1218.已知抛物线y x22x 的图象如左图所示,点N 为抛物线2的顶点,直线ON 上有两个动点P和Q,且满足PQ 2 2 ,在直线ON 下方的抛物线上存在点M ,使PQM 为等腰直角三角形,则点M 的坐标为_______________________________________________125.如图,在平面直角坐标系中,直线y x 2 与坐标轴分别交于 A 、B 两点,过 A 、B22两点的抛物线为y x2bx c ,点 E 为第二象限抛物线上一动点,连接AE,BE.1)求抛物线的解析式;2)当ABE 面积最大时,求点E的坐标,并求出此时ABE 的面积;3)当EAB OAB 时,求点E的坐标.二、二次函数基础2(一)概念:一般地,形如y ax2bx c(a,b,c是常数, a 0 )的函数,叫做二次函数。

中考数学复习专题训练 二次函数的综合应用(含解析)

中考数学复习专题训练 二次函数的综合应用(含解析)

中考数学复习专题训练二次函数的综合应用一、选择题1.下列函数是二次函数的是( )A. y=2x+1B. y=﹣2x+1C. y=x2+2D. y=x﹣22.函数y=(m﹣3)x|m|﹣1+3x﹣1是二次函数,则m的值是( )A. ﹣3B. 3C. ±2D. ±33.已知抛物线y=ax2+bx+c经过原点和第一、二、三象限,那么()A. a>0,b>0,c>0B. a>0,b>0,c=0C. a>0,b>0,c<0D. a>0,b<0,c=04.如图,在同一坐标系下,一次函数y=ax+b与二次函数y=ax2+bx+4的图象大致可能是()A. B. C. D.5.在平面直角坐标系中,抛物线y=x2-1与y轴的交点坐标是( )A. (1,0)B. (0,1)C. (0,-1)D. (-1,0)6.二次函数的图象如图所示,则这个二次函数的解析式为()A. y (x﹣2)2+3B. y= (x﹣2)2﹣3C. y=﹣(x﹣2)2+3D. y=﹣(x﹣2)2﹣37.如图,已知二次函数y1= x2﹣x的图象与正比例函数y2= x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A. 0<x<2B. 0<x<3C. 2<x<3D. x<0或x>38. 设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()A. a(x1﹣x2)=dB. a(x2﹣x1)=dC. a(x1﹣x2)2=dD. a(x1+x2)2=d9.二次函数y=x2﹣8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于的点P共有( )A. 1个B. 2个C. 3个D. 4个10.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为()A. B. C. 3 D. 411.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为( )A. -B. 或-C. 2或-D. 2或或-12.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A. B. C. D.二、填空题13.若函数y=(m+2)是二次函数,则m=________14.抛物线y= (x﹣4)2+3与y轴交点的坐标为________.15.已知抛物线的顶点坐标为(1,﹣1),且经过原点(0,0),则该抛物线的解析式为________.16.二次函数y=x2+4x+5中,当x=________时,y有最小值.17.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表x﹣1013y﹣1353下列结论:①ac<0;②当x>1时,y的值随x值的增大而减小.③当x=2时,y=5;④3是方程ax2+(b﹣1)x+c=0的一个根;其中正确的有________.(填正确结论的序号)18.已知抛物线y=ax2+bx+c(a>0)的对称轴为直线,且经过点(-3,y1),(4,y2),试比较y1和y2的大小:y1________y2(填“>”,“<”或“=”).19.如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.20.如图,二次函数的图象经过点,对称轴为直线,下列5个结论:①;②;③;④;⑤,其中正确的结论为________ .(注:只填写正确结论的序号)三、解答题21.已知抛物线y= x2﹣2x的顶点是A,与x轴相交于点B、C两点(点B在点C的左侧).(1)求A、B、C的坐标;(2)直接写出当y<0时x的取值范围.22.在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)当S△ABC=15时,求该抛物线的表达式;(3)在(2)的条件下,经过点C的直线与抛物线的另一个交点为D.该抛物线在直线上方的部分与线段CD组成一个新函数的图象。

备战中考数学压轴题专题二次函数的经典综合题及答案解析

备战中考数学压轴题专题二次函数的经典综合题及答案解析

备战中考数学压轴题专题二次函数的经典综合题及答案解析一、二次函数1.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S . ①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.【答案】(1)2y x 2x 3=--+.(2)3210.(3)①2S m 4m 3=---.②当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).【解析】【分析】(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可.(2)根据BC 是定值,得到当PB+PC 最小时,△PBC 的周长最小,根据点的坐标求得相应线段的长即可.(3)设点E 的横坐标为m ,表示出E (m ,2m+6),F (m ,2m 2m 3--+),最后表示出EF 的长,从而表示出S 于m 的函数关系,然后求二次函数的最值即可.【详解】解:(1)∵抛物线2y ax bx c =++经过A (-3,0),B (1,0),∴可设抛物线交点式为()()y a x 3x 1=+-.又∵抛物线2y ax bx c =++经过C (0,3),∴a 1=-.∴抛物线的解析式为:()()y x 3x 1=-+-,即2y x 2x 3=--+.(2)∵△PBC 的周长为:PB+PC+BC ,且BC 是定值.∴当PB+PC 最小时,△PBC 的周长最小.∵点A 、点B 关于对称轴I 对称,∴连接AC 交l 于点P ,即点P 为所求的点.∵AP=BP ,∴△PBC 的周长最小是:PB+PC+BC=AC+BC.∵A (-3,0),B (1,0),C (0,3),∴AC=32,BC=10.∴△PBC 的周长最小是:3210+.(3)①∵抛物线2y x 2x 3=--+顶点D 的坐标为(﹣1,4),A (﹣3,0),∴直线AD 的解析式为y=2x+6∵点E 的横坐标为m ,∴E (m ,2m+6),F (m ,2m 2m 3--+)∴()22EF m 2m 32m 6m 4m 3=--+-+=---. ∴()22DEF AEF 1111S S S EF GH EF AG EF AH m 4m 32m 4m 32222∆∆=+=⋅⋅+⋅⋅=⋅⋅=⋅---⋅=---.∴S 与m 的函数关系式为2S m 4m 3=---.②()22S m 4m 3m 21=---=-++,∴当m=﹣2时,S 最大,最大值为1,此时点E 的坐标为(﹣2,2).2.某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y (千克)与销售单价x (元)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?【答案】(1)y =﹣20x +500,(x ≥6);(2)当x =15.5时,w 的最大值为1805元;(3)当x =13时,w =1680,此时,既能销售完又能获得最大利润.【解析】【分析】(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 即可求解;(2)由题意得:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,即可求解;(3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;由50(500﹣20x )≥12000,解得:x ≤13,当x =13时,既能销售完又能获得最大利润.【详解】解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:2001530010k b k b =+⎧⎨=+⎩, 解得:20500k b =-⎧⎨=⎩, 即:函数的表达式为:y =﹣20x +500,(x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大,则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,当x =﹣2b a =312=15.5时,w 的最大值为1805元; (3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x 元时,既能销售完又能获得最大利润w ,由题意得:50(500﹣20x )≥12000,解得:x ≤13,w =﹣20(x ﹣25)(x ﹣6),当x =13时,w =1680,此时,既能销售完又能获得最大利润.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).3.如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1, 0)、C (3, 0)、D (3, 4).以A 为顶点的抛物线y =ax 2+bx +c 过点C .动点P 从点A 出发,以每秒12个单位的速度沿线段AD 向点D 运动,运动时间为t 秒.过点P 作PE ⊥x 轴交抛物线于点M ,交AC 于点N .(1)直接写出点A的坐标,并求出抛物线的解析式;(2)当t为何值时,△ACM的面积最大?最大值为多少?(3)点Q从点C出发,以每秒1个单位的速度沿线段CD向点D运动,当t为何值时,在线段PE上存在点H,使以C、Q、N、H为顶点的四边形为菱形?【答案】(1)A(1,4);y=-x2+2x+3;(2)当t=2时,△AMC面积的最大值为1;(3)2085-或20 13.【解析】(1)由矩形的性质得到点A的坐标,由抛物线的顶点为A,设抛物线的解析式为y=a(x -1)2+4,把点C的坐标代入即可求得a的值;(2)由点P的坐标以及抛物线解析式得到点M的坐标,由A、C的坐标得到直线AC的解析式,进而得到点N的坐标,即可用关于t的式子表示MN,然后根据△ACM的面积是△AMN和△CMN的面积和列出用t表示的△ACM的面积,利用二次函数的性质即可得到当t=2时,△AMC面积的最大值为1;(3)①当点H在N点上方时,由PN=CQ,PN∥CQ,得到四边形PNCQ为平行四边形,所以当PQ=CQ时,四边形FECQ为菱形,据此得到,解得t值;②当点H在N点下方时,NH=CQ=,NQ=CQ时,四边形NHCQ为菱形,NQ2=CQ2,得:,解得t值.解:(1)由矩形的性质可得点A(1,4),∵抛物线的顶点为A,设抛物线的解析式为y=a(x-1)2+4,代入点C(3, 0),可得a=-1.∴y=-(x-1)2+4=-x2+2x+3.(2)∵P(112t+,4),将112x t=+代入抛物线的解析式,y=-(x-1)2+4=2144t-,∴M (112t +,2144t -), 设直线AC 的解析式为,将A (1,4),C (3,0)代入,得:, 将112x t =+代入得, ∴N (112t +,), ∴MN, ∴, ∴当t =2时,△A MC 面积的最大值为1.(3)①如图1,当点H在N点上方时,∵N(112t +,),P (112t +,4), ∴P N=4—()==CQ ,又∵PN ∥CQ , ∴四边形PNCQ 为平行四边形,∴当PQ =CQ 时,四边形FECQ 为菱形,PQ 2=PD 2+DQ 2 =,∴, 整理,得240800t t -+=.解得12085t =-,22085t =+(舍去);②如图2当点H在N点下方时,NH=CQ=,NQ =CQ 时,四边形NHCQ 为菱形,NQ 2=CQ 2,得:.整理,得213728000t t -+=.()()1320400t t --=.所以12013t =,(舍去).“点睛”此题主要考查二次函数的综合问题,会用顶点式求抛物线,会用两点法求直线解析式,会设点并表示三角形的面积,熟悉矩形和菱形的性质是解题的关键.4.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6),∴1640 4206a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:3 4 3 26abc⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以二次函数的解析式为:y=233642x x--+;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=122x--,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,233642m m--+),则点F(m,122m--),∴DF=233642m m--+﹣(122m--)=2384m m--+,∴S△ADE=S△ADF+S△EDF=12×DF×AG+12DF×EH=12×DF×AG+12×DF×EH=12×4×DF=2×(2384m m--+)=23250233m-++(),∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA =29n +,PE =212n ++(),AE =16425+=,分三种情况讨论: 当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±). 点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.5.如图,已知二次函数的图象过点O (0,0).A (8,4),与x 轴交于另一点B ,且对称轴是直线x =3.(1)求该二次函数的解析式;(2)若M 是OB 上的一点,作MN ∥AB 交OA 于N ,当△ANM 面积最大时,求M 的坐标;(3)P 是x 轴上的点,过P 作PQ ⊥x 轴与抛物线交于Q .过A 作AC ⊥x 轴于C ,当以O ,P ,Q 为顶点的三角形与以O ,A ,C 为顶点的三角形相似时,求P 点的坐标.【答案】(1)21342y x x =-;(2)当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0).【解析】【分析】(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式;(2)设M (t ,0),先其求出直线OA 的解析式为12y x =直线AB 的解析式为y=2x-12,直线MN 的解析式为y=2x-2t ,再通过解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得N (42t,t 33),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到AMN 112S 4t t t 223∆=⋅⋅-⋅⋅然后根据二次函数的性质解决问题;(3)设Q 213m,m m 42⎛⎫- ⎪⎝⎭,根据相似三角形的判定方法,当PQ PO OC AC=时,△PQO ∽△COA ,则213m m 2|m |42-=;当PQ PO AC OC =时,△PQO ∽△CAO ,则2131m m m 422-=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【详解】解:(1)∵抛物线过原点,对称轴是直线x =3,∴B 点坐标为(6,0),设抛物线解析式为y =ax (x ﹣6),把A (8,4)代入得a•8•2=4,解得a =14, ∴抛物线解析式为y =14x (x ﹣6),即y =14x 2﹣32x ; (2)设M (t ,0), 易得直线OA 的解析式为y =12x , 设直线AB 的解析式为y =kx+b , 把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得k 2b 12=⎧⎨=-⎩, ∴直线AB 的解析式为y =2x ﹣12,∵MN ∥AB ,∴设直线MN 的解析式为y =2x+n ,把M (t ,0)代入得2t+n =0,解得n =﹣2t ,∴直线MN 的解析式为y =2x ﹣2t , 解方程组1222y x y x t ⎧=⎪⎨⎪=-⎩得4323x t y t ⎧=⎪⎪⎨⎪=⎪⎩,则42N t,t 33⎛⎫ ⎪⎝⎭, ∴S △AMN =S △AOM ﹣S △NOM1124t t t 223=⋅⋅-⋅⋅ 21t 2t 3=-+ 21(t 3)33=--+, 当t =3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)设213m,m m 42⎛⎫- ⎪⎝⎭, ∵∠OPQ =∠ACO ,∴当PQ PO OC AC =时,△PQO ∽△COA ,即PQ PO 84=, ∴PQ =2PO ,即213m m 2|m |42-=, 解方程213m m 2m 42-=得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程213m m 2m 42-=-得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0); ∴当PQ PO AC OC =时,△PQO ∽△CAO ,即PQ PO 48=, ∴PQ =12PO ,即2131m m m 422-=, 解方程2131m m m 422=-=得m 1=0(舍去),m 2=8,此时P 点坐标为(8,0); 解方程2131m m m 422=-=-得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.6.已知关于x 的一元二次方程x 2﹣(2k +1)x +k 2=0有两个实数根.(1)求k 的取值范围;(2)设x 1,x 2是方程两根,且121111x x k +=-,求k 的值. 【答案】(1)k ≥﹣14;(2)k【解析】【分析】(1)根据方程有两个实数根可以得到△≥0,从而求得k 的取值范围;(2)利用根与系数的关系将两根之和和两根之积代入代数式求k 的值即可. 【详解】解:(1)△=(2k +1)2﹣4k 2=4k 2+4k +1﹣4k 2=4k +1 ∵△≥0 ∴4k +1≥0 ∴k ≥﹣14; (2)∵x 1,x 2是方程两根, ∴x 1+x 2=2k +1 x 1x 2=k 2,又∵121111x x k +=-, ∴121211x x x x k +=⋅-, 即22111k k k +=+ ,解得:12k k ==又∵k ≥﹣14, 即:k【点睛】本题考查了根与系数的关系以及一元二次方程的解,根的判别式等知识,牢记“两根之和等于b a -,两根之积等于ca”是解题的关键.7.已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【答案】(1)223y x x =-++;(2)当PA PC +的值最小时,点P 的坐标为()1,2;(3)点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,3⎛⎫- ⎪⎝⎭. 【解析】 【分析】()1由点A 、C 的坐标,利用待定系数法即可求出抛物线的解析式;()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,利用二次函数图象上点的坐标特征可求出点B 的坐标,由点B 、C 的坐标利用待定系数法即可求出直线BC 的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P 的坐标;()3设点M 的坐标为()1,m ,则22CM (10)(m 3)=-+-,()22AC [01](30)10=--+-=,()22AM [11](m 0)=--+-,分AMC 90∠=o 、ACM 90∠=o 和CAM 90∠=o 三种情况,利用勾股定理可得出关于m 的一元二次方程或一元一次方程,解之可得出m 的值,进而即可得出点M 的坐标. 【详解】解:()1将()1,0A -、()0,3C 代入2y x bx c =-++中,得:{103b c c --+==,解得:{23b c ==,∴抛物线的解析式为223y x x =-++.()2连接BC 交抛物线对称轴于点P ,此时PA PC +取最小值,如图1所示.当0y =时,有2230x x -++=, 解得:11x =-,23x =,∴点B 的坐标为()3,0.Q 抛物线的解析式为2223(1)4y x x x =-++=--+,∴抛物线的对称轴为直线1x =.设直线BC 的解析式为()0y kx d k =+≠, 将()3,0B 、()0,3C 代入y kx d =+中, 得:{303k d d +==,解得:{13k d =-=,∴直线BC 的解析式为3y x =-+. Q 当1x =时,32y x =-+=,∴当PA PC +的值最小时,点P 的坐标为()1,2.()3设点M 的坐标为()1,m ,则22(10)(3)CM m =-+-,()22[01](30)10AC =--+-=,()22[11](0)AM m =--+-.分三种情况考虑:①当90AMC ∠=o 时,有222AC AM CM =+,即22101(3)4m m =+-++,解得:11m =,22m =,∴点M 的坐标为()1,1或()1,2;②当90ACM ∠=o 时,有222AM AC CM =+,即224101(3)m m +=++-,解得:83m =, ∴点M 的坐标为81,3⎛⎫⎪⎝⎭;③当90CAM ∠=o 时,有222CM AM AC =+,即221(3)410m m +-=++,解得:23m =-, ∴点M 的坐标为21,.3⎛⎫- ⎪⎝⎭综上所述:当MAC V 是直角三角形时,点M 的坐标为()1,1、()1,2、81,3⎛⎫ ⎪⎝⎭或21,.3⎛⎫- ⎪⎝⎭【点睛】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:()1由点的坐标,利用待定系数法求出抛物线解析式;()2由两点之间线段最短结合抛物线的对称性找出点P 的位置;()3分AMC 90∠=o 、ACM 90∠=o 和CAM 90∠=o 三种情况,列出关于m 的方程.8.在平面直角坐标系xOy 中,抛物线y =x 2﹣2x +a ﹣3,当a =0时,抛物线与y 轴交于点A ,将点A 向右平移4个单位长度,得到点B . (1)求点B 的坐标;(2)将抛物线在直线y =a 上方的部分沿直线y =a 翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M ,若图形M 与线段AB 恰有两个公共点,结合函数的图象,求a 的取值范围.【答案】(1)A (0,﹣3),B (4,﹣3);(2)﹣3<a ≤0; 【解析】 【分析】(1)由题意直接可求A ,根据平移点的特点求B ;(2)图形M 与线段AB 恰有两个公共点,y =a 要在AB 线段的上方,当函数经过点A 时,AB 与函数两个交点的临界点; 【详解】解:(1)A (0,﹣3),B (4,﹣3); (2)当函数经过点A 时,a =0, ∵图形M 与线段AB 恰有两个公共点, ∴y =a 要在AB 线段的上方, ∴a >﹣3 ∴﹣3<a ≤0; 【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.9.抛物线L :y=﹣x 2+bx+c 经过点A (0,1),与它的对称轴直线x=1交于点B . (1)直接写出抛物线L 的解析式;(2)如图1,过定点的直线y=kx ﹣k+4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值;(3)如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m的值及相应点P的坐标.【答案】(1)y=﹣x2+2x+1;(2)-3;(3)当m=22﹣1时,点P的坐标为(0,2)和(0,22);当m=2时,点P的坐标为(0,1)和(0,2).【解析】【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)利用待定系数法进行求解可即得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=12BG•x N﹣12BG•x M=1得出x N﹣x M=1,联立直线和抛物线解析式求得x=228k k-±-,根据x N﹣x M=1列出关于k的方程,解之可得;(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.【详解】(1)由题意知()1211bc⎧-=⎪⨯-⎨⎪=⎩,解得:21bc=⎧⎨=⎩,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,设M点的横坐标为x M,N点的横坐标为x N,∵y=kx ﹣k+4=k (x ﹣1)+4,∴当x=1时,y=4,即该直线所过定点G 坐标为(1,4), ∵y=﹣x 2+2x+1=﹣(x ﹣1)2+2, ∴点B (1,2), 则BG=2,∵S △BMN =1,即S △BNG ﹣S △BMG =12BG•(x N ﹣1)-12BG•(x M -1)=1, ∴x N ﹣x M =1,由2421y kx k y x x =-+⎧⎨=--+⎩得:x 2+(k ﹣2)x ﹣k+3=0, 解得:x=()()22243k k k -±---=2282k k -±-,则x N =228k k -+-、x M =228k k ---,由x N ﹣x M =1得28k -=1, ∴k=±3, ∵k <0, ∴k=﹣3; (3)如图2,设抛物线L 1的解析式为y=﹣x 2+2x+1+m , ∴C (0,1+m )、D (2,1+m )、F (1,0), 设P (0,t ),(a )当△PCD ∽△FOP 时,PC FOCD OP=, ∴112m t t+-=, ∴t 2﹣(1+m )t+2=0①; (b)当△PCD ∽△POF 时,PC POCD OF=,∴121m t t+-=, ∴t=13(m+1)②; (Ⅰ)当方程①有两个相等实数根时, △=(1+m )2﹣8=0,解得:m=22﹣1(负值舍去), 此时方程①有两个相等实数根t 1=t 2=2, 方程②有一个实数根t=223, ∴m=22﹣1,此时点P 的坐标为(0,2)和(0,223); (Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:19(m+1)2﹣13(m+1)+2=0, 解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t 1=1、t 2=2, 方程②有一个实数根t=1,∴m=2,此时点P 的坐标为(0,1)和(0,2);综上,当m=22﹣1时,点P 的坐标为(0,2)和(0,22); 当m=2时,点P 的坐标为(0,1)和(0,2).【点睛】本题主要考查二次函数的应用,涉及到待定系数法求函数解析式、割补法求三角形的面积、相似三角形的判定与性质等,(2)小题中根据三角形BMN 的面积求得点N 与点M 的横坐标之差是解题的关键;(3)小题中运用分类讨论思想进行求解是关键.10.如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,(0,3﹣)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【解析】 【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标; (3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处. 【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩ 解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3; (2)令y=0,则x 2﹣4x+3=0, 解得:x=1或x=3, ∴B (3,0), ∴点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB 时,,∴或OP=PC ﹣﹣3 ∴P1(0,P 2(0,3﹣ ②当PB=PC 时,OP=OB=3, ∴P 3(0,-3); ③当BP=BC 时, ∵OC=OB=3 ∴此时P 与O 重合, ∴P 4(0,0);综上所述,点P 的坐标为:(0,0,3﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=12×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.11.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=16x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为172m.(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3. 【解析】 【详解】试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.试题解析:(1)由题知点17(0,4),3,2B C ⎛⎫⎪⎝⎭在抛物线上 所以41719326c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62bx a=-=时,10t y =≦ 答:21246y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得12623,623x x =+=-1243x x -=答:两排灯的水平距离最小是3考点:二次函数的实际应用.12.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上.①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P 2﹣1,2);②P (﹣32,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c b a++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得21(舍去)或x=21-,∴点P (21-,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形 =12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P (32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.13.如图,已知抛物线经过点A (﹣1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 做x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M .(1)求该抛物线所表示的二次函数的表达式;(2)已知点F (0,12),当点P 在x 轴上运动时,试求m 为何值时,四边形DMQF 是平行四边形?(3)点P 在线段AB 运动过程中,是否存在点Q ,使得以点B 、Q 、M 为顶点的三角形与△BOD 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)y=﹣12x 2+32x+2;(2)m=﹣1或m=3时,四边形DMQF 是平行四边形;(3)点Q 的坐标为(3,2)或(﹣1,0)时,以点B 、Q 、M 为顶点的三角形与△BOD 相似.【解析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD 解析式为y=12x-2,则Q (m ,-12m 2+32m+2)、M (m ,12m-2),由QM ∥DF 且四边形DMQF 是平行四边形知QM=DF ,据此列出关于m 的方程,解之可得;(3)易知∠ODB=∠QMB ,故分①∠DOB=∠MBQ=90°,利用△DOB ∽△MBQ 得12DO MB OB BQ ==,再证△MBQ ∽△BPQ 得BM BP BQ PQ =,即214 132222m m m -=-++,解之即可得此时m 的值;②∠BQM=90°,此时点Q 与点A 重合,△BOD ∽△BQM′,易得点Q 坐标.详解:(1)由抛物线过点A (-1,0)、B (4,0)可设解析式为y=a (x+1)(x-4), 将点C (0,2)代入,得:-4a=2,解得:a=-12, 则抛物线解析式为y=-12(x+1)(x-4)=-12x 2+32x+2; (2)由题意知点D 坐标为(0,-2),设直线BD 解析式为y=kx+b ,将B (4,0)、D (0,-2)代入,得: 402k b b +⎧⎨-⎩==,解得:122k b ⎧⎪⎨⎪-⎩==, ∴直线BD 解析式为y=12x-2, ∵QM ⊥x 轴,P (m ,0), ∴Q (m ,--12m 2+32m+2)、M (m ,12m-2), 则QM=-12m 2+32m+2-(12m-2)=-12m 2+m+4, ∵F (0,12)、D (0,-2), ∴DF=52, ∵QM ∥DF ,∴当-12m2+m+4=52时,四边形DMQF是平行四边形,解得:m=-1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则21=42 DO MBOB BQ==,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴BM BPBQ PQ=,即214132222mm m-=-++,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.14.如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=12.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.【答案】(1)y=12x2+32x﹣2;(2)9;(3)点Q的坐标为(﹣2,4)或(﹣2,﹣1).【解析】(1)如答图1所示,利用已知条件求出点B的坐标,然后用待定系数法求出抛物线的解析式.(2)如答图1所示,首先求出四边形BMCA面积的表达式,然后利用二次函数的性质求出其最大值.(3)如答图2所示,首先求出直线AC与直线x=2的交点F的坐标,从而确定了Rt△AGF 的各个边长;然后证明Rt△AGF∽Rt△QEF,利用相似线段比例关系列出方程,求出点Q的坐标.考点:二次函数综合题,曲线上点的坐标与方程的关系,锐角三角函数定义,由实际问题列函数关系式,二次函数最值,勾股定理,相似三角形的判定和性质,圆的切线性质.15.如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D 为抛物线的顶点,试判断△BCD 的形状,并说明理由;(3)将直线BC 向上平移t(t>0)个单位,平移后的直线与抛物线交于M ,N 两点(点M 在y 轴的右侧),当△AMN 为直角三角形时,求t 的值.【答案】(1)243y x x =-+;(2)△BCD 为直角三角形,理由见解析;(3)当△AMN 为直角三角形时,t 的值为1或4.【解析】【分析】(1)根据点A 、B 的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,可求出点C 、D 的坐标,利用两点间的距离公式可求出CD 、BD 、BC 的长,由勾股定理的逆定理可证出△BCD 为直角三角形; (3)根据点B 、C 的坐标,利用待定系数法可求出直线BC 的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M 、N 的坐标,利用两点间的距离公式可求出AM 2、AN 2、MN 2的值,分别令三个角为直角,利用勾股定理可得出关于t 的无理方程,解之即可得出结论.【详解】(1)将()1,0A 、()3,0B 代入23y ax bx =++,得: 309330a b a b ++=⎧⎨++=⎩,解得:14a b =⎧⎨=-⎩, ∴此二次函数解析式为243y x x =-+.(2)BCD ∆为直角三角形,理由如下:()224321y x x x Q =-+=--,∴顶点D 的坐标为()2,1-.当0x =时,2433y x x =-+=, ∴点C 的坐标为()0,3.Q 点B 的坐标为()3,0, ()()22300332BC ∴=-+-=, ()()2223102BD =-+--=,CD ==22220BC BD CD +==Q ,90CBD ∴∠=︒,BCD ∴∆为直角三角形.(3)设直线BC 的解析式为()0y kx c k =+≠,将()3,0B ,()0,3C 代入y kx c =+,得:303k c c +=⎧⎨=⎩,解得:13k c =-⎧⎨=⎩, ∴直线BC 的解析式为3y x =-+,∴将直线BC 向上平移t 个单位得到的直线的解析式为3y x t =-++.联立新直线与抛物线的解析式成方程组,得:2343y x t y x x =-++⎧⎨=-+⎩,解得:11322x t y ⎧=⎪⎪⎨+-⎪=⎪⎩,22322x t y ⎧=⎪⎪⎨+⎪=⎪⎩,∴点M 的坐标为,点N 的坐标为,. Q 点A 的坐标为()1,0,(222210571AM t t t ⎫⎫∴=+-=++-+⎪⎪⎪⎪⎝⎭⎝⎭(222210571AN t t t ⎫⎫=-+-=++++⎪⎪⎪⎪⎝⎭⎝⎭,222188MN t =+=+⎝⎭⎝⎭.AMN ∆Q 为直角三角形,∴分三种情况考虑:①当90MAN ∠=︒时,有222AM AN MN+=,即((22571571188t t t t t t t ++-+++++=+,整理,得:220t t +-=,解得:11t =,22t =-(不合题意,舍去);②当90AMN ∠=︒时,有222AM MN AN +=,即((22571188571t t t t t t t ++-++=++++,整理,得:2280t t --=,解得:14t =,22t =-(不合题意,舍去);③当90ANM ∠=︒时,有222AN MN AN +=,即((22571188571t t t t t t t +++++=++-+,10t ++=. 0t >Q ,∴该方程无解(或解均为增解).综上所述:当AMN ∆为直角三角形时,t 的值为1或4.【点睛】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC 2+BD 2=CD 2;(3)分∠MAN =90°、∠AMN =90°及∠ANM =90°三种情况考虑.。

2022年中考数学二次函数(解析版)

2022年中考数学二次函数(解析版)

热点05 二次函数在中考中,二次函数可以是以选择、填空题的形式考察,也可以以解答题的形式考察,题目的难度都在中上等,也常作为中考中难度较大的一类压轴题的问题背景,占的分值也较高。

而考察的内容主要有:二次函数图象与性质、解析式的求法、几何变化、以及函数与几何图形相关的综合应用等。

其中,二次函数与其他综合相关的实际问题,虽然不是压轴出题,但是一般计算量较大,需要考试特别注意自己的计算不要有失误。

1. 二次函数)0(2≠++=a c bx ax y 的解析式:根据已知条件,选择合适的表达式求解;一般情况下:①当已知抛物线上的无规律的三个点的坐标时,常用一般式y =ax 2+bx+c (a ≠0)求其表达式;②当已知抛物线的顶点坐标(或者是对称轴)时,常用顶点式y =a (x-m )2+h (a ≠0)求其表达式;③若(x 1,0)(x 2,0)是抛物线与x 轴的两个交点坐标,故知道抛物线与x 轴两交点坐标时,常用交点式y =a (x-x 1)(x-x 2)(a ≠0)求其表达式;2.二次函数)0(2≠++=a c bx ax y 图象及其性质:牢记顶点公式、注意识别图象与系数的关系、注意抛物线的对称性及其性质的应用;其中:二次函数符号判断类问题大致分为以下几种基本情形∶①a 、b 、c 单个字母的判断,a 由开口判断,b 由对称轴判断(左同右异),c 由图象与y 轴交点判断;②含有a 、b 两个字母时,考虑对称轴;③含有a 、b 、c 三个字母,且a 和b 系数是平方关系,给x 取值,结合图像判断, 另:含有 a 、b 、c 三个字母,a 和b 系数不是平方关系,想办法消掉一到两个字母再判断∶④含有b 2和 4ac ,考虑顶点坐标,或考虑△.⑤其他类型,可考虑给x 取特殊值,联立方程进行判断;也可结合函数最值,图像增减性进行判断。

3.二次函数的简单应用:认真审题、分清问题类型、注意计算;利润最大化问题与二次函数模型:两公式:①单位利润=售价-进价;②总利润=单位利润×销量;两转化:①销量转化为售价的一次函数;②总利润转化为售价的二次函数;函数性质:利用二次函数的性质求出在自变量取值范围内的函数最值;与现实生活结合类问题,常需要自己先建立合适的平面直角坐标系,之后再根据信息做题;二次函数在中考中单独出题和结合出题的形式都比较常见,和实际应用结合时,多考察现实生活中的“生意问题”或者“省钱问题”;数学模型考察热点有:一次函数与二次函数结合问题、二次函数图象与性质、二次函数与几何图形结合的面积最值问题、二次函数与其他几何图形结合的点在坐标特征问题等。

备战中考数学综合题专题复习【二次函数】专题解析含答案解析

备战中考数学综合题专题复习【二次函数】专题解析含答案解析

一、二次函数真题与模拟题分类汇编(难题易错题)1.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P13+5152-),P2(352,1+52),P3(52,1+52),P455-15-.【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P 的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=12×3×3+12PG•AE,=92+12×3×(-m2+5m-3),=-32m2+152m,=32(m-52)2+758, ∵-32<0, ∴当m=52时,S 有最大值是758; (3)如图3,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,∵△OPF 是等腰直角三角形,且OP=PF ,易得△OMP ≌△PNF ,∴OM=PN ,∵P (m ,m 2-4m+3),则-m 2+4m-3=2-m ,解得:m=5+5或55-, ∴P 的坐标为(5+5,1+5)或(55-,15-); 如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN=FM ,则-m2+4m-3=m-2,解得:x=3+5或352;P的坐标为(3+5,152-)或(352,1+52);综上所述,点P的坐标是:(5+52,1+52)或(552-,152-)或(3+5,15-)或(352,1+5).点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.2.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【解析】【分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;(3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩ 解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3;(2)令y=0,则x 2﹣4x+3=0,解得:x=1或x=3,∴B (3,0),∴BC=32,点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB 时,PC=32,∴OP=OC+PC=3+32或OP=PC ﹣OC=32﹣3∴P 1(0,3+32),P 2(0,3﹣32);②当PB=PC 时,OP=OB=3,∴P 3(0,-3);③当BP=BC 时,∵OC=OB=3∴此时P 与O 重合,∴P 4(0,0);综上所述,点P 的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t ,由AB=2,得BM=2﹣t ,则DN=2t ,∴S △MNB=12×(2﹣t )×2t=﹣t 2+2t=﹣(t ﹣1)2+1,当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.3.如图,菱形ABCD 的边长为20cm ,∠ABC =120°,对角线AC ,BD 相交于点O ,动点P 从点A 出发,以4cm /s 的速度,沿A →B 的路线向点B 运动;过点P 作PQ ∥BD ,与AC 相交于点Q ,设运动时间为t 秒,0<t <5.(1)设四边形PQCB 的面积为S ,求S 与t 的关系式;(2)若点Q 关于O 的对称点为M ,过点P 且垂直于AB 的直线l 交菱形ABCD 的边AD (或CD )于点N ,当t 为何值时,点P 、M 、N 在一直线上?(3)直线PN 与AC 相交于H 点,连接PM ,NM ,是否存在某一时刻t ,使得直线PN 平分四边形APMN 的面积?若存在,求出t 的值;若不存在,请说明理由.【答案】(1) S=﹣231003t 0<t <5); (2)307;(3)见解析. 【解析】【分析】(1)如图1,根据S=S △ABC -S △APQ ,代入可得S 与t 的关系式;(2)设PM=x ,则AM=2x ,可得3,计算x 的值,根据直角三角形30度角的性质可得3AM=AO+OM ,列方程可得t 的值; (3)存在,通过画图可知:N 在CD 上时,直线PN 平分四边形APMN 的面积,根据面积相等可得MG=AP ,由AM=AO+OM ,列式可得t 的值.【详解】解:(1)如图1,∵四边形ABCD 是菱形,∴∠ABD=∠DBC=12∠ABC=60°,AC ⊥BD , ∴∠OAB=30°, ∵AB=20, ∴OB=10,AO=103,由题意得:AP=4t ,∴PQ=2t ,AQ=23t ,∴S=S △ABC ﹣S △APQ ,=11··22AC OB PQ AQ -, =111020322322t t ⨯⨯-⨯⨯ , =﹣23t 2+1003(0<t <5);(2)如图2,在Rt △APM 中,AP=4t ,∵点Q 关于O 的对称点为M ,∴OM=OQ ,设PM=x ,则AM=2x ,∴AP=3x=4t ,∴x=3, ∴AM=2PM=3, ∵AM=AO+OM ,∴3=103+103﹣23t , t=307; 答:当t 为307秒时,点P 、M 、N 在一直线上; (3)存在,如图3,∵直线PN 平分四边形APMN 的面积,∴S △APN =S △PMN ,过M 作MG ⊥PN 于G , ∴11··22PN AP PN MG = , ∴MG=AP ,易得△APH ≌△MGH ,∴AH=HM=3t , ∵AM=AO+OM , 同理可知:OM=OQ=103﹣23t ,3t=103=103﹣23t , t=3011. 答:当t 为3011秒时,使得直线PN 平分四边形APMN 的面积.【点睛】考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.4.某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y (件)与销售单价x (元)之间的关系如图所示.(1)根据图象直接写出y 与x 之间的函数关系式.(2)设这种商品月利润为W (元),求W 与x 之间的函数关系式.(3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?【答案】(1)y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩;(2)W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩;(3)这种商品的销售单价定为65元时,月利润最大,最大月利润是3675.【解析】【分析】(1)当40≤x≤60时,设y 与x 之间的函数关系式为y=kx+b ,当60<x≤90时,设y 与x 之间的函数关系式为y=mx+n ,解方程组即可得到结论;(2)当40≤x≤60时,当60<x≤90时,根据题意即可得到函数解析式;(3)当40≤x≤60时,W=-x 2+210x-5400,得到当x=60时,W 最大=-602+210×60-5400=3600,当60<x≤90时,W=-3x 2+390x-9000,得到当x=65时,W 最大=-3×652+390×65-9000=3675,于是得到结论.【详解】解:(1)当40≤x ≤60时,设y 与x 之间的函数关系式为y =kx +b ,将(40,140),(60,120)代入得4014060120k b k b +=⎧⎨+=⎩, 解得:1180k b =-⎧⎨=⎩, ∴y 与x 之间的函数关系式为y =﹣x +180;当60<x ≤90时,设y 与x 之间的函数关系式为y =mx +n ,将(90,30),(60,120)代入得903060120m n m n +=⎧⎨+=⎩, 解得:3300m n =-⎧⎨=⎩, ∴y =﹣3x +300;综上所述,y =180(4060)3300(6090)x x x x -+≤≤⎧⎨-+<≤⎩; (2)当40≤x ≤60时,W =(x ﹣30)y =(x ﹣30)(﹣x +180)=﹣x 2+210x ﹣5400, 当60<x ≤90时,W =(x ﹣30)(﹣3x +300)=﹣3x 2+390x ﹣9000,综上所述,W =222105400(4060)33909000(6090)x x x x x x ⎧-+-≤≤⎨-+-<≤⎩; (3)当40≤x ≤60时,W =﹣x 2+210x ﹣5400,∵﹣1<0,对称轴x =2102--=105, ∴当40≤x ≤60时,W 随x 的增大而增大,∴当x =60时,W 最大=﹣602+210×60﹣5400=3600,当60<x ≤90时,W =﹣3x 2+390x ﹣9000,∵﹣3<0,对称轴x =3906--=65, ∵60<x ≤90,∴当x =65时,W 最大=﹣3×652+390×65﹣9000=3675,∵3675>3600,∴当x =65时,W 最大=3675,答:这种商品的销售单价定为65元时,月利润最大,最大月利润是3675.【点睛】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.根据题意分情况建立二次函数的模型是解题的关键.5.在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由.【答案】(1)A (﹣3,0),C (0,3),D (﹣1,4);(2)E (37-,0);(3)P (2,﹣5)或(1,0).【解析】 试题分析:(1)令抛物线解析式中y=0,解关于x 的一元二次方程即可得出点A 、B 的坐标,再令抛物线解析式中x=0求出y 值即可得出点C 坐标,利用配方法将抛物线解析式配方即可找出顶点D 的坐标;(2)作点C 关于x 轴对称的点C′,连接C′D 交x 轴于点E ,此时△CDE 的周长最小,由点C 的坐标可找出点C′的坐标,根据点C′、D 的坐标利用待定系数法即可求出直线C′D 的解析式,令其y=0求出x 值,即可得出点E 的坐标;(3)根据点A 、C 的坐标利用待定系数法求出直线AC 的解析式,假设存在,设点F (m ,m+3),分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.根据等腰直角三角形的性质结合点A 、F 点的坐标找出点P 的坐标,将其代入抛物线解析式中即可得出关于m 的一元二次方程,解方程求出m 值,再代入点P 坐标中即可得出结论.试题解析:(1)当223y x x =--+中y=0时,有2230x x --+=,解得:1x =﹣3,2x =1,∵A 在B 的左侧,∴A (﹣3,0),B (1,0).当223y x x =--+中x=0时,则y=3,∴C (0,3). ∵223y x x =--+=2(1)4x -++,∴顶点D (﹣1,4).(2)作点C 关于x 轴对称的点C′,连接C′D 交x 轴于点E ,此时△CDE 的周长最小,如图1所示.∵C (0,3),∴C′(0,﹣3).设直线C′D 的解析式为y=kx+b ,则有:3{4b k b =--+=,解得:7{3k b =-=-,∴直线C′D 的解析式为y=﹣7x ﹣3,当y=﹣7x ﹣3中y=0时,x=37-,∴当△CDE 的周长最小,点E 的坐标为(37-,0). (3)设直线AC 的解析式为y=ax+c ,则有:3{30c a c =-+=,解得:1{3a c ==,∴直线AC 的解析式为y=x+3.假设存在,设点F (m ,m+3),△AFP 为等腰直角三角形分三种情况(如图2所示): ①当∠PAF=90°时,P (m ,﹣m ﹣3),∵点P 在抛物线223y x x =--+上,∴2323m m m --=--+,解得:m 1=﹣3(舍去),m 2=2,此时点P 的坐标为(2,﹣5);②当∠AFP=90°时,P (2m+3,0)∵点P 在抛物线223y x x =--+上,∴20(23)2(23)3m m =-+-++,解得:m 3=﹣3(舍去),m 4=﹣1,此时点P 的坐标为(1,0);③当∠APF=90°时,P (m ,0),∵点P 在抛物线223y x x =--+上,∴2023m m =--+,解得:m 5=﹣3(舍去),m 6=1,此时点P 的坐标为(1,0). 综上可知:在抛物线上存在点P ,使得△AFP 为等腰直角三角形,点P 的坐标为(2,﹣5)或(1,0).考点:二次函数综合题;最值问题;存在型;分类讨论;综合题.6.如图①,在平面直角坐标系xOy 中,抛物线y=ax2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、 Q两点(点P在点Q的左侧),连接PQ,在线段PQ 上方抛物线上有一动点D,连接DP、DQ.①若点P的横坐标为12,求△DPQ面积的最大值,并求此时点D 的坐标;②直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x2+2x+3;(2)①点D(31524,);②△PQD面积的最大值为8【解析】分析:(1)根据点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I)由点P的横坐标可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+6x+72,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,进而可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,设点D的坐标为(x,-x2+2x+3),则点E 的坐标为(x,-2(t+1)x+t2+4t+3),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+4(t+2)x-2t2-8t,再利用二次函数的性质即可解决最值问题.详解:(1)将A(-1,0)、B(3,0)代入y=ax2+bx+3,得:309330a ba b-+⎧⎨++⎩==,解得:12ab-⎧⎨⎩==,∴抛物线的表达式为y=-x2+2x+3.(2)(I)当点P的横坐标为-12时,点Q的横坐标为72,∴此时点P的坐标为(-12,74),点Q的坐标为(72,-94).设直线PQ的表达式为y=mx+n,将P(-12,74)、Q(72,-94)代入y=mx+n,得:17247924m nm n⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154mn-⎧⎪⎨⎪⎩==,∴直线PQ的表达式为y=-x+54.如图②,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),∴DE=-x 2+2x+3-(-x+54)=-x 2+3x+74, ∴S △DPQ =12DE•(x Q -x P )=-2x 2+6x+72=-2(x-32)2+8.∵-2<0,∴当x=32时,△DPQ 的面积取最大值,最大值为8,此时点D 的坐标为(32,154).(II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,∴点P 的坐标为(t ,-t 2+2t+3),点Q 的坐标为(4+t ,-(4+t )2+2(4+t )+3), 利用待定系数法易知,直线PQ 的表达式为y=-2(t+1)x+t 2+4t+3.设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3), ∴DE=-x 2+2x+3-[-2(t+1)x+t 2+4t+3]=-x 2+2(t+2)x-t 2-4t , ∴S △DPQ =12DE•(x Q -x P )=-2x 2+4(t+2)x-2t 2-8t=-2[x-(t+2)]2+8. ∵-2<0,∴当x=t+2时,△DPQ 的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ 面积有最大值,面积的最大值为8. 点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I )利用三角形的面积公式找出S △DPQ =-2x 2+6x+72;(II )利用三角形的面积公式找出S △DPQ =-2x 2+4(t+2)x-2t 2-8t .7.如图,已知直线AB 与抛物线C :2y ax 2x c =++ 相交于()1,0A -和点()B 2,3两点.⑴求抛物线C 的函数表达式;⑵若点M 是位于直线AB 上方抛物线上的一动点,以MA MB 、为相邻两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时四边形MANB 的面积S 及点M 的坐标;⑶在抛物线C 的对称轴上是否存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线17y4=的距离,若存在,求出定点F的坐标;若不存在,请说明理由.【答案】⑴2y x2x3=-++;⑵当12a=,S□MANB=2S△ABM=274,此时115M,24⎛⎫⎪⎝⎭;⑶存在. 当15F1,4⎛⎫⎪⎝⎭时,无论x取任何实数,均有PG PF=. 理由见解析.【解析】【分析】(1)利用待定系数法,将A,B的坐标代入y=ax2+2x+c即可求得二次函数的解析式;(2)过点M作MH⊥x轴于H,交直线AB于K,求出直线AB的解析式,设点M(a,-a2+2a+3),则K(a,a+1),利用函数思想求出MK的最大值,再求出△AMB面积的最大值,可推出此时平行四边形MANB的面积S及点M的坐标;(3)如图2,分别过点B,C作直线y=174的垂线,垂足为N,H,设抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离,其中F(1,a),连接BF,CF,则可根据BF=BN,CF=CN两组等量关系列出关于a的方程组,解方程组即可.【详解】(1)由题意把点(-1,0)、(2,3)代入y=ax2+2x+c,得,20443a ca c-+=⎧⎨++=⎩,解得a=-1,c=3,∴此抛物线C函数表达式为:y=-x2+2x+3;(2)如图1,过点M作MH⊥x轴于H,交直线AB于K,将点(-1,0)、(2,3)代入y=kx+b中,得,23k bk b-+⎧⎨+⎩==,解得,k=1,b=1,∴y AB=x+1,设点M(a,-a2+2a+3),则K(a,a+1),则MK=-a2+2a+3-(a+1)=-(a-12)2+94,根据二次函数的性质可知,当a=12时,MK有最大长度94,∴S△AMB最大=S△AMK+S△BMK=12MK•AH+12MK•(x B-x H)=12MK•(x B-x A)=12×94×3=278,∴以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,S最大=2S△AMB最大=2×278=274,M(12,154);(3)存在点F,∵y=-x2+2x+3=-(x-1)2+4,∴对称轴为直线x=1,当y=0时,x1=-1,x2=3,∴抛物线与点x轴正半轴交于点C(3,0),如图2,分别过点B,C作直线y=174的垂线,垂足为N,H,抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离,设F(1,a),连接BF,CF,则BF=BN=174-3=54,CF=CH=174,由题意可列:2222225(21)(3)417(31)4aa⎧⎛⎫-+-=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得,a=154,∴F(1,154).【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,△ABM的面积最大,且此时线段MK的长度也最大.8.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。

2023年中考数学专题《二次函数综合问题》必刷真题考点分类专练含答案解析

2023年中考数学专题《二次函数综合问题》必刷真题考点分类专练含答案解析

备战2023年中考数学必刷真题考点分类专练(全国通用)专题13二次函数综合问题一.解答题(共40小题)1.(2022•孝感)抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.(1)直接写出点B和点D的坐标;(2)如图1,连接OD,P为x轴上的动点,当tan∠PDO=时,求点P的坐标;(3)如图2,M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.【分析】(1)令y=x2﹣4x=x,求出x的值即可得出点B的坐标,将函数y=x2﹣4x化作顶点式可得出点D的坐标;(2)过点D作DE⊥y轴于点E,易得tan∠ODE=,作∠ODG=∠ODE,则点P为直线DG与x轴的交点;过点O作OG⊥DP于点G,过点G作x轴的垂线,交DE所在直线于点F,交x轴于点H,易证△ODE≌△ODG,△GDF∽△OGH,则DG=DE=2,OG =OE=4,DG:OG=DF:HG=GF:OH,设DF=t,则HG=2t,FG=4﹣2t,OH=8﹣4t,又OH=EF,则8﹣4t=2+t,解得t的值可得出点G的坐标,进而可得直线DG的解析式,令y=0即可得出点P的坐标;(3)分别过点M,Q作y轴的平行线,交直线OB于点N,K,则S1=QK(x B﹣x E),S2=MN(x B﹣x E),由点Q的横坐标为m,可表达,再利用二次函数的性质可得出结论.【解析】(1)令y=x2﹣4x=x,解得x=0或x=5,∴B(5,5);∵y=x2﹣4x=(x﹣2)2﹣4,∴顶点D(2,﹣4).(2)如图,过点D作DE⊥y轴于点E,∴DE=2,OE=4,∴tan∠ODE=,作∠ODG=∠ODE,则点P为直线DG与x轴的交点;过点O作OG⊥DP于点G,过点G作x轴的垂线,交DE所在直线于点F,交x轴于点H,∴△ODE≌△ODG(AAS),∴DG=DE=2,OG=OE=4,∵∠OHG=∠F=90°,∠OGH+∠DGF=90°,∠OGH+∠GOH=90°,∴∠DGF=∠GOH,∴△GDF∽△OGH,∴DG:OG=DF:HG=GF:OH=1:2,设DF=t,则HG=2t,FG=4﹣2t,OH=8﹣4t,∵∠DEO=∠F=∠OHG=90°,∴四边形OEFH是矩形,∴OH=EF,∴8﹣4t=2+t,解得t=,∴GH=,OH=2+t=,∴G(,﹣).∴直线DG的解析式为y=x﹣,令y=0,解得x=5,∴P(5,0).(3)∵点B(5,5)与点M关于对称轴x=2对称,∴M(﹣1,5).如图,分别过点M,Q作y轴的平行线,交直线OB于点N,K,∴N(﹣1,﹣1),MN=6,∵点Q横坐标为m,∴Q(m,m2﹣4m),K(m,m),∴KQ=m﹣(m2﹣4m)=﹣m2+5m.∵S1=QK(x B﹣x E),S2=MN(x B﹣x E),∴==﹣(m2﹣5m)=﹣(m﹣)2+,∵﹣<0,∴当m=时,的最大值为.【点评】本题属于二次函数综合题,主要考查二次函数的性质,二次函数上的坐标特征,三角形的面积和三角形相似的判定及性质,解题的关键正确表达两个三角形面积的比.2.(2022•武汉)抛物线y=x2﹣2x﹣3交x轴于A,B两点(A在B的左边),C是第一象限抛物线上一点,直线AC交y轴于点P.(1)直接写出A,B两点的坐标;(2)如图(1),当OP=OA时,在抛物线上存在点D(异于点B),使B,D两点到AC 的距离相等,求出所有满足条件的点D的横坐标;(3)如图(2),直线BP交抛物线于另一点E,连接CE交y轴于点F,点C的横坐标为m.求的值(用含m的式子表示).【分析】(1)令y=0,解方程可得结论;(2)分两种情形:①若点D在AC的下方时,过点B作AC的平行线与抛物线交点即为D1.②若点D在AC的上方时,点D1关于点P的对称点G((0,5),过点G作AC的平行线l交抛物线于点D2,D3,D2,D3符合条件.构建方程组分别求解即可;(3)设E点的横坐标为n,过点P的直线的解析式为y=kx+b,由,可得x2﹣(2+k)x﹣3﹣b=0,设x1,x2是方程x2﹣(2+k)x﹣3﹣b=0的两根,则x1x2=﹣3﹣b,推出x A•x C=x B•x E=﹣3﹣b可得n=﹣1﹣,设直线CE的解析式为y=px+q,同法可得mn=﹣3﹣q推出q=﹣mn﹣3,推出q=﹣(3+b)(﹣1﹣)﹣3=b2+2b,推出OF=b2+b,可得结论.【解析】(1)令y=0,得x2﹣2x﹣3=0,解得x=3或﹣1,∴A(﹣1,0),B(3,0);(2)∵OP=OA=1,∴P(0,1),∴直线AC的解析式为y=x+1.①若点D在AC的下方时,过点B作AC的平行线与抛物线交点即为D1.∵B(3,0),BD1∥AC,∴直线BD1的解析式为y=x﹣3,由,解得或,∴D1(0,﹣3),∴D1的横坐标为0.②若点D在AC的上方时,点D1关于点P的对称点G((0,5),过点G作AC的平行线l交抛物线于点D2,D3,D2,D3符合条件.直线l的解析式为y=x+5,由,可得x2﹣3x﹣8=0,解得x=或,∴D2,D3的横坐标为,,综上所述,满足条件的点D的横坐标为0,,.(3)设E点的横坐标为n,过点P的直线的解析式为y=kx+b,由,可得x2﹣(2+k)x﹣3﹣b=0,设x1,x2是方程x2﹣(2+k)x﹣3﹣b=0的两根,则x1x2=﹣3﹣b,∴x A•x C=x B•x E=﹣3﹣b∵x A=﹣1,∴x C=3+b,∴m=3+b,∵x B=3,∴x E=﹣1﹣,∴n=﹣1﹣,设直线CE的解析式为y=px+q,同法可得mn=﹣3﹣q∴q=﹣mn﹣3,∴q=﹣(3+b)(﹣1﹣)﹣3=b2+2b,∴OF=b2+b,∴=b+1=(m﹣3)+1=m.【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,一元二次方程的根与系数的格线等知识,解题的关键是学会构建一次函数,构建方程组确定交点坐标,学会利用参数解决问题,属于中考压轴题.3.(2022•娄底)如图,抛物线y=x2﹣2x﹣6与x轴相交于点A、点B,与y轴相交于点C.(1)请直接写出点A,B,C的坐标;(2)点P(m,n)(0<m<6)在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.(3)点F是抛物线上的动点,作FE∥AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.【分析】(1)将x=0及y=0代入抛物线y=x2﹣2x﹣6的解析式,进而求得结果;(2)连接OP,设点P(m,﹣2m﹣6),分别表示出S△POC,S△BOP,计算出S△BOC,根据S△PBC=S四边形PBOC﹣S△BOC,从而得出△PBC的函数关系式,进一步求得结果;(3)可分为▱ACFE和▱ACEF的情形.当▱ACFE时,点F和点C关于抛物线对称轴对称,从而得出F点坐标;当▱ACED时,可推出点F的纵坐标为6,进一步求得结果.【解析】(1)当x=0时,y=﹣6,∴C(0,﹣6),当y=0时,x2﹣2x﹣6=0,∴x1=6,x2=﹣2,∴A(﹣2,0),B(6,0);(2)方法一:如图1,连接OP,设点P(m,﹣2m﹣6),∴S△POC=x P==3m,S△BOP=|y P|=+2m+6),∵S△BOC==18,∴S△PBC=S四边形PBOC﹣S△BOC=(S△POC+S△POB)﹣S△BOC=3m+3(﹣+2m+6)﹣18=﹣(m﹣3)2+,∴当m=3时,S△PBC最大=;方法二:如图2,作PQ⊥AB于Q,交BC于点D,∵B(6,0),C(0,﹣6),∴直线BC的解析式为:y=x﹣6,∴D(m,m﹣6),∴PD=(m﹣6)﹣(﹣2m﹣6)=﹣+3m,∴S△PBC===﹣(m﹣3)2+,∴当m=3时,S△PBC最大=;(3)如图3,当▱ACFE时,AE∥CF,∵抛物线对称轴为直线:x==2,∴F1点的坐标:(4,﹣6),如图4,当▱ACEF时,作FG⊥AE于G,∴FG=OC=6,当y=6时,x2﹣2x﹣6=6,∴x1=2+2,x2=2﹣2,∴F2(2+2,6),F3(2﹣2,6),综上所述:F(4,﹣6)或(2+2,6)或(2﹣2,6).【点评】本题考查了二次函数及其图象性质,平行四边形的分类等知识,解决问题的关键是正确分类,画出图形,转化条件.4.(2022•广元)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.(1)求a,b满足的关系式及c的值;(2)当a=时,若点P是抛物线对称轴上的一个动点,求△ABP周长的最小值;(3)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.【分析】(1)在直线y=﹣x﹣2中,令x=0和y=0可得点A和B的坐标,代入抛物线y =ax2+bx+c(a>0)中可解答;(2)连接BC交直线x=1于点P,利用两点之间线段最短可得出此时△PAB的周长最小,从而可以解答;(3)根据a=1时,可得抛物线的解析式y=x2+x﹣2,如图2,过点Q作QF⊥x轴于F,交AB于E,则△EQD是等腰直角三角形,设Q(m,m2+m﹣2),则E(m,﹣m﹣2),表示QE的长,配方后可解答.【解析】(1)直线y=﹣x﹣2中,当x=0时,y=﹣2,∴B(0,﹣2),当y=0时,﹣x﹣2=0,∴x=﹣2,∴A(﹣2,0),将A(﹣2,0),B(0,﹣2)代入抛物线y=ax2+bx+c(a>0)中,得,,∴2a﹣b=1,c=﹣2;(2)如图1,当a=时,2×﹣b=1,∴b=﹣,∴抛物线的解析式为:y=x2﹣x﹣2=(x﹣1)2﹣,∴抛物线的对称轴是:x=1,由对称性可得C(4,0),要使△ABP的周长最小,只需AP+BP最小即可,如图1,连接BC交直线x=1于点P,因为点A与点B关于直线x=1对称,由对称性可知:AP+BP=PC+BP=BC,此时△ABP的周长最小,所以△ABP的周长为AB+BC,Rt△AOB中,AB===2,Rt△BOC中,BC===2,∴△ABP周长的最小值为2+2;(3)当a=1时,2×1﹣b=1,∴b=1,∴y=x2+x﹣2,∴A(﹣2,0),B(0,﹣2),C(1,0),∴OA=OB,∴△AOB是等腰直角三角形,∴∠OAB=45°,如图2,过点Q作QF⊥x轴于F,交AB于E,则△EQD是等腰直角三角形,设Q(m,m2+m﹣2),则E(m,﹣m﹣2),∴QE=(﹣m﹣2)﹣(m2+m﹣2)=﹣m2﹣2m=﹣(m+1)2+1,∴QD=QE=﹣(m+1)2+,当m=﹣1时,QD有最大值是,当m=﹣1时,y=1﹣1﹣1=﹣2,综上,点Q的坐标为(﹣1,﹣2)时,QD有最大值是.【点评】本题是二次函数综合题,考查了利用待定系数法求抛物线的解析式,二次函数的性质,等腰直角三角形的性质,轴对称﹣最短路线问题等知识,综合性较强,难度适中,利用方程思想,数形结合是解题的关键.5.(2022•宿迁)如图,二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,顶点为C,连接OC、AC,若点B是线段OA上一动点,连接BC,将△ABC沿BC折叠后,点A落在点A′的位置,线段A′C与x轴交于点D,且点D与O、A点不重合.(1)求二次函数的表达式;(2)①求证:△OCD∽△A′BD;②求的最小值;(3)当S△OCD=8S△A'BD时,求直线A′B与二次函数的交点横坐标.【分析】(1)利用交点式可得二次函数的解析式;(2)①根据两角相等可证明两三角形相似;②根据△OCD∽△A′BD,得=,则=,即的最小值就是的最小值,OC为定值,所以当CD最小为2时,有最小值是;(3)根据面积的关系可得:△OCD∽△A′BD时,相似比为2:1,可得A'B=AB=1,作辅助线,构建直角三角形,根据等角的正切可得A'G和BG的长,最后再证明△A'GB ∽△QOB,可得OQ的长,利用待定系数法可得A'B的解析式,最后联立方程可得结论.【解析】(1)解:∵二次函数y=x2+bx+c与x轴交于O(0,0),A(4,0)两点,∴二次函数的解析式为:y=(x﹣0)(x﹣4)=x2﹣2x;(2)①证明:如图1,由翻折得:∠OAC=∠A',由对称得:OC=AC,∴∠AOC=∠OAC,∴∠COA=∠A',∵∠A'DB=∠ODC,∴△OCD∽△A′BD;②解:∵△OCD∽△A′BD,∴=,∵AB=A'B,∴=,∴的最小值就是的最小值,y=x2﹣2x=(x﹣2)2﹣2,∴C(2,﹣2),∴OC=2,∴当CD⊥OA时,CD最小,的值最小,当CD=2时,的最小值为=;(3)解:∵S△OCD=8S△A'BD,∴S△OCD:S△A'BD=8,∵△OCD∽△A′BD,∴=()2=8,∴=2,∵OC=2,∴A'B=AB=1,∴BD=2﹣1=1,如图2,连接AA',过点A'作A'G⊥OA于G,延长CB交AA'于H,由翻折得:AA'⊥CH,∵∠AHB=∠BDC=90°,∠ABH=∠CBD,∴∠BCD=∠BAH,tan∠BCD=tan∠GAA',∴==,设A'G=a,则AG=2a,BG=2a﹣1,在RtA'GB中,由勾股定理得:BG2+A'G2=A'B2,∴a2+(2a﹣1)2=12,∴a1=0(舍),a2=,∴BG=2a﹣1=﹣1=,∵A'G∥OQ,∴△A'GB∽△QOB,∴=,即=,∴OQ=4,∴Q(0,4),设直线A'B的解析式为:y=kx+m,∴,解得:,∴直线A'B的解析式为:y=﹣x+4,∴﹣x+4=x2﹣2x,3x2﹣4x﹣24=0,解得:x=,∴直线A′B与二次函数的交点横坐标是.【点评】本题是二次函数的综合,考查了待定系数法求解析式,对称的性质,三角形相似的性质和判定,配方法的应用,勾股定理的应用,熟练掌握二次函数的图象及性质,数形结合是解本题的关键.6.(2022•湘潭)已知抛物线y=x2+bx+c.(1)如图①,若抛物线图象与x轴交于点A(3,0),与y轴交点B(0,﹣3),连接AB.(Ⅰ)求该抛物线所表示的二次函数表达式;(Ⅱ)若点P是抛物线上一动点(与点A不重合),过点P作PH⊥x轴于点H,与线段AB 交于点M,是否存在点P使得点M是线段PH的三等分点?若存在,请求出点P的坐标;若不存在,请说明理由.(2)如图②,直线y=x+n与y轴交于点C,同时与抛物线y=x2+bx+c交于点D(﹣3,0),以线段CD为边作菱形CDFE,使点F落在x轴的正半轴上,若该抛物线与线段CE没有交点,求b的取值范围.(Ⅱ)求出AB的解析式,设出点P坐标,表示出M点坐标,从而表示出PH和HM的长,分别列出PH=3HM和PH=时的方程,从而求得m的值,进而求得P点坐标;(2)分为b>0和b<0两种情形.当b<0时,抛物线对称轴在y轴左侧,此时求得抛物线与y轴交点,只需交点在点C的上方,就满足抛物线与线段CE没有交点,进一步求得结果,当b<0时,类似的方法求得这种情形b的范围.【解析】(1)解:(Ⅰ)由题意得,,∴,∴y=x2﹣2x﹣3;(Ⅱ)存在点P,使得点M是线段PH的三等分点,理由如下:∵B(0,﹣3),A(3,0),∴直线AB的解析式为:y=x﹣3,设点P(m,m2﹣2m﹣3),M(m,m﹣3),∴PH=﹣m2+2m+3,HM=3﹣m,当PH=3HM时,﹣m2+2m+3=3(3﹣m),化简得,m2﹣5m+6=0,∴m1=2,m2=3,当m=2时,y=22﹣2×2﹣3=﹣3,∴P(2,﹣3),当m=3时,y=32﹣2×3﹣3=0,此时P(3,0)(舍去),当PH=HM时,﹣m2+2m+3=(3﹣m),化简得,2m2﹣7m+3=0,∴m3=3(舍去),m2=,当m=时,y=()2﹣2×﹣3=﹣,∴P(,﹣),综上所述:P(2,﹣3)或(,﹣);(2)如图1,∵抛物线y=x2+bx+c过点D(﹣3,0),∴(﹣3)2﹣3b+c=0,∴c=3b﹣9,∴y=x2+bx+(3b﹣9),把x=﹣3,y=0代入y=+n得,0=+n,∴n=4,∴OC=4,∵∠COD=90°,OD=3,OC=4,∴CD=5,∵四边形CDFE是菱形,∴CE=CD=5,∴E(5,4),当﹣<0时,即b>0时,当x=0时,y=3b﹣9,∴G(0,3b﹣9),∵该抛物线与线段CE没有交点,∴3b﹣9>4,∴b>,当b<0时,当x=5时,y=25+5b+3b﹣9=8b+16,∴H(5,8b+16),∵抛物线与CE没有交点,∴8b+16<4,∴b<﹣,综上所述:b>或b<﹣.【点评】本题考查了求二次函数的解析式,一次函数解析式,菱形的性质,勾股定理等知识,解决问题的关键一是正确分类,二是数形结合.7.(2022•邵阳)如图,已知直线y=2x+2与抛物线y=ax2+bx+c相交于A,B两点,点A 在x轴上,点B在y轴上,点C(3,0)在抛物线上.(1)求该抛物线的表达式.(2)正方形OPDE的顶点O为直角坐标系原点,顶点P在线段OC上,顶点E在y轴正半轴上,若△AOB与△DPC全等,求点P的坐标.(3)在条件(2)下,点Q是线段CD上的动点(点Q不与点D重合),将△PQD沿PQ所在的直线翻折得到△PQD',连接CD',求线段CD'长度的最小值.【分析】(1)先分别求得点A,点B的坐标,从而利用待定系数法求函数解析式;(2)分△AOB≌△DPC和△AOB≌△CPD两种情况,结合全等三角形的性质分析求解;(3)根据点D′的运动轨迹,求得当点P,D′,C三点共线时求得CD′的最小值.【解析】在直线y=2x+2中,当x=2时,y=2,当y=0时,x=﹣1,∴点A的坐标为(﹣1,0),点B的坐标为(0,2),把点A(﹣1,0),点B(0,2),点C(3,0)代入y=ax2+bx+c,,解得,∴抛物线的解析式为y=﹣x2+x+2;(2)①当△AOB≌△DPC时,AO=DP,又∵四边形OPDE为正方形,∴DP=OP=AO=1,此时点P的坐标为(1,0),②当△AOB≌△CPD时,OB=DP,又∵四边形OPDE为正方形,∴DP=OP=OB=2,此时点P的坐标为(2,0),综上,点P的坐标为(1,0)或(2,0);(3)如图,点D′在以点P为圆心,DP为半径的圆上运动,∴当点D′′,点P,点C三点共线时,CD′′有最小值,由(2)可得点P的坐标为(1,0)或(2,0),且C点坐标为(3,0),∴CD′′的最小值为1.【点评】本题考查二次函数的应用,全等三角形的判定和性质,折叠的性质,掌握待定系数法求函数解析式,注意数形结合思想和分类讨论思想解题是关键.8.(2022•台州)如图1,灌溉车沿着平行于绿化带底部边线l的方向行驶,为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度DE=3m,竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A离喷水口的水平距离为2m,高出喷水口0.5m,灌溉车到l的距离OD为d(单位:m).(1)若h=1.5,EF=0.5m.①求上边缘抛物线的函数解析式,并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带,求d的取值范围.(2)若EF=1m.要使灌溉车行驶时喷出的水能浇灌到整个绿化带,请直接写出h的最小值.【分析】(1)①由顶点A(2,2)得,设y=a(x﹣2)2+2,再根据抛物线过点(0,1.5),可得a的值,从而解决问题;②由对称轴知点(0,1.5)的对称点为(4,1.5),则下边缘抛物线是由上边缘抛物线向左平移4cm得到的,可得点B的坐标;③根据EF=0.5,求出点F的坐标,利用增减性可得d的最大值为最小值,从而得出答案;(2)当喷水口高度最低,且恰好能浇灌到整个绿化带时,点D、F恰好分别在两条抛物线上,故设点D(m,﹣(m+2)2+h+0.5),F(m+3,﹣(m+3﹣2)2+h+0.5),则有﹣[(m+3﹣2)2+h+0.5]﹣[﹣(m+2)2+h+0.5]=1,从而得出答案.【解析】(1)①如图1,由题意得A(2,2)是上边缘抛物线的顶点,设y=a(x﹣2)2+2,又∵抛物线过点(0,1.5),∴1.5=4a+2,∴a=﹣,∴上边缘抛物线的函数解析式为y=﹣(x﹣2)2+2,当y=0时,0=﹣(x﹣2)2+2,解得x1=6,x2=﹣2(舍去),∴喷出水的最大射程OC为6cm;②∵对称轴为直线x=2,∴点(0,1.5)的对称点为(4,1.5),∴下边缘抛物线是由上边缘抛物线向左平移4cm得到的,∴点B的坐标为(2,0);③∵EF=0.5,∴点F的纵坐标为0.5,∴0.5=﹣(x﹣2)2+2,解得x=2±2,∵x>0,∴x=2+2,当x>2时,y随x的增大而减小,∴当2≤x≤6时,要使y≥0.5,则x≤2+2,∵当0≤x≤2时,y随x的增大而增大,且x=0时,y=1.5>0.5,∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+2,∵DE=3,灌溉车行驶时喷出的水能浇灌到整个绿化带,∴d的最大值为2+2﹣3=2﹣1,再看下边缘抛物线,喷出的水能浇灌到绿化带底部的条件是OB≤d,∴d的最小值为2,综上所述,d的取值范围是2≤d≤2﹣1;(2)当喷水口高度最低,且恰好能浇灌到整个绿化带时,点D、F恰好分别在两条抛物线上,故设点D(m,﹣(m+2)2+h+0.5),F(m+3,﹣[(m+3﹣2)2+h+0.5]),则有﹣(m+3﹣2)2+h+0.5﹣[﹣(m+2)2+h+0.5]=1,解得m=2.5,∴点D的纵坐标为h﹣,∴h﹣=0,∴h的最小值为.【点评】本题是二次函数的实际应用,主要考查了待定系数法求二次函数解析式,二次函数的性质,二次函数与方程的关系等知识,读懂题意,建立二次函数模型是解题的关键.9.(2022•眉山)在平面直角坐标系中,抛物线y=﹣x2﹣4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为(﹣5,0).(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求点P到直线AC距离的最大值;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)把点A的坐标代入y=﹣x2﹣4x+c,求出c的值即可;(2)过P作PE⊥AC于点E,过点P作PF⊥x轴交AC于点H,证明△PHE是等腰直角三角形,得,当PH最大时,PE最大,运用待定系数法求直线AC解析式为y=x+5,设P(m,﹣m2﹣4m+5),(﹣5<m<0),则H(m,m+5),求得PH,再根据二次函数的性质求解即可;(3)分三种情况讨论:①当AC为平行四边形的对角线时,②当AM为平行四边形的对角线时,③当AN为平行四边形的对角线时分别求解即可.【解析】(1)∵点A(﹣5,0)在抛物线y=﹣x2﹣4x+c的图象上,∴0=﹣52﹣4×5+c∴c=5,∴点C的坐标为(0,5);(2)过P作PE⊥AC于点E,过点P作PF⊥x轴交AC于点H,如图1:∵A(﹣5,0),C(0,5)∴OA=OC,∴△AOC是等腰直角三角形,∴∠CAO=45°,∵PF⊥x轴,∴∠AHF=45°=∠PHE,∴△PHE是等腰直角三角形,∴,∴当PH最大时,PE最大,设直线AC解析式为y=kx+5,将A(﹣5,0)代入得0=5k+5,∴k=1,∴直线AC解析式为y=x+5,设P(m,﹣m2﹣4m+5),(﹣5<m<0),则H(m,m+5),∴,∵a=﹣1<0,∴当时,PH最大为,∴此时PE最大为,即点P到直线AC的距离值最大;(3)存在,理由如下:∵y=﹣x2﹣4x+5=﹣(x+2)2+9,∴抛物线的对称轴为直线x=﹣2,设点N的坐标为(﹣2,m),点M的坐标为(x,﹣x2﹣4x+5),分三种情况:①当AC为平行四边形对角线时,,解得,∴点M的坐标为(﹣3,8);②当AM为平行四边形对角线时,,解得,∴点M的坐标为(3,﹣16);③当AN为平行四边形对角线时,,解得,∴点M的坐标为(﹣7,﹣16);综上,点M的坐标为:(﹣3,8)或(3,﹣16)或(﹣7,﹣16).【点评】本题是二次函数综合题,其中涉及到二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的性质,平行四边形的判定与性质.熟知几何图形的性质利用数形结合是解题的关键.10.(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,a>0)的顶点为P,与x轴相交于点A(﹣1,0)和点B.(Ⅰ)若b=﹣2,c=﹣3,①求点P的坐标;②直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,当MG取得最大值时,求点M,G的坐标;(Ⅱ)若3b=2c,直线x=2与抛物线相交于点N,E是x轴的正半轴上的动点,F是y 轴的负半轴上的动点,当PF+FE+EN的最小值为5时,求点E,F的坐标.【分析】(Ⅰ)①利用待定系数法求出抛物线的解析式,即可得顶点P的坐标;②求出直线BP的解析式,设点M(m,m2﹣2m﹣3),则G(m,2m﹣6),表示出MG的长,可得关于m的二次函数,根据二次函数的最值即可求解;(Ⅱ)由3b=2c得b=﹣2a,c=﹣3a,抛物线的解析式为y=ax2﹣2a﹣3a.可得顶点P 的坐标为(1,﹣4a),点N的坐标为(2,﹣3a),作点P关于y轴的对称点P',作点N 关于x轴的对称点N',得点P′的坐标为(﹣1,﹣4a),点N'的坐标为(2,3a),当满足条件的点E,F落在直线P'N'上时,PF+FE+EN取得最小值,此时,PF+FE+EN=P'N'=5延长P'P与直线x=2相交于点H,则P'H⊥N'H.在Rt△P'HN'中,P'H=3,HN'=3a﹣(﹣4a)=7a.由勾股定理可得P'N′2=P'H2+HN2=9+49a2=25.解得a1=,a2=﹣(舍).可得点P'的坐标为(﹣1,﹣),点N′的坐标为(2,).利用待定系数法得直线P'N′的解析式为y=x﹣.即可得点E,F的坐标.【解析】(Ⅰ)①若b=﹣2,c=﹣3,则抛物线y=ax2+bx+c=ax2﹣2x﹣3,∵抛物线y=ax2+bx+c与x轴相交于点A(﹣1,0),∴a+2﹣3=0,解得a=1,∴抛物线为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点P的坐标为(1,﹣4);②当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),设直线BP的解析式为y=kx+n,∴,解得,∴直线BP的解析式为y=2x﹣6,∵直线x=m(m是常数,1<m<3)与抛物线相交于点M,与BP相交于点G,设点M(m,m2﹣2m﹣3),则G(m,2m﹣6),∴MG=2m﹣6﹣(m2﹣2m﹣3)=﹣m2+4m﹣3=﹣(m﹣2)2+1,∴当m=2时,MG取得最大值1,此时,点M(2,﹣3),则G(2,﹣2);(Ⅱ)∵抛物线y=ax2+bx+c与x轴相交于点A(﹣1,0),∴a﹣b+c=0,又3b=2c,b=﹣2a,c=﹣3a(a>0),∴抛物线的解析式为y=ax2﹣2a﹣3a.∴y=ax2﹣2a﹣3a=a(x﹣1)2﹣4a,∴顶点P的坐标为(1,﹣4a),∵直线x=2与抛物线相交于点N,∴点N的坐标为(2,﹣3a),作点P关于y轴的对称点P',作点N关于x轴的对称点N',得点P′的坐标为(﹣1,﹣4a),点N'的坐标为(2,3a),当满足条件的点E,F落在直线P'N'上时,PF+FE+EN取得最小值,此时,PF+FE+EN=P'N'=5.延长P'P与直线x=2相交于点H,则P'H⊥N'H.在Rt△P'HN'中,P'H=3,HN'=3a﹣(﹣4a)=7a.∴P'N′2=P'H2+HN2=9+49a2=25.解得a1=,a2=﹣(舍).∴点P'的坐标为(﹣1,﹣),点N′的坐标为(2,).∴直线P'N′的解析式为y=x﹣.∴点E(,0),点F(0,﹣).【点评】此题是二次函数综合题,主要考查了待定系数法,两点间的距离公式,轴对称求最小值问题,勾股定理等,利用待定系数法求出直线解析式是解本题的关键.。

中考数学必考题讲解 二次函数

中考数学必考题讲解 二次函数

中考数学必考题讲解二次函数
二次函数是中考数学中必考的重点内容之一。

本文将对二次函数的基本概念、性质以及解题方法进行详细讲解,帮助学生在中考中取得优异的成绩。

首先,我们来了解一下二次函数的基本概念。

二次函数是指函数
y=ax+bx+c,其中a、b、c为实数且a≠0。

其中,a决定了二次函数
的开口方向和大小,b决定了二次函数的对称轴位置,c决定了二次
函数的纵轴截距。

接下来,我们来看一些二次函数的性质。

首先,二次函数的图像为一条开口向上或向下的抛物线。

其次,二次函数的对称轴为x=-b/2a,对称轴上的点为顶点,顶点的纵坐标为c-b/4a。

最后,当a>0时,
二次函数的最小值为c-b/4a;当a<0时,二次函数的最大值为c-b/4a。

最后,我们来讲解一些解题方法。

首先,如果已知二次函数的顶点和一个点,可以利用顶点公式和函数值相等的性质求出a、b、c的值。

其次,如果已知二次函数的两个点,可以利用函数值相等和斜率相等的性质求出a、b、c的值。

最后,如果已知二次函数的图像和一些特定点,可以利用函数值相等和联立方程的方法求出a、b、c的值。

综上所述,二次函数是中考数学中非常重要的内容,学生一定要掌握好其基本概念、性质和解题方法,才能在中考中取得好成绩。

- 1 -。

中考数学综合题专题复习【二次函数】专题解析附答案解析

中考数学综合题专题复习【二次函数】专题解析附答案解析

中考数学综合题专题复习【二次函数】专题解析附答案解析一、二次函数1.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.【答案】(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x =+.(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(+-或317()--.【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203ba abc c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+. ∵对称轴为1x =-,且抛物线经过()1,0A , ∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩,∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-. (注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得:1317t +=2317t -=. 综上所述P 的坐标为()1,2--或()1,4-或3171,2⎛+- ⎝⎭或3171,2⎛- ⎝⎭.点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.2.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值. 【答案】(1)点B 的坐标为(1,0). (2)①点P 的坐标为(4,21)或(-4,5). ②线段QD 长度的最大值为94. 【解析】 【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解. 【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0),∴2a 1b12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩. ∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=.∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=, ∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3). 又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭.∵a 10<=-,-3302<<- ∴线段QD 长度的最大值为94.3.已知,抛物线y =ax 2+ax+b (a≠0)与直线y =2x+m 有一个公共点M (1,0),且a <b .(1)求b 与a 的关系式和抛物线的顶点D 坐标(用a 的代数式表示); (2)直线与抛物线的另外一个交点记为N ,求△DMN 的面积与a 的关系式;(3)a =﹣1时,直线y =﹣2x 与抛物线在第二象限交于点G ,点G 、H 关于原点对称,现将线段GH 沿y 轴向上平移t 个单位(t >0),若线段GH 与抛物线有两个不同的公共点,试求t 的取值范围.【答案】(1)b=﹣2a ,顶点D 的坐标为(﹣12,﹣94a );(2)2732748a a --;(3) 2≤t <94. 【解析】【分析】(1)把M 点坐标代入抛物线解析式可得到b 与a 的关系,可用a 表示出抛物线解析式,化为顶点式可求得其顶点D 的坐标;(2)把点M (1,0)代入直线解析式可先求得m 的值,联立直线与抛物线解析式,消去y ,可得到关于x 的一元二次方程,可求得另一交点N 的坐标,根据a <b ,判断a <0,确定D 、M 、N 的位置,画图1,根据面积和可得△DMN 的面积即可;(3)先根据a 的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH 与抛物线只有一个公共点时,t 的值,再确定当线段一个端点在抛物线上时,t 的值,可得:线段GH 与抛物线有两个不同的公共点时t 的取值范围. 【详解】解:(1)∵抛物线y=ax 2+ax+b 有一个公共点M (1,0), ∴a+a+b=0,即b=-2a , ∴y=ax 2+ax+b=ax 2+ax-2a=a (x+12)2-94a , ∴抛物线顶点D 的坐标为(-12,-94a ); (2)∵直线y=2x+m 经过点M (1,0), ∴0=2×1+m ,解得m=-2, ∴y=2x-2,则2222y x y ax ax a -⎧⎨+-⎩==, 得ax 2+(a-2)x-2a+2=0, ∴(x-1)(ax+2a-2)=0, 解得x=1或x=2a-2, ∴N 点坐标为(2a-2,4a -6),∵a <b ,即a <-2a , ∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为122a x a =-=-, ∴E (-12,-3), ∵M (1,0),N (2a-2,4a -6),设△DMN 的面积为S ,∴S=S △DEN +S △DEM =12|( 2a -2)-1|•|-94a -(-3)|=274−3a −278a ,(3)当a=-1时,抛物线的解析式为:y=-x 2-x+2=-(x+12)2+94,由222y x x y x ⎧=--+⎨=-⎩,-x 2-x+2=-2x ,解得:x 1=2,x 2=-1, ∴G (-1,2),∵点G 、H 关于原点对称, ∴H (1,-2),设直线GH 平移后的解析式为:y=-2x+t , -x 2-x+2=-2x+t , x 2-x-2+t=0, △=1-4(t-2)=0, t=94, 当点H 平移后落在抛物线上时,坐标为(1,0), 把(1,0)代入y=-2x+t , t=2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <94.【点睛】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M 的坐标得到b 与a 的关系是解题的关键,在(2)中联立两函数解析式,得到关于x 的一元二次方程是解题的关键,在(3)中求得GH 与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.4.如图,直线AB 和抛物线的交点是A (0,﹣3),B (5,9),已知抛物线的顶点D 的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x 轴上是否存在一点C ,与A ,B 组成等腰三角形?若存在,求出点C 的坐标,若不在,请说明理由;(3)在直线AB 的下方抛物线上找一点P ,连接PA ,PB 使得△PAB 的面积最大,并求出这个最大值.【答案】(1)21248355y x x =--,顶点D (2,635-);(2)C (10±0)或(5±0)或(9710,0);(3)752【解析】 【分析】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入函数表达式,即可求解; (2)分AB =AC 、AB =BC 、AC =BC ,三种情况求解即可;(3)由S △PAB 12=•PH •x B ,即可求解. 【详解】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2①,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入上式得:9=25a +5b ﹣3②,联立①、②解得:a 125=,b 485=-,c =﹣3,∴抛物线的解析式为:y 125=x 2485-x ﹣3. 当x =2时,y 635=-,即顶点D 的坐标为(2,635-); (2)A (0,﹣3),B (5,9),则AB =13,设点C 坐标(m ,0),分三种情况讨论:①当AB =AC 时,则:(m )2+(﹣3)2=132,解得:m ,即点C 坐标为:(,0)或(﹣,0);②当AB =BC 时,则:(5﹣m )2+92=132,解得:m =5±,即:点C 坐标为(5+,0)或(5﹣0);③当AC =BC 时,则:5﹣m )2+92=(m )2+(﹣3)2,解得:m =9710,则点C 坐标为(9710,0).综上所述:存在,点C 的坐标为:(,0)或(5±0)或(9710,0); (3)过点P 作y 轴的平行线交AB 于点H .设直线AB 的表达式为y =kx ﹣3,把点B 坐标代入上式,9=5k ﹣3,则k 125=,故函数的表达式为:y 125=x ﹣3,设点P 坐标为(m ,125m 2485-m ﹣3),则点H 坐标为(m ,125m ﹣3),S △PAB 12=•PH •x B 52=(125-m 2+12m )=-6m 2+30m =25756()22m --+,当m =52时,S △PAB 取得最大值为:752.答:△PAB 的面积最大值为752.【点睛】本题是二次函数综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.5.在平面直角坐标系中,O 为原点,抛物线233(0)y ax x a =≠经过点3,3)A -,对称轴为直线l ,点O 关于直线l 的对称点为点B .过点A 作直线//AC x 轴,交y 轴于点C .(Ⅰ)求该抛物线的解析式及对称轴;(Ⅱ)点P 在y 轴上,当PA PB +的值最小时,求点P 的坐标; (Ⅲ)抛物线上是否存在点Q ,使得13AOC AOQ S S ∆∆=,若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(Ⅰ)抛物线的解析式为21332y x x =-;抛物线的对称轴为直线33x =;(Ⅱ)P 点坐标为9(0,)4-;(Ⅲ)存在,Q 点坐标为(33,0)或(23,15)-,理由见解析 【解析】 【分析】(Ⅰ)将3,3)A -点代入二次函数的解析式,即可求出a ,再根据对称轴的公式即可求解.(Ⅱ)先求出B 点胡坐标,要求PA PB +胡最小值,只需找到B 关于轴的对称点1B ,则直线A 1B 与y 轴的交点就是点P ,根据待定系数法求出AB 1的解析式,令y=0,即可求出P 点的坐标.(Ⅲ)设点Q 的坐标,并求出△AOQ 面积,从而得到△AOQ 面积,根据Q 点胡不同位置进行分类,用m 及割补法求出面积方程,即可求解. 【详解】 (Ⅰ)∵2(0)2y ax x a =-≠经过点3)A -,∴23a -=⨯12a =,∴抛物线的解析式为212y x x =,∵21222b x a -=-=-=⨯ ∴抛物线的对称轴为直线2x =. (Ⅱ)∵点(0,0)O,对称轴为x =, ∴点O 关于对称轴的对称点B点坐标为. 作点B 关于轴的对称点1B,得1(B -, 设直线AB 1的解析式为y kx b =+,把点3)A -,点1(B -代入得30bb⎧-=+⎪⎨=-+⎪⎩,解得494k b ⎧=-⎪⎪⎨⎪=-⎪⎩,∴94y x =-.∴直线944y x =--与y 轴的交点即为P 点. 令0x =得9y 4=-, ∵P 点坐标为9(0,)4-.(Ⅲ)∵3)A -,//AC x 轴,∴AC =3OC =,∴11322AOC S OC AC ∆=⋅=⋅=又∵13AOC AOQ S S ∆∆=,∴3AOQ AOC S S ∆∆==.设Q 点坐标为2133(,)22m m m -, 如图情况一,作QR CA ⊥,交CA 延长线于点R ,∵93AOQ AOC AQR OCRQ S S S S ∆∆∆=--=梯形, ∴()21133113333322222m m m m ⎛⎫⋅+-+-⋅⋅- ⎪ ⎪⎭-⎝2133933222m m ⎛⎫-+= ⎪ ⎪⎝⎭, 化简整理得23180m m --=, 解得133m =,223m =-.如图情况二,作QN AC ⊥,交AC 延长线于点N ,交x 轴于点M , ∵93AOQ AQN QMO OMNA S S S S ∆∆∆=--=梯形 ∴2211331133(3m)3()2222m m m ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭393(3)2m m --+=,化简整理得23180m m -=,解得133m =223m =-∴Q 点坐标为(33,0)或(23,15)-,∴抛物线上存在点Q ,使得13AOC AOQ S S ∆∆=.【点睛】主要考查了二次函数的性质,以及求两边和的最小值,面积等常见的题型,计算量较大,但难度不是很大.6.如图所示,已知平面直角坐标系xOy ,抛物线过点A(4,0)、B(1,3)(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.【答案】(1)y=-224(2)4y x x x =-+=--+,对称轴为:x=2,顶点坐标为:(2,4)(2)m 、n 的值分别为 5,-5【解析】(1) 将点A(4,0)、B(1,3) 的坐标分别代入y =-x 2+bx +c ,得:4b+c-16=0,b+c-1="3" ,解得:b="4" , c=0.所以抛物线的表达式为:24y x x =-+.y=-224(2)4y x x x =-+=--+,所以 抛物线的对称轴为:x=2,顶点坐标为:(2,4).(2) 由题可知,E 、F 点坐标分别为(4-m ,n ),(m-4,n ).三角形POF 的面积为:1/2×4×|n|= 2|n|,三角形AOP 的面积为:1/2×4×|n|= 2|n|,四边形OAPF 的面积= 三角形POF 的面积+三角形AOP 的面积=20,所以 4|n|=20, n=-5.(因为点P(m,n)在第四象限,所以n<0)又n=-2m +4m ,所以2m-4m-5=0,m=5.(因为点P(m,n)在第四象限,所以m>0)故所求m、n的值分别为 5,-5.7.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P13+515-),P2(35-1+5P35+51+5P455-15-.【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P 的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=12×3×3+12PG•AE,=92+12×3×(-m2+5m-3),=-32m2+152m,=32(m-52)2+758, ∵-32<0, ∴当m=52时,S 有最大值是758; (3)如图3,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,∵△OPF 是等腰直角三角形,且OP=PF ,易得△OMP ≌△PNF ,∴OM=PN ,∵P (m ,m 2-4m+3),则-m 2+4m-3=2-m ,解得:m=5+5或55-, ∴P 的坐标为(5+5,1+5)或(55-,15-); 如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN=FM ,则-m2+4m-3=m-2,解得:x=3+5或35 -;P的坐标为(3+5,15-)或(35-,1+52);综上所述,点P的坐标是:(5+52,1+52)或(552-,152-)或(3+5,15-)或(35-,1+5).点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.8.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【答案】(1)二次函数的表达式y=x2﹣2x﹣3;(2)①PM最大=94;②P(2,﹣3)或(22﹣2).【解析】【分析】(1)根据待定系数法,可得答案;(2)①根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案.【详解】(1)将A ,B ,C 代入函数解析式,得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,这个二次函数的表达式y=x 2﹣2x ﹣3;(2)设BC 的解析式为y=kx+b ,将B ,C 的坐标代入函数解析式,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, BC 的解析式为y=x ﹣3,设M (n ,n ﹣3),P (n ,n 2﹣2n ﹣3),PM=(n ﹣3)﹣(n 2﹣2n ﹣3)=﹣n 2+3n=﹣(n ﹣32)2+94, 当n=32时,PM 最大=94; ②当PM=PC 时,(﹣n 2+3n )2=n 2+(n 2﹣2n ﹣3+3)2,解得n 1=0(不符合题意,舍),n 2=2,n 2﹣2n ﹣3=-3,P (2,-3);当PM=MC 时,(﹣n 2+3n )2=n 2+(n ﹣3+3)2,解得n 1=0(不符合题意,舍),n 2(不符合题意,舍),n 3,n 2﹣2n ﹣,P (,综上所述:P (2,﹣3)或(,2﹣).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.9.(2017南宁,第26题,10分)如图,已知抛物线29y ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.【答案】(1)a =13-,A 30),抛物线的对称轴为x 32)点P 的坐标为3034);(33 【解析】试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO =60°,依据AE 为∠BAC 的角平分线可求得∠DAO =30°,然后利用特殊锐角三角函数值可求得OD =1,则可得到点D 的坐标.设点P 的3,a ).依据两点的距离公式可求得AD 、AP 、DP 的长,然后分为AD =PA 、AD =DP 、AP =DP 三种情况列方程求解即可;(3)设直线MN 的解析式为y =kx +1,接下来求得点M 和点N 的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM 的长,最后将AM 和AN 的长代入化简即可.试题解析:(1)∵C (0,3),∴﹣9a =3,解得:a =13-.令y =0得:22390ax ax a --=,∵a ≠0,∴22390x x --=,解得:x =3x =33∴点A 30),B (330),∴抛物线的对称轴为x 3(2)∵OA 3OC =3,∴tan ∠CAO 3∴∠CAO =60°. ∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO 3=1,∴点D 的坐标为(0,1). 设点P 3a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2.当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 30). 当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P 3,﹣4). 综上所述,点P 3034).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:330m +=,解得:m 3∴直线AC 的解析式为33y x =+.设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1k -,0),∴AN =13k-+=31k k -. 将33y x =+与y =kx +1联立解得:x =23k -,∴点M 的横坐标为23k -.过点M 作MG ⊥x 轴,垂足为G .则AG =233k +-.∵∠MAG =60°,∠AGM =90°,∴AM =2AG =233k +-=2323k k --,∴11AM AN +=323231k k k -+-- =33232k k --=3(31)2(31)k k -- =3. 点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M 的坐标和点N 的坐标是解答问题(3)的关键.10.如图,若b 是正数,直线l :y =b 与y 轴交于点A ;直线a :y =x ﹣b 与y 轴交于点B ;抛物线L :y =﹣x 2+bx 的顶点为C ,且L 与x 轴右交点为D .(1)若AB =8,求b 的值,并求此时L 的对称轴与a 的交点坐标;(2)当点C 在l 下方时,求点C 与l 距离的最大值;(3)设x 0≠0,点(x 0,y 1),(x 0,y 2),(x 0,y 3)分别在l ,a 和L 上,且y 3是y 1,y 2的平均数,求点(x 0,0)与点D 间的距离;(4)在L 和a 所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b =2019和b =2019.5时“美点”的个数.【答案】(1)b =4,(2,﹣2 );(2)1;(3)12;(4)当b =2019时“美点”的个数为4040个,b =2019.5时“美点”的个数为1010个.【解析】【分析】(1)求出A 、B 的坐标,由AB =8,可求出b 的值.从而得到L 的解析式,找出L 的对称轴与a 的交点即可;(2)通过配方,求出L 的顶点坐标,由于点C 在l 下方,则C 与l 的距离24b b -,配方即可得出结论;(3)由題意得y 1+y 2=2y 3,进而有b +x 0﹣b =2(﹣x 02+bx 0)解得x 0的值,求出L 与x 轴右交点为D 的坐标,即可得出结论;(4)①当b =2019时,抛物线解析式L :y =﹣x 2+2019x 直线解析式a :y =x ﹣2019,美点”总计4040个点,②当b =2019.5时,抛物线解析式L :y =﹣x 2+2019.5x ,直线解析式a :y =x ﹣2019.5,“美点”共有1010个.【详解】(1)当x =0吋,y =x ﹣b =﹣b ,∴B (0,﹣b ).∵AB =8,而A (0,b ),∴b ﹣(﹣b )=8,∴b =4,∴L :y =﹣x 2+4x ,∴L 的对称轴x =2,当x =2时,y =x ﹣4=﹣2,∴L 的对称轴与a 的交点为(2,﹣2 );(2)y =﹣(x 2b -)224b +,∴L 的顶点C (2b ,24b ). ∵点C 在l 下方,∴C 与l 的距离b 2144b -=-(b ﹣2)2+1≤1,∴点C 与l 距离的最大值为1;(3)∵y 3是y 1,y 2的平均数,∴y 1+y 2=2y 3,∴b +x 0﹣b =2(﹣x 02+bx 0),解得:x 0=0或x 0=b 12-. ∵x 0≠0,∴x 0=b 12-,对于L ,当y =0吋,0=﹣x 2+bx ,即0=﹣x (x ﹣b ),解得:x 1=0,x 2=b .∵b >0,∴右交点D (b ,0),∴点(x 0,0)与点D 间的距离b ﹣(b 12-)12=. (4)①当b =2019时,抛物线解析式L :y =﹣x 2+2019x ,直线解析式a :y =x ﹣2019. 联立上述两个解析式可得:x 1=﹣1,x 2=2019,∴可知每一个整数x 的值都对应的一个整数y 值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点,∴总计4042个点.∵这两段图象交点有2个点重复,∴美点”的个数:4042﹣2=4040(个);②当b =2019.5时,抛物线解析式L :y =﹣x 2+2019.5x ,直线解析式a :y =x ﹣2019.5,联立上述两个解析式可得:x 1=﹣1,x 2=2019.5,∴当x 取整数时,在一次函数y =x ﹣2019.5上,y 取不到整数值,因此在该图象上“美点”为0,在二次函数y =x 2+2019.5x 图象上,当x 为偶数时,函数值y 可取整数,可知﹣1到2019.5之 间有1010个偶数,因此“美点”共有1010个.故b =2019时“美点”的个数为4040个,b =2019.5时“美点”的个数为1010个. 【点睛】本题考查了二次函数,熟练运用二次函数的性质以及待定系数法求函数解析式是解题的关键.11.已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.【答案】(1)抛物线的表达式为:228y x x =-++,直线AB 的表达式为:21y x =-;(2)存在,理由见解析;点P (6,16)-或(4,16)--或(17,2)+或(17,2).【解析】 【分析】(1)二次函数表达式为:y=a (x-1)2+9,即可求解; (2)S △DAC =2S △DCM ,则()()()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯V ,,即可求解;(3)分AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可. 【详解】解:(1)二次函数表达式为:()219y a x =-+,将点A 的坐标代入上式并解得:1a =-, 故抛物线的表达式为:228y x x =-++…①, 则点()3,5B ,将点,A B 的坐标代入一次函数表达式并解得: 直线AB 的表达式为:21y x =-; (2)存在,理由:二次函数对称轴为:1x =,则点()1,1C , 过点D 作y 轴的平行线交AB 于点H ,设点()2,28D x x x -++,点(),21H x x -,∵2DAC DCM S S ∆∆=, 则()()()()()21112821139112222DAC C A S DH x x x x x x =-=-++-++=--⨯V , 解得:1x =-或5(舍去5), 故点()1,5D -;(3)设点(),0Q m 、点(),P s t ,228t s s =-++, ①当AM 是平行四边形的一条边时,点M 向左平移4个单位向下平移16个单位得到A ,同理,点(),0Q m 向左平移4个单位向下平移16个单位为()4,16m --,即为点P , 即:4m s -=,6t -=,而228t s s =-++, 解得:6s =或﹣4, 故点()6,16P -或()4,16--; ②当AM 是平行四边形的对角线时,由中点公式得:2m s +=-,2t =,而228t s s =-++, 解得:17s =±故点()17,2P 或()17,2;综上,点()6,16P -或()4,16--或()17,2+或()17,2-. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.12.在平面直角坐标系中,二次函数y=ax 2+53x+c 的图象经过点C (0,2)和点D (4,﹣2).点E 是直线y=﹣13x+2与二次函数图象在第一象限内的交点. (1)求二次函数的解析式及点E 的坐标.(2)如图①,若点M 是二次函数图象上的点,且在直线CE 的上方,连接MC ,OE ,ME .求四边形COEM 面积的最大值及此时点M 的坐标.(3)如图②,经过A 、B 、C 三点的圆交y 轴于点F ,求点F 的坐标.【答案】(1)E (3,1);(2)S 最大=214,M 坐标为(32,3);(3)F 坐标为(0,﹣32). 【解析】 【分析】1)把C 与D 坐标代入二次函数解析式求出a 与c 的值,确定出二次函数解析式,与一次函数解析式联立求出E 坐标即可;(2)过M 作MH 垂直于x 轴,与直线CE 交于点H ,四边形COEM 面积最大即为三角形CME 面积最大,构造出二次函数求出最大值,并求出此时M 坐标即可;(3)令y=0,求出x 的值,得出A 与B 坐标,由圆周角定理及相似的性质得到三角形AOC 与三角形BOF 相似,由相似得比例求出OF 的长,即可确定出F 坐标. 【详解】(1)把C (0,2),D (4,﹣2)代入二次函数解析式得:2016232a c c ⎧++=-⎪⎨⎪=⎩ , 解得:2a 32c ⎧=-⎪⎨⎪=⎩ ,即二次函数解析式为y=﹣23x 2+53x+2,联立一次函数解析式得:2225233y x y x x ﹣﹣=+⎧⎪⎨=++⎪⎩, 消去y 得:﹣13x+2=﹣23x 2+53x+2, 解得:x=0或x=3, 则E (3,1);(2)如图①,过M 作MH ∥y 轴,交CE 于点H ,设M (m ,﹣23m 2+53m+2),则H (m ,﹣13m+2), ∴MH=(﹣23m 2+53m+2)﹣(﹣13m+2)=﹣23m 2+2m , S 四边形COEM =S △OCE +S △CME =12×2×3+12MH•3=﹣m 2+3m+3, 当m=﹣a b =32时,S 最大=214,此时M 坐标为(32,3); (3)连接BF ,如图②所示,当﹣23x 2+53x+20=0时,x 15+73,x 2=5-734, ∴OA=73-54,OB=734, ∵∠ACO=∠ABF ,∠AOC=∠FOB , ∴△AOC ∽△FOB ,∴OA OC OF OB = ,即73-545+73OF = ,解得:OF=32,则F坐标为(0,﹣32).【点睛】此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,相似三角形的判定与性质,三角形的面积,二次函数图象与性质,以及图形与坐标性质,熟练掌握各自的性质是解本题的关键.13.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,12),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)y=﹣12x2+32x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=12x-2,则Q(m,-12m2+32m+2)、M(m,12m-2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知∠ODB=∠QMB ,故分①∠DOB=∠MBQ=90°,利用△DOB ∽△MBQ 得12DO MB OB BQ ==,再证△MBQ ∽△BPQ 得BM BP BQ PQ=,即214 132222mm m -=-++,解之即可得此时m 的值;②∠BQM=90°,此时点Q 与点A 重合,△BOD ∽△BQM′,易得点Q 坐标.详解:(1)由抛物线过点A (-1,0)、B (4,0)可设解析式为y=a (x+1)(x-4), 将点C (0,2)代入,得:-4a=2, 解得:a=-12, 则抛物线解析式为y=-12(x+1)(x-4)=-12x 2+32x+2;(2)由题意知点D 坐标为(0,-2), 设直线BD 解析式为y=kx+b ,将B (4,0)、D (0,-2)代入,得:402k b b +⎧⎨-⎩==,解得:122k b ⎧⎪⎨⎪-⎩==, ∴直线BD 解析式为y=12x-2, ∵QM ⊥x 轴,P (m ,0),∴Q (m ,--12m 2+32m+2)、M (m ,12m-2),则QM=-12m 2+32m+2-(12m-2)=-12m 2+m+4,∵F (0,12)、D (0,-2), ∴DF=52, ∵QM ∥DF ,∴当-12m 2+m+4=52时,四边形DMQF 是平行四边形, 解得:m=-1(舍)或m=3,即m=3时,四边形DMQF 是平行四边形; (3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则21=42 DO MBOB BQ==,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴BM BPBQ PQ=,即214132222mm m-=-++,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.14.如图,抛物线交轴于点,交轴于点,已知经过点的直线的表达式为.(1)求抛物线的函数表达式及其顶点的坐标;(2)如图①,点是线段上的一个动点,其中,作直线轴,交直线于,交抛物线于,作∥轴,交直线于点,四边形为矩形.设矩形的周长为,写出与的函数关系式,并求为何值时周长最大;(3)如图②,在抛物线的对称轴上是否存在点,使点构成的三角形是以为腰的等腰三角形.若存在,直接写出所有符合条件的点的坐标;若不存在,请说明理由.图① 图②【答案】(1)抛物线的表达式为y=-x2-2x+3,顶点C坐标为(-1,4);(2)L=-4m2-12m=-4(m+)2+9;当m=-时,最大值L=9;(3)点Q的坐标为(-1,),(-1,-),(-1,3+),(-1,3-).【解析】试题分析:(1)由直线经过A、B两点可求得这两点的坐标,然后代入二次函数解析式即可求出b、c的值,从而得到解析式,进而得到顶点的坐标;(2)由题意可表示出D、E的坐标,从而得到DE的长,由已知条件可得DE=EF,从而可表示出矩形DEFG的周长L,利用二次函数的性质可求得最大值;(3)分别以点A、点B为圆心,以AB长为半径画圆,圆与对称轴的交点即为所求的点.试题解析:(1)直线y=x+3与x轴相交于A(-3,0 ),与y轴相交于B(0,3)抛物线y=-x2+bx+c经过A(-3,0 ),B(0,3),所以,,∴,所以抛物线的表达式为y=-x2-2x+3,∵y=-x2-2x+3=-(x+1)2+4,所以,顶点坐标为C(-1,4).(2)因为D在直线y=x+3上,∴D(m,m+3).因为E在抛物线上,∴E(m,-m2-2m+3).DE=-m2-2m+3-(m+3)=-m2-3m.由题意可知,AO=BO,∴∠DAP=∠ADP=∠EDF=∠EFD=45°,∴DE=EF.L=4DE=-4m2-12m.L=-4m2-12m=-4(m+)2+9.∵a=-4<0,∴二次函数有最大值当m=-时,最大值L=9.(3)点Q的坐标为(-1,),(-1,-),(-1,3+),(-1,3-).考点:1、待定系数法;2、正方形的判定;3、二次函数的性质的应用;4、等腰三角形.15.如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;(3)求满足∠MPO=∠POA的点M的坐标.【答案】(1)点P的坐标为(3,4),抛物线的解析式为y=﹣x2+3x+4;(2)当m=0时,S取最小值,最小值为12;当m=3时,S取最大值,最大值为5.(3)满足∠MPO=∠POA的点M的坐标为(0,4)或(247,12449).【解析】【分析】(1)代入y=c可求出点C、P的坐标,利用一次函数图象上点的坐标特征可求出点A、B的坐标,再由△PCB≌△BOA即可得出b、c的值,进而可得出点P的坐标及抛物线的解析式;(2)利用二次函数图象上点的坐标特征求出点F的坐标,过点M作ME∥y轴,交直线AB 于点E,由点M的横坐标可得出点M、E的坐标,进而可得出ME的长度,再利用三角形的面积公式可找出S=﹣12(m﹣3)2+5,由m的取值范围结合二次函数的性质即可求出S的最大值及最小值;(3)分两种情况考虑:①当点M在线段OP上方时,由CP∥x轴利用平行线的性质可得出:当点C、M重合时,∠MPO=∠POA,由此可找出点M的坐标;②当点M在线段OP 下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA,设点D的坐标为(n,0),则DO=n,DO=DP可求出n的值,进而可得出点D的坐标,由点P、D的坐标利用待定系数法即可求出直线PD的解析式,再联立直线PD 及抛物线的解析式成方程组,通过解方程组求出点M的坐标.综上此题得解.【详解】(1)当y=c时,有c=﹣x2+bx+c,解得:x1=0,x2=b,∴点C的坐标为(0,c),点P的坐标为(b,c),∵直线y=﹣3x+3与x轴、y轴分别交于A、B两点,∴点A的坐标为(1,0),点B的坐标为(0,3),∴OB=3,OA=1,BC=c﹣3,CP=b,∵△PCB≌△BOA,∴BC=OA,CP=OB,∴b=3,c=4,∴点P的坐标为(3,4),抛物线的解析式为y=﹣x2+3x+4;(2)当y=0时,有﹣x2+3x+4=0,解得:x1=﹣1,x2=4,∴点F的坐标为(4,0),过点M作ME∥y轴,交直线AB于点E,如图1所示,∵点M的横坐标为m(0≤m≤4),∴点M的坐标为(m,﹣m2+3m+4),点E的坐标为(m,﹣3m+3),∴ME=﹣m2+3m+4﹣(﹣3m+3)=﹣m2+6m+1,∴S=12OA•ME=﹣12m2+3m+12=﹣12(m﹣3)2+5,∵﹣12<0,0≤m≤4,∴当m=0时,S取最小值,最小值为12;当m=3时,S取最大值,最大值为5;(3)①当点M在线段OP上方时,∵CP∥x轴,∴当点C、M重合时,∠MPO=∠POA,。

中考数学综合题专题【二次函数压轴题解析】专题解析一

中考数学综合题专题【二次函数压轴题解析】专题解析一

中考数学综合题专题【二次函数压轴题解析】专题解析一(总40页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除中考数学综合题专题【二次函数压轴题解析】专题解析一1.已知抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 的坐标;(2)过点D 作DH 丄y 轴于点H ,若DH =HC ,求a 的值和直线CD 的解析式;(3)在第(2)小题的条件下,直线CD 与x 轴交于点E ,过线段OB 的中点N 作NF 丄x 轴,并交直线CD 于点F ,则直线NF 上是否存在点M ,使得点M 到直线CD 的距离等于点M 到原点O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.考点:二次函数综合题专题:压轴题分析:(1)令y =0,求得x 的值,从而得出点A 、B 的坐标.(2)令x =0,则y =-3a ,求得点C 、D 的坐标,设直线CD 的解析式为y =kx +b ,把C 、D 两点的坐标代入,求出直线CD 的解析式.(3)设存在,作MQ ⊥CD 于Q ,由Rt △FQM ∽Rt △FNE ,得EF FM EN MQ ,及可得出关于m 的一元二次方程,求出方程的解,即可得出点M 的坐标. 解答:(1)由y =0得,ax 2-2ax -3a =0.∵a≠0,∴x 2-2x -3=0,解得x1=-1,x2=3,∴A (-1,0),B (3,0).(2)由y =ax 2-2ax -3a ,令x =0,得y =-3a∴C (0,-3a )∵y =ax 2-2ax -3a =a (x -1)2-4a∴D (1,-4a )∵DH =HC∴DH =1,CH =-4a -(-3a )=-a∴-a =1∴a =-1∴C (0,3),D (1,4)设直线CD 的解析式为y =kx +3,则k +3=4,解得k =1∴直线CD 的解析式为y =x +3.(3)存在,如下图,作MQ ⊥CD 于Q ,由(2)得,E (-3,0),N (23,0) ∴F (23,29),EN =29 设存在满足条件的点M (23,m ),则FM =29-m ,EF =292,MQ =OM =492+m ∵∠QFM =∠NFE ,∠FQM =∠FNE =90°∴Rt △FQM ∽Rt △FNE ∴EFFM EN MQ =即2292929492m m -=+ 整理得4m 2+36m -63=0,(2m -3)(2m +21)=0∴m 1=23,m 2=-221 ∴点M 的坐标为M 1(23,23),M 2(23,-221).Q M A B O C D E FN Hxy点评:本题是二次函数的综合题型,其中涉及的知识点有一元二次方程的解法.在求有关存在不存在问题时要注意先假设存在,再讨论结果.2.已知二次函数21342y x x =-+的图象如图. (1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x 轴,y 轴的交点分别为A 、B 、C 三点,若∠ACB =90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M ,以AB 为直径,D 为圆心作⊙D ,试判断直线CM 与⊙D 的位置关系,并说明理由.考点:二次函数综合题.分析:(1)根据对称轴公式求出x=- ,求出即可;(2)假设出平移后的解析式即可得出图象与x轴的交点坐标,再利用勾股定理求出即可;(3)由抛物线的解析式 可得,A ,B ,C ,M 各点的坐标,再利用勾股定理逆定理求出CD ⊥CM ,即可证明.答案:解: (1)由21342y x x =-+得 32b x a =-= ∴D(3,0)(2)方法一:如图1, 设平移后的抛物线的解析式为21342y x x k =-++ 则C (0,)k OC =k令0y = 即 213042x x k -++= 得 1349x k =++ 2349x k =-+∴A (349,0)k -+,B (349,0)k ++∴22(493349)1636AB k k k =++-++=+222222(349)(349)AC BC k k k k +=+-+++++22836k k =++∵222AC BC AB +=即: 228361636k k k ++=+得 14k = 20k =(舍去)∴抛物线的解析式为213442y x x =-++方法二:∵ 21342y x x =-+ ∴顶点坐标93,4⎛⎫ ⎪⎝⎭设抛物线向上平移h 个单位,则得到()0,C h ,顶点坐标93,4M h ⎛⎫+ ⎪⎝⎭ ∴平移后的抛物线: ()219344y x h =--++ 当0y =时, ()2193044x h --++=, 得 1349x h =-+ 1349x h =++∴ A (349,0)h -+ B (349,0)h ++∵∠ACB =90° ∴△AOC ∽△COB∴2OC =OA ·OB()()2493493h h h =+-++ 得 14h =,()20h =舍去∴平移后的抛物线: ()()22191253434444y x x =--++=--+(3)方法一:如图2, 由抛物线的解析式213442y x x =-++可得 A (-2 ,0),B (8,0) ,C (4,0) ,M 25(3,)4过C 、M 作直线,连结CD ,过M 作MH 垂直y 轴于H ,则3MH =∴2225625()416DM == 22222252253(4)416CM MH CH =+=+-= 在Rt △COD 中,CD =22345+==AD∴点C 在⊙D 上∵2225625()416DM == 2222225256255()16416CD CM +=+== ∴222DM CM CD =+∴△CDM 是直角三角形,∴CD ⊥CM∴直线CM 与⊙D 相切方法二:如图3, 由抛物线的解析式可得A (-2 ,0),B (8,0) ,C (4,0) ,M 25(3,)4 作直线CM ,过D 作DE ⊥CM 于E , 过M 作MH 垂直y 轴于H ,则3MH =, 254DM =, 由勾股定理得154CM = ∵DM ∥OC∴∠MCH=∠EMD∴Rt △CMH ∽Rt △DME∴DE MD MH CM= 得 5DE = 由(2)知10AB = ∴⊙D 的半径为5∴直线CM 与⊙D 相切点评:此题主要考查了二次函数的综合应用以及勾股定理以及逆定理的应用,利用数形结合得出是解决问题的关键.3.如图,半径为1的⊙M 经过直角坐标系的原点O ,且与x 的正半轴,y 的正半轴交于点A 、B ,∠OMA=60°,过点B 的切线交x 轴负半轴于点C ,抛物线过点A 、B 、C.(1)求点A 、B 的坐标.(2)求抛物线的解析式.(3)若点D 为抛物线对称轴上的一个动点,问是否存在这样的点D ,使得△BCD 是等腰三角形?若存在,求出符合条件的点D 的坐标.若不存在,请说明理由.考点:二次函数综合题。

中考数学综合题专题复习【二次函数】专题解析含答案解析

中考数学综合题专题复习【二次函数】专题解析含答案解析

中考数学综合题专题复习【二次函数】专题解析含答案解析一、二次函数1.如图,在平面直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA =1,tan ∠BAO =3,将此三角形绕原点O 逆时针旋转90°,得到△DOC ,抛物线y =ax 2+bx +c 经过点A 、B 、C .(1)求抛物线的解析式;(2)若点P 是第二象限内抛物线上的动点,其横坐标为t ,设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求以C 、E 、F 为顶点三角形与△COD 相似时点P 的坐标.【答案】(1)抛物线的解析式为y=﹣x 2﹣2x+3;(2)当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3).【解析】【分析】(1)根据正切函数,可得OB ,根据旋转的性质,可得△DOC ≌△AOB ,根据待定系数法,可得函数解析式;(2)分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点;②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,得到△EFC ∽△EMP ,根据相似三角形的性质,可得PM 与ME 的关系,解方程,可得t 的值,根据自变量与函数值的对应关系,可得答案.【详解】(1)在Rt △AOB 中,OA =1,tan ∠BAO OB OA==3,∴OB =3OA =3. ∵△DOC 是由△AOB 绕点O 逆时针旋转90°而得到的,∴△DOC ≌△AOB ,∴OC =OB =3,OD =OA =1,∴A ,B ,C 的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为 09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,抛物线的解析式为y =﹣x 2﹣2x +3; (2)∵抛物线的解析式为y =﹣x 2﹣2x +3,∴对称轴为l 2b a=-=-1,∴E 点坐标为(﹣1,0),如图,分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点,P(﹣1,4);②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,∵∠CFE=∠PME=90°,∠CEF=∠PEM ,∴△EFC ∽△EMP ,∴13EM EF OD MP CF CO ===,∴MP =3ME . ∵点P 的横坐标为t ,∴P (t ,﹣t 2﹣2t +3). ∵P 在第二象限,∴PM =﹣t 2﹣2t +3,ME =﹣1﹣t ,t <0,∴﹣t 2﹣2t +3=3(﹣1﹣t ),解得:t 1=﹣2,t 2=3(与t <0矛盾,舍去).当t =﹣2时,y =﹣(﹣2)2﹣2×(﹣2)+3=3,∴P (﹣2,3).综上所述:当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3).【点睛】本题是二次函数综合题.解(1)的关键是利用旋转的性质得出OC ,OD 的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP =3ME .2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100,解得:x =40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w ,根据题意得,w =(x ﹣30)[(60﹣x )×10+100]=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.【答案】(1)a =13-,A 30),抛物线的对称轴为x 32)点P 的坐标为3034);(3)32. 【解析】试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO =60°,依据AE 为∠BAC 的角平分线可求得∠DAO =30°,然后利用特殊锐角三角函数值可求得OD =1,则可得到点D 的坐标.设点P 的3,a ).依据两点的距离公式可求得AD 、AP 、DP 的长,然后分为AD =PA 、AD =DP 、AP =DP 三种情况列方程求解即可;(3)设直线MN 的解析式为y =kx +1,接下来求得点M 和点N 的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM 的长,最后将AM 和AN 的长代入化简即可.试题解析:(1)∵C (0,3),∴﹣9a =3,解得:a =13-.令y =0得:22390ax ax a --=,∵a ≠0,∴22390x x --=,解得:x =3x =33,∴点A 的坐标为(﹣3,0),B (33,0),∴抛物线的对称轴为x =3.(2)∵OA =3,OC =3,∴tan ∠CAO =3,∴∠CAO =60°. ∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO =3AO =1,∴点D 的坐标为(0,1). 设点P 的坐标为(3,a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2.当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 的坐标为(3,0). 当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P 的坐标为(3,﹣4). 综上所述,点P 的坐标为(3,0)或(3,﹣4).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:330m -+=,解得:m =3,∴直线AC 的解析式为33y x =+.设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1k -,0),∴AN =13k-+=31k -. 将33y x =+与y =kx +1联立解得:x =3k -,∴点M 的横坐标为3k -.过点M 作MG ⊥x 轴,垂足为G .则AG =33k +-.∵∠MAG =60°,∠AGM =90°,∴AM =2AG 33k +-2323k k --,∴11AM AN +323231k k --3232k -3(31)2(31)k k --3 点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M 的坐标和点N 的坐标是解答问题(3)的关键.4.如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1, 0)、C (3, 0)、D (3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒12个单位的速度沿线段AD向点D运动,运动时间为t秒.过点P作PE⊥x轴交抛物线于点M,交AC 于点N.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)当t为何值时,△ACM的面积最大?最大值为多少?(3)点Q从点C出发,以每秒1个单位的速度沿线段CD向点D运动,当t为何值时,在线段PE上存在点H,使以C、Q、N、H为顶点的四边形为菱形?【答案】(1)A(1,4);y=-x2+2x+3;(2)当t=2时,△AMC面积的最大值为1;(3)2085或20 13.【解析】(1)由矩形的性质得到点A的坐标,由抛物线的顶点为A,设抛物线的解析式为y=a(x -1)2+4,把点C的坐标代入即可求得a的值;(2)由点P的坐标以及抛物线解析式得到点M的坐标,由A、C的坐标得到直线AC的解析式,进而得到点N的坐标,即可用关于t的式子表示MN,然后根据△ACM的面积是△AMN和△CMN的面积和列出用t表示的△ACM的面积,利用二次函数的性质即可得到当t=2时,△AMC面积的最大值为1;(3)①当点H在N点上方时,由PN=CQ,PN∥CQ,得到四边形PNCQ为平行四边形,所以当PQ=CQ时,四边形FECQ为菱形,据此得到,解得t值;②当点H在N点下方时,NH=CQ=,NQ=CQ时,四边形NHCQ为菱形,NQ2=CQ2,得:,解得t值.解:(1)由矩形的性质可得点A(1,4),∵抛物线的顶点为A,设抛物线的解析式为y=a(x-1)2+4,代入点C(3, 0),可得a=-1.∴y=-(x-1)2+4=-x2+2x+3.(2)∵P (112t +,4), 将112x t =+代入抛物线的解析式,y =-(x -1)2+4=2144t -, ∴M (112t +,2144t -), 设直线AC 的解析式为,将A (1,4),C (3,0)代入,得:, 将112x t =+代入得, ∴N (112t +,), ∴MN, ∴, ∴当t =2时,△A MC 面积的最大值为1.(3)①如图1,当点H在N点上方时,∵N(112t +,),P (112t +,4), ∴P N=4—()==CQ ,又∵PN ∥CQ , ∴四边形PNCQ 为平行四边形,∴当PQ =CQ 时,四边形FECQ 为菱形,PQ 2=PD 2+DQ 2 =,∴, 整理,得240800t t -+=.解得12085t =-,22085t =+(舍去);②如图2当点H在N点下方时,NH=CQ=,NQ =CQ 时,四边形NHCQ 为菱形,NQ 2=CQ 2,得:.整理,得213728000t t -+=.()()1320400t t --=.所以12013t =,(舍去).“点睛”此题主要考查二次函数的综合问题,会用顶点式求抛物线,会用两点法求直线解析式,会设点并表示三角形的面积,熟悉矩形和菱形的性质是解题的关键.5.函数()2110,>02y x mx x m =-++≥的图象记为1C ,函数()2110,>02y x mx x m =---<的图象记为2C ,其中m 为常数,1C 与2C 合起来的图象记为C .(Ⅰ)若1C 过点()1,1时,求m 的值;(Ⅱ)若2C 的顶点在直线1y =上,求m 的值;(Ⅲ)设C 在42x -≤≤上最高点的纵坐标为0y ,当0392y ≤≤时,求m 的取值范围. 【答案】(Ⅰ)12m =;(Ⅱ)2m =;(Ⅲ)912m ≤≤. 【解析】【分析】(Ⅰ)将点C 的坐标代入1C 的解析式即可求出m 的值;(Ⅱ)先求出抛物线2C 的顶点坐标,再根据顶点在直线y 1=上得出关于m 的方程,解之即可(Ⅲ)先求出抛物线1C 的顶点坐标,结合(Ⅱ)抛物线2C 的顶点坐标,和x 的取值范围,分三种情形讨论求解即可;【详解】解:(Ⅰ)将点()1,1代入1C 的解析式,解得1m .2=(Ⅱ)抛物线2C 的顶点坐标为2m m,12⎛⎫-- ⎪⎝⎭, 令2m 112-=,得m 2,=± ∵m>0,∴m 2.=(Ⅲ)∵抛物线1C 的顶点2m P m,12⎛⎫+ ⎪⎝⎭,抛物线2C 的顶点2m Q m,12⎛⎫-- ⎪⎝⎭, 当0m 2<≤时,最高点是抛物线G 1的顶点 ∴203m y 1922≤=+≤,解得1m 2.≤≤ 当2m 4<≤时,G 1中(2,2m-1)是最高点,0y =2m-1 ∴32≤2m-19≤,解得2m 4.<≤ 当m>4时,G 2中(-4,4m-9)是最高点,0y =4m-9. ∴32≤4m-99≤,解得94m 2<≤. 综上所述,91m 2≤≤即为所求. 【点睛】本题考查二次函数综合题,待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,利用数形结合的思想解决问题,属于中考压轴题.6.如图,抛物线y =ax 2+bx +4与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C . (1)求抛物线的解析式;(2)如图1,D 为抛物线对称轴上一动点,求D 运动到什么位置时△DAC 的周长最小; (3)如图2,点E 在第一象限抛物线上,AE 与BC 交于点F ,若AF :FE =2:1,求E 点坐标;(4)点M 、N 同时从B 点出发,分别沿BA 、BC 方向运动,它们的运动速度都是1个单位/秒,当点M 运动到点A 时,点N 停止运动,则当点N 停止运动后,在x 轴上是否存在点P ,使得△PBN 是等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)248433y x x =-++(2)81,3D ⎛⎫ ⎪⎝⎭(3)点P 的坐标P 1(﹣1,0)或P 2(7,0)或P 3(﹣95,0)或P 4(13,0). 【解析】【分析】 (1)直接待定系数法代入求解即可 (2)找到D 点在对称轴时是△DAC 周长最小的点,先求出直线BC ,然后D 点横坐标是1,直接代入直线BC 求出纵坐标即可 (3)作EH ∥AB 交BC 于H ,则∠FAB =∠FEH ,∠FBA =∠FHE ,易证△ABF ∽△EHF ,得AB AF 2EH EF ==,得EH=2,设E (x ,248x x 433-++),则H (x ﹣2,420x 33-+),y E =y H ,解出方程x =1或x =2,得到E 点坐标 (4)△PBN 是等腰三角形,分成三种情况,①BP =BC 时,利用等腰三角性质直接得到P 1(﹣1,0)或P 2(7,0),②当NB =NP 时,作NH ⊥x 轴,易得△NHB ∽△COB ,利用比例式得到NH 、 BH 从而得到 PH =BH ,BP ,进而得到OP ,即得到P 点坐标,③当PN =PB 时,取NB 中点K ,作KP ⊥BN ,交x 轴于点P ,易得△NOB ∽△PKB ,利用比例式求出PB ,进而得到OP ,即求出P 点坐标【详解】解:(1)将A (﹣1,0)、B (3,0)代入y =ax 2+bx+4,得 40930a b a b c -+=⎧⎨++=⎩解得a =43-,b =83, ∴抛物线的解析式248433y x x =-++; (2)22484164(1)3333=-++=--+y x x x ∴抛物线对称轴为直线x =1,∴D 的横坐标为1,由(1)可得C (0,4),∵B (3,0),∴直线BC :4 y 43x =-+ ∵DA =DB , △DAC 的周长=AC+CD+AD =AC+CD+BD ,连接BC ,与对称轴交于点D ,此时CD+BD 最小,∵AC 为定值,∴此时△DAC 的周长,当x =1时,y =﹣43×1+4=83, ∴D (1,83); (3)作EH ∥AB 交BC 于H ,则∠FAB =∠FEH ,∠FBA =∠FHE ,∴△ABF ∽△EHF ,∵AF :FE =2:1,∴AB AF 2EH EF==, ∵AB =4,∴EH =2,设E (x ,248x x 433-++),则H (x ﹣2,420x 33-+) ∵EH ∥AB ,∴y E =y H , ∴248x x 433-++=420x 33-+ 解得x =1或x =2, y =163或4, ∴E (1,163)或(2,4); (4)∵A (﹣1,0)、B (3,0),C (0,4)∴AB =4,OC =4,点M 运动到点A 时,BM =AB =4,∴BN =4,∵△PBN 是等腰三角形,①BP =BC 时,若P 在点B 左侧,OP =PB ﹣OB =4﹣3=1,∴P 1(﹣1,0),若P 在点B 右侧,OP =OB+BP =4+3=7,∴P 2(7,0);②当NB =NP 时,作NH ⊥x 轴,△NHB ∽△COB ,∴45NH BH BN OC OB BC === ∴NH =45OC =445⨯=165, BH =45BC =125,∴PH=BH=125,BP=245,∴OP=BP﹣OB=249355-=,∴P3(﹣95,0);③当PN=PB时,取NB中点K,作KP⊥BN,交x轴于点P,∴△NOB∽△PKB,∴PB BKBN OB=∴PB=83,∴OP=OB﹣PB=3﹣83=13P4(13,0)综上,当△PBN是等腰三角形时,点P的坐标P1(﹣1,0)或P2(7,0)或P3(﹣95,0)或P4(13,0).【点睛】本题考查二次函数、平行线性质、相似三角形、等腰三角形性质及最短距离等知识点,综合程度比较高,对综合能力要求比较高. 第一问比较简单,考查待定系数法;第二问最短距离,找到D点是解题关键;第三问证明出相似是关键;第四问能够分情况讨论是解题关键7.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.【答案】(1)y =﹣x 2﹣2x +3 (2)(﹣32,154) (3)存在,P (﹣2,3)或P (5172-+,53172-+) 【解析】【分析】(1)用待定系数法求解;(2)过点P 作PH ⊥x 轴于点H ,交AB 于点F ,直线AB 解析式为y =x +3,设P (t ,﹣t 2﹣2t +3)(﹣3<t <0),则F (t ,t +3),则PF =﹣t 2﹣2t +3﹣(t +3)=﹣t 2﹣3t ,根据S △PAB =S △PAF +S △PBF 写出解析式,再求函数最大值;(3)设P (t ,﹣t 2﹣2t +3)(﹣3<t <0),则D (t ,t +3),PD =﹣t 2﹣3t ,由抛物线y =﹣x 2﹣2x +3=﹣(x +1)2+4,由对称轴为直线x =﹣1,PE ∥x 轴交抛物线于点E ,得y E =y P ,即点E 、P 关于对称轴对称,所以2E P x x +=﹣1,得x E =﹣2﹣x P =﹣2﹣t ,故PE =|x E ﹣x P |=|﹣2﹣2t |,由△PDE 为等腰直角三角形,∠DPE =90°,得PD =PE ,再分情况讨论:①当﹣3<t≤﹣1时,PE =﹣2﹣2t ;②当﹣1<t <0时,PE =2+2t【详解】解:(1)∵抛物线y =ax 2+bx +3过点B (﹣3,0),C (1,0)∴933030a b a b -+=⎧⎨++=⎩ 解得:12a b =-⎧⎨=-⎩∴抛物线解析式为y =﹣x 2﹣2x +3(2)过点P 作PH ⊥x 轴于点H ,交AB 于点F∵x =0时,y =﹣x 2﹣2x +3=3∴A (0,3)∴直线AB 解析式为y =x +3∵点P 在线段AB 上方抛物线上∴设P (t ,﹣t 2﹣2t +3)(﹣3<t <0)∴F (t ,t +3)∴PF =﹣t 2﹣2t +3﹣(t +3)=﹣t 2﹣3t∴S △PAB =S △PAF +S △PBF =12PF •OH +12PF •BH =12PF •OB =32(﹣t 2﹣3t )=﹣32(t +32)2+278 ∴点P 运动到坐标为(﹣32,154),△PAB 面积最大 (3)存在点P 使△PDE 为等腰直角三角形设P (t ,﹣t 2﹣2t +3)(﹣3<t <0),则D (t ,t +3)∴PD =﹣t 2﹣2t +3﹣(t +3)=﹣t 2﹣3t∵抛物线y =﹣x 2﹣2x +3=﹣(x +1)2+4∴对称轴为直线x =﹣1∵PE ∥x 轴交抛物线于点E∴y E =y P ,即点E 、P 关于对称轴对称 ∴2E P x x +=﹣1 ∴x E =﹣2﹣x P =﹣2﹣t∴PE =|x E ﹣x P |=|﹣2﹣2t |∵△PDE 为等腰直角三角形,∠DPE =90°∴PD =PE①当﹣3<t ≤﹣1时,PE =﹣2﹣2t∴﹣t 2﹣3t =﹣2﹣2t解得:t 1=1(舍去),t 2=﹣2∴P (﹣2,3)②当﹣1<t <0时,PE =2+2t∴﹣t 2﹣3t =2+2t解得:t 1=517-+,t 2=517--(舍去) ∴P (5172-+,53172-+) 综上所述,点P 坐标为(﹣2,3)或(517-+,5317-+)时使△PDE 为等腰直角三角形.【点睛】考核知识点:二次函数的综合.数形结合分析问题,运用轴对称性质和等腰三角形性质分析问题是关键.8.如图,抛物线y =ax 2+bx+c 经过A (﹣3,0),B (1,0),C (0,3)三点. (1)求抛物线的函数表达式;(2)如图1,P 为抛物线上在第二象限内的一点,若△PAC 面积为3,求点P 的坐标; (3)如图2,D 为抛物线的顶点,在线段AD 上是否存在点M ,使得以M ,A ,O 为顶点的三角形与△ABC 相似?若存在,求点M 的坐标;若不存在,请说明理由.【答案】(1)y =﹣x 2﹣2x+3;(2)点P 的坐标为(﹣1,4)或(﹣2,3);(3)存在,(32-,32)或(34-,94),见解析. 【解析】【分析】 (1)利用待定系数法,然后将A 、B 、C 的坐标代入解析式即可求得二次函数的解析式; (2))过P 点作PQ 垂直x 轴,交AC 于Q ,把△APC 分成两个△APQ 与△CPQ ,把PQ 作为两个三角形的底,通过点A ,C 的横坐标表示出两个三角形的高即可求得三角形的面积.(3)通过三角形函数计算可得∠DAO=∠ACB ,使得以M ,A ,O 为顶点的三角形与△ABC 相似,则有两种情况,∠AOM=∠CAB=45°,即OM 为y=-x ,若∠AOM=∠CBA ,则OM 为y=-3x+3,然后由直线解析式可求OM 与AD 的交点M .【详解】(1)把A (﹣3,0),B (1,0),C (0,3)代入抛物线解析式y =ax 2+bx+c 得 93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得123a b c =-⎧⎪=-⎨⎪=⎩,所以抛物线的函数表达式为y =﹣x 2﹣2x+3.(2)如解(2)图1,过P 点作PQ 平行y 轴,交AC 于Q 点,∵A (﹣3,0),C (0,3),∴直线AC 解析式为y =x+3,设P 点坐标为(x ,﹣x 2﹣2x+3.),则Q 点坐标为(x ,x+3),∴PQ =﹣x 2﹣2x+3﹣(x+3)=﹣x 2﹣3x .∴S △PAC =1PQ A 2O ⋅, ∴()213332x x --⋅=, 解得:x 1=﹣1,x 2=﹣2.当x =﹣1时,P 点坐标为(﹣1,4),当x =﹣2时,P 点坐标为(﹣2,3),综上所述:若△PAC 面积为3,点P 的坐标为(﹣1,4)或(﹣2,3),(3)如解(3)图1,过D 点作DF 垂直x 轴于F 点,过A 点作AE 垂直BC 于E 点,∵D 为抛物线y =﹣x 2﹣2x+3的顶点,∴D 点坐标为(﹣1,4),又∵A (﹣3,0),∴直线AC 为y =2x+4,AF =2,DF =4,tan ∠PAB =2,∵B (1,0),C (0,3)∴tan ∠ABC =3,BC =10,sin ∠ABC=310,直线BC 解析式为y =﹣3x+3. ∵AC =4,∴AE =AC•sin ∠ABC =310410⨯=6105,BE =2105, ∴CE =310, ∴tan ∠ACB =2AE CE =, ∴tan ∠ACB =tan ∠PAB =2,∴∠ACB =∠PAB ,∴使得以M ,A ,O 为顶点的三角形与△ABC 相似,则有两种情况,如解(3)图2Ⅰ.当∠AOM =∠CAB =45°时,△ABC ∽△OMA ,即OM 为y =﹣x ,设OM 与AD 的交点M (x ,y )依题意得:3y x y x =-⎧⎨=+⎩, 解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩, 即M 点为(32-,32). Ⅱ.若∠AOM =∠CBA ,即OM ∥BC ,∵直线BC 解析式为y =﹣3x+3.∴直线OM 为y =﹣3x ,设直线OM 与AD 的交点M (x ,y ).则依题意得:33y x y x =-⎧⎨=+⎩, 解得3494x y ⎧=-⎪⎪⎨⎪=⎪⎩, 即M 点为(34-,94), 综上所述:存在使得以M ,A ,O 为顶点的三角形与△ABC 相似的点M ,其坐标为(32-,32)或(34-,94). 【点睛】 本题结合三角形的性质考查二次函数的综合应用,函数和几何图形的综合题目,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.9.在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”。

中考数学综合题专题复习【二次函数】专题解析含详细答案

中考数学综合题专题复习【二次函数】专题解析含详细答案

一、二次函数真题与模拟题分类汇编(难题易错题)1.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.【答案】(1)y=x2﹣4x+3;(2)94;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣3).【解析】试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴93010b cb c++=⎧⎨++=⎩,解得43bc=-⎧⎨=⎩,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣32)2+94.∵a=﹣1<0,∴当x=32时,线段PD的长度有最大值94;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1).综上所述:点P(1,0)或(2,﹣1)时,△APD能构成直角三角形;(4)由抛物线的对称性,对称轴垂直平分AB,∴MA=MB,由三角形的三边关系,|MA﹣MC|<BC,∴当M、B、C三点共线时,|MA﹣MC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k≠0),则3k bb+=⎧⎨=⎩,解得:33kb=-⎧⎨=⎩,∴直线BC的解析式为y=﹣3x+3.∵抛物线y=x2﹣4x+3的对称轴为直线x=2,∴当x=2时,y=﹣3×2+3=﹣3,∴点M (2,﹣3),即,抛物线对称轴上存在点M(2,﹣3),使|MA﹣MC|最大.点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M的位置是解题的关键.2.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+n与x轴、y轴分别交于B、C两点,抛物线y=ax2+bx+3(a≠0)过C、B两点,交x轴于另一点A,连接AC,且tan∠CAO=3.(1)求抛物线的解析式;(2)若点P是射线CB上一点,过点P作x轴的垂线,垂足为H,交抛物线于Q,设P点横坐标为t,线段PQ的长为d,求出d与t之间的函数关系式,并写出相应的自变量t的取值范围;(3)在(2)的条件下,当点P在线段BC上时,设PH=e,已知d,e是以y为未知数的一元二次方程:y2-(m+3)y+14(5m2-2m+13)="0" (m为常数)的两个实数根,点M在抛物线上,连接MQ、MH、PM,且.MP平分∠QMH,求出t值及点M的坐标.【答案】(1) y=-x 2+2x+3;(2)223(03){3(3)d t t t d t t t =-+<<=->;(3)t=1,2,2)和(12,2).【解析】【分析】(1)当x=0时代入抛物线y=ax 2+bx+3(a≠0)就可以求出y=3而得出C 的坐标,就可以得出直线的解析式,就可以求出B 的坐标,在直角三角形AOC 中,由三角形函数值就可以求出OA 的值,得出A 的坐标,再由待定系数法建立二元一次方程组求出其解就可以得出结论;(2)分两种情况讨论,当点P 在线段CB 上时,和如图3点P 在射线BN 上时,就有P 点的坐标为(t ,-t+3),Q 点的坐标为(t ,-t 2+2t+3),就可以得出d 与t 之间的函数关系式而得出结论;(3)根据根的判别式就可以求出m 的值,就可以求出方程的解而求得PQ 和PH 的值,延长MP 至L ,使LP=MP ,连接LQ 、LH ,如图2,延长MP 至L ,使LP=MP ,连接LQ 、LH ,就可以得出四边形LQMH 是平行四边形,进而得出四边形LQMH 是菱形,由菱形的性质就可以求出结论.【详解】(1)当x=0,则y=-x+n=0+n=n ,y=ax 2+bx+3=3,∴OC=3=n .当y=0,∴-x+3=0,x=3=OB ,∴B (3,0).在△AOC 中,∠AOC =90°,tan ∠CAO=33OC OA OA==, ∴OA=1,∴A (-1,0).将A (-1,0),B (3,0)代入y=ax2+bx+3,得 9330{30a b a b ++=-+=,解得:1 {2 ab=-=∴抛物线的解析式:y=-x2+2x+3;(2) 如图1,∵P点的横坐标为t 且PQ垂直于x轴∴P点的坐标为(t,-t+3),Q点的坐标为(t,-t2+2t+3).∴PQ=|(-t+3)-(-t2+2t+3)|="|" t2-3t |∴223(03) {3(3)d t t td t t t=-+<<=->;∵d,e是y2-(m+3)y+14(5m2-2m+13)=0(m为常数)的两个实数根,∴△≥0,即△=(m+3)2-4×14(5m2-2m+13)≥0整理得:△= -4(m-1)2≥0,∵-4(m-1)2≤0,∴△=0,m=1,∴ PQ与PH是y2-4y+4=0的两个实数根,解得y1=y2=2∴ PQ=PH=2,∴-t+3=2,∴t="1,"∴此时Q是抛物线的顶点,延长MP至L,使LP=MP,连接LQ、LH,如图2,∵LP=MP,PQ=PH,∴四边形LQMH是平行四边形,∴LH∥QM,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴LH=MH,∴平行四边形LQMH是菱形,∴PM⊥QH,∴点M的纵坐标与P点纵坐标相同,都是2,∴在y=-x 2+2x+3令y=2,得x 2-2x -1=0,∴x 1,x 2=1综上:t 值为1,M 点坐标为,2)和(1,2).3.在平面直角坐标系中,O为原点,抛物线2(0)y ax x a =≠经过点3)A -,对称轴为直线l ,点O 关于直线l 的对称点为点B .过点A 作直线//AC x 轴,交y 轴于点C .(Ⅰ)求该抛物线的解析式及对称轴;(Ⅱ)点P 在y 轴上,当PA PB +的值最小时,求点P 的坐标;(Ⅲ)抛物线上是否存在点Q ,使得13AOC AOQ S S ∆∆=,若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(Ⅰ)抛物线的解析式为2122y x x =-;抛物线的对称轴为直线2x =;(Ⅱ)P 点坐标为9(0,)4-;(Ⅲ)存在,Q点坐标为或(-,理由见解析【解析】【分析】(Ⅰ)将3)A -点代入二次函数的解析式,即可求出a ,再根据对称轴的公式即可求解.(Ⅱ)先求出B 点胡坐标,要求PA PB +胡最小值,只需找到B 关于轴的对称点1B ,则直线A 1B 与y 轴的交点就是点P ,根据待定系数法求出AB 1的解析式,令y=0,即可求出P 点的坐标.(Ⅲ)设点Q 的坐标,并求出△AOQ 面积,从而得到△AOQ 面积,根据Q 点胡不同位置进行分类,用m 及割补法求出面积方程,即可求解.【详解】(Ⅰ)∵2(0)y ax x a =≠经过点3)A -,∴232a -=⨯-12a =, ∴抛物线的解析式为2122y x x =-,∵21222b x a =-=-=⨯∴抛物线的对称轴为直线2x =. (Ⅱ)∵点(0,0)O,对称轴为x =, ∴点O 关于对称轴的对称点B点坐标为.作点B 关于轴的对称点1B,得1(B -,设直线AB 1的解析式为y kx b =+,把点3)A -,点1(B -代入得30b b⎧-=+⎪⎨=-+⎪⎩,解得494k b ⎧=-⎪⎪⎨⎪=-⎪⎩,∴944y x =--. ∴直线94y x =-与y 轴的交点即为P 点. 令0x =得9y 4=-,∵P 点坐标为9(0,)4-.(Ⅲ)∵3)A -,//AC x 轴,∴AC =3OC =,∴11322AOC S OC AC ∆=⋅=⋅= 又∵13AOC AOQ S S ∆∆=,∴3AOQ AOC S S ∆∆==. 设Q点坐标为21(,)22m m m -, 如图情况一,作QR CA ⊥,交CA 延长线于点R ,∵AOQ AOC AQR OCRQ S S S S ∆∆∆=--=梯形,∴(2111133322222m m m m ⎛⎫⋅+-+-- ⎪ ⎪⎭⎝213222m m ⎛⎫-+= ⎪ ⎪⎝⎭,化简整理得2180m -=,解得1m =2m =-如图情况二,作QN AC ⊥,交AC 延长线于点N ,交x 轴于点M , ∵93AOQ AQN QMO OMNA S S S S ∆∆∆=--=梯形, ∴2211331133(3m)3()222222m m m m m ⎛⎫⎛⎫--+--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭393(3)22m m --+-=,化简整理得23180m m --=,解得133m =,223m =-,∴Q 点坐标为(33,0)或(23,15)-,∴抛物线上存在点Q ,使得13AOC AOQ S S ∆∆=.【点睛】主要考查了二次函数的性质,以及求两边和的最小值,面积等常见的题型,计算量较大,但难度不是很大.4.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.【答案】(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)(1,2)M -;(3)P 的坐标为(1,2)--或(1,4)-或317(+-或317()--. 【解析】分析:(1)先把点A ,C 的坐标分别代入抛物线解析式得到a 和b ,c 的关系式,再根据抛物线的对称轴方程可得a 和b 的关系,再联立得到方程组,解方程组,求出a ,b ,c 的值即可得到抛物线解析式;把B 、C 两点的坐标代入直线y=mx+n ,解方程组求出m 和n 的值即可得到直线解析式;(2)设直线BC 与对称轴x=-1的交点为M ,此时MA+MC 的值最小.把x=-1代入直线y=x+3得y 的值,即可求出点M 坐标;(3)设P (-1,t ),又因为B (-3,0),C (0,3),所以可得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t-3)2=t 2-6t+10,再分三种情况分别讨论求出符合题意t 值即可求出点P 的坐标.详解:(1)依题意得:1203b a a b c c ⎧-=-⎪⎪++=⎨⎪=⎪⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴抛物线的解析式为223y x x =--+.∵对称轴为1x =-,且抛物线经过()1,0A ,∴把()3,0B -、()0,3C 分别代入直线y mx n =+,得303m n n -+=⎧⎨=⎩,解之得:13m n =⎧⎨=⎩, ∴直线y mx n =+的解析式为3y x =+.(2)直线BC 与对称轴1x =-的交点为M ,则此时MA MC +的值最小,把1x =-代入直线3y x =+得2y =,∴()1,2M -.即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为()1,2-. (注:本题只求M 坐标没说要求证明为何此时MA MC +的值最小,所以答案未证明MA MC +的值最小的原因).(3)设()1,P t -,又()3,0B -,()0,3C ,∴218BC =,()2222134PB t t =-++=+,()()222213610PC t t t =-+-=-+, ①若点B 为直角顶点,则222BC PB PC +=,即:22184610t t t ++=-+解得:2t =-,②若点C 为直角顶点,则222BC PC PB +=,即:22186104t t t +-+=+解得:4t =,③若点P 为直角顶点,则222PB PC BC +=,即:22461018t t t ++-+=解得: 13172t +=,23172t -=. 综上所述P 的坐标为()1,2--或()1,4-或3171,⎛⎫+- ⎪ ⎪⎝⎭或3171,⎛⎫-- ⎪ ⎪⎝⎭. 点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.5.(10分)(2015•佛山)如图,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数y=﹣x 2+4x 刻画,斜坡可以用一次函数y=x 刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣ =; (4)过P 作OA 的平行线,交抛物线于点M ,连结OM 、AM ,则△MOA 的面积等于△POA 的面积.设直线PM 的解析式为y=x+b ,∵P 的坐标为(2,4),∴4=×2+b ,解得b=3,∴直线PM 的解析式为y=x+3. 由,解得,, ∴点M 的坐标为(,).考点:二次函数的综合题6.如图,抛物线2y ax bx c =++的图象过点(10)(30)(03)A B C ﹣,、,、,.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△PAC 的周长最小,若存在,请求出点P 的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAM PAC S S ∆∆=?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =++-;(2)存在,点(12)P ,;(3)存在,点M 坐标为(14), 【解析】【分析】(1)由于条件给出抛物线与x 轴的交点1030A B (﹣,)、(,),故可设交点式13y a x x +=()(﹣),把点C 代入即求得a 的值,减小计算量.(2)由于点A 、B 关于对称轴:直线1x =对称,故有PA PB =,则PAC C AC PC PA AC PC PB ∆++++==,所以当C 、P 、B 在同一直线上时,PAC C AC CB ∆+=最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把1x =代入即求得点P 纵坐标.(3)由PAM PAC S S ∆∆=可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A 、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标.【详解】解:(1)∵抛物线与x 轴交于点1030A B (﹣,)、(,)∴可设交点式13y a x x +=()(﹣) 把点03C (,)代入得:33a ﹣=1a ∴=﹣21323y x x x x ∴+++=-()(﹣)=﹣∴抛物线解析式为223y x x ++=-(2)在抛物线的对称轴上存在一点P ,使得PAC ∆的周长最小.如图1,连接PB 、BC∵点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称PA PB ∴=PAC C AC PC PA AC PC PB ∆∴++++==∵当C 、P 、B 在同一直线上时,PC PB CB +=最小103003A B C (﹣,)、(,)、(,)AC BC ∴===PAC C AC CB ∆∴+=设直线BC 解析式为3y kx +=把点B 代入得:330k +=,解得:1k =﹣∴直线BC :3y x +=﹣132P y ∴+=﹣=∴点12P (,)使PAC ∆的周长最小,最小值为1032+. (3)存在满足条件的点M ,使得PAM PAC S S ∆∆=.∵PAM PAC S S ∆∆=S △PAM =S △PAC∴当以PA 为底时,两三角形等高∴点C 和点M 到直线PA 距离相等∵M 在x 轴上方//CM PA ∴1012A P (﹣,),(,),设直线AP 解析式为y px d += 02p d p d -+=⎧∴⎨+=⎩ 解得:p 1d 1=⎧⎨=⎩∴直线1AP y x +:=∴直线CM 解析式为:3y x +=2323y x y x x =+⎧⎨=-++⎩解得:1103x y =⎧⎨=⎩(即点C ),2214x y =⎧⎨=⎩ ∴点M 坐标为14(,)【点睛】考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M 在x 轴上方,无需分类讨论,解法较常规而简单.7.如图,抛物线y =ax 2+bx+c 经过A (﹣3,0),B (1,0),C (0,3)三点. (1)求抛物线的函数表达式;(2)如图1,P 为抛物线上在第二象限内的一点,若△PAC 面积为3,求点P 的坐标; (3)如图2,D 为抛物线的顶点,在线段AD 上是否存在点M ,使得以M ,A ,O 为顶点的三角形与△ABC 相似?若存在,求点M 的坐标;若不存在,请说明理由.【答案】(1)y =﹣x 2﹣2x+3;(2)点P 的坐标为(﹣1,4)或(﹣2,3);(3)存在,(32-,32)或(34-,94),见解析. 【解析】【分析】 (1)利用待定系数法,然后将A 、B 、C 的坐标代入解析式即可求得二次函数的解析式; (2))过P 点作PQ 垂直x 轴,交AC 于Q ,把△APC 分成两个△APQ 与△CPQ ,把PQ 作为两个三角形的底,通过点A ,C 的横坐标表示出两个三角形的高即可求得三角形的面积.(3)通过三角形函数计算可得∠DAO=∠ACB ,使得以M ,A ,O 为顶点的三角形与△ABC 相似,则有两种情况,∠AOM=∠CAB=45°,即OM 为y=-x ,若∠AOM=∠CBA ,则OM 为y=-3x+3,然后由直线解析式可求OM 与AD 的交点M .【详解】(1)把A (﹣3,0),B (1,0),C (0,3)代入抛物线解析式y =ax 2+bx+c 得 93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得123a b c =-⎧⎪=-⎨⎪=⎩,所以抛物线的函数表达式为y =﹣x 2﹣2x+3.(2)如解(2)图1,过P 点作PQ 平行y 轴,交AC 于Q 点,∵A (﹣3,0),C (0,3),∴直线AC 解析式为y =x+3,设P 点坐标为(x ,﹣x 2﹣2x+3.),则Q 点坐标为(x ,x+3),∴PQ =﹣x 2﹣2x+3﹣(x+3)=﹣x 2﹣3x .∴S △PAC =1PQ A 2O ⋅, ∴()213332x x --⋅=, 解得:x 1=﹣1,x 2=﹣2.当x =﹣1时,P 点坐标为(﹣1,4),当x =﹣2时,P 点坐标为(﹣2,3),综上所述:若△PAC 面积为3,点P 的坐标为(﹣1,4)或(﹣2,3),(3)如解(3)图1,过D 点作DF 垂直x 轴于F 点,过A 点作AE 垂直BC 于E 点,∵D 为抛物线y =﹣x 2﹣2x+3的顶点,∴D 点坐标为(﹣1,4),又∵A (﹣3,0),∴直线AC 为y =2x+4,AF =2,DF =4,tan ∠PAB =2,∵B (1,0),C (0,3)∴tan ∠ABC =3,BC =10,sin ∠ABC=310,直线BC 解析式为y =﹣3x+3. ∵AC =4,∴AE =AC•sin ∠ABC =310410⨯=6105,BE =2105, ∴CE =310, ∴tan ∠ACB =2AE CE =, ∴tan ∠ACB =tan ∠PAB =2,∴∠ACB =∠PAB ,∴使得以M ,A ,O 为顶点的三角形与△ABC 相似,则有两种情况,如解(3)图2Ⅰ.当∠AOM =∠CAB =45°时,△ABC ∽△OMA ,即OM 为y =﹣x ,设OM 与AD 的交点M (x ,y )依题意得:3y x y x =-⎧⎨=+⎩, 解得3232x y ⎧=-⎪⎪⎨⎪=⎪⎩, 即M 点为(32-,32). Ⅱ.若∠AOM =∠CBA ,即OM ∥BC ,∵直线BC 解析式为y =﹣3x+3.∴直线OM 为y =﹣3x ,设直线OM 与AD 的交点M (x ,y ).则依题意得:33 y xy x=-⎧⎨=+⎩,解得3494 xy⎧=-⎪⎪⎨⎪=⎪⎩,即M点为(34-,94),综上所述:存在使得以M,A,O为顶点的三角形与△ABC相似的点M,其坐标为(32-,32)或(34-,94).【点睛】本题结合三角形的性质考查二次函数的综合应用,函数和几何图形的综合题目,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.8.如图,二次函数245y x x=-++图象的顶点为D,对称轴是直线l,一次函数215y x=+的图象与x轴交于点A,且与直线DA关于l的对称直线交于点B.(1)点D的坐标是 ______;(2)直线l与直线AB交于点C,N是线段DC上一点(不与点D、C重合),点N的纵坐标为n.过点N作直线与线段DA、DB分别交于点P,Q,使得DPQ∆与DAB∆相似.①当275n=时,求DP的长;②若对于每一个确定的n的值,有且只有一个DPQ∆与DAB∆相似,请直接写出n的取值范围 ______.【答案】(1)()2,9;(2)①95DP=②92155n<<.【解析】【分析】(1)直接用顶点坐标公式求即可;(2)由对称轴可知点C (2,95),A (-52,0),点A 关于对称轴对称的点(132,0),借助AD 的直线解析式求得B (5,3);①当n=275时,N (2,275),可求DA=2,DN=185,CD=365,当PQ ∥AB 时,△DPQ ∽△DAB ,;当PQ 与AB 不平行时,②当PQ ∥AB ,DB=DP 时,DN=245,所以N (2,215),则有且只有一个△DPQ 与△DAB 相似时,95<n <215. 【详解】(1)顶点为()2,9D ;故答案为()2,9;(2)对称轴2x =, 9(2,)5C ∴, 由已知可求5(,0)2A -, 点A 关于2x =对称点为13(,0)2, 则AD 关于2x =对称的直线为213y x =-+, (5,3)B ∴,①当275n =时,27(2,)5N ,2DA ∴=,182DN =,365CD = 当PQ AB ∥时,PDQDAB ∆∆, DAC DPN ∆∆,DP DN DA DC∴=,DP ∴=当PQ 与AB 不平行时,DPQ DBA ∆∆,DNQ DCA ∴∆∆,DP DN DB DC∴=,DP ∴=综上所述95DP =; ②当PQ AB ∥,DB DP =时,35DB =,DP DN DA DC ∴=, 245DN ∴=, 21(2,)5N ∴, ∴有且只有一个DPQ ∆与DAB ∆相似时,92155n <<; 故答案为92155n <<; 【点睛】 本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键.9.复习课中,教师给出关于x 的函数(k 是实数). 教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条: ①存在函数,其图像经过(1,0)点;②函数图像与坐标轴总有三个不同的交点;③当时,不是y 随x 的增大而增大就是y 随x 的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.【答案】①真,②假,③假,④真,理由和所用的数学方法见解析.【解析】试题分析:根据方程思想,特殊与一般思想,反证思想,分类思想对各结论进行判断. 试题解析:①真,②假,③假,④真.理由如下:①将(1,0)代入,得,解得.∴存在函数,其图像经过(1,0)点. ∴结论①为真.②举反例如,当时,函数的图象与坐标轴只有两个不同的交点.∴结论②为假.③∵当时,二次函数(k 是实数)的对称轴为,∴可举反例如,当时,二次函数为, 当时,y 随x 的增大而减小;当时,y 随x 的增大而增大. ∴结论③为假.④∵当时,二次函数的最值为,∴当时,有最小值,最小值为负;当时,有最大值,最大值为正.∴结论④为真.解决问题时所用的数学方法有方程思想,特殊与一般思想,反证思想,分类思想考点:1.曲线上点的坐标与方程的关系;2.二次函数的性质;3.方程思想、特殊元素法、反证思想和分类思想的应用.10.如图,已知二次函数y=ax 2+bx+3 的图象与x 轴分别交于A(1,0),B(3,0)两点,与y 轴交于点C(1)求此二次函数解析式;(2)点D 为抛物线的顶点,试判断△BCD 的形状,并说明理由;(3)将直线BC 向上平移t(t>0)个单位,平移后的直线与抛物线交于M ,N 两点(点M 在y 轴的右侧),当△AMN 为直角三角形时,求t 的值.【答案】(1)243y x x =-+;(2)△BCD 为直角三角形,理由见解析;(3)当△AMN 为直角三角形时,t 的值为1或4. 【解析】【分析】(1)根据点A 、B 的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,可求出点C 、D 的坐标,利用两点间的距离公式可求出CD 、BD 、BC 的长,由勾股定理的逆定理可证出△BCD 为直角三角形; (3)根据点B 、C 的坐标,利用待定系数法可求出直线BC 的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M 、N 的坐标,利用两点间的距离公式可求出AM 2、AN 2、MN 2的值,分别令三个角为直角,利用勾股定理可得出关于t 的无理方程,解之即可得出结论.【详解】(1)将()1,0A 、()3,0B 代入23y ax bx =++,得:309330a b a b ++=⎧⎨++=⎩,解得:14a b =⎧⎨=-⎩, ∴此二次函数解析式为243y x x =-+.(2)BCD ∆为直角三角形,理由如下:()224321y x x x =-+=--,∴顶点D 的坐标为()2,1-.当0x =时,2433y x x =-+=, ∴点C 的坐标为()0,3.点B 的坐标为()3,0,BC ∴==,BD ==,CD == 22220BC BD CD +==,90CBD ∴∠=︒,BCD ∴∆为直角三角形.(3)设直线BC 的解析式为()0y kx c k =+≠,将()3,0B ,()0,3C 代入y kx c =+,得:303k c c +=⎧⎨=⎩,解得:13k c =-⎧⎨=⎩, ∴直线BC 的解析式为3y x =-+,∴将直线BC 向上平移t 个单位得到的直线的解析式为3y x t =-++.联立新直线与抛物线的解析式成方程组,得:2343y x t y x x =-++⎧⎨=-+⎩,解得:1132322x t y ⎧+=⎪⎪⎨+-⎪=⎪⎩,2232322x t y ⎧=⎪⎪⎨+⎪=⎪⎩,∴点M 的坐标为,点N 的坐标为,32)2t ++. 点A 的坐标为()1,0,(22223321057122t AM t t t ⎛⎫⎛⎫+-∴=-+-=++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(22223321057122t AN t t t ⎛⎫⎛⎫-++=-+-=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,2223332321882222t t MN t ⎛⎛-+++=-+-=+ ⎝⎭⎝⎭.AMN ∆为直角三角形,∴分三种情况考虑:①当90MAN ∠=︒时,有222AM AN MN +=,即((22571571188t t t t t t t ++-+++++=+,整理,得:220t t +-=,解得:11t =,22t =-(不合题意,舍去);②当90AMN ∠=︒时,有222AM MN AN +=,即((22571188571t t t t t t t ++-++=++++,整理,得:2280t t --=,解得:14t =,22t =-(不合题意,舍去);③当90ANM ∠=︒时,有222AN MN AN +=,即((22571188571t t t t t t t +++++=++-+,10t ++=. 0t >,∴该方程无解(或解均为增解).综上所述:当AMN ∆为直角三角形时,t 的值为1或4.【点睛】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC 2+BD 2=CD 2;(3)分∠MAN =90°、∠AMN =90°及∠ANM =90°三种情况考虑.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学综合题专题【二次函数】专题解析1.(北京)已知二次函数 y =( t +1)x 2+2( t +2)x + 在 x =0 和 x =2 时的函数值相等. (1)求二次函数的解析式;(2)若一次函数 y =kx +6 的图象与二次函数的图象都经过点 A (-3,m ),求 m 和 k 的值;(3)设二次函数的图象与 x 轴交于点 B ,C (点 B 在点 C 的左侧),将二次函数的图象在点 B ,C 间的部分(含点 B 和点 C )向左平移 n (n >0)个单位后得到的图象记为 G ,同时将 (2)中得到的直线 y =kx +6 向上平移 n 个单位.请结合图象回答:平移后的直线与图象 G 有公共点时,n 的取值范围.解:(1)由题意得( t +1)·22+2( t +2)·2+ = 解得 t =-∴二次函数的解析式为 y =- x 2+x +(2)∵A (-3,m )在二次函数 y =- x 2+x + 的图象上 ∴m =- ×(-3)2+(-3)+ =-6 ∴点 A 的坐标为(-3,-6)∵点 A 在一次函数 y =kx +6 的图象上 ∴-6=-3k +6,∴k =4(3)由题意,可得点 B ,C 的坐标分别为(-1,0),(3,0) 平移后,点 B ,C 的对应点分别为 B ′(-1-n ,0),C ′(3-n ,0) 将直线 y =4x +6 平移后得到直线 y =4x +6+n图 1如图 1,当直线 y =4x +6+n 经过点 B ′(-1-n ,0)时,图象 G (点 B ′ 除外)在该直线右侧由 0=4(-1-n )+6+n ,得 n =如图 2,当直线 y =4x +6+n 经过点 C ′(3-n ,0)时, 图象 G (点 C ′ 除外)在该直线左侧由 0=4(3-n )+6+n ,得 n =6∴由图象可知,符合题意的 n 的取值范围是 ≤n ≤6 2.(北京模拟)已知抛物线 y =-x 2+( m -2)x +3( m +1). 图 2 (1)求证:无论 m 为任何实数,抛物线与 x 轴总有交点;(2)设抛物线与 y 轴交于点 C ,当抛物线与 x 轴有两个交点 A 、B (点 A 在点 B 的左侧)时, 如果∠CAB 或∠CBA 这两角中有一个角是钝角,求 m 的取值范围;(3)在(2)的条件下,P 是抛物线的顶点,当△PAO 的面积与△ABC 的面积相等时,求该抛物线的解析式. (1)证明:∵△=( m -2)2-4×(-1)×3( m +1)=( m +4)2≥0 ∴无论 m 为任何实数,抛物线与 x 轴总有交点 (2)解:由题意,m +1<0当 m =-4,图象与 x 轴只有一个交点∴m <-1 且 m ≠-4(3)解:令 y =-x 2+( m -2)x +3( m +1)解得 x 1=m +1,x 2=-3可求得顶点 P ( ,)①当 A (m +1,0)、B (-3,0)时 ∵S △PAO =S △ABC ,∴( m +1)× = (-m -4)×3( m +1) 解得 m =-16∴y =-x 2-18x -45②当 A (-3,0)、B (m +1,0)时同理得×3× = ( m +4)×[-3( m +1)] 解得 m =- ∴y =-x 2- x -3.(上海模拟)如图,在平面直角坐标系 xO y 中,二次函数 y =- x 2+bx +c 的图象经过点 A (-1,1)和点 B (2,2),该函数图象的对称轴与直线 OA 、OB 分别交于点 C 和点 D . (1)求这个二次函数的解析式和它的对称轴; (2)求证:∠ABO =∠CBO ;(3)如果点 P 在直线 AB 上,且△POB 与△BCD 相似,求点 P (1)解:由题意,得 解得∴二次函数的解析式为 y =- x 2+ x +2 对称轴为直线 x =1 (2)证明:易得直线 OA 的解析式为 y =-x ,从而 C 的坐标为(1,-∵由 A (-1,1),B (2,2),C (1,-1) 得 AB =BC =,OA =OC =∴∠ABO =∠CBO(3)解:由直线 OB 的表达式 y =x ,得点 D 的坐标为(1,1) 由 A (-1,1),B (2,2),得直线 AB 的解析式为 y = x + 从而直线 AB 与 x 轴的交点 E 的坐标为(-4,0) ∵△POB ∽△BCD 相似,∠ABO =∠CBO2yBPA 1 DH 1 F x C∴∠BOP =∠BDC 或∠BOP =∠BCD ①当∠BOP =∠BDC 时由∠BDC =135°,得∠BOP =135° 此时点 P 与点 E 重合∴点 P 的坐标为(-4,0) ②当∠BOP =∠BCD 时由△POB ∽△BCD ,得=而 BO =2,BD =,BC =,∴BP = 又∵BE =2,∴PE =作 PH ⊥x 轴,垂足为点 H ,BF ⊥x 轴,垂足为点 F 则 PH ∥BF ,∴= =.而 BF =2,EF =6,∴PH = ,EH = ,∴OH = ∴点 P 的坐标为(,)综上所述,点 P 的坐标为(-4,0)或(,)4.(安徽)如图,排球运动员站在点 O 处练习发球,将球从 O 点正上方 2m 的 A 处发出, 把球看成点,其运行的高度 y (m )与运行的水平距离 x (m )满足关系式 y =a ( x -6)2+h .已知球网与 O 点的水平距离为 9m ,高度为 2.43m ,球场的边界距 O 点的水平距离为 18m .(1)当 h =2.6 时,求 y 与 x 的关系式(不要求写出自变量 x 的取值范围); (2)当 h =2.6 时,球能否越过球网?球会不会出界?请说明理由; (3)若球一定能越过球网,又不出边界,求 h 的取值范围.解:(1)当h=2.6 时,y=a( x-6)2+2.6由其图象过点(0,2),得36a+2.6=2,解得a=-∴y=-( x-6)2+2.6(2)当h=2.6 时,由(1)知y=-( x-6)2+2.6由于当x=9 时,y=-(9-6)2+2.6=2.45>2.43,∴球能越过球网由-(x-6)2+2.6=0,x >0,得x=6+>18或由x=18 时,y=-( 18-6)2+2.6=0.2>0,∴球落地时会出界(3)根据题设知y=a( x-6)2+h由图象经过点(0,2),得36a+h=2 ① 由球能越过球网,得9a+h >2.43 ② 由球不出边界,得144a+h ≤0 ③解得h ≥ ,所以h 的取值范围是h ≥5.(安徽某校自主招生)已知二次函数y=x2-2mx+1.记当x=c 时,相应的函数值为y c,那么,是否存在实数m,使得对于满足0≤x≤1 的任意实数a、b,总有y a+y b ≥1.如果存在,求出实数m 的取值范围;如果不存在,请说明理由.解:设f(x )在0≤x≤1 的最小值为M,原问题等价于2M ≥1,即M ≥ 二次函数y=x2-2mx+1 的图象是一条开口向上的抛物线①当对称轴x=m≤0 时,由图象可知,x=0 时,y 最小=1,此时1≥ 成立②当对称轴x=m 在0<m<1 时,由图象可知x=m 时,y 最小且y 最小=1-m2此时有1-m2 ≥ ,即m2≤ ,故有0<m≤③当对称轴x=m 在m ≥1 时,由图象可知,x=1 时,y 最小且y 最小=2-2m此时有2-2m ≥ ,即m≤ ,与m ≥1 矛盾,故舍去综上可知,满足条件的m 存在,且m 的取值范围是m≤6.(浙江模拟)已知二次函数y=x2+ax+a-2.(1)证明:不论 a 取何值,抛物线y=x2+ax+a-2 的顶点P 总在x 轴的下方;(2)设抛物线y=x2+ax+a-2 与y 轴交于点C,如果过点C 且平行于x 轴的直线与该抛物线有两个不同的交点,并设另一个交点为点D,问:△QCD 能否是等边三角形?若能,请求出相应的二次函数解析式;若不能,请说明理由;(3)在第(2)的条件下,设抛物线与x 轴的交点之一为点A,则能使△ACD 的面积等于的抛物线有几条?请证明你的结论.解:(1)∵判别式△=a2-4( a-2)=( a-2)2+4>0∴抛物线与x 轴总有两个交点又∵抛物线开口向上,∴抛物线的顶点在x 轴下方(或由二次函数解析式得:y=( x+)2-a2+a-2∵抛物线顶点的纵坐标为-a2+a-2=-[ ( a-2)2+1]<0,当 a 取任何实数时总成立∴不论a 取何值,抛物线的顶点P 总在x 轴的下方)(2)由条件得:抛物线顶点Q(-,-a2+a-2),点C(0,a-2) 当a≠0 时,过点C 存在平行于x 轴的直线与抛物线相交于另一点D 此时CD=|-a|,点Q 到CD 的距离为|(a-2)-(-a2+a-2)=a2 过Q 作QP⊥CD 于P要使△QCD 为等边三角形,则需OP=CD,即a2=|-a|由a≠0,解得a=±2(或由CD=CQ,或由CP=CO 等求得a 的值)∴△QCD 可以是等边三角形此时相应的二次函数解析式为y=x2+2x+2-2 或y=x2-2x-2-2(3)∵CD=|-a|,点A 到CD 的距离为=|a-2| 由S△ACD=|a(a-2)|=,解得a=1±或a=1±∴满足条件的抛物线有四条7.(江苏镇江)对于二次函数y=x2-3x+2 和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)( -2x+4)称为这两个函数的“再生二次函数”,其中t 是不为零的实数,其图象记作抛物线E.现有点A(2,0)和抛物线 E 上的点B(-1,n),请完成下列任务:【尝试】(1)当t=2 时,抛物线y=t( x2-3x+2)+( 1-t)( -2x+4)的顶点坐标为;(2)判断点A 是否在抛物线E 上;(3)求n 的值;【发现】通过(2)和(3)的演算可知,对于t 取任何不为零的实数,抛物线E 总过定点,坐标为.【应用1】二次函数y=-3x2+5x+2 是二次函数y=x2-3x+2 和一次函数y=-2x+4 的一个“再生二次函数”吗?如果是,求出t 的值;如果不是,说明理由;【应用2 】以AB 为边作矩形ABCD ,使得其中一个顶点落在y 轴上,若抛物线E 经过A、B、C、D 其中的三点,求出所有符合条件的t 的值.解:[尝试](1)(1,-2)(2)将x=2 代入y=t(x2-3x+2)+(1-t)( -2x+4),得y=0,所以点A(2,0)在抛物线E 上(3)将x=-1 代入n=t( x2-3x+2)+( 1-t)( -2x+4)=6[发现]A(2,0),B(-1,6)[应用1]∵x=-1 代入y=-3x2+5x+2,计算得y=-6≠6∴抛物线y=-3x2+5x+2 不经过点B∴二次函数y=-3x2+5x+2 不是二次函数y=x2-3x+2 和一次函数y=-2x+4 的一个“再生二次函数”[应用2]]如图,作矩形ABC1D1 和ABC2D2,过点B 作BK⊥y 轴于点K,过点B 作RM⊥x轴于点M易得AM=3,BM=6,BK=1,△KBC1∽△MBA易知△KBC1≌△GAD1,得AG=1,D1G=,∴点D1(3,)易知△OAD2∽△GAD1,得=由AG=1,OA=2,D1G=,求得OD2=1,∴点D2(0,-1)易知△TBC2≌△OD2A,得TC2=AO=2,BT=OD2=1,∴点C2(-3,5)∵抛物线E 总过定点A(2,0),B(-1,6)∴符合条件的三点只可能是A、B、C 或A、B、DM D O 1 A G x2当抛物线 E 经过 A 、B 、C 1 时,将 C 1(0,)代入 y =t ( x 2-3x +2)+( 1-t )( -2x +4),求得 t 1 =-当抛物线 E 经过 A 、B 、D 1,A 、B 、C 2,A 、B 、D 2 时,可分别求得 t 2= ,t 3=- ,t 4= ∴满足条件的所有 t 的值为:- ,,- ,8.(江苏模拟)如图,建立平面直角坐标系 xO y ,x 轴在地平面上,y 轴垂直于地平面,单位长度为 1 千米.某炮位于坐标原点,把发射后的炮弹看成点,其飞行的高度 y (千米)与飞行的水平距离 x (千米)满足关系式 y =kx - (1+k 2)x 2(k >0),其中 k 与发射方向有关炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为 3.2 千米,试问它的横坐标 a 不超过多少时,炮弹可以击中它?请说明理由. 解:(1)令 y =0,得 kx - (1+k 2)x 2=0由实际意义和题设条件知 x >0,k >0∴x = = ≤ =10,当且仅当 k =1 时取等号 ∴炮的最大射程为 10 千米(2)∵a >0,炮弹可以击中目标∴存在 k >0,使 ka - (1+k 2)a 2=3.2 成立∴关于 k 的二次方程 a 2k 2-20ak +a 2+64=0 有正根 ∴△=(-20a )2-4a 2( a 2+64)≥0,解得 a ≤6∴当它的横坐标 a 不超过 6 千米时,炮弹可以击中它9.(江苏模拟)已知一次函数 y 1=kx +m 与二次函数 y 2=2ax 2+2bx +c (b 为整数)的图象交于 A (2-2,3-2)、B (2+2,3+2)两点,二次函数 y 2=2ax 2+2bx +c 和二次函数 y 3= ax 2+bx +c -1 的最小值的差为 l . (1)求 y 1、y 2、y 3 的解析式;(2)若 y 1 与 y 3 的图象交于 C 、D 两点,求 CD 的长;(3)P 是 y 轴上一点,过点 P 任意作一射线分别交 y 2、y 3 的图象于 M 、N ,过点 M 作直线 y =-1 的垂线,垂足为 G ,过点 N 作直线 y =-3 的垂线,垂足为 H .是否存在这样的点 P , 使 PM =MG 、PN =NH 恒成立,若存在,求出 P 点的坐标,并探究是否为定值;若不存在, 请说明理由.解:(1)将 A (2-2,3-2)、B (2+2,3+2)代入 y 1=kx +m ,得解得: ∴y 1=x +1将 A 、B 两点的坐标代入 y 2=2ax 2+2bx +c ,整理得:8a +2b =1易得 y 2=2ax 2+2bx +c 的最小值为 c - ,y 3=ax 2+bx +c -1 的最小值为 c -1- 由题意,|c - -( c -1- )|=1,即|1- |=1 又 8a +2b =1,得|1- |=1 ∴1- =1,解得 b =0或 1- =-1,整理得 b 2+2b -1=0,此方程无整数解 ∴b =0,代入 8a +2b =1,得 a = ∴y 2= x 2+c 令 x +1= x 2+c ,得 x 2-4x +4c -4=0 ∴x 1+x 2=4,x 1x 2=4c -4 ∵( x 1-x 2 )2=( x 1+x 2 )2-4x 1x 2 =[2+2-( 2-2)]2=32 ∴42-4( 4c -4 )=32,∴c =0 ∴y 2= x 2,y 3= x 2-1 (2)令 x +1= x 2-1,得 x 2-8x -16=0 ∴x 3+x 4=8,x 3x 4=-16 ∴( x 3-x 4 )2=( x 3+x 4 )2-4x 3x 4 =82-4×(-16)=128∴| x 3-x 4|=8 ∴| C D |=×8 =16(3)设 P (0,t ),M (x ,y )则 PM 2=x 2+( t -y )2=x 2+t 2-2t y +y 2 MG 2=( y +1)2=y 2+2y +1 ∵y = x 2,∴x 2=4y∴PM 2=4y +t 2-2t y +y 2=y 2+2y +1∴2y -2t y +t 2-1=0,即 2y (1-t )+( t 2-1)=0 要使 2y (恒成立则 1-t =0 且 t 2-1=0,∴t =1∴当点 P 的坐标为(0,1)时,PM =MG 恒成立此时 y 2NH 2=( y +3)2=y 2+6y +9 ∵y = x 2-1,∴x 2=8y +8∴PN 2=8y +8+1-2y +y 2=y 2+6y +9 ∴PN 2=NH 2,即 PN =NH故存在点 P (0,1),使 PM =MG 、PN =NH 恒成立设直线 y =-1、y =-3 分别与 y 轴交于 E 、F ,连接 PG 、PH ∵MG 、NH 分别是直线 y =-1、y =-3 的垂线 ∴MG ∥NH ,∴∠PMG =∠PNH∵PM =MG ,PN =NH ,∴∠MPG =∠MGP ,∠NPH =∠NHP ∴∠MPG =∠NPH ,∴P 、G 、H 三点在同一直线上 ∴= = ,又 PE =1+1=2,PF =1+3=4 ∴= = ,即为定值y = x 22y = x 2 - 13P MNO xy =- 1 Ey =- 3F H10.(四川某校自主招生)一开口向上抛物线与 x 轴交于 A (m -2,0)、B (m +2,0)两点,顶点为 C ,且 AC ⊥BC .(1)若 m 为常数,求抛物线的解析式;(2)点 Q 在直线 y =kx +1 上移动,O 为原点,当 m =4 时,直线 y =kx +1 上只存在一个点 Q 使得∠OQB =90°,求此时直线 y =kx +1 的解析式.解:(1)设抛物线的解析式为 y =a ( x -m +2)( x -m -2)=a ( x -m )2-4a∵AC ⊥BC ,由抛物线对称性知△ABC 是等腰直角三角形,又抛物线开口向上,AB =( m +2) -( m -2)=4∴C (m ,-2),∴-4a =-2,∴a = ∴抛物线的解析式为 y = ( x -m )2-2(2)当 m =4 时,B (6, 0), 设直线 y = k x +1 与 x 轴交于 H (t ,0),与 y 轴交于 E (0,1)并设 OB 中点为 G ,以 OB 为直径作⊙G当直线与⊙G 切于点 Q 时,只存在一个点 Q 使得∠OQB =90° 设 HO =t ,∵HQ 是⊙G 的切线,∴∠GQH =90°=∠EOH7GB xGy2 又∠QHG =∠OHE ,∴△QHG ∽△OHE ∴=而 QG =3,OE =1,∴QH =3OH =-3t 在 Rt △中,QH 2+QG 2=HG 2∴(-3t )2+3 2=(3-t )2,解得 t =0(舍去)或 t =-∴H (- ,0),把 H (- ,0)代入 y =kx +1,得- k +1=0,∴k = ∴所求直线为 y = x +111.(湖南娄底)已知二次函数 y =x 2-(m 2-2)x -2m 的图象与 x 轴交于点 A (x 1,0)和点B (x 2,0),x 1<x 2,与 y 轴交于点 C ,且满足+ = . (1)求这个二次函数的解析式; (2)探究:在直线 y =x +3 上是否存在一点 P ,使四边形 PACB 为平行四边形?如果有,求出点 P 的坐标; 如果没有,请说明理由.解:(1)由已知得:x 1+x 2=m 2-2,x 1x 2=-2m ∵ + = ,即 = ,∴ = 解得 m =1,或 m =-2 当 m =1 时,y =x 2+x -2,得 A (-2,0),B (1,0) 当 m =-2 时,y =x 2-2x +4,与 x 轴无交点,舍去 ∴这个二次函数的解析式为 y =x 2+x -2(2)由(1)得 A (-2,0),B (1,0),C (0,-2)假设存在一点 P ,使四边形 PACB 是平行四边形,则 PB ∥根据平移知识可得 P (-1,2)经验证 P (-1,2)在直线 y =x +3 上故在直线 y =x +3 上存在一点 P (-1,2),使四边形 12.(湖北荆州、荆门)已知:y 关于 x 的函数 y =(k -1)x 2(1)求 k 的取值范围;(2)若 x 1,x 2 是函数图象与 x 轴两个交点的横坐标,且满足(k -1)x 12+2kx 2+k +2=4x 1x 2.①求 k 的值;②当 k ≤x ≤k +2 时,请结合函数图象确定 y 的最大值与最小值.解:(1)当 k =1 时,函数为一次函数 y =-2x +3,其图象与 x 轴有一个交点当 k ≠1 时,函数为二次函数,其图象与 x 轴有一个或两个交点 令 y =0,得(k -1)x 2-2kx +k +2=0△=(-2k )2-4(k -1)( k +2)≥0,解得 k ≤2,即 k ≤2 且 k ≠1 综上所述:k 的取值范围为 k ≤2(2)①∵x 1≠x 2,由(1)知 k <2 且 k ≠1 由题意得(k -1)x 12+( k +2)=2kx 1 (*)将(*)代入(k -1)x 1 +2kx 2+( k +2)=4x 1x 2 中得: 2k ( x 1+x 2)=4x 1x 2O8y63 - 3 0 3 6 x- 3- 6 1 xx =-- 3又∵x 1+x 2= ,x 1x 2=∴2k · =4· ,解得:k 1=-1,k 2=2(不合题意,舍去) ∴所求 k 值为-1②∵k =-1,∴y =-2x 2+2x +1=-2( x - )2+ 且-1≤x ≤1由图象知:当 x =-1 时,y 最小=-3;当 x = 时,y 最大=∴y 的最大值为 3 ,最小值为-3213.(湖北随州)在-次数学活动课上,老师出了-道题: (1)解方程 x 2-2x -3=0.巡视后,老师发现同学们解此题的方法有公式法、配方法和十字相乘法(分解因式法).接着,老师请大家用自己熟悉的方法解第二道题:(2)解关于 x 的方程 mx 2+(m -3)x -3=0(m 为常数,且 m ≠0).老师继续巡视,及时观察、点拨大家.再接着,老师将第二道题变式为第三道题: (3)已知关于 x 的函数 y =mx 2+(m -3)x -3(m 为常数).①求证:不论 m 为何值,此函数的图象恒过 x 轴、y 轴上的两个定点(设 x 轴上的定点为 A ,y 轴上的定点为 C );②若 m ≠0 时,设此函数的图象与 x 轴的另一个交点为 B ,当△ABC 为锐角三角形时, 求 m 的取值范围;当△ABC 为钝角三角形时,观察图象,直接写出 m 的取值范围.请你也用自己熟悉的方法解上述三道题.. 解:(1)由 x 2-2x -3=0,得( x +1)( x -3)=0,∴x 1=-1,x 2=3(2)方法一:由 mx 2+(m -3)x -3=0 得( x +1)( mx -3)=0∵m ≠0,∴x 1=-1,x 2= 方法 2:由公式法:x 1,2= = = ∴x 1=-1,x 2=y (3)① 1° 当 m =0 时,函数 y =mx 2+(m -3)x -3 为 y =-3x -3 3 令 y =0,得 x =-1,令 x =0,得 y =-3AB∴直线 y =-3x -3 过定点 A (-1,0),C (0,-3) 2° 当 m ≠0 时,函数 y =mx 2+(m -3)x -3 为 y =( x +1)( mx -3) ∴抛物线 y =( x +1)( mx -3)恒过两定点 A (-1,0),C (0,-3)和 B (,0)-1 0 3 6x-3Cy②当m>0 时,由①可知抛物线开口向上,且过点A(-1,0),C(0,-3)和B(3,-06)观察图象可知,当△ABC 为直角三角形时,有△AOC∽△COB∴=,∴|OC|2=|OA|·|OB|9B A B-1 0 3 6 9x-3C-6∴32=1×|OB|,∴OB=9,即B(9,0)∴当0<<9,即m>时,△ABC 为锐角三角形观察图象可知,当0<m<时,B 点在(9,0)的右侧,∠ACB>90º当m<0 且m≠-3 时,点 B 在x 轴的负半轴上,B 与A 不重合∴△ABC 中∠ABC>90º 或∠BAC>90º,∴△ABC 为钝角三角形∴当0<m<或m<0 且m≠-3 时,△ABC 为钝角三角形14 .(广东肇庆)已知二次函数y =mx 2 +nx +p 图象的顶点横坐标是 2 ,与x 轴交于A (x1 ,0 )、B (x2 ,0 ),x1 <0 <x2 ,与y 轴交于点C ,O 为坐标原点,tan∠CAO -tan∠CBO=1.(1)求证:n+4m=0;(2)求m、n 的值;(3)当p>0 且二次函数图象与直线y=x+3 仅有一个交点时,求二次函数的最大值.解:(1)将2 代入顶点横坐标得:-=2,∴n+4m=0(2)∵已知二次函数图象与x 轴交于A(x1,0)、B(x2,0),且由(1)知n=-4m∴x1+x2=-=-=4,x1x2=∵x1<0<x2,∴在Rt△ACO 中,tan∠CAO==在Rt△CBO 中,tan∠CBO==∵tan∠CAO-tan∠CBO=1,∴-=1∵x1<0<x2,∴OC=| p|≠0∴+=-=-,即=-∴=-,∴p=-4m|p|①当p>0 时,m=-,此时n=1②当p<0 时,m=,此时n=-1(3)当p>0 时,二次函数的表达式为:y=-x2+x+p∵二次函数图象与直线y=x+3 仅有一个交点,∴方程组仅有一个解∴一元二次方程x+3=-x2+x+p 即-x2+p-3=0 有两个相等根∴△=02-4×(-)×( p-3)=0,解得:p=3此时二次函数的表达式为:y=-x2+x+3=-( x-2)2+4∵a=-<0,∴y 有最大值415.(福建模拟)在平面直角坐标系中,已知函数y1=2x 和函数y2=-x+6,不论x 取何值,y0 都取y1 与y2 二者之中的较小值.(1)求y0 关于x 的函数关系式;(2)现有二次函数y=x2-8x+c,若函数y0 和y 都随着x 的增大而减小,求自变量x 的取值范围;(3)在(2)的结论下,若函数y0 和y 的图象有且只有一个公共点,求c 的取值范围.解:(1)y0=(说明:两个自变量取值范围都含有等号或其中一个含等号均不扣分,都没等号扣1 分)(2)∵对于函数y0,y0 随x 的增大而减小,∴y0=-x+6(x≥2)又∵函数y=x2-8x+c 的对称轴为直线x=4,且a=1>0∴当x<4 时,y 随x 的增大而减小∴2<x<4(3)①若函数y=x2-8x+c 与y0=-x+6 只有一个交点,且交点在2<x<4 范围内则x2-8x+c=-x+6,即x2-7x+( c-6)=0∴△=(-7)2-4( c-6)=73-4c=0,得c=此时x1=x2=,符合2<x<4∴c=②若函数y=x2-8x+c 与y0=-x+6 有两个交点,其中一个在2<x<4 范围内,另一个在2 <x<4 范围外则△=73-4c>0,得c<方法一:∵对于函数y0,当x=2 时,y0=4;当x=4 时y0=2又∵当2<x<4 时,y 随x 的增大而减小若y=x2-8x+c 与y0=-x+6 在2<x<4 内有一个交点则当x=2 时y>y0;当x=4 时y<y0即当x=2 时y≥4;当x=4 时y≤2也即解得16<c<18又c<,∴16<c<18综上所述,c 的取值范围是:c=或16<c<18方法二:由函数y=x2-8x+c 与y0=-x+6 的一个交点在2<x<4 范围内,另一个交点在2 <x<4 范围外可得:或解第一个不等式组,可得即无解解第二个不等式组,可得即16<c<18又c<,∴16<c<1816.(甘肃兰州)若x1、x2 是关于x 的一元二次方程y=ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2 和系数a、b、c 有如下关系:x1+x2=-,x1·x2=.把它们称为一元二次方程根与系数关系定理.如果设二次函数y =ax 2 +bx +c (a≠0 )的图象与x 轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B 两个交点间的距离为:AB=| x1-x2|====.参考以上定理和结论,解答下列问题:设二次函数y =ax 2 +bx +c (a >0 )的图象与x 轴的两个交点A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC 为等腰三角形.(1)当△ABC 为等腰直角三角形时,求b2-4ac 的值;(2)当△ABC 为等边三角形时,求b2-4ac 的值;(3)当a=c=1,且∠ACB=90°时,试问如何平移此抛物线,才能使∠ACB=60°?解:(1)当△ABC 为等腰直角三角形时,过 C 作CD⊥AB 于D,则AB=2CD∵抛物线与x 轴有两个交点,△=b 2-4ac >0,则|b 2-4ac |=b 2-4ac∵a>0,∴AB==又∵CD==,∴ =2×∴=,∴b2-4ac=∵b2-4ac>0,∴b2-4ac=4(2)当△ABC 为等边三角形时由(1)可知CD=AB,∴ =×∵b2-4ac>0,∴b2-4ac=12(3)∵∠ACB=90°,∴b2-4ac=4∵a=c=1,∴b2-4=4,∴b=±2∵向左或向右平移时∠ACB 的度数不变yDA B x∴只需将抛物线y=x2±2x+1 向上或向下平移使∠ACB=60°,然后向左或向右平移C任意个单位即可设向上或向下平移后的抛物线解析式为y=x2±2x+1+m∵平移后ACB=60°,∴b2-4ac=12即( ±2)2-4( 1+m )=12,∴m=-2∴抛物线y=x2+bx+1 向下平移2 个单位后,向左或向右平移任意个单位都能使∠ACB 的度数由90°变为60°。

相关文档
最新文档