高一数学必修4综合试卷(1)
(完整版)高一数学必修4测试题及答案详解
BCCAB BDBDD BD(-2,-1) -6 -3 [-1,3] 根号2118解:(1)336tan )64tan()623tan(==+-=-ππππ……(4分)(2)原式=︒︒+︒︒=︒+︒30sin 45cos 30cos 45sin )3045sin(=42621222322+=⨯+⨯ ……(8分)19解:由已知有:3·2)cos(1B A +-+2)cos(1B A -+=2 ……(3分)∴-3cos(A +B)+cos(A -B)=0,∴-3(cosAcosB -sinAsinB)+(cosAcosB +sinAsinB)=0, ………(6分)∴cosAcosB =2sinAsinB, ∴tan AtanB=21…………(8分) 20解:设),(y x =,由题意得:⎩⎨⎧=--=-⋅⇒⎪⎩⎪⎨⎧==⋅)1,3()2,1(),(0)2.1(),(0λλy x y x ……(3分))7,14(7142312=⇒⎩⎨⎧==⇒⎪⎩⎪⎨⎧=-=+=⇒y x y x yx λλ……(6分))6,11(=-=……(8分)21解:(Ⅰ))cos 23sin 21(2x x y +==)3sin cos 3cos (sin 2ππx x +=)3sin(2π+x……(2分)函数)(x f 的周期为T =π2,振幅为2。
……(.4分)(Ⅱ)列表:……(6分) 图象如上(作图不规范者扣1分)。
……(8分) (Ⅲ)由)(232322Z k k x k ∈+≤+≤+πππππ解得: )(67262Z k k x k ∈+≤≤+ππππ所以函数的递减区间为)(],672,62[Z k k k ∈++ππππ……(10分)22解:(Ⅰ)因为A (1,1),B (2,1)所以=(1,1),=(2,1)……(2分) cos ∠AOB 1010310121411)1,2()1,1(||||=+=+⋅+⋅=⋅OB OA . ……(4分)(Ⅱ)因为C (3,1),D (3,0),所以tan ∠BOD =21,tan ∠COD =31……(6分) 所以 tan(∠BOD +∠COD)=CODBOD COD BOD ∠∠-∠+∠tan tan 1tan tan 1312113121=⋅-+= ……(8分) 又因为∠BOD 和∠COD 均为锐角,故∠BOD +∠COD =45° ……(10分) 考查向量数量积的几何意义,向量夹角求法,两角和的正切,。
【2019-2020高一数学试题】人教A版必修4《正弦函数、余弦函数的性质(1)》试题 答案解析
正弦函数、余弦函数的性质(1)——基础巩固类——一、选择题1.下列函数中,最小正周期为π的是( ) A .y =sin x B .y =cos x C .y =sin x2D .y =cos2x2.函数f (x )=x +sin x ,x ∈R ( )A .是奇函数,但不是偶函数B .是偶函数,但不是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数3.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝ ⎛⎭⎪⎫π4=1,则f ⎝ ⎛⎭⎪⎫3π4的值为( )A .1B .-1C .0D .24.函数y =sin ⎝ ⎛⎭⎪⎫2x +π3图象的对称轴方程可能是( ) A .x =-π6 B .x =-π12 C .x =π6 D .x =π12 5.下列四个函数中,是以π为周期的偶函数的是( )A .y =|sin x |B .y =|sin2x |C .y =|cos2x |D .y =cos3x6.如果函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的相邻两个零点之间的距离为π6,则ω的值为( )A .3B .6C .12D .24二、填空题7.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的周期为π4,则ω= .8.已知函数f (x )=ax +b sin x +1,若f (2 015)=7,则f (-2 015)= . 9.已知函数f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)= .三、解答题10.判断函数f (x )=lg(sin x +1+sin 2x )的奇偶性.11.已知函数y =12sin x +12|sin x |. (1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期.——能力提升类——12.已知函数y =2sin ⎝⎛⎭⎪⎫x +π4+φ是奇函数,则φ的值可以是( )A .0B .-π4 C.π2 D .π13.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( )14.设函数f (x )=3sin ⎝ ⎛⎭⎪⎫ωx +π6,ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若f ⎝ ⎛⎭⎪⎫α4+π12=95,则sin α的值为 .15.已知函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2,求关于x 的方程g (x )=32的解集.正弦函数、余弦函数的性质(1)(答案解析)——基础巩固类——一、选择题1.下列函数中,最小正周期为π的是( D ) A .y =sin x B .y =cos x C .y =sin x2D .y =cos2x解析:A 项,y =sin x 的最小正周期为2π,故A 项不符合题意;B 项,y =cos x 的最小正周期为2π,故B 项不符合题意;C 项,y =sin x2的最小正周期为T =2πω=4π,故C 项不符合题意;D 项,y =cos2x 的最小正周期为T =2πω=π,故D 项符合题意.故选D.2.函数f (x )=x +sin x ,x ∈R ( A ) A .是奇函数,但不是偶函数 B .是偶函数,但不是奇函数 C .既是奇函数又是偶函数 D .既不是奇函数又不是偶函数解析:函数f (x )=x +sin x 的定义域为R ,f (-x )=-x +sin(-x )=-x -sin x =-f (x ),则f (x )为奇函数.故选A.3.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝ ⎛⎭⎪⎫π4=1,则f ⎝ ⎛⎭⎪⎫3π4的值为( B )A .1B .-1C .0D .2解析:∵T =π,且为奇函数.∴f ⎝ ⎛⎭⎪⎫34π=f ⎝ ⎛⎭⎪⎫34π-π=f ⎝ ⎛⎭⎪⎫-π4=-f ⎝ ⎛⎭⎪⎫π4=-1. 4.函数y =sin ⎝⎛⎭⎪⎫2x +π3图象的对称轴方程可能是( D )A .x =-π6 B .x =-π12 C .x =π6D .x =π12解析:令2x +π3=k π+π2(k ∈Z ),得x =k π2+π12(k ∈Z ).故选D. 5.下列四个函数中,是以π为周期的偶函数的是( A ) A .y =|sin x | B .y =|sin2x | C .y =|cos2x |D .y =cos3x解析:A 中的函数周期为π.B 中的函数周期为π2.C 中的函数周期为π2.D 中的函数周期为23π.故选A.6.如果函数f (x )=cos ⎝⎛⎭⎪⎫ωx +π4(ω>0)的相邻两个零点之间的距离为π6,则ω的值为( B )A .3B .6C .12D .24解析:函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的相邻两个零点之间的距离为π6,∴T =2×π6=π3,又2πω=π3,∴ω=6.选B.二、填空题7.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的周期为π4,则ω=8. 解析:π4=2πω,∴ω=8.8.已知函数f (x )=ax +b sin x +1,若f (2 015)=7,则f (-2 015)=-5. 解析:由f (2 015)=2 015a +b sin2 015+1=7, 得2 015a +b sin2 015=6,∴f (-2 015)=-2 015a -b sin2 015+1=-(2 015a +b sin2 015)+1=-6+1=-5.9.已知函数f (x )是以2为周期的函数,且当x ∈[1,3)时,f (x )=x -2,则f (-1)=-1.解析:因为T =2,则f (x )=f (x +2).又f (-1)=f (-1+2)=f (1),且x ∈[1,3)时,f (x )=x -2,所以f (-1)=f (1)=1-2=-1.三、解答题10.判断函数f (x )=lg(sin x +1+sin 2x )的奇偶性. 解:由题意知函数定义域为R .f (-x )=lg(-sin x +1+sin 2x )=lg 1sin x +1+sin 2x=-lg(sin x +1+sin 2x )=-f (x ),∴函数f (x )=lg(sin x +1+sin 2x )为奇函数. 11.已知函数y =12sin x +12|sin x |. (1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 解:(1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π)(k ∈Z ).函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的最小正周期是2π.——能力提升类——12.已知函数y =2sin ⎝ ⎛⎭⎪⎫x +π4+φ是奇函数,则φ的值可以是( B ) A .0 B .-π4 C.π2D .π解析:y =2sin ⎝⎛⎭⎪⎫x +π4+φ为奇函数,则只需π4+φ=k π,k ∈Z ,从而φ=k π-π4,k ∈Z .显然当k =0时,φ=-π4满足题意.13.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( B )解析:A 项,由f (-x )=f (x )知函数f (x )为偶函数,故A 错.B 项,由函数f (x )为偶函数,周期为2,故B 正确.C 项,由函数f (x )为偶函数,故C 错.D 项,由函数f (x )周期为2.故D 错.14.设函数f (x )=3sin ⎝⎛⎭⎪⎫ωx +π6,ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若f ⎝ ⎛⎭⎪⎫α4+π12=95,则sin α的值为±45. 解析:由题意得2πω=π2, ∴ω=4,∴f (x )=3sin ⎝ ⎛⎭⎪⎫4x +π6∴f ⎝ ⎛⎭⎪⎫α4+π12=3sin ⎝ ⎛⎭⎪⎫α+π2=3cos α=95. ∴cos α=35,∴sin α=±1-⎝ ⎛⎭⎪⎫352=±45. 15.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2,求关于x 的方程g (x )=32的解集.解:当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2=cos ⎝⎛⎭⎪⎫x +π3.因为x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以由g (x )=32 解得x +π3=-π6或π6, 即x =-π2或-π6.又因为g (x )的最小正周期为π.所以g (x )=32的解集为 ⎩⎨⎧⎭⎬⎫x|x =k π-π2或x =k π-π6,k ∈Z .。
2014《成才之路》高一数学(人教A版)必修4:本册综合能力测试学生用
高中数学必修4综合测试题一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2013·泰安期末)tan 83π的值为( )A.33 B .-33C.3 D .- 3 2.(2013·辽宁理)已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为( ) A .(35,-45) B .(45,-35) C .(-35,45) D .(-45,35)3.(2013·诸城月考)集合{x |k π+π4≤α≤k π+π2,k ∈Z }中的角所表示的范围(阴影部分)是( )4.已知扇形的周长为8 cm ,圆心角为2弧度,则该扇形的面积为( )A .4 cm 2B .6 cm 2C .8 cm 2D .16 cm 25.已知α是锐角,a =(34,sin α),b =(cos α,13),且a ∥b ,则α为( )A .15°B .45°C .75°D .15°或75° 6.若sin α=1213,α∈⎝⎛⎭⎫π2,π,则tan2α的值为( ) A.60119 B.120119 C .-60119 D .-1201197.(2013烟台模拟)已知cos α=35,cos(α+β)=-513,α,β都是锐角,则cos β=( )A .-6365B .-3365 C.3365 D.63658.函数y =sin x (π6≤x ≤2π3)的值域是( )A .[-1,1]B .[12,1]C .[12,32]D .[32,1]9.要得到函数y =3sin(2x +π4)的图象,只需将函数y =3sin2x 的图象( )A .向左平移π4个单位B .向右平移π4个单位C .向左平移π8个单位D .向右平移π8个单位10.已知a =(1,-1),b =(x +1,x ),且a 与b 的夹角为45°,则x 的值为( ) A .0 B .-1 C .0或-1 D .-1或1 11.(2012·全国高考江西卷)若sin α+cos αsin α-cos α=12,则tan2α=( )A .-34 B.34 C .-43 D.4312.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =32,则有( ) A .c <a <b B .b <c <a C .a <b <c D .b <a <c二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.若tan α=3,则sin αcos α的值等于________.14.已知:|a |=2,|b |=2,a 与b 的夹角为π4,要λb -a 与a 垂直,则λ为________.15.(2013南通调研)设α、 β∈(0,π),且sin(α+β)=513,tan α2=12,则cos β的值为________. 16.已知△ABC 中,AC =4,AB =2,若G 为△ABC 的重心,则AG →·BC →=__ . . 三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间[-π6,π2]上的最大值和最小值.18.(本题满分12分)已知向量a =3e 1-2e 2,b =4e 1+e 2,其中e 1=(1,0),e 2=(0,1),求:(1)a ·b ;|a +b |;(2)a 与b 的夹角的余弦值.19.(本题满分12分)(2011~2012浙江调研)设向量α=(3sin 2x ,sin x +cos x ),β=(1,sin x -cos x ),其中x ∈R ,函数f (x )=α·β.(1)求f (x )的最小正周期; (2)若f (θ)=3,其中0<θ<π2,求cos(θ+π6)的值.20.(本题满分12分)(2012济宁模拟)已知向量a =(cos θ,sin θ),θ∈[0,π],向量b =(3,-1).(1)若a ⊥b ,求θ的值; (2)若|2a -b |<m 恒成立,求实数m 的取值范围.21.(本题满分12分)(2013山东潍坊高一期末)已知函数f (x )=A sin(ωx +φ)(ω>0,0<φ<π2)的部分图象如图所示. (Ⅰ)求f (x )的解析式;(Ⅱ)将函数y =f (x )的图象上所有点的纵坐标不变,横坐标缩短为原来的12倍,再将所得函数图象向右平移π6个单位,得到函数y =g (x )的图象,求g (x )的单调递增区间;(Ⅲ)当x ∈[-π2,5π12]时,求函数y =f (x +π12)-2f (x +π3)的最值.22.(本题满分12分)(2012·全国高考山东卷)已知向量m =(sin x,1),n =(3A cos x ,A2cos2x )(A >0),函数f (x )=m ·n 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数y =f (x )的图象像左平移π12个单位,再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤0,5π24上的值域。
北师大版数学高一必修4练习 1.7 正切函数(1-3课时)
[A 基础达标]1.函数y =3tan ⎝⎛⎭⎫2x +π4的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π2,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2-3π8,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2+π8,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π2,k ∈Z 解析:选C.由2x +π4≠k π+π2(k ∈Z),得x ≠k π2+π8(k ∈Z). 2.若tan θ·sin θ<0,则θ位于( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限解析:选C.依题意,tan θ·sin θ<0,所以tan θ与sin θ异号.当tan θ>0,sin θ<0时,θ为第三象限角.当tan θ<0,sin θ>0时,θ为第二象限角.3.函数y =|tan x |的周期为( )A.π2B .πC .2πD .3π解析:选B.结合函数y =|tan x |的图像可知周期为π.4.关于x 的函数f (x )=tan(x +φ),下列说法不正确的是( )A .对任意的φ,f (x )都是非奇非偶函数B .不存在φ,使f (x )既是奇函数,又是偶函数C .存在φ,使f (x )为奇函数D .对任意的φ ,f (x )都不是偶函数解析:选A.当φ=k π(k ∈Z)时,f (x )=tan(x +k π)=tan x 为奇函数.5.在下列函数中,同时满足以下三个条件的是( )(1)在⎝⎛⎭⎫0,π2上是递减的. (2)最小正周期为2π.(3)是奇函数.A .y =tan xB .y =cos xC .y =sin(x +3π)D . y =sin 2x解析:选C.y =tan x 在⎝⎛⎭⎫0,π2上是递增的,不满足条件(1). B .函数y =cos x 是偶函数,不满足条件(3).C .函数y =sin(x +3π)=-sin x ,满足三个条件.D .函数y =sin 2x 的最小正周期T =π,不满足条件(2).6.直线y =a (a 为常数)与函数y =tan x 2的图像相交,两相邻交点间的距离为 . 解析:结合图像可知(图略),两相邻交点间的距离恰为一个最小正周期.答案:2π7.比较大小:tan 211° tan 392°.解析:tan 211°=tan(180°+31°)=tan 31°.tan 392°=tan(360°+32°)=tan 32°,因为tan 31°<tan 32°,所以tan 211°<tan 392°.答案:<8.函数f (x )=tan x -1+1-x 2的定义域为 .解析:要使函数f (x )有意义,需⎩⎪⎨⎪⎧tan x -1≥0,1-x 2≥0,即⎩⎪⎨⎪⎧tan x ≥1,x 2≤1.解得⎩⎪⎨⎪⎧k π+π4≤x <k π+π2,k ∈Z ,-1≤x ≤1,故π4≤x ≤1. 答案:⎣⎡⎦⎤π4,1 9.化简:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2.解:原式=tan (-α)·sin (-α)·cos (-α)sin ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α·cos ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α =(-tan α)·(-sin α)·cos αsin ⎣⎡⎦⎤-⎝⎛⎭⎫π2-αcos ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α =sin 2α-sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α =sin 2α-cos α·sin α=-sin αcos α=-tan α. 10.(1)求y =tan 2x +4tan x -1的值域;(2)若x ∈⎣⎡⎦⎤π6,π3时,y =k +tan ⎝⎛⎭⎫π3-2x 的值总不大于零,求实数k 的取值范围. 解:(1)设t =tan x ,则y =t 2+4t -1=(t +2)2-5≥-5,所以y =tan 2x +4tan x -1的值域为[-5,+∞).(2)由y =k +tan ⎝⎛⎭⎫π3-2x ≤0, 得k ≤-tan ⎝⎛⎭⎫π3-2x =tan ⎝⎛⎭⎫2x -π3. 因为x ∈⎣⎡⎦⎤π6,π3, 所以2x -π3∈⎣⎡⎦⎤0,π3. 由正切函数的单调性,得0≤tan ⎝⎛⎭⎫2x -π3≤3, 所以要使k ≤tan ⎝⎛⎭⎫2x -π3恒成立,只要k ≤0即可. 所以k 的取值范围为(-∞,0].[B 能力提升]1.已知函数f (x )=tan ωx 在区间⎝⎛⎭⎫-π2,π2内是减函数,则ω的取值范围是( ) A .[1,+∞)B .(-∞,-1]C .[-1,0)D .(0,1]解析:选C.根据题意可知,ω<0且函数f (x )=tan ωx 的最小正周期T =π|ω|≥π,所以-1≤ω<0,故选C.2.已知f (x )=a sin x +b tan x +1满足f ⎝⎛⎭⎫π5=7,则f ⎝⎛⎭⎫995π= .解析:依题意得f ⎝⎛⎭⎫π5=a sin π5+b tan π5+1=7, 所以a sin π5+b tan π5=6, 所以f ⎝⎛⎭⎫995π=a sin 995π+b tan 995π+1 =a sin ⎝⎛⎭⎫995π-20π+b tan ⎝⎛⎭⎫995π-20π+1 =-a sin π5-b tan π5+1 =-⎝⎛⎭⎫a sin π5+b tan π5+1 =-6+1=-5.答案:-53.已知函数f (x )=sin x |cos x |. (1)求函数的定义域;(2)用定义判断f (x )的奇偶性;(3)在[-π,π]上作出f (x )的图像;(4)写出f (x )的最小正周期及单调性.解:(1)因为由cos x ≠0,得x ≠k π+π2(k ∈Z), 所以函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π2,k ∈Z . (2)由(1)知函数的定义域关于原点对称.又因为f (-x )=sin (-x )|cos (-x )|=-sin x |cos x | =-f (x ),所以f (x )是奇函数.(3)f (x )=⎩⎨⎧tan x ,-π2<x <π2,-tan x ,-π≤x <-π2或π2<x ≤π,则f (x )在其定义域上的图像如图所示.(4)f (x )的最小正周期为2π,递增区间是⎝⎛⎭⎫-π2+2k π,π2+2k π(k ∈Z), 递减区间是⎝⎛⎭⎫π2+2k π,3π2+2k π(k ∈Z). 4.(选做题)已知f (x )=x 2+2x ·tan θ-1,x ∈[-1,3],其中θ∈⎝⎛⎭⎫-π2,π2. (1)当θ=-π6时,求函数f (x )的最大值与最小值; (2)求θ的取值范围,使y =f (x )在区间[-1, 3 ]上是单调函数.解:(1)当θ=-π6时,f (x )=x 2-233x -1=⎝⎛⎭⎫x -332-43,x ∈[-1,3],所以当x =33时,f (x )的最小值为-43, 当x =-1时,f (x )的最大值为233. (2)因为f (x )=x 2+2x ·tan θ-1=(x +tan θ)2-1-tan 2θ,所以原函数的图像的对称轴方程为x =-tan θ.因为y =f (x )在[-1,3]上是单调函数,所以-tan θ≤-1或-tan θ≥3,即tan θ≥1或tan θ≤-3,所以π4+k π≤θ<π2+k π或-π2+k π<θ≤-π3+k π, k ∈Z.又θ∈⎝⎛⎭⎫-π2,π2, 所以θ的取值范围是⎝⎛⎦⎤-π2,-π3∪⎣⎡⎭⎫π4,π2.。
高一下学期第一次月考数学试题1(必修4)(含答案)
高一下学期第一次月考数学试题一、 选择题(每题5分,共计60分)1、sin 210︒的值为A .12B . 12- C .2 D . 2- 2、已知4tan 3α=-,且α为第四象限角,则sin α的值为 A .35 B .35- C .45 D .45- 3、若sin 0α<且tan 0α>是,则α是A .第一象限角B .第二象限角C . 第三象限角D . 第四象限角4、所有与角α终边相同的角, 连同角α在内, 可构成的一个集合S 是A .{β|β=α+k ·180°,k ∈Z}B .{β|β=α+k ·360°, k ∈Z}C .{β|β=α+k ·180°,k ∈R}D .{β|β=α+k ·360°, k ∈R}5、下列函数是周期为π的偶函数为A . cos 2y x =B . sin 2y x =C . tan 2y x =D . 1cos 2y x = 6、函数)32sin(2π+=x y 的图象A .关于原点对称B .关于点(-6π,0)对称 C .关于y 轴对称 D .关于直线x =6π对称 7、若[]0,2x π∈,则使函数sin y x =为增函数,cos y x =为减函数的区间为A .[0,]2πB . [,]2ππC . 3[,]2ππD .3[,2]2ππ 8、若函数234y x x =--的定义域为[0, m],值域为25[,4]4--,则m 的取值范围是A.[0,4]B.[4,23] C.[3,23]D.[+∞,23) 9、函数sin()y A x ωϕ=+在一个周期内的图象如下,此函数的解析式可以为A .)322sin(2π+=x yB .)32sin(2π+=x y C .)32sin(2π-=x y D .)32sin(2π-=x y10、若函数3cos(2)y x ϕ=+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,则||ϕ的最小值为 A. 6π B. 4π C. 3π- D. 2π11、为了得到函数)321sin(π-=x y 的图像,需将x y 21sin =的图像上每一个点 A.向左平移3π个单位长度 B.向右平移3π个单位长度 C.向右平移32π个单位长度 D.向左平移32π个单位长度 12、函数0.5log cos 2y x =的单调递增区间是A . 2,22k k πππ⎡⎫+⎪⎢⎣⎭(Z k ∈) B . ,2k k πππ⎡⎫+⎪⎢⎣⎭(Z k ∈) C . ,4k k πππ⎡⎫+⎪⎢⎣⎭(Z k ∈) D .. ⎪⎭⎫⎢⎣⎡++2,4ππππk k (Z k ∈) 二、填空题(每小题5分, 共20分)13、角α的终边上有一点()4,P m -,且sin (0)5m m α=<,则sin cos αα+= ; 14、一个扇形的弧长为cm 5,它的面积为25cm ,则这个扇形的圆心角的弧度数是______.15、()sin tan 1,(5)7,(5)f x a x b x f f =++=-=已知满足则 ;16、 函数[]()sin 2sin ,0,2f x x x x π=+∈的图像与直线y=k 有且只有两个不同的交点,则 k 的取值范围是 。
高一数学必修1、4基础题及答案
必修1 第一章 集合基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈ A B. (a+b) ∈B C.(a+b) ∈ C D. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )MNAMNBNMCMNDA. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M . 三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+ 1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞ B .),1[],0,(+∞-∞ C .]1,(),,0[-∞+∞ D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
高中数学 阶段质量检测(一)(含解析)新人教A版必修4-新人教A版高一必修4数学试题
阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若角α的终边经过点P (-1,3),则tan α的值为( ) A .-13 B .-3C .-1010 D.31010解析:选B 由定义,若角α的终边经过点P (-1,3),∴tan α=-3.故选B. 2.若sin α=33,π2<α<π,则sin ⎝⎛⎭⎪⎫α+π2=( )A .-63 B .-12C.12 D.63解析:选A ∵sin ⎝ ⎛⎭⎪⎫π2+α=cos α,又π2<α<π,sin α=33,∴cos α=-63. 3.已知扇形的半径为r ,周长为3r ,则扇形的圆心角等于( ) A.π3 B .1C.2π3D .3 解析:选B 弧长l =3r -2r =r ,则圆心角α=lr=1.4.函数f (x )=sin ⎝⎛⎭⎪⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2解析:选C f (x )=sin ⎝ ⎛⎭⎪⎫x -π4的图象的对称轴为x -π4=k π+π2,k ∈Z ,得x =k π+3π4, 当k =-1时,则其中一条对称轴为x =-π4.5.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( )A .y =sin ⎝ ⎛⎭⎪⎫x +π2B .y =cos ⎝⎛⎭⎪⎫x +π2C .y =cos ⎝ ⎛⎭⎪⎫2x +π2D .y =sin ⎝⎛⎭⎪⎫2x +π2 解析:选D 周期为π,排除A ,B ;y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为增函数,y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为减函数,所以选D.6.函数f (x )=tan ⎝⎛⎭⎪⎫x +π4的单调增区间为( )A.⎝⎛⎭⎪⎫k π-π2,k π+π2,k ∈ZB .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z D.⎝⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z 解析:选C 令k π-π2<x +π4<k π+π2,k ∈Z ,解得k π-3π4<x <k π+π4,k ∈Z ,选C.7.已知sin ⎝ ⎛⎭⎪⎫π4+α=32,则sin ⎝ ⎛⎭⎪⎫3π4-α的值为( )A.12 B .-12C.32 D .-32 解析:选C ∵⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫3π4-α=π,∴3π4-α=π-⎝ ⎛⎭⎪⎫π4+α,∴sin ⎝⎛⎭⎪⎫3π4-α=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭⎪⎫π4+α=32.8.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的图象,可以将函数y =cos 2x 的图象( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度解析:选B 函数y =sin ⎝ ⎛⎭⎪⎫2x -π6=cos π2-2x -π6=cos ⎝ ⎛⎭⎪⎫2π3-2x =cos ⎝ ⎛⎭⎪⎫2x -2π3=cos2x -π3.故选B.9.函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫-π6≤x ≤π6的最大值与最小值之和为( )A.32 B .2C .0 D.34解析:选A f (x )=1-sin 2x +sin x =-⎝ ⎛⎭⎪⎫sin x -122+54,∵-π6≤x ≤π6,∴-12≤sin x ≤12.当sin x =-12时,f (x )min =14;当sin x =12时,f (x )max =54,∴f (x )min +f (x )max =14+54=32.10.同时具有下列性质的函数可以是( ) ①对任意x ∈R ,f (x +π)=f (x )恒成立; ②图象关于直线x =π3对称;③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数. A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6 B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6 C .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3 D .f (x )=cos ⎝⎛⎭⎪⎫2x -π6解析:选B 依题意知,满足条件的函数的周期是π,图象以直线x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.对于A 选项,函数周期为4π,因此A 选项不符合;对于C 选项,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 选项不符合;对于D 选项,f ⎝ ⎛⎭⎪⎫π3≠±1,即函数图象不以直线x =π3为对称轴,因此D 选项不符合.综上可知,应选B.11.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝⎛⎭⎪⎫2x -π4 B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 D .y =2sin ⎝⎛⎭⎪⎫2x -3π4 解析:选C 由图象可知A =2,因为π8-⎝ ⎛⎭⎪⎫-π8=π4,所以T =π,ω=2.当x =-π8时,2sin ⎝ ⎛⎭⎪⎫-π8·2+φ=2,即sin ⎝⎛⎭⎪⎫φ-π4=1,又|φ|<π,解得φ=3π4.故函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x +3π4. 12.函数f (x )=A sin ωx (ω>0),对任意x 有f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,且f ⎝ ⎛⎭⎪⎫-14=-a ,那么f ⎝ ⎛⎭⎪⎫94等于( )A .aB .2aC .3aD .4a解析:选A 由f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,得f (x +1)=f ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫x +12+12=f ⎝ ⎛⎭⎪⎫x +12-12=f (x ),即1是f (x )的周期.而f (x )为奇函数,则f ⎝ ⎛⎭⎪⎫94=f ⎝ ⎛⎭⎪⎫14=-f ⎝ ⎛⎭⎪⎫-14=a .二、填空题(本大题共4小题,每小题5分,共20分) 13.已知tan α=-3,π2<α<π,那么cos α-sin α的值是________. 解析:因为π2<α<π,所以cos α<0,sin α>0,所以cos α=-cos 2α=-cos 2αcos 2α+sin 2α=-11+tan 2α=-11+3=-12.sin α=32,所以cos α-sin α=-1+32.答案:-1+3214.函数f (sin x )=cos 2x ,那么f ⎝ ⎛⎭⎪⎫12的值为________. 解析:令sin x =12,得x =2k π+π6或x =2k π+5π6,k ∈Z ,所以f ⎝ ⎛⎭⎪⎫12=cos π3=12. 答案:1215.定义运算a *b 为a *b =⎩⎪⎨⎪⎧aa ≤b ,b a >b ,例如1*2=1,则函数f (x )=sin x *cos x的值域为________.解析:由题意可知,这实际上是一个取小的自定义函数,结合函数的图象可得其值域为⎣⎢⎡⎦⎥⎤-1,22.答案:⎣⎢⎡⎦⎥⎤-1,22 16.给出下列4个命题:①函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝ ⎛⎭⎪⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tan α=-34;④函数y =cos(2-3x )在区间⎝ ⎛⎭⎪⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号).解析:函数y =sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π,则y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期为π2,故①正确. 对于②,当x =7π12时,2sin ⎝⎛⎭⎪⎫3×7π12-π4=2sin 3π2=-2,故②正确.对于③,由(sin α+cos α)2=125得2sin αcos α=-2425,α为第二象限角,所以sin α-cos α=1-2sin αcos α=75,所以sin α=35,cos α=-45,所以tan α=-34,故③正确. 对于④,函数y =cos(2-3x )的最小正周期为2π3,而区间⎝ ⎛⎭⎪⎫23,3长度73>2π3,显然④错误.答案:①②③三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知tan α+1tan α=52,求2sin 2(3π-α)-3cos π2+αsin ⎝ ⎛⎭⎪⎫3π2-α+2的值.解:tan α+1tan α=52,即2tan 2α-5tan α+2=0,解得tan α=12或tan α=2.2sin 2(3π-α)-3cos ⎝ ⎛⎭⎪⎫π2+αsin ⎝ ⎛⎭⎪⎫3π2-α+2 =2sin 2α-3sin αcos α+2 =2sin 2α-3sin αcos αsin 2α+cos 2α+2 =2tan 2α-3tan αtan 2α+1+2. 当tan α=12时,原式=2×⎝ ⎛⎭⎪⎫122-3×12⎝ ⎛⎭⎪⎫122+1+2=-45+2=65;当tan α=2时,原式=2×22-3×222+1+2=25+2=125. 18.(12分)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的单调递增区间. 解:(1)f ⎝⎛⎭⎪⎫5π4=2sin ⎝⎛⎭⎪⎫13×5π4-π6=2sin π4= 2(2)令2k π-π2≤13x -π6≤π2+2k π,k ∈Z ,所以2k π-π3≤13x ≤2π3+2k π,k ∈Z ,解得6k π-π≤x ≤2π+6k π,k ∈Z ,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6的单调递增区间为[6k π-π,2π+6k π],k ∈Z .19.(12分)已知函数f (x )=3sin ⎝⎛⎭⎪⎫x +π4.(1)用五点法画出它在一个周期内的闭区间上的图象; (2)写出f (x )的值域、最小正周期、对称轴,单调区间.解:(1)列表如下:x -π4 π4 3π4 5π4 7π4 x +π4π2 π3π2 2πsin ⎝ ⎛⎭⎪⎫x +π40 10 -13sin ⎝⎛⎭⎪⎫x +π4 0 3 0 -3 0描点画图如图所示.(2)由图可知,值域为[-3,3],最小正周期为2π, 对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π(k ∈Z ),单调递减区间为⎣⎢⎡⎦⎥⎤π4+2k π,5π4+2k π(k ∈Z ).20.(12分)如图,函数y =2sin(πx +φ),x ∈R ⎝ ⎛⎭⎪⎫其中0≤φ≤π2的图象与y 轴交于点(0,1).(1)求φ的值;(2)求函数y =2sin(πx +φ)的单调递增区间; (3)求使y ≥1的x 的集合. 解:(1)因为函数图象过点(0,1), 所以2sin φ=1,即sin φ=12.因为0≤φ≤π2,所以φ=π6.(2)由(1)得y =2sin ⎝⎛⎭⎪⎫πx +π6,所以当-π2+2k π≤πx +π6≤π2+2k π,k ∈Z ,即-23+2k ≤x ≤13+2k ,k ∈Z 时,y =2sin ⎝⎛⎭⎪⎫πx +π6是增函数,故y =2sin ⎝⎛⎭⎪⎫πx +π6的单调递增区间为⎣⎢⎡⎦⎥⎤-23+2k ,13+2k ,k ∈Z . (3)由y ≥1,得sin ⎝⎛⎭⎪⎫πx +π6≥12,所以π6+2k π≤πx +π6≤5π6+2k π,k ∈Z ,即2k ≤x ≤23+2k ,k ∈Z ,所以y ≥1时,x 的集合为⎩⎨⎧⎭⎬⎫x |2k ≤x ≤23+2k ,k ∈Z .21.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),在同一周期内,当x =π12时,f (x )取得最大值3;当x =7π12时,f (x )取得最小值-3. (1)求函数f (x )的解析式;(2)求函数f (x )的单调递减区间;(3)若x ∈⎣⎢⎡⎦⎥⎤-π3,π6时,函数h (x )=2f (x )+1-m 的图象与x 轴有两个交点,某某数m 的取值X 围.解:(1)由题意,A =3,T =2⎝⎛⎭⎪⎫7π12-π12=π,ω=2πT =2.由2×π12+φ=π2+2k π,k ∈Z ,得φ=π3+2k π,k ∈Z ,又因为-π<φ<π,所以φ=π3.所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π3.(2)由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π6+2k π≤2x ≤7π6+2k π,k ∈Z , 则π12+k π≤x ≤7π12+k π,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π(k ∈Z ).(3)由题意知,方程sin ⎝ ⎛⎭⎪⎫2x +π3=m -16在⎣⎢⎡⎦⎥⎤-π3,π6上有两个根.因为x ∈⎣⎢⎡⎦⎥⎤-π3,π6,所以2x +π3∈⎣⎢⎡⎦⎥⎤-π3,2π3.所以m -16∈⎣⎢⎡⎭⎪⎫32,1.所以m ∈[33+1,7).22.(12分)已知函数f (x )=sin(ωx +φ)-b (ω>0,0<φ<π)的图象两相邻对称轴之间的距离是π2.若将f (x )的图象先向右平移π6个单位长度,再向上平移3个单位长度,所得图象对应的函数g (x )为奇函数.(1)求f (x )的解析式;(2)求f (x )的对称轴及单调区间;(3)若对任意x ∈⎣⎢⎡⎦⎥⎤0,π3,f 2(x )-(2+m )f (x )+2+m ≤0恒成立,某某数m 的取值X 围.解:(1)因为2πω=2×π2,所以ω=2,所以f (x )=sin(2x +φ)-b .又因为函数g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ-b +3为奇函数,且0<φ<π,所以φ=π3,b =3,故f (x )=sin ⎝⎛⎭⎪⎫2x +π3- 3. (2)令2x +π3=π2+k π,k ∈Z ,得对称轴为直线x =π12+k π2,k ∈Z .令2x +π3∈⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ,得单调递增区间为⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π,k ∈Z ,令2x +π3∈⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π,k ∈Z ,得单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π,k ∈Z .(3)因为x ∈⎣⎢⎡⎦⎥⎤0,π3,所以-3≤f (x )≤1-3,所以-1-3≤f (x )-1≤- 3.因为f 2(x )-(2+m )f (x )+2+m ≤0恒成立, 整理可得m ≤1f x -1+f (x )-1.由-1-3≤f (x )-1≤-3,得-1-332≤1f x -1+f (x )-1≤-433, 故m ≤-1-332,即实数m 的取值X 围是⎝ ⎛⎦⎥⎤-∞,-1-332.。
高一数学(人教B版)必修4:第3章综合素质检测
阶段性测试题六(第三章综合素质检测)本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.有下列四个命题:①存在x ∈R ,sin 2x 2+cos 2x 2=12; ②存在x 、y ∈R ,sin(x -y )=sin x -sin y ;③x ∈[0,π],1-cos2x 2=sin x ; ④若sin x =cos y ,则x +y =π2. 其中不正确的是( )A .①④B .②④C .①③D .②③[答案] A[解析] ∵对任意x ∈R ,均有sin 2x 2+cos 2x 2=1, 故①不正确,排除B 、D ;又x ∈[0,π],1-cos2x 2=sin 2x =sin x ,故③正确,排除C ,故选A.2.(2009·广东)函数y =2cos 2⎝⎛⎭⎫x -π4-1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数 [答案] A[解析] y =2cos 2⎝⎛⎭⎫x -π4-1=cos ⎝⎛⎭⎫2x -π2=cos ⎝⎛⎭⎫π22x =sin2x∴函数是最小正周期为π的奇函数.3.在△ABC 中,若4sin A +2cos B =1,2sin B +4cos A =33,则sin C 的大小是( )A .-12 B.32 C.12或32 D.12[答案] D[解析] 由条件,得(4sin A +2cos B )2=1,(2sin B +4cos A )2=27,∴20+16sin A cos B +16sin B cos A =28.∴sin A cos B +cos A sin B =12.即sin(A +B )=12.∴sin C =sin[π-(A +B )]=sin(A +B )=12.4.函数y =(sin x +cos x )2+1的最小正周期是( ) A.π2 B .π C.3π2 D .2π[答案] B[解析] y =(sin x +cos x )2+1=1+2sin x cos x +1=2+sin2x .∴最小正周期T =π.5.设5π<θ<6π,cos θ2=a ,则sin θ4的值等于( )A .-1+a 2B .-1-a2C .-1+a 2D .-1-a2[答案] D[解析] ∵5π<θ<6π,∴5π4<θ4<3π2,∴sin θ4<0,∴sin θ4=-1-cos θ22=-1-a2.6.(2009·江西)函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为() A .1 B .2C.3+1D.3+2[答案] B[解析] f (x )=cos x +3sin xcos x ·cos x=cos x +3sin x =2⎝⎛⎭⎫12cos x +32sin x=2sin ⎝⎛⎭⎫x +π6, ∵0≤x <π2,∴π6≤x +π6<2π3,∴f (x )的最大值为2.7.函数y =sin 4x +cos 2x 的最小正周期为( ) A.π4 B.π2C .πD .2π[答案] B[解析] y =sin 4x +cos 2x =(1-cos 2x )2+cos 2x=cos 4x -cos 2x +1=(cos 2x -12)2+34=(1+cos2x 2-12)2+34=cos 22x 4+34=1+cos4x8+34=18cos4x +78.∴T =2π4=π2,故选B.8.cos 275°+cos 215°+cos75°cos15°的值为( ) A.62 B.32C.54 D .1+34[答案] C[解析] 原式=sin 215°+cos 215°+sin15°cos15°=1+12sin30°=54.9.函数f (x )=sin x -3cos x (x ∈[-π,0])单调递增区间是()A.⎣⎡⎦⎤-π,-5π6B.⎣⎡⎦⎤-5π6,-π6 C.⎣⎡⎦⎤-π3,0D.⎣⎡⎦⎤-π6,0 [答案] D[解析] f (x )=sin x -3cos x=2⎝⎛⎭⎫12sin x -32cos x =2sin ⎝⎛⎭⎫x -π3. ∵x ∈[-π,0],∴x -π3⎣⎡⎦⎤-4π3,-π3. 当x -π3∈⎣⎡⎦⎤-π2,-π3时,f (x )递增, 此时x ∈⎣⎡⎦⎤-π6,0.故选D. 10.(2009·重庆)设△ABC 的三个内角为A 、B 、C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m ·n =1+cos(A +B ),则C =( ) A.π6B.π3C.2π3D.5π6 [答案] C[解析] ∵m·n =3sin A cos B +3cos A sin B =3sin(A +B )=1+cos(A +B ), ∴3sin(A +B )-cos(A +B )=1, ∴3sin C +cos C =1,即2sin ⎝⎛⎭⎫C +π6=1, ∴sin ⎝⎛⎭⎫C +π6=12,∴C +π6=5π6,∴C =2π3. 11.在△ABC 中,已知sin 2A +sin 2B +sin 2C =2,则△ABC 为( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形[答案] C[解析] 由已知,得1-cos2A 2+1-cos2B 2+sin 2C =2, ∴1-12(cos2A +cos2B )+sin 2C =2, ∴cos2A +cos2B +2cos 2C =0,∴cos(A +B )·cos(A -B )+cos 2C =0,∴cos C [-cos(A -B )-cos(A +B )]=0,∴cos A ·cos B ·cos C =0,∴cos A =0或cos B =0或cos C =0.∴△ABC 为直角三角形.12.若f (sin x )=3-cos2x ,则f (cos x )=( )A .3-cos2xB .3-sin2xC .3+cos2xD .3+sin2x[答案] C[解析] f (sin x )=3-cos2x=3-(1-2sin 2x )=2+2sin 2x ,∴f (x )=2+2x 2∴f (cos x )=2+2cos 2x=2+1+cos2x =3+cos2x .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上)13.(2009·上海)函数y =2cos 2x +sin2x 的最小值是________.[答案] 1- 2[解析] y =2cos 2x +sin2x =1+cos2x +sin2x=1+2sin ⎝⎛2x +π4,∴y min =1- 2. 14.2tan150°1-tan 2150°的值为________. [答案] - 3[解析] 原式=2×⎝⎛⎭⎫-331-⎝⎛⎭⎫-332=-233·32=- 3. 15.cos θ=-35,且180°<θ<270°,则tan θ2=________. [答案] -2[解析] ∵180°<θ<270°,∴90°<θ2<135°, ∴tan θ2,又∵cos θ=-35,∴tan θ2=-1-cos θ1+cos θ=-1-⎝⎛⎭⎫-351+⎝⎛⎭⎫-35=-2. 16.在△ABC 中,cos ⎝⎛⎭⎫π4+A =513,则cos2A 的值为________. [答案] 120169[解析] 在△ABC 中,cos ⎝⎛⎭⎫π4+A =513>0, ∴sin ⎝⎛⎭⎫π4+A =1-cos 2⎝⎛⎭⎫π4+A =1213∴cos2A =sin ⎝⎛⎭⎫π2+2A =sin2⎝⎛⎭⎫π4+A =2sin ⎝⎛⎭⎫π4+A cos ⎝⎛⎭⎫π4+A =2×1213×513=120169. 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求值(tan5°-cot5°)·cos70°1+sin70°. [解析] 解法一:原式=⎝⎛⎭⎫tan5°-1tan5°·cos70°1+sin70°=tan 25°-1tan5°·sin20°1+cos20°=-2·1-tan 25°2tan5°·sin20°1+cos20°=-2cot10°·tan10°=-2.解法二:原式=⎝⎛⎭⎫sin5°cos5°-cos5°sin5°·sin20°1+cos20°=sin 25°-cos 25°sin5°·cos5°·sin20°1+cos20°=-cos10°12sin10°·2sin10°·cos10°2cos 210°=-2. 解法三:原式=⎝ ⎛⎭⎪⎪⎫1-cos10°sin10°-1sin10°1+cos10°·sin20°1+cos20° =⎝⎛⎭⎫1-cos10°sin10°-1+cos10°sin10°·sin20°1+cos20°=-2cos10°sin10°·2sin10°·cos10°2cos 210°=-2.18.(本小题满分12分)已知cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,且π2<α<π,0<β<π2,求tan α+β2的值.[解析] ∵π2<α<π,0<β<π2,∴π4<α-β2<π. ∵cos ⎝⎛⎭⎫α-β2=-19∴sin ⎝⎛⎭⎫α-β2=459. 又∵π4<α2<π2, ∴-π4<α2-β<π2. ∵sin ⎝⎛⎭⎫α2-β=23,∴cos ⎝⎛⎭⎫α2-β=53. 故sin α+β2sin ⎣⎡⎦⎤⎝⎛α-β2-⎝⎛⎭⎫α2-β =sin ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β-cos ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =459×53-⎝⎛⎭⎫-19×23=2227, cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527,∴tan α+β2=sinα+β2cos α+β2 =22277527=22535. 19.(本小题满分12分)已知α+β=3π4,求证:cos 2α+cos 2β+2cos αcos β=12. [解析] 左边=1+cos2α2+1+cos2β2+2cos αcos β =1+12(cos2α+cos2β)+2cos αcos β =1+cos(α+β)cos(α-β)+22[cos(α+β)+cos(α-β)] =1+cos 3π4cos(α-β)+22⎣⎡⎦⎤cos 3π4+cos (α-β)=1-22cos(α-β)+22×⎝⎛⎭⎫-22+22cos(α-β) =1-12=12=右边. 20.(本小题满分12分)若函数f (x )=1+cos2x 4sin ⎝⎛⎭⎫π2+x -a sin x 2·cos ⎝⎛⎭⎫π-x 2的最大值为2,试确定常数a 的值.[解析] f (x )=2cos 2x 4cos x +a sin x 2cos x 2=12cos x +a 2sin x , f (x )的最大值为14+a 24 ∴14+a 24=2, 解得a =±15.21.(本小题满分14分)(2010·南安一中高一下学期期末测试)已知f (x )=2cos 2x +3sin2x +a ,其中a ∈R .(1)若x ∈R ,求f (x )的最小正周期;(2)若f (x )在[-π6,π6]上最大值与最小值之和为3,求a 的值. [解析] f (x )=1+cos2x +3sin2x +a=2sin(2x +π6)+a +1, (1)f (x )的最小正周期为T =2π2=π. (2)∵x ∈[-π6,π6],2x ∈[-π3,π3], 2x +π6∈[-π6,π2], sin(x +π6)∈[-12,1], ∴f (x )max =a +3,f (x )min =a ,∴2a +3=3,∴a =0.22.(本小题满分14分)(2009·湖南)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2).(1)若a ∥b ,求tan θ的值;(2)若|a |=|b |,0<θ<π,求θ的值.[解析] (1)∵a ∥b ,∴2sin θ=cos θ-2sin θ,∴4sin θ=cos θ,∴tan θ=14. (2)由|a |=|b |,得sin 2θ+(cos θ-2sin θ)2=5, ∴1-2sin2θ+4sin 2θ=5.∴-2sin2θ+2(1-cos2θ)=4,即sin2θ+cos2θ=-1,∴sin ⎝⎛⎭⎫2θ+π4=-22. 又∵0<θ<π,∴π4<2θ+π4<9π4,∴2θ+π4=5π4或7π4. ∴θ=π2或θ=3π4.。
人教版高一数学必修四测试题(含详细答案)
高一数学试题(必修4) (特别适合按14523顺序的省份) 必修4 第一章 三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A∩CB .B ∪C=CC .A CD .A=B=C22120s i n 等于 ( ) A 23±B 23C 23-D 21 3.已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316 D .-23164.下列函数中,最小正周期为π的偶函数是 ( )A.y=sin2xB.y=cos 2xC .sin2x+cos2x D. y=x x 22tan 1tan 1+-5 若角0600的终边上有一点()a ,4-,则a 的值是 ( )A 34B 34-C 34± D36. 要得到函数y=cos(42π-x )的图象,只需将y=sin 2x的图象 ( ) A .向左平移2π个单位 B.同右平移2π个单位C .向左平移4π个单位 D.向右平移4π个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将 整个图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数y=21sinx 的图象则y=f(x)是 ( )A .y=1)22sin(21++πx B.y=1)22sin(21+-πx C.y=1)42sin(21++πx D. 1)42sin(21+-πx8. 函数y=sin(2x+25π)的图像的一条对轴方程是 ( ) A.x=-2π B. x=-4π C .x=8πD.x=45π9.若21cos sin =⋅θθ,则下列结论中一定成立的是 ( )A.22sin =θ B .22sin -=θC .1cos sin =+θθD .0cos sin =-θθ10.函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 11.函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数 12.函数2cos 1y x =+的定义域是 ( ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题:13. 函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 14 与02002-终边相同的最小正角是_______________15. 已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos . 16 若集合|,3A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭,{}|22B x x =-≤≤, 则B A =_______________________________________三、解答题:17.已知51cos sin =+x x ,且π<<x 0. a) 求sinx 、cosx 、tanx 的值. b) 求sin 3x – cos 3x 的值.18 已知2tan =x ,(1)求x x 22cos 41sin 32+的值 (2)求x x x x 22cos cos sin sin 2+-的值19. 已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+20.已知曲线上最高点为(2,2),由此最高点到相邻的最低点间曲线与x 轴交于一点(6,0),求函数解析式,并求函数取最小值x 的值及单调区间必修4 第一章 三角函数(2)一、选择题:1.已知0tan ,0sin ><θθ,则θ2sin 1-化简的结果为 ( ) A .θcos B. θcos - C .θcos ± D. 以上都不对 2.若角α的终边过点(-3,-2),则 ( )A .sin α tan α>0B .cos α tan α>0C .sin α cos α>0D .sin α cot α>0 3 已知3tan =α,23παπ<<,那么ααsin cos -的值是 ( ) A 231+-B 231+- C 231- D 231+4.函数)22cos(π+=x y 的图象的一条对称轴方程是 ( )A .2π-=x B. 4π-=x C. 8π=x D. π=x5.已知)0,2(π-∈x ,53sin -=x ,则tan2x= ( ) A .247 B. 247- C. 724 D. 724-6.已知31)4tan(,21)tan(-=-=+παβα,则)4tan(πβ+的值为 ( )A .2 B. 1 C. 22D. 2 7.函数xx xx x f sin cos sin cos )(-+=的最小正周期为 ( )A .1 B. 2πC. π2D. π8.函数)32cos(π--=x y 的单调递增区间是 ( )A .)(322,342Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ B. )(324,344Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C .)(382,322Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D. )(384,324Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ 9.函数x x y cos sin 3+=,]2,2[ππ-∈x 的最大值为 ( )A .1 B. 2 C. 3 D.23 10.要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位 C .向左平移8π个单位 D .向右平移8π个单位11.已知sin(4π+α)=23,则sin(43π-α)值为 ( )A.21 B. —21C. 23D. —2312.若).(),sin(32cos 3sin 3ππφφ-∈-=-x x x ,则=φ ( )A. 6π-B.6π C. 65π D. 65π-二、填空题13.函数tan 2y x =的定义域是14.)32sin(3π+-=x y 的振幅为 初相为15.求值:00cos20sin202cos10-=_______________ 16.把函数)32sin(π+=x y 先向右平移2π个单位,然后向下平移2个单位后所得的函数解析式为_____________2)322sin(--=πx y ___________________三、解答题17 已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值18.已知函数x x y 21cos 321sin+=,求: (1)函数y 的最大值,最小值及最小正周期;(2)函数y 的单调递增区间19. 已知βαtan tan 、是方程04332=++x x 的两根,且)2,2(ππβα-∈、, 求βα+的值20.如下图为函数)0,0,0()sin(>>>++=ϕωϕωA c x A y 图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线2=x 对称的函数解析式必修4 第三章 三角恒等变换(1)一、选择题:1.cos 24cos36cos66cos54︒︒︒︒-的值为 ( )A 0 B12 C 32 D 12-2.3cos 5α=-,,2παπ⎛⎫∈ ⎪⎝⎭,12sin 13β=-,β是第三象限角,则=-)cos(αβ( )A 3365-B 6365C 5665D 1665- 3.设1tan 2,1tan x x +=-则sin 2x 的值是 ( )A 35B 34-C 34D 1- 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为 ( )A 47-B 47C 18D 18-5.βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是 ( )A 3365B 1665C 5665D 63656. )4,43(ππ-∈x 且3cos 45x π⎛⎫-=- ⎪⎝⎭则cos2x 的值是 ( )A 725-B 2425-C 2425D 7257.在3sin cos 23x x a +=-中,a 的取值域范围是 ( )A 2521≤≤aB 21≤aC 25>aD 2125-≤≤-a 8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为 ( )A 1010B 1010-C 10103D 10103-9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像 ( )A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12π个单位10. 函数sin 3cos 22x xy =+的图像的一条对称轴方程是 ( )A 、x =113πB 、x =53π C 、53x π=- D 、3x π=- 11.若x 是一个三角形的最小内角,则函数sin cos y x x =-的值域是 ( )A [2,2]-B 31(1,]2-- C 31[1,]2-- D 31(1,)2--12.在ABC ∆中,tan tan 33tan tan A B A B ++=,则C 等于 ( )A3π B 23π C 6π D 4π二、填空题:13.若βαtan ,tan 是方程04332=++x x 的两根,且),2,2(,ππβα-∈则βα+等于14. .在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = 15. 已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x+-的值为16. 关于函数()cos223sin cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立; ②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增; ③函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称图像; ④将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上)三、解答题:17. 化简000020cos 1)]10tan 31(10sin 50sin 2[+++18. 求)212cos 4(12sin 312tan 30200--的值.19. 已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。
【2019-2020高一数学试卷】人教A版必修4《三角函数》单元测试卷一 答题卡及答案解析
必修4《三角函数》单元测试卷一(时间:120分钟 满分:150分)一、选择题:本大题共12小题,每小题5分,共60分.每一小题给出的四个选项中只有一项是符合题目要求的.1.若点(,)P x y 是330︒角终边上异于原点的一点,则yx的值为( )A B .C D . 2.已知角α的终边经过点(3,4)-,则cos α的值为( ) A .34-B .35C .45-D .43-3.若|cos |cos θθ=,|tan |tan θθ=-,则2θ的终边在( )A .第一、三象限B .第二、四象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上4.如果函数()sin(2)(02)f x x πθθπ=+<<的最小正周期是T ,且当1x =时取得最大值,那么( ) A .1T =,2πθ=B .1T =,θπ=C .2T =,θπ=D .2T =,2πθ=5.若sin()2x π-=2x ππ<<,则x 等于( )A .43π B .76π C .53π D .116π6.已知a 是实数,则函数()1sin f x a ax =+的图象不可能是( )A .B .C .D .7.为得到函数sin()6y x π=+的图象,可将函数sin y x =的图象向左平移m 个单位长度,或向右平移n 个单位长度(m ,n 均为正数,则||m n -的最小值是( )A .3π B .23π C .π D .2π8.若tan 2θ=,则2sin cos sin 2cos θθθθ-+的值为( )A .0B .1C .34D .549.函数tan 1cos xy x=+的奇偶性是( )A .奇函数B .偶函数C .既是奇函数,又是偶函数D .既不是奇函数,也不是偶函数10.函数()cos f x x =在(0,)+∞内( ) A .没有零点 B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点11.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()⎪⎭⎫⎝⎛≤6πf x f 对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是( ) A .[3k ππ-,]()6k k Z ππ+∈ B .[k π,]()2k k Z ππ+∈C .[6k ππ+,2]()3k k Z ππ+∈ D .[2k ππ-,]()k k Z π∈12.函数()3sin f x = (2)3x π- 的图象为C .①图象C 关于直线1112x π=对称; ②函数()f x 在区间(12π-,5)12π内是增函数; ③由3sin y = 2x 的图象向右平移3π个单位长度可以得到图象C . 以上三个论断中,正确论断的个数是( ) A .0个B .1个C .2个D .3个二、填空题:本大题共4小题,每小题5分,共20分.请将答案填写在答题卷相应位置上.13.已知2sin()sin()2παπα-=+,则tan()πα-的值是 .14.函数y =3cos x (0≤x ≤π)的图象与直线3y =-及y 轴围成的图形的面积为 . 15.已知函数f (x )=sin (ωx +φ)(ω>0,﹣π≤φ<π)的图象如图所示,则ϕ=16.给出下列命题:①函数2cos()32y x π=+是奇函数;②存在实数x ,使sin cos 2x x +=;③若α,β是第一象限角且αβ<,则tan tan αβ<;④8x π=是函数5sin(2)4y x π=+的一条对称轴; ⑤函数sin(2)3y x π=+的图象关于点(,0)12π成中心对称.其中正确命题的序号为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)已知sin α是方程25760x x --=的根,求333sin()sin()tan (2)22cos()cos()22αππαπαππαα-----+的值.18.(12分)已知函数()sin()(0f x A x A ωϕ=+>,0ω>,)x R ∈在一个周期内的图象如图所示,求直线y =()f x 图象的所有交点的坐标.19.(12分)已知3()sin(2)62f x x π=++,x R ∈(1)求函数()f x 的最小正周期; (2)求函数()f x 的单调减区间;(3)函数()f x 的图象可以由函数sin 2()y x x R =∈的图象经过怎样变换得到?20.(12分)已知函数sin()(0y A x A ωϕ=+>,0)ω>的图象过点(12P π,0),图象与P 点最近的一个最高点坐标为(3π,5).(1)求函数的解析式;(2)求函数的最大值,并写出相应的x 的值; (3)求使y ≤0时,x 的取值范围.21.(12分)已知cos()2sin()22ππαα+=-.(1)求4sin 2cos 3sin 5cos αααα-+的值.(2)求22111sin sin cos cos 432αααα++的值.22.(12分)函数()sin()f x A x ωϕ=+的图象如图所示,且过点(0,1),其中0A >,0ω>,||2πϕ<.(1)求函数的解析式.(2)若函数()f x 的图象向左平移m 个单位所对应的函数()h x 是奇函数,求满足条件的最小正实数m .(3)设函数()()1g x f x a =++,[0x ∈,]2π,若函数()g x 恰有两个零点,求a 的范围.必修4《三角函数》单元测试卷一答题卡成绩:一、选择题(本题满分60分)二、填空题(本题满分20分)13 . 14.15.16.三、解答题(本题满分70分)班级 姓名 座号密 封 装 订 线必修4《三角函数》单元测试卷一答案解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求的.1.若点P(x,y)是330°角终边上异于原点的一点,则的值为()A.B.C.D.【分析】由三角函数的定义知=tan330°,计算即可.【答案】解:由题意知,=tan330°=﹣tan30°=﹣.故选:D.【点睛】本题考查了三角函数的定义与应用问题,是基础题.2.已知角α的终边经过点(3,﹣4),则cosα的值为()A.﹣B.C.﹣D.﹣【分析】由条件利用本任意角的三角函数的定义,求得cosα的值.【答案】解:∵角α的终边经过点(3,﹣4),∴x=3,y=﹣4,r=5,则cosα==,故选:B.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.3.若|cosθ|=cosθ,|tanθ|=﹣tanθ,则的终边在()A.第一、三象限B.第二、四象限C.第一、三象限或x轴上D.第二、四象限或x轴上【分析】利用已知条件,判断θ所在象限,然后求解即可.【答案】解:|cosθ|=cosθ,∴θ是第一、四象限或x轴正半轴;|tanθ|=﹣tanθ,说明θ是二.四象限或x轴;所以θ是第四象限或x轴正半轴,∴k•360°+270°<θ≤k•360°+360°,k∈Z,则k•180°+135°<≤k•180°+180°,k∈Z,令k=2n,n∈Z有n•360°+135°<≤n•360°+180°,n∈Z;在二象限或x轴负半轴;k=2n+1,n∈z,有n•360°+315°<≤n•360°+360°,n∈Z;在四象限或x轴正半轴;故选:D.【点睛】本题考查三角函数的符号,象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限.4.如果函数f(x)=sin(2πx+θ)(0<θ<2π)的最小正周期是T,且当x=1时取得最大值,那么()A.T=1,θ=B.T=1,θ=πC.T=2,θ=πD.T=2,θ=【分析】利用函数的周期公式求出T,通过当x=1时取得最大值求出θ判断即可.【答案】解:函数f(x)=sin(2πx+θ)(0<θ<2π)的最小正周期是T,可得T==1;当x=1时取得最大值,sin(2π+θ)=1,0<θ<2π,可得θ=.故选:A.【点睛】本题考查三角函数的周期以及三角函数的最值的求法,考查计算能力.5.若sin(﹣x)=且π<x<2π,则x等于()A.B.C.D.【分析】利用诱导公式求得cos x的值,结合角x的范围,以及特殊角的三角函数的值,求得x的值.【答案】解:sin(﹣x)==cos x,且π<x<2π,则x=,故选:D.【点睛】本题主要考查诱导公式,特殊角的三角函数的值,属于基础题.6.已知a是实数,则函数f(x)=1+a sin ax的图象不可能是()A.B.C.D.【分析】根据当a=0时,y=1,可判断图象哪个符合,当a≠0时,f(x)周期为,振幅a,分类讨论a>1时,T<2π;0<a≤1,T≥2π利用所给图象判断即可得出正确答案.【答案】解:∵函数f(x)=1+a sin ax(1)当a=0时,y=1,函数图象为:C故C正确(2)当a≠0时,f(x)=1+a sin ax周期为T=,振幅为a若a>1时,振幅为a>1,T<2π,当0<a≤1,T≥2π.∵D选项的图象,振幅与周期的范围矛盾故D错误,故选:D.【点睛】本题考察了三角函数的图象和性质,分类讨论的思想,属于中档题,关键是确定分类的标准,和函数图象的对应.7.为得到函数y=sin(x+)的图象,可将函数y=sin x的图象向左平移m个单位长度,或向右平移n个单位长度(m,n均为正数,则|m﹣n|的最小值是()A.B.C.πD.2π【分析】根据函数左右平移关系,求出m,n的表达式,然后根据绝对值的意义进行求解即可.【答案】解:y=sin x的图象向左平移+2kπ个单位长度,即可得到函数y=sin(x+)的图象,此时m=+2kπ,k∈Z,y=sin x的图象向右平移+2mπ个单位长度,即可得到函数y=sin(x+)的图象,此时n=+2mπ,m∈Z,即|m﹣n|=|+2kπ﹣﹣2mπ|=|2(k﹣m)π﹣|,∴当k﹣m=1时,|m﹣n|取得最小值为2π﹣=,故选:A.【点睛】本题考查函数y=A sin(ωx+φ)的图象变换,利用函数平移关系是解决本题的关键.8.若tanθ=2,则的值为()A.0 B.1 C.D.【分析】将所求分子分母同除cosθ,利用同角三角函数基本关系式化简,代入tanθ=2,即可得到选项.【答案】解:∵tanθ=2,∴===.故选:C.【点睛】本题是基础题,考查同角三角函数基本关系式的应用,已知函数值求表达式的其它函数值,考查计算能力,常考题型.9.函数的奇偶性是()A.奇函数B.偶函数C.既是奇函数,又是偶函数D.既不是奇函数,也不是偶函数【分析】先考虑函数的定义域关于原点对称,其次判定f(x)与f(﹣x)的关系即可.【答案】解:先考虑函数的定义域关于原点对称,其次,故选:A.【点睛】定义域关于原点对称是函数具有奇偶性的必要(但不充分)条件.判定函数奇偶性常见步骤:1、判定其定义域是否关于原点对称;2、判定f(x)与f(﹣x)的关系.10.函数f(x)=在(0,+∞)内()A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点【分析】作函数y=与y=cos x的图象,从而利用数形结合的思想判断.【答案】解:作函数y=与y=cos x的图象如下,∵函数y=与y=cos x的图象有且只有一个交点,∴函数f(x)=在(0,+∞)内有且仅有一个零点,故选:B.【点睛】本题考查了数形结合的思想应用及函数的零点与函数的图象的关系应用.11.已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f()|对x∈R恒成立,且f()>f(π),则f(x)的单调递增区间是()A.[kπ﹣,kπ+](k∈Z)B.[kπ,kπ+](k∈Z)C.[kπ+,kπ+](k∈Z)D.[kπ﹣,kπ](k∈Z)【分析】由题意求得φ的值,利用正弦函数的性质,求得f(x)的单调递增区间.【答案】解:若f(x)≤|f()|对x∈R恒成立,则f()为函数的函数的最大值或最小值,即2×+φ=kπ+,k∈Z,则φ=kπ+,k∈Z,又f()>f(π),sin(π+φ)=﹣sinφ>sin(2π+φ)=sinφ,sinφ<0.令k=﹣1,此时φ=﹣,满足条件sinφ<0,令2x﹣∈[2kπ﹣,2kπ+],k∈Z,解得:x∈[kπ+,kπ+](k∈Z).则f(x)的单调递增区间是[kπ+,kπ+](k∈Z).故选:C.【点睛】本题考查的知识点是函数y=A sin(ωx+φ)的图象变换、三角函数的单调性,属于基础题.12.函数f(x)=3sin (2x﹣)的图象为C.①图象C关于直线x=π对称;②函数f(x)在区间(﹣,)内是增函数;③由y=3sin 2x的图象向右平移个单位长度可以得到图象C.以上三个论断中,正确论断的个数是()A.0个B.1个C.2个D.3个【分析】①②由三角函数图象的对称性和单调性判断即可;③根据图象的平移可得.【答案】解:函数f(x)=3sin (2x﹣)的图象为C.①f(π)=﹣3,故x=π是函数的一条称对称轴,故正确;②函数f(x)的增区间为[kπ﹣,kπ+],故在区间(﹣,)内是增函数,故正确;③由y=3sin 2x的图象向右平移个单位长度可以得到图象y=3sin2(x﹣)的图象,故错误.故选:C.【点睛】考查了三角函数图象的对称性,单调性和函数图象的平移.属于基础题型,应熟练掌握.二.填空题(共4小题,满分20分,每小题5分)13.已知,则tan(π﹣α)的值是﹣2 .【分析】由已知利用诱导公式可得﹣2cosα=﹣sinα,根据同角三角函数基本关系式可求tanα的值,利用诱导公式化简所求即可得解.【答案】解:∵,∴﹣2cosα=﹣sinα,可得tanα=2,∴tan(π﹣α)=﹣tanα=﹣2.故答案为:﹣2.【点睛】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.14.函数y=3cos x(0≤x≤π)的图象与直线y=﹣3及y轴围成的图形的面积为3π.【分析】由题意画出图形,利用定积分表示曲边梯形的面积,然后计算求值.【答案】解:函数y=3cos x(0≤x≤π)的图象与直线y=﹣3及y轴围成的图形如图:面积为=(3sin x+3x)=3π;故答案为:3π.【点睛】本题考查了定积分的应用;关键是利用定积分表示出所围成的图形面积.15.已知函数f(x)=sin(ωx+φ)(ω>0,﹣π≤φ<π)的图象如图所示,则φ=﹣【分析】根据三角函数图象和性质,求出函数的周期,即可求出ω和φ的值.【答案】解:由图象得==,则T==,即ω=,即f(x)=sin(x+φ),∵f()=sin(×+φ)=1,∴×+φ=+2kπ,即φ=﹣+2kπ,∵﹣π≤φ<π,∴当k=0时,φ=﹣,故答案为:﹣.【点睛】本题主要考查三角函数的图象和性质,根据条件求出ω和φ的值是解决本题的关键.16.给出下列命题:①函数是奇函数;②存在实数x,使sin x+cos x=2;③若α,β是第一象限角且α<β,则tanα<tanβ;④是函数的一条对称轴;⑤函数的图象关于点成中心对称.其中正确命题的序号为①④.【分析】利用诱导公式、正弦函数和余弦函数性质以及图象特征,逐一判断各个选项是否正确,从而得出结论.【答案】解:①函数=﹣sin x,而y=﹣sin x是奇函数,故函数是奇函数,故①正确;②因为sin x,cos x不能同时取最大值1,所以不存在实数x使sin x+cos x=2成立,故②错误.③令α=,β=,则tanα=,tanβ=tan=tan=,tanα>tanβ,故③不成立.④把x=代入函数y=sin(2x+),得y=﹣1,为函数的最小值,故是函数的一条对称轴,故④正确;⑤因为y=sin(2x+)图象的对称中心在图象上,而点不在图象上,所以⑤不成立.故答案为:①④.【点睛】本题主要考查诱导公式、正弦函数和余弦函数性质以及图象特征,属于基础题.三.解答题(共6小题,满分70分)17.(10分)已知sinα是方程5x2﹣7x﹣6=0的根,求的值.【分析】由已知求得sinα,然后利用三角函数的诱导公式化简求值.【答案】解:由sinα是方程5x2﹣7x﹣6=0的根,可得sinα=或sinα=2(舍),∴===﹣tanα.由sinα=﹣可知α是第三象限或者第四象限角.∴tanα=或﹣.即所求式子的值为.【点睛】本题考查一元二次方程根的求法,考查利用诱导公式化简求值,考查计算能力,是基础题.18.(12分)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,x∈R)在一个周期内的图象如图所示,求直线y=与函数f(x)图象的所有交点的坐标.【分析】根据函数的最大值,得到A=2.由函数的周期为4,算出ω=,再根据当x=时,函数f(x)有最大值为2,解出φ=.因此得到f(x)=2sin(x+),然后解方程2sin(x+)=,结合正弦函数的图象可得x=+4kπ或+4kπ(k∈Z),由此即可得到直线y=与函数f(x)图象的所有交点的坐标.【答案】解:根据题意,得A=2,T==4π,可得ω=∵当x=时,函数f(x)有最大值为2∴ω×+φ=×+φ=+2kπ(k∈Z),解之得φ=+2kπ(k∈Z),取k=0得φ=因此,函数表达式为f(x)=2sin(x+)当f(x)=时,即2sin(x+)=,可得sin(x+)=∴x+=+2kπ或x+=+2kπ(k∈Z),可得x=+4kπ或+4kπ(k∈Z)由此可得,直线y=与函数f(x)图象的所有交点的坐标为(+4kπ,)或(+4kπ,)(k∈Z).【点睛】本题给出函数y=A sin(ωx+φ)的部分图象,要我们确定其解析式并求函数图象与y=的交点坐标,着重考查了三角恒等变换和三角函数的图象与性质等知识点,属于基础题.19.(12分)已知f(x)=sin(2x+)+,x∈R(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调减区间;(3)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样变换得到?【分析】由条件利用正弦函数的周期性、单调性,y=A sin(ωx+φ)的图象变换规律,得出结论.【答案】解:(1)对于f(x)=sin(2x+)+,x∈R,它的周期为T==π.(2)由2kπ+≤2x+≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z,所以所求的单调减区间为[kπ+,kπ+],k∈Z.(3)把y=sin2x的图象上所有点向左平移个单位,可得y=sin(2x+)的图象;再向上平移个单位,即得函数f(x)=sin(2x+)+的图象.【点睛】本题主要考查正弦函数的周期性、单调性,y=A sin(ωx+φ)的图象变换规律,属于基础题.20.(12分)已知函数y=A sin(ωx+φ)(A>0,ω>0)的图象过点P(,0),图象与P点最近的一个最高点坐标为(,5).(1)求函数的解析式;(2)求函数的最大值,并写出相应的x的值;(3)求使y≤0时,x的取值范围.【分析】(1)由函数的最大值求A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(2)利用正弦函数取最大值的条件以及函数的最大值,得出结论.(3)由5sin(2x﹣)≤0,可得2kπ﹣π≤2x﹣≤2kπ(k∈Z),由此求得x的取值范围.【答案】解:(1)由题意知=﹣=,∴T=π.∴ω==2,由ω•+φ=0,得φ=﹣,又A=5,∴y=5sin(2x﹣).(2)函数的最大值为5,此时,2x﹣=2kπ+(k∈Z).∴x=kπ+(k∈Z).(3)∵5sin(2x﹣)≤0,∴2kπ﹣π≤2x﹣≤2kπ(k∈Z).∴x的取值范围是{x|kπ﹣≤x≤kπ+,(k∈Z)}.【点睛】本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,正弦函数的值域,解三角不等式,属于基础题.21.(12分)已知cos(+α)=2sin(α﹣).(1)求的值.(2)求sin2α+sinαcosα+cos2α的值.【分析】(1)直接利用诱导公式化简已知条件,化简所求表达式为正切函数的形式,求解即可.(2)所求表达式的分母通过平方关系式代换,然后化简所求表达式为正切函数的形式,求解即可.【答案】解:cos(+α)=2sin(α﹣).可得﹣sinα=﹣2cosα,∴tanα=2(1)===.(2)sin2α+sinαcosα+cos2α====.【点睛】本题考查诱导公式的应用,三角函数的化简求值,考查计算能力.22.(12分)函数f(x)=A sin(ωx+φ)的图象如图所示,且过点(0,1),其中A>0,ω>0,|φ|<.(1)求函数的解析式.(2)若函数f(x)的图象向左平移m个单位所对应的函数h(x)是奇函数,求满足条件的最小正实数m.(3)设函数g(x)=f(x)+a+1,x∈[0,],若函数g(x)恰有两个零点,求a的范围.【分析】(1)由函数的图象可得T=(+)解得ω,图象经过(﹣,0),0=A sin(2×﹣+φ),|φ|<,解得φ,图象经过(0,1),1=A sin(2×0+),可得A,从而可求函数的解析式.(2)由条件根据函数y=A sin(ωx+φ)的图象变换规律,可得y=sin(2x+2m+)为奇函数,可得2m+=kπ,k∈z,由此求得m的最小值.(3)根据正弦函数的单调性,得到当t=sin(2x+)∈[,1)时,方程g(x)=0有两个零点,即2t+a+1=0,t∈[,1),由此建立关于a的不等式,解之即可得到实数a的取值范围.【答案】解:(1)由函数的图象可得T=(+)=π,T=,解得ω=2.图象经过(﹣,0),0=A sin(2×﹣+φ),|φ|<,解得φ=,图象经过(0,1),1=A sin(2×0+),可解得A=2,故f(x)的解析式为y=2sin(2x+).(2)把函数f(x)的图象向左平移m个单位所对应的函数的解析式为:y=sin[2(x+m)+]=sin(2x+2m+),再根据y=sin(2x+2m+)为奇函数,可得2m+=kπ,k∈z,故m的最小值为.(3)g(x)=f(x)+a+1=2sin(2x+)+a+1,∵当x∈[0,]时,且x≠时,存在两个自变量x对应同一个sin x(2x+),即当t=sin(2x+)∈[,1)时,方程g(x)=0有两个零点,∵g(x)=f(x)+a+1在x∈[0,]上有两个零点,即2t+a+1=0,t∈[,1),∴t =∈[,1),解之得a∈(﹣3,﹣2].【点睛】本题主要考查方程根的存在性以及个数判断,正弦函数的图象和性质,函数y=A sin(ωx+φ)的图象变换规律,体现了数形结合、转化的数学思想,属于中档题.21。
人教版高一数学必修四测试题(含详细答案)
高一数学试题(必修4)(特别适合按14523顺序的省份)必修4 第一章三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C2 等于()A B C D3.已知的值为()A.-2 B.2 C.D.-4.下列函数中,最小正周期为π的偶函数是()A.y=sin2xB.y=cos C .sin2x+cos2x D. y=5 若角的终边上有一点,则的值是()A B C D6.要得到函数y=cos()的图象,只需将y=sin的图象()A.向左平移个单位 B.同右平移个单位C.向左平移个单位 D.向右平移个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.8. 函数y=sin(2x+)的图像的一条对轴方程是()A.x=-B. x=- C .x=D.x=9.若,则下列结论中一定成立的是()A. B. C. D.10.函数的图象()A.关于原点对称 B.关于点(-,0)对称 C.关于y轴对称 D.关于直线x=对称11.函数是()A.上是增函数 B.上是减函数C.上是减函数D.上是减函数12.函数的定义域是()A.B.C. D.二、填空题:13. 函数的最小值是 .14 与终边相同的最小正角是_______________15. 已知则 .16 若集合,,则=_______________________________________三、解答题:17.已知,且.a)求sinx、cosx、tanx的值.b)求sin3x – cos3x的值.18 已知,(1)求的值(2)求的值19. 已知α是第三角限的角,化简20.已知曲线上最高点为(2,),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(2)一、选择题:1.已知,则化简的结果为()A. B. C. D. 以上都不对2.若角的终边过点(-3,-2),则( )A.sin tan>0 B.cos tan>0C.sin cos>0 D.sin cot>03 已知,,那么的值是()A B C D4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知,,则tan2x= ( ) A. B. C. D.6.已知,则的值为()A. B. 1 C. D. 2 7.函数的最小正周期为()A.1 B. C. D.8.函数的单调递增区间是()A. B.C. D.9.函数,的最大值为()A.1 B. 2 C. D.10.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知sin(+α)=,则sin(-α)值为()A. B. — C. D. —12.若,则()A. B. C. D.二、填空题13.函数的定义域是14.的振幅为初相为15.求值:=_______________16.把函数先向右平移个单位,然后向下平移2个单位后所得的函数解析式为________________________________三、解答题17 已知是关于的方程的两个实根,且,求的值18.已知函数,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间19.已知是方程的两根,且,求的值20.如下图为函数图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线对称的函数解析式必修4 第三章三角恒等变换(1)一、选择题:1.的值为 ( )A 0BC D2.,,,是第三象限角,则()A B C D3.设则的值是( )A B C D4. 已知,则的值为()A B C D5.都是锐角,且,,则的值是()A B C D6. 且则cos2x的值是()A B C D7.在中,的取值域范围是 ( )A B C D8. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A B C D9.要得到函数的图像,只需将的图像()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位10. 函数的图像的一条对称轴方程是()A、 B、 C、 D、11.若是一个三角形的最小内角,则函数的值域是( )A B C D12.在中,,则等于 ( )A B C D二、填空题:13.若是方程的两根,且则等于14. .在中,已知tanA ,tanB是方程的两个实根,则15. 已知,则的值为16. 关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图像关于点成中心对称图像;④将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:17. 化简18. 求的值.19. 已知α为第二象限角,且sinα=求的值.20.已知函数,求(1)函数的最小值及此时的的集合。
高一数学(人教B版)必修4:第1章基本知能检测
阶段性测试题 一(第一章基本知能检测)本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.sin480°的值是( )A .-12B .-32 C.12 D.32[答案] D[解析] sin480°=sin(360°+120°)=sin120°=32. 2.tan300°+cot405°的值为( )A .1+ 3B .1-3C .-1- 3D .-1+ 3 [答案] B[解析] tan300°+cot405°=tan[360°+(-60°)]+cot(360°+45°)=-tan60°+cot45°=1- 3.3.下列命题中不正确的个数是( )①小于90°的角是锐角; ②终边不同的角的同名三角函数值不等; ③若sin α>0,则α是第一、二象限角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-x x 2+y2.A .1B .2C .3D .4 [答案] D[解析] 对于①,负角小于90°,但不是锐角. π4和3π4终边不同,但正弦值相等,所以②错. sin π2=1,但π2不是一、二象限角.是轴线角所以③错,对于④由定义cos α=xx 2+y 2,所以④也不对.4.若角α的终边落在直线x +y =0上,则|tan α|tan α+sin α1-cos 2α的值等于( )A .2或-2B .-2或0C .2或-2D .0或2 [答案] B[解析] 由题意知α终边可在第二或第四象限.当α终边在第二象限时,tan α<0,sin α>0, ∴原式=-1+1=0.当α终边在第四象限时,tan α<0,sin α<0, ∴原式=-1+(-1)=-2.5.函数y =|sin(13x -π4)|的周期为( )A .3πB .4πC .5πD .6π [答案] A[解析] ∵y =sinsin(13x -π4)的周期T =6π,∴y =|sin(13x -π4)|的周期为T =3π.6.若α是三角形的内角,且sin α+cos α=23,则该三角形是( )A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形 [答案] A[解析] ∵sin α+cos α=23,∴1+2sin αcos α=49,∴sin αcos α=-518<0,∴α为钝角,故选A. 7.若0≤x ≤π2,sin x ·cos x =12,则11+sin x +11+cos x 的值是( )A .39+10 5B .9-25C .9+215D .4-2 2 [答案] D[解析] (sin x +cos x )2=1+2sin x ·cos x =1+1=2, ∴sin x +cos x =±2,∵0≤x ≤π2∴sin x >0,cos x >0,∴sin x +cos x =2,原式=1+cos x +1+sin x (1+sin x )(1+cos x )=2+sin x +cos x1+sin x +cos x +sin x ·cos x=2+21+2+12=4-2 2.8.函数f (x )=tan ⎝⎛⎭⎫x +π4的单调递增区间为( )A.⎝⎛⎭⎫k π-π2,k π+π2,k ∈Z B .(k π,(k +1)π),k ∈Z C.⎝⎛k π-3π4,k π+π4,k ∈Z D.⎝⎛⎭⎫k π-π4,k π+3π4,k ∈Z[答案] C[解析] 令x +π4=t ,则t 单调递增.由复合函数单调性知,只有tan t 单调递增才能使原函数单调递增,∴x +π4∈⎝⎛⎭⎫k π-π2,k π+π2,∴x ∈⎝⎛⎭⎫k π-3π4,k π+π4 (k ∈Z ). 9.若把函数y =f (x )的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再把所得的图象向左平移π2个单位,向下平移1个单位,最后得到的图象正好与函数y =12sin x 的图象相同,则f (x )的解析式为( )A .y =-12cos2x +1B .y =12cos2x +1C .y =12sin ⎝⎛⎭⎫2x -π4 +1D .y =12sin ⎝⎛⎭⎫2x +π4+1[答案] A[解析]10.定义在R 上的函数f (x )既是偶函数、又是周期函数,若f (x )最小正周期为π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,则f⎝⎛⎭⎫5π3的值为( ) A .-12 B.12 C.32 D .-32[答案] C[解析] f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫-π3+2π=f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3 =sin π3=32.11.若角α是三角形的一个内角,且sin α=13,则α等于( )A .π-arccos 223B .arcsin 13C .arcsin 13或π-arcsin 13D .arccos 223或π-arccos 223[答案] C[解析] sin α=13>0,α为三角形内角α∈(0,π),当α为锐角时α=arcsin 13,当α为钝角时α=π-arcsin 13.12.已知函数f (x )=12(sin x +cos x )-12x -cos x |,则f (x )的值域是( )A .[-1,1] B.⎣⎡⎦⎤-22,1 C.⎣⎡⎦⎤-1,22 D.⎣⎡⎦⎤-1,-22[答案] C[解析] 当sin x ≥cos x ,f (x )=cos x ,当sin x <cos x ,f (x )=sin x ,∴f (x )=⎩⎨⎧cos x (sin x ≥cos x )sin x (sin x <cos x ).其图象如图实线表示.所以值域为⎣⎡⎦⎤-1,22,故选C. 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.cos π3tan 5π4+34tan 2⎝⎛⎭⎫-π6+sin 11π6+cos 27π6+sin 7π2=________.[答案] -1[解析] 原式=cos π3-tan ⎝⎛⎭⎫π+π4+34tan 2π6+sin ⎝⎛⎭⎫2π-π6+cos 2⎝⎛⎭⎫π+π6+sin ⎝⎛⎭⎫3π+π2 =cos π3-tan π4+34tan 2π6-sin π6+cos 2π6-sin π2=12-1+34×13-12+34-1=-1. 14.函数y =cos x 的单调递减区间是________. [答案] ⎣⎡2k π,2k π+π2(k ∈Z )[解析] 由cos x ≥0得,-π2+2k π≤x ≤π2+2k π(k ∈Z ),∴函数的定义域为[-π2+2k π,π2+2k π](k ∈Z ),要求y =cos x 的单调递减区间,即求y =cos x 在定义域范围内的单调递减区间.故所求函数的单调递减区间为[2k π,2k π+π2](k ∈Z ).15.如图是函数y =A sin(ωx +φ)+B 的图象的一部分,则函数的解析式为________.[答案] y =-2sin ⎝⎛⎭⎫2x +π4+3[解析] |A |=5-12=2,T =4⎝⎛⎭⎫π8+π8=π,B =3, ∴ω=2,而2⎝⎛⎭⎫-π8+φ=0, ∴φ=π4,∴A =-2,∴y =-2sin ⎝⎛⎭⎫2x +π4+3.16.若函数y =f (x )同时具有性质: ①是周期函数且最小正周期为π; ②在⎣⎡⎦⎤-π6,π3上是增函数;③对任意x ∈R ,都有f ⎝⎛⎭⎫π3-x =f ⎝⎛⎭⎫π3+x .则函数y =f (x )的解析式可以是________.(只需写出满足条件的函数y =f (x )的一个解析式即可)[答案] f (x )=sin ⎝⎛⎭⎫2x -π6[解析] 由①知ω=2.由③知x =π3为对称轴,∴f (x )=sin ⎝⎛⎭⎫2x -π6(答案不惟一).三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知cos ⎝⎛⎭⎫π2-α=2cos ⎝⎛⎭⎫3π2+β,3sin ⎝⎛⎭⎫3π2-α= -2sin ⎝⎛⎭⎫π2+β,且0<α<π,0<β<π,求α,β的值. [解析] cos ⎝⎛⎭⎫π2-α=2cos⎝⎛⎭⎫3π2+β,即 sin α=2sin β.①3sin ⎝⎛⎭⎫3π2-α=-2sin ⎝⎛⎭⎫π2+β,即 3cos α=2cos β.②式①2+②2得2=sin 2α+3cos 2α. 又sin 2α+cos 2α=1,所以cos 2α=12.所以cos α=±22.又因为α∈(0,π), 所以α=π4或α=3π4.当α=π4cos α=22,cos β=32cos α=32.又β∈(0,π),所以β=π6当α=3π4时,cos α=-22,cos β=32cos α=-32. 又β∈(0,π),所以β=5π6.综上所述,α=π4,β=π6或α=3π4,β=5π6.18.(本小题满分12分)若集合M =⎩⎨⎧⎭⎬⎫θ⎪⎪sin θ≥12,0≤θ≤π,N =⎩⎨⎧⎭⎬⎫θ⎪⎪cos θ≤12,0≤θ≤π,求M ∩N .[解析] 解法一:可根据正弦函数图象和余弦函数图象,作出集合N 和集合M ,然后求M ∩N .首先作出正弦函数与余弦函数的图象以及直线y =12.如图.结合图象得集合M 、N 分别为M =⎩⎨⎧⎭⎬⎫θ⎪⎪π6θ≤5π6,N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤π. 得M ∩N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤56π.解法二:如图所示,由单位圆中的三角函数线知M =⎩⎨⎧⎭⎬⎫θ⎪⎪ π6θ≤5π6,N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤π.由此可得M ∩N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤5π6. 19.(本小题满分12分)图为函数y 1=A sin(ωx +φ)的一段图象,已知A >0,ω>0,φ∈⎝⎛⎭⎫-π2,π2.(1)写出函数y 1的解析式;(2)若函数y 2与y 1的图象关于直线x =2对称,求函数y 2的解析式.[解析] (1)由图知A =2,T =8,ω=2πT =π4.当x =7时,有0=2sin ⎝⎛⎭⎫π4·7+φ,∴φ∈⎩⎨⎧⎭⎬⎫θ⎪⎪θ=k π-7π4,k ∈Z. 又∵φ∈⎝⎛⎭⎫-π2,π2,所以φ=π4.∴y 1=2sin ⎝⎛⎭⎫π4x +π4; (2)设y 2图象上任一点P (x ,y ),点P 关于直线x =2的对称点为Q (x 0,y 0), 即Q (4-x ,y )在y 1图象上, 有y =2sin ⎣⎡⎦⎤π4(4-x )+π4,即y =2sin ⎝⎛⎭⎫π+π4-π4x ,即y =2sin ⎝⎛⎭⎫π4x -π4,∴y 2=2sin ⎝⎛⎭⎫π4x -π4.20.(本小题满分12分)说明y =-2sin ⎝⎛⎭⎫2x -π6+1的图象是由y =sin x 的图象怎样变换而来的.21.(本小题满分12分)某港口水的深度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下面是某日水深的数据:经长期观察,y=f(t)的曲线可以近似地看成函数y=A sinωt +b的图象.(2)一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时被认为是安全的(船舶停靠时,船底只需不碰海底即可).某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,问:它至多能在港内停留多长时间(忽略进出港所需的时间)?[解析](1)由已知数据,易知y=f(t)的周期T=12.由已知,振幅A=3,b=10,所以y=3sin πt6+10;(2)由题意,该船进出港时,水深应不小于5+6.5=11.5(米),∴3sin π6+10≥11.5,即sinπt6≥12. 解得2k π+π6≤πt 6≤2k π+56π(k ∈Z ),∴12k +1≤t ≤12k +5(k ∈Z ), 在同一天内,取k =0或1, 所以1≤t ≤5或13≤t ≤17.故该船可在当日凌晨1时进港,下午17时离港,它在港内至多停留16小时. 22.(本小题满分14分)已知函数f (x )=23sin(3ωx +π3),其中ω>0.(1)若f (x +θ)是周期为2π的偶函数,求ω及θ的值; (2)若f (x )在(0,π3]上是增函数,求ω的最大值.[解析] (1)由函数解析式f (x )=23sin(3ωx +π3),ω>0整理可得f (x +θ)=23sin[3ω(x +θ)+π3]=23sin(3ωx +3ωθ+π3),由f (x +θ)的周期为2π,根据周期公式2π=2π3ω,且ω>0,得ω=13,∴f (x +θ)=23sin(x +θ+π3), ∵f (x +θ)为偶函数,定义域x ∈R 关于原点对称, 令g (x )=f (x +θ)=23sin(x +θ+π3),∴g (-x )=g (x ),23sin(x +θ+π3)=23sin(-x +θ+π3),∴x +θ+π3π-(-x +θ+π3)+2k π,k ∈Z ,∴θ=k π+π6k ∈Z .∴ω=13,θ=k π+π6,k ∈Z .(2)∵ω>0,∴2k π-π2≤3ωx +π3≤π2+2k π,k ∈Z ,∴2k π3ω-15π18ω≤x ≤π18ω+2k π3ω,k ∈Z ,若f (x )在(0,π3]上是增函数,∴(0,π3]为函数f (x )的增区间的子区间,∴π18ω≥π3,∴ω≤16,∴ωmax =16.。
高一数学(必修4)综合试卷(1)
高一数学(必修4)综合试卷(1)一、选择题:(5′×10)1.sin2400的值是 [ ] A.-21 B.21 C.23 D.-23 2.已知=(– 2,4),=(1,2), 则·等于 [ ] A.0 B.10 C.6 D.-10 3.已知=(4, – 2),=(4,2),则21AB 等于 [ ] A.(0,2) B.(0,-2) C.(4,0) D.(0,4)4.cos150·cos1050– cos750·sin1050的值是 [ ]A.0B.-21C.21D.±21 5.设点P(2,3)分21P P 所成的比为21,点P 1坐标为(1,2),则点P 2的坐标是 [ ] A.(2,3) B.(3,4) C.(4,5) D.(5,6)6.函数f(x)=sin2x ·cos2x 是 [ ] A.周期为π的偶函; B.周期为π的奇函数; C.周期为2π的偶函数; D.周期为2π的奇函数. 7.若=(1,2),=(–3,2),且(k +)∥(–3),则实数k 的值是 [ ] A.-31 B.19 C.911D.-2 8.函数f(x)=3cosx – sinx(0≤x ≤6π)的值域是 [ ] A.[-3,1] B.[1,3] C.[-3,2] D.[1,2]9.如图, △ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线, 它们交于点G ,则下列各等式中不正确的是 [ ]A.32=;B.21=;C.FG CG 2-= ;D.213231=+BC . 10.对于函数f(x)=sin(2x+6π),下列命题: ①函数图象关于直线x=-12π对称;②函数图象关于点(125π,0)对称;③函数图象可看作是把y=sin2x 的图象向左平移个6π单位而得到;④函数图象可看作是把y=sin(x+6π)的图象上所有点的横坐标变为原来的21倍(纵坐标不变)而得到;其中正确的命题的个数是 [ ]GD FECB AA.0B.1C.2D.3 二、填空题:(4′×6) 11. 若cos2α =53, 则sin 4α – cos 4α = . 12.已知向量=(x+3,x 2– 3x – 4)与相等,若A(1,2),B(3,2),则x= ; 13.已知tan(α+β)=52,tan(β–4π)=41,则tan(α+4π)= ; 14.设i , j 是平面直角坐标系内x 轴,y 轴正方向上的两个单位向量,且→--AB = 4i + 2j ,→--AC= 3i + 4 j . 则△ABC 的形状是__________________。
高一数学(人教B版)必修4:第1章综合素质检测
阶段性测试题二(第一章综合素质检测)本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.tan600°的值是( ) A .-33B.33C .- 3 D. 3 [答案] D[解析] tan600°=tan(360°+180°+60°) =tan60°= 3.2.角α满足条件sin αcos α>0,sin α+cos α<0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 [答案] C[解析] ∵sin αcos α>0,∴α为第一或第三象限角, 又∵sin α+cos α<0,∴α为第三象限角.3.在区间[-π,π]上既是增函数,又是奇函数的是( ) A .y =sin2(π-x ) B .y =sin ⎝⎛⎭⎫π+x 4 C .y =sin ⎝⎛⎭⎫π2+x2D .y =cos 3π+x2[答案] D[解析] y =cos 3π+x 2=sin x2在区间[-π,π]上是增函数,又是奇函数.4.已知sin x -cos x =15(0≤x <π),则tan x 等于( )A .-34B .-43C.34D.43 [答案] D[解析] ∵sin x -cos x =15,∴1-2sin x cos x =125,∴2sin x cos x =2425>0,∵0≤x <π,∴x 是第一象限角.(sin x +cos x )2=1+2sin x cos x =4925,∴sin x +cos x =75.由⎩⎨⎧sin x -cos x =15sin x +cos x =75,得⎩⎨⎧sin x =45cos x =35.∴tan x =43.5.函数y =|sin x |的一个单调增区间是( ) A.⎝⎛-π4,π4 B.⎝⎛π4,3π4 C.⎝⎛π,3π2 D.⎝⎛⎭⎫3π2,2π [答案] C[解析] 作出函数y =|sin x |的图象.由图象可知,选C.6.如果函数f (x )=sin(πx +θ)(0<θ<π)的最小正周期为T ,且当x =2时取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=πD .T =1,θ=π2[答案] A[解析] T =2πω=2ππ=2,又x =2时,f (x )取最大值,∴2π+θ=π22k π,k ∈Z ,∴θ=2k π-3π2,k ∈Z .令k =1,得θ=π2,故选A.7.已知α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 [答案] D[解析] ∵⎪⎪⎪⎪sin α2=-sin α2,∴α2是第三或第四象限角,又α是第三象限角,由等分象限法(如右图)可知,α2D.8.函数f (x )=sin ⎝⎛⎭⎫32+π4的图象相邻的两个零点之间的距离是( ) A.π3 B.2π3 C.4π3D .2π [答案] B[解析] 函数y =sin ⎝⎛⎭⎫32x +π4的图象相邻的两个零点之间的距离为半个周期,又T =2π32=4π3,∴T 2=2π3. 9.函数y =cos ⎝⎛⎭⎫-3x +π3的一个对称中心为( )A.⎝⎛⎭⎫π6,0B.⎝⎛⎭⎫π3,0C.⎝⎛⎭⎫5π18,0D.⎝⎛⎭⎫π2,0 [答案] C[解析] y =cos ⎝⎛⎭⎫-3x +π3=cos ⎝⎛⎭⎫3x -π3,令3x -π3=k π+π2(k ∈Z ),∴x =k π3+5π18(k ∈Z ).当k =0时,x =5π18,故选C.10.(2009·浙江)已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能...是( )[答案] D[解析] 图A 中函数的最小值小于2,故0<a <1,而周期大于2π,故A 中图象可以是函数f (x )的图象;图B 中,函数的最大值大于2,故a 应大于1,其周期小于2π,故B 中图象可以是函数f (x )的图象;当a =0时,f (x )=1,此时对应C 中图象;对于D 中,最大值大于2,其周期应小于2π,而图象中的周期大于2π,故D 中图象不可能为函数f (x )的图象.11.若|x |≤π4,那么函数y =cos 2x +sin x 的最小值是( )A.2-12 B.1-22C .-2+12D .-1[答案] B[解析] y =cos 2x +sin x =1-sin 2x +sin x =-⎝⎛⎭⎫sin x -122+54,∵|x |≤π4,∴-π4≤x ≤π4,∴-22≤sin x ≤22, ∴当sin x =-22时,y 取最小值1-22. 12.关于x 的方程2sin ⎝⎛⎭⎫x +π4=2m 在[0,π]内有相异两实根,则实数m 的取值范围为( )A.⎣⎡-12,12 B.⎣⎡⎦⎤12,22 C.⎣⎡⎦⎤-22,22D.⎣⎡⎦⎤-12,24[答案] B[解析] 验证:当m =0时,方程化为2sin ⎝⎛⎭⎫x +π4=0,∵x ∈[0,π], ∴只有当x =3π4时,方程成立, ∴m ≠0,故应选B.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.已知sin α、cos α是方程2x 2-x -m =0的两根,则m =________. [答案] 34[解析] 由题意,得⎩⎨⎧sin α+cos α=12sin αcos α=-m2,解得m =34,又m =342x 2-x -m =0有两根.14.要得到y =sin ⎝⎛⎭⎫x 2+π3的图象,需将函数y =sin x2的图象至少向左平移________个单位.[答案]2π3[解析] 将函数y =sin x 2的图象向左平移2π3得到y =sin 12⎝⎛⎭⎫x +2π3=sin⎝⎛⎭⎫x 2+π3的图象.15.已知函数f (x )=a sin2x +cos2x (a ∈R )的图象的一条对称轴方程为x =π12,则a 的值为________.[答案]33[解析] 由题意,得f (0)=f ⎝⎛⎭⎫π6,即a sin0+cos0=a sin π3+cos π3,∴32a =12,∴a =33. 16.有一种波,其波形为函数y =sin ⎝⎛⎭⎫π2的图象,若在区间[0,t ]上至少有2个波峰(图象的最高点),则正整数t 的最小值是________.[答案] 5[解析] ∵54T ≤t ,∴54×2ππ2≤t ,∴t ≥5.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知角α的终边上的一点的坐标是P (-3,y ),且sin α=24y ,求sin α和tan α.[解析] 当y =0时,角α的终边在x 轴的负半轴上,sin α=0,tan α=0; 当y ≠0时,r =3+y 2,sin α=24y , ∴3+y 2=22, 因此y =±5, 当y =5时,sin α=104,tan α=-153; 当y =-5时,sin α=-104,tan α=153. 18.(本小题满分12分) 求函数f (x )=sin x +lg(25-x 2)cos x的定义域.[解析] 由题意,得⎩⎪⎨⎪⎧sin x ≥0cos x >025-x 2>0,∴⎩⎪⎨⎪⎧2k π≤x ≤(2k +1)π,k ∈Z-π2+2k π<x <π2+2k π,k ∈Z-5<x <5,即-5<x <-3π2或0<x <π2 ∴函数f (x )=sin x +lg(25-x 2)cos x的定义域为⎝⎛⎭⎫-5,-3π2∪⎝⎛⎭⎫0,π219.(本小题满分12分)由函数y =2sin3x ⎝⎛⎭⎫π6x ≤5π6与函数y =2(x ∈R )的图象围成一个封闭图形,求这个封闭图形的面积.[解析] 如图所示,根据对称性,所围成封闭图形的面积等价于一个矩形面积(S 3=S 1+S 2).∴封闭图形的面积 S =⎝⎛5π6-π6×2=4π320.(本小题满分12分)已知sin x +sin y =13,求t =sin y -cos 2x 的最值.[解析] 由sin x +sin y =13sin y =13-sin x .∵-1≤sin y ≤1,∴-1≤13-sin x ≤1,∵-1≤sin x ≤1,∴-23≤sin x ≤1.t =sin y -cos 2x =13-sin x -1+sin 2x=sin 2x -sin x -23=⎝⎛⎭⎫sin x -122-1112. 又-23≤sin x ≤1,∴t ∈⎣⎡⎦⎤-1112,49, 即t max =49,t min =-111221.(本小题满分12分)如图所示,函数y =A sin(ωx +φ)(A >0,ω>0,|φ|≤π2)的图象上相邻的最高点与最低点的坐标分别为⎝⎛⎭⎫5π12,3和⎝⎛⎭⎫11π12,-3,求该函数的解析式.[解析] 由题意知A =3,设最小正周期为T , 则T 2=11π12-5π12=π2, ∴T =π,又T =2πω,∴ω=2.∴函数解析式为y =3sin(2x +φ). ∵点⎝⎛⎭⎫5π12,3在图象上, ∴3=3sin ⎝⎛⎭⎫2×5π12+φ,∴sin⎝⎛⎭⎫5π6+φ=1. ∴5π6+φ=2k π+π2,∴φ=2k π-π3,k ∈Z . ∵|φ|≤π2,∴φ=-π3.∴函数的解析式为y =3sin ⎝⎛⎭⎫2x -π3.22.(本小题满分14分)已知某海滨浴场的海浪高达y (米)是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ).下表是某日各时的浪高数据.(1)根据以上数据,求出函数y =A cos ωt +b 的最小正周期T 、振幅A 及函数表达式; (2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8 00至晚上20 00之间,有多长时间可供冲浪者进行运动?[解析] (1)由表中数据,知周期T =12, ∵ω=2πT =2π12=π6. 由t =0,y =1.5,得A +b =1.5. 由t =3,y =1.0,得b =1.0. ∴A =0.5,b =1,∴振幅为12,∴y =12cos π6t +1.(2)由题意知,当y >1时才可对冲浪者开放.∴12cos π6t +1>1,∴cos π6t >0. ∴2k π-π2<π6<2k π+π2,即12k -3<t <12k +3.∵0≤t ≤24,故可令k 分别为0、1、2,得0≤t <3或9<t <15或21<t ≤24.∴在规定时间上午8 00至晚上20 00之间,有6个小时时间可供冲浪者运动,即上午9 00至下午15 00.。
高一数学必修4综合能力测试
本册综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若α=-3,则α是第( )象限角.( ) A .一 B .二 C .三 D .四[答案] C[解析] ∵-π<-3<-π2,∴-3为第三象限角.2.已知扇形的周长为8 cm ,圆心角为2弧度,则该扇形的面积为( )A .4 cm 2B .6 cm 2C .8 cm 2D .16 cm 2[答案] A[解析] 由题意得⎩⎪⎨⎪⎧ 2r +l =8,l =2r.解得⎩⎪⎨⎪⎧r =2,l =4.所以S =12lr =4(cm 2).3.有三个命题:①向量AB →与CD →是共线向量,则A 、B 、C 、D 必在同一条直线上;②向量a 与b 平行,则a 与b 的方向相同或相反;③单位向量都相等,其中真命题有( )A .0个B .1个C .2个D .3个[答案] A4.已知sin θ<0,tan θ>0,则1-sin 2θ化简的结果为( ) A .cos θ B .-cos θ C .±cos θ D .以上都不对[答案] B[解析] ∵sin θ<0,tan θ>0,故θ为第三象限角,∴cos θ<0. ∴1-sin 2θ=cos 2θ=|cos θ|=-cos θ. 5.tan(-1560°)的值为( ) A .- 3 B .-33C.33D. 3 [答案] D[解析] tan(-1560°)=-tan1560°=-tan(4×360°+120°)=-tan120°=-tan(180°-60°)=tan60°= 3.6.已知α是锐角,a =(34,sin α),b =(cos α,13),且a ∥b ,则α为( )A .15°B .45°C .75°D .15°或75°[答案] D[解析] ∵a ∥b ,∴sin α·cos α=34×13,即sin2α=12又∵α为锐角,∴0°<2α<180°. ∴2α=30°或2α=150° 即α=15°或α=75°.7.已知sin α>sin β,那么下列命题中成立的是( ) A .若α,β是第一象限角,则cos α>cos β B .若α,β是第二象限角,则tan α>tan β C .若α,β是第三象限角,则cos α>cos β D .若α,β是第四象限角,则tan α>tan β [答案] D[解析] 可以结合单位圆进行判断. 8.函数y =sin x (π6≤x ≤2π3)的值域是( )A .[-1,1]B .[121]C .[12,32]D .[32,1][答案] B[解析] 可以借助单位圆或函数的图象求解.9.要得到函数y =3sin(2x +π4)的图象,只需将函数y =3sin2x 的图象( )A .向左平移π4个单位B .向右平移π4个单位C .向左平移π8个单位D .向右平移π8个单位[答案] C10.已知a =(1,-1),b =(x +1,x ),且a 与b 的夹角为45°,则x 的值为( )A .0B .-1C .0或-1D .-1或1[答案] C[解析] 由夹角公式:cos45°=x +1-x2·(x +1)2+x 2=22,即x 2+x =0,解得x =0或x =-1.11.(2012·全国高考江西卷)若sin α+cos αsin α-cos α=12,则tan2α=( )A .-34B.34 C .-43D.43[答案] B[解析] 主要考查三角函数的运算,分子分母同时除以cos α可得tan α=-3,带入所求式可得结果.12.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =32,则有( )A .c <a <bB .b <c <aC .a <b <cD .b <a <c[答案] A[解析] a =sin62°,b =cos26°=sin64°,c =32=sin60°,∴b >a >c . 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若tan α=3,则sin αcos α的值等于________.[答案] 310[解析] sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=31+9=310. 14.已知:|a |=2,|b |=2,a 与b 的夹角为π4,要λb -a 与a 垂直,则λ为________.[答案] 2[解析] 由题意a ·(λb -a )=0,即λa ·b -|a |2=0,∴λ·2×2×22-4=0,即λ=2.15.函数y =sin(π3-2x )+sin2x 的最小正周期是________.[答案] π[解析] y =sin π3cos2x -cos π3sin2x +sin2x =32cos2x +12sin2x =cos(2x -π6),故T =2π2=π.16.已知三个向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,则k =________.[答案] -2或11[解析] 由A 、B 、C 三点共线,可得AB →=λBC →,即(4-k ,-7)=λ(6,k -5),于是有方程组⎩⎪⎨⎪⎧k +6λ=4,kλ-5λ=-7,解得⎩⎪⎨⎪⎧k =-2λ=1,或⎩⎨⎧k =11λ=-76.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)已知tan α=12,求1+2sin (π-α)cos (-2π-α)sin 2(α)-sin 2(5π2-α)的值.[解析] 原式=1+2sin αcos αsin 2α-cos 2α=sin 2α+cos 2α+2sin αcos αsin 2α-cos 2α=(sin α+cos α)2(sin α-cos α)(sin α+cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1 又∵tan α=12,∴原式=12+112-1=-3.18.(本题满分12分)已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间[-π6,π2]上的最大值和最小值.[解析] (1)f (x )=2sin(π-x )cos x =2sin x cos x =sin2x ∴函数f (x )的最小正周期T =2π2=π.(2)由-π6≤x ≤π2,知-π3≤2x ≤π∴-32≤sin2x ≤1∴f (x )在区间[-π6,π2]上的最大值为1,最小值为-32.19.(本题满分12分)已知向量a =3e 1-2e 2,b =4e 1+e 2,其中e 1=(1,0),e 2=(0,1),求:(1)a ·b ;|a +b |;(2)a 与b 的夹角的余弦值.[解析] (1)a =3(1,0)-2(0,1)=(3,-2), b =4(1,0)+(0,1)=(4,1), a ·b =3×4+(-2)×1=10.∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=|a |2+20+|b |2 =13+20+17=50, ∴|a +b |=5 2.(2)cos<a ,b >=a ·b |a ||b |=1013·17=10221221.20.(本题满分12分)(2011~2012浙江调研)设向量α=(3sin 2x ,sin x +cos x ),β=(1,sin x -cos x ),其中x ∈R ,函数f (x )=α·β.(1)求f (x )的最小正周期;(2)若f (θ)=3,其中0<θ<π2cos(θ+π6)的值.[解析] (1)由题意得f (x )=3sin2x +(sin x +cos x )·(sin x -cos x )=3sin2x -cos2x =2sin(2x -π6),故f (x )的最小正周期T =2π2=π.(5分)(2)由(1)知,f (θ)=2sin(2θ-π6),若f (θ)=3,则sin(2θ-π6)=32.又因为0<θ<π2,所以-π6<2θ-π6<5π6,则2θ-π6=π3或2θ-π6=2π3,故θ=π4或θ=5π12.(9分)当θ=π4时,cos(θ+π6)=cos(π4+π6)=cos π4cos π6-sin π4sin π6=6-24.(12分)当θ=5π12时,cos(θ+π6)=cos(5π12+π6)=cos(π-5π12)=-cos 5π12=-cos(π4+π6)=-6-24.(15分)21.(本题满分12分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0,|φ|<π2)的最大值为22,最小值为-2,周期为π,且图象过(0,-24). (1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间.[解析] (1)∵f (x )=A sin(ωx +φ)+B 的最大值为22,最小值为-2.∴A =322,B =22.又∵f (x )=A sin(ωx +φ)+B 的周期为π, ∴φ=2πω=π,即ω=2.∴f (x )=322sin(2x +φ)+22又∵函数f (x )过(0,-24),∴-24=322sin φ+22,即sin φ=-12.又∵|φ|<π2,∴φ=-π6,∴f (x )=322sin(2x -π6)+22.(2)令t =2x -π6,则y =322sin t +22,其增区间为:[2k π-π2,2k π+π2],k ∈Z .即2k π-π2≤2x -π6≤2k π+π2,k ∈Z .解得k π-π6≤x ≤k π+π3.(k ∈Z )所以f (x )的单调递增区间为[k π-π6,k π+π3],k ∈Z .22.(本题满分12分)(2012·全国高考山东卷)已知向量m =(sin x,1),n =(3A cos x ,A2cos2x )(A >0),函数f (x )=m ·n 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数y =f (x )的图象像左平移π12个单位,再将所得图象各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤0,5π24上的值域。
(word完整版)高一数学必修四综合试题及详细答案
1.下列命题中正确的是( )A .第一象限角必是锐角B .终边相同的角相等C .相等的角终边必相同D .不相等的角其终边必不相同2.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是 ( )A .1或-1B .52或52-C .1或52- D .-1或523.下列命题正确的是( )A .若→a ·→b =→a ·→c ,则→b =→cB .若|||b -=+,则→a ·→b =0C .若→a //→b ,→b //→c ,则→a //→c D .若→a 与→b 是单位向量,则→a ·→b =14.计算下列几个式子,①οοοο35tan 25tan 335tan 25tan ++,②2(sin35︒cos25︒+sin55︒cos65︒), ③οο15tan 115tan 1-+ , ④ 6tan16tan2ππ-,结果为3的是( )A .①②B .③C .①②③D .②③④5.函数y =cos(4π-2x )的单调递增区间是 ( ) A .[k π+8π,k π+85π] B .[k π-83π,k π+8π]C .[2k π+8π,2k π+85π]D .[2k π-83π,2k π+8π](以上k ∈Z )6.△ABC 中三个内角为A 、B 、C ,若关于x 的方程22cos cos cos 02Cx x A B --=有一根为1,则△ABC 一定是 ( )A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形 7.将函数)32sin()(π-=x x f 的图像左移3π,再将图像上各点横坐标压缩到原来的21,则所得到的图象的解析式为( )A .x y sin =B .)34sin(π+=x yC .)324sin(π-=x y D .)3sin(π+=x y8. 化简10sin 1++10sin 1-,得到( ) A .-2sin5 B .-2cos5 C .2sin5 D .2cos59.函数f(x)=sin2x·cos2x 是( )A .周期为π的偶函数B .周期为π的奇函数C .周期为2π的偶函数 D .周期为2π的奇函数. 10.若|2|= ,2||= 且(b a -)⊥a ,则a 与b 的夹角是( )A .6πB .4πC .3πD .π125 11.正方形ABCD 的边长为1,记→-AB =→a ,→-BC =→b ,→-AC =→c ,则下列结论错误..的是( )A .(→a -→b )·→c =0B .(→a +→b -→c )·→a =0C .(|→a -→c | -|→b |)→a =→D .|→a +→b +→c |=213.已知曲线y =Asin(ωx +ϕ)+k (A>0,ω>0,|ϕ|<π)在同一周期内的最高点的坐标为(8π, 4),最低点的坐标为(85π, -2),此曲线的函数表达式是 .14.设sin α-sin β=31,cos α+cos β=21, 则cos(α+β)= .15.已知向量OP X OB OA OP 是直线设),1,5(),7,1(),1,2(===上的一点(O 为坐标原点),那么⋅的最小值是___________.16.关于下列命题:①函数x y tan =在第一象限是增函数;②函数)4(2cos x y -=π是偶函数; ③函数)32sin(4π-=x y 的一个对称中心是(6π,0);④函数)4sin(π+=x y 在闭区间]2,2[ππ-上是增函数; 写出所有正确的命题的题号: 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学(必修4)综合试卷(1)
一、选择题:(5′×10)
1.sin2400的值是 [ ] A.-
21 B.21 C.23 D.-2
3 2.已知=(– 2,4),=(1,2), 则·等于 [ ] A.0 B.10 C.6 D.-10 3.已知=(4, – 2),=(4,2),则
2
1
AB 等于 [ ] A.(0,2) B.(0,-2) C.(4,0) D.(0,4)
4.cos150·cos1050– cos750·sin1050的值是 [ ]
A.0
B.-21
C.21
D.±2
1 5.设点P(2,3)分2
1P P 所成的比为2
1
,点P 1坐标为(1,2),则点P 2的坐标是 [ ] A.(2,3) B.(3,4) C.(4,5) D.(5,6)
6.函数f(x)=sin2x ·cos2x 是 [ ] A.周期为π的偶函; B.周期为π的奇函数; C.周期为
2π的偶函数; D.周期为2
π
的奇函数. 7.若=(1,2),=(–3,2),且(k +)∥(–3),则实数k 的值是 [ ] A.-
31 B.19 C.9
11
D.-2 8.函数f(x)=3cosx – sinx(0≤x ≤
6
π
)的值域是 [ ] A.[-3,1] B.[1,3] C.[-3,2] D.[1,2]
9.如图, △ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线, 它们交于点G ,则下列各等式中不正确的是 [ ]
A.32=
;B.21
=;C.FG CG 2-= ;D.2
13231=+BC . 10.对于函数f(x)=sin(2x+
6π
),下列命题: ①函数图象关于直线x=-12π对称;②函数图象关于点(12
5π
,0)对称;
③函数图象可看作是把y=sin2x 的图象向左平移个6
π
单位而得到;
④函数图象可看作是把y=sin(x+6
π)的图象上所有点的横坐标变为原来的21
倍
(纵坐标不变)而得到;其中正确的命题的个数是 [ ]
G
D F
E
C
B A
A.0
B.1
C.2
D.3 二、填空题:(4′×6) 11. 若cos2α =
5
3
, 则sin 4α – cos 4α = . 12.已知向量=(x+3,x 2– 3x – 4)与相等,若A(1,2),B(3,2),则x= ; 13.已知tan(α+β)=
52,tan(β–4π)=41,则tan(α+4
π
)= ; 14.设i , j 是平面直角坐标系内x 轴,y 轴正方向上的两个单位向量,且→
--AB = 4i + 2j ,→
--AC
= 3i + 4 j . 则△ABC 的形状是__________________。
. 15.在△ABC 中,∠A=300,AB=3,BC=1,则AC= ;
16.下列四个命题:①若λa =λb (λ为实数),则a =b ;②若a =b ,则a ·c =b ·c ; ③若a ·c =b ·c ,则a =b ;④若(b ·c )·a =(d ·e )·a (a ≠0),则b ·c =d ·e 其中正确命题的序号是 .
一、选择题:(5′×10)
二、填空题:(4′×6)
11. ; 12. ;
13. ;
14. ____. 15.__________________; 16.___________________. 三、解答题:
17.(12分)如图,、不共线,=t (t ∈R ), 用、表示.
18. (12分)求证:tan(α+4π)-tan(α-4π)=α
2cos 2
O
19. (12分)设a =(3,-4),b =(2,x),c =(2,y), 若a ∥b 且a ⊥c ,求b 与c 的夹角.
20. (12分)已知α为第二象限角,化简
)
2
3
(sin 1)23sin()cos()5sin(212αππαπααπ+-----+.
21.(14′)甲船自某港出发时,乙船也正从相距该港7海里的海面上驶向该港.如图两船 的航线成600角,甲、乙两船的速度之比为2∶1,求两船最靠近时,相距该港各为多远.
22.(14′)已知函数y=4cos 2x+43sinxcosx-2,x ∈R.
①求函数的最大值及其相对应的x 值;②写出函数的单调增区间;
③此函数的图象是否可以由函数y=sin2x, x ∈R 的图象按向量=(h,k)(h,k 为常数)平移得到?若能,求出这样的向量;若不能,请说明理由.
港口。