一元一次不等式(组)及其应用

合集下载

一元一次不等式(组)在生活中的应用

一元一次不等式(组)在生活中的应用

一元一次不等式(组)在生活中的应用
一元一次不等式(组)是小学数学中的一个重要内容,它在我们的日常生活中有很多应用。

以下是一些关于一元一次不等式(组)在生活中的应用:
购物打折:很多商场会举办打折活动,例如:打五折、打八折等。

我们可以用一元一次不等式来计算打折后商品的价格,帮助我们做出更明智的购物决策。

制定家庭预算:家庭预算可以帮助我们合理规划家庭收支,避免浪费。

在制定家庭预算时,我们可以使用一元一次不等式来计算各种开支和收入之间的关系,以及如何分配家庭预算。

健身计划:健身计划可以帮助我们制定科学合理的健身计划,达到健身的目的。

在健身计划中,我们可以用一元一次不等式来计算身体指标和目标之间的关系,例如:BMI指数和体重、身高之间的关系。

公交出行:公交车站的到达时间通常是不确定的,我们可以使用一元一次不等式来计算公交车的到达时间和出发时间之间的关系,以便更好地安排出行时间。

总之,一元一次不等式(组)在我们的日常生活中有很多应用。

它可以帮助我们计算各种事物之间的关系,从而更好地规划生活和工作。

一元一次不等式(组)及其解法

一元一次不等式(组)及其解法
一元一次不等式(组 及其解法 一元一次不等式 组)及其解法
一.一元一次不等式的定义
只含有一个未知数, 只含有一个未知数,并且未知数的次数是一次的 不等式叫一元一次不等式. 不等式叫一元一次不等式.
二.形式: 形如 形式: 形如ax>b(a≠0)
如何解不等式ax>b(a ≠0)? 如何解不等式
b 分类讨论:a>0时,x> 分类讨论 时 a
1 − 3x 练习: (1)解不等式 − 7 ≤ <2 2 (2)解不等式组 : 4 + 2x > 7 x + 3 3x + 6 > 4 x + 5 2 x − 3 < 3x − 5
x+y=3 例8.方程组 8.方程组 的解满足 x-2y=-3+a 2y=-
x>0 ,求a的取值范围. 的取值范围. y>0
x
b a b a
x
b a<0时,x< 时 a
三.一元一次不等式的解法: 一元一次不等式的解法:
4 − 2x x −3 例1.解不等式 < 1− 3 4
去分母 去括号 移项b的形式 或 化成 的形式
练习:求不等式21 − 4 x > 5的非负整数解 1. 1 2 2.k取什么值时, 代数式 (1 − 5k ) − k的值为非负数. 2 3
2 3 x + 25 例2.关于x的方程 − ( x + m) = + 1的解是正数, 3 3 那么m的取值范围是什么?
四.一元一次不等式组
假设a>b 假设
x>a
(1)
x>b x>a
x>a
x<a

一元一次不等式(组)的应用

  一元一次不等式(组)的应用

专题20 一元一次不等式(组)的应用知识要点1.一元一次不等式(组)在实际生活中的应用,就是将实际问题转化为刻画不等关系的数学模型即不等式(组)这一数学问题,其基本步骤:(1)审:通过审题,分析已知数和未知数;(2)设:根据题意设未知数;(3)找:找出能够符合题意的不等关系;(4)列:根据不等关系列出不等式(组);(5)解:解不等式(组);(6)求:从不等式(组);(7)答:写出答案.2.注意常见的反映不等关系的关键词:如至多(或最多),不超过,不足,至少,不低于,不少于.3.利润问题中除了“利润=售价一进价(成本)=利润率×成本”外,还要注意打n 折是售价×0.1n 而不是售价×n .4.不等式(组)的解集一般是取值范围,但在实际问题中往往需要根据问题的实际意义求未知数的某特殊解,比如笔的支数、车的辆数、人数等应是整数解或非负整数解等,解答这类问题的关键是明确解的特征.典例精析例1 某种商品进价为800元,出售时标价为1200元,后来由于该商品积压,商品准备打折出售,但要保持利润不低于5%,则至少可以打多少折.【分析】关键词“不低于”的不等关系可用不等式表示,列出不等式解之即可.【解】设打x 折,依题意,得., 解得x ≥7.答:至少可以打7折.【点评】注意设未知数应“设打x 折”,不能“设至少打x 折”,同时注意打x 折应为0.1x 或.拓展与变式1 某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保持利润不低于5%,那么商店最多降 元出售商品.拓展与变式2 某商品的标价比成本价高25%,根据市场需要,该商品需降价出售,为了不亏本,至多降价百分之几?【反思】“至多”“至少”都是不等关系,结合利润问题中的数量关系和不等关系列出12000.18008005%x ⨯-≥⨯110x不等式.例2 某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上?【分析】注意有15题计算分数,把答对题的分数和答错题的分数加起来,列出不等式求解,注意答对的题数应为正整数.【解】设这个学生答对x 道题,依题意得,解得.∵x 应取正整数,∴x 的最小值为12.答:这个学生至少答对12題,成绩才能在60分以上.【点评】注意根据不等式的解集结合实际情况取符合实际意义的解.拓展与变式3 为了举行班级晚会,小明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍作为奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,那么小明最多可以买多少个球拍?拓展与变式4 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132000元,已知甲、乙、丙三种电冰箱的出厂价格分别为1200元/台,1600元/台,2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求购买甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【反思】找好不等关系列出不等式,同时注意问题的解要符合问题的实际意义.例3 甲、乙两家商场以同样的价格出售同样的电器,但是各自推出的优惠方案不同. 甲商场规定:凡购买超过1 000元电器的,超出的金额按90%实收;乙商场规定:凡购买超过500元电器的,超出的金额按95%实收.顾客怎样选择商场购买电器能获得更大的优惠? ()621560x x -->1114x >【分析】设顾客所购买电器的金额为x 元,分x >1000、500<x ≤100和0<x ≤500三种情况分别比较在甲、乙两商场购买时的实际金额数.【解】设顾客所购买电器的金额为x 元,由题意得当0<x ≤500时,可任意选择甲、乙两商场;当500<x ≤1000时,可选择乙商场;当x >1000时,设甲商场实收金额为,则元;乙商场实收金额为,则 元.①当<时,即1000+(x -1000)×0.9<500+(x -500)×0.95,0.9x +100<0.95x +25,即-0.05x <-75,解得x >1500.∴当x >1500时,可选择甲商场. ②当=时,即1000+(x -1000)×0.9=500+(x -500)×0.95,0.9x +100=0.9,即-0.05x =-75,解得x =1500.∴当x =1500时,可任意选择甲、乙两商场. ③当>时,即11000+(x -1000)×0.9>500+(x -500)×0.95,0.9x +100>0.95x +25,即-0.05x >-75,解得x <1500.∴当x <1500时,可选择乙商场. 综上所述,顾客对于商场的选择可参考如下:(1)当0<x ≤500或x =1500时,可任意选择甲、乙两商场;(2)当500<x <1500时,可选择乙商场;(3)当x >1500时,可选择甲商场.拓展与变式5 某大型超市为了促进商场的销售,推出了会员制度.共有两种会员卡,其中普通卡每年需交纳会员费100元,所购买商品均可享受9.5折优惠;贵宾卡每年需交纳会员费300元,所购买的商品均可享受9折优惠.小明家一年在该超市购买商品共消费5000元,应选择 卡合算.拓展与变式6 端午节是中华民族古老的传统节日.甲、乙两家超市在端午节当天对一种原来售价相同的粽子分别推出了不同的优惠方案.甲超市方案:购买该种粽子超过200元后,超出200元的部分按95%收费;乙超市方案:购买该种粽子超过300元后,超出300元的部分按90%收费.设某位顾客购买了x 元的该种粽子.(1)补充表格,填写在横线上:(2)列式计算说明,如果顾客在端午节当天购买该种粽子超过300元,那么到哪家超市花费更少?y 甲()()100010000.90.91000y x =+-⨯=+甲y 乙()()5005000.950.9525y x x =+-⨯=+乙y 甲y 乙y 甲y 乙y 甲y 乙【反思】方案选择问题需要分类讨论,需把各种情况进行比较,从而找出最优解.专题突破1.在一次“人与自然”知识竞赛中,竞赛题共25道,每道题都给出4个答案,其中只有一个答案正确,选对得4分,不选或选错扣2分,得分不低于60分才能得奖,那么要得奖至少应选对的题数为().A. 18B. 19C. 20D. 212.班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔的数量为().A. 20支B. 14支C. 13支D. 10支3.某市举办以“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共500棵,已知甲树每棵800元,乙树每棵1200元.若购买甲树的金额不少于购买乙树的金额,问:至少应购买甲树多少棵?4.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8人,则有一间宿舍不满也不空,问:宿舍间数和学生人数分别是多少?5.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种? 请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1 500元,那么应选择以上哪种购买方案?。

考点07 一元一次不等式(组)及其应用-备战2023届中考数学一轮复习考点梳理(解析版)

考点07 一元一次不等式(组)及其应用-备战2023届中考数学一轮复习考点梳理(解析版)

考点07 一元一次不等式(组)及其应用中考数学中,一元一次不等式(组)的解法及应用时有考察,其中,不等式基本性质和一元一次不等式(组)解法的考察通常是以选择题或填空题的形式出题,还通常难度不大。

而对其简单应用,常会和其他考点(如二元一次方程组、二次函数等)结合考察,此时难度上升,需要小心应对。

对于一元一次不等式中含参数问题,虽然难度系数上升,但是考察几率并不大,复习的时候只需要兼顾即可!一、不等式的基本性质二、一元一次不等式(组)的解法三、求不等式(组)中参数的值或范围四、不等式(组)的应用考向一:不等式的基本性质【易错警示】1.若a >b ,则下列不等式中,错误的是( )A .3a >3bB .﹣<﹣C .4a ﹣3>4b ﹣3D .ac 2>bc 2【分析】根据不等式的性质进行一一判断.【解答】解:A 、在不等式a >b 的两边同时乘以3,不等式仍成立,即3a >3b ,故本选项正确;B 、在不等式a >b 的两边同时除以﹣3,不等号方向改变,即﹣<﹣,故本选项正确;C 、在不等式a >b 的两边同时先乘以4、再减去3,不等式仍成立,4a ﹣3>4b ﹣3,故本选项正确;D 、当c =0时,该不等式不成立,故本选项错误.故选:D .2.已知x <y ,下列式子不成立的是( )A .x +1<y +1B .x <y +100C .﹣2022x <﹣2022yD .【分析】根据不等式的性质判断即可.【解答】解:A 、在不等式x =y 的两边同时加上1得x +1<y +1,原变形成立,故此选项不符合题意;B 、在不等式x <y 的两边同时加上100得x +100<y +100,原变形成立,故此选项不符合题意;C 、在不等式x <y的两边同时乘以﹣2022得﹣2022x >﹣2022y ,原变形不成立,故此选项符合题意;D 、在不等式x <y 的两边同时除以2022得x <y ,原变形成立,故此选项不符合题意;故选:C .3.若x>y,且(a+3)x<(a+3)y,求a的取值范围 a<﹣3 .【分析】根据题意,在不等式x>y的两边同时乘以(a+3)后不等号改变方向,根据不等式的性质3,得出a+3<0,解此不等式即可求解.【解答】解:∵x>y,且(a+3)x<(a+3)y,∴a+3<0,则a<﹣3.故答案为:a<﹣3.4.已知3x﹣y=1,且x≤3,则y的取值范围是 y≤8 .【分析】根据3x﹣y=1求出x=,根据x≤3得出≤3,再根据不等式的性质求出不等式的解集即可.【解答】解:∵3x﹣y=1,∴3x=1+y,∴x=,∵x≤3,∴≤3,∴1+y≤9,∴y≤8,即y的取值范围是y≤8,故答案为:y≤8.5.已知a,b,c为三个非负实数,且满足,若W=3a+2b+5c,则W的最大值为 130 .【分析】将方程组两个方程相加,得到3a+5c=130﹣4b,整体替换可得W=130﹣2b,再由b的取值范围即可求解.【解答】解:,①+②,得3a+4b+5c=130,可得出a=10﹣,c=20﹣,∵a,b,c为三个非负实数,∴a =10﹣≥0,c =20﹣≥0,∴0≤b ≤20,∴W =3a +2b +5c =2b +130﹣4b =130﹣2b ,∴当b =0时,W =130﹣2b 的最大值为130,故答案为:130.考向二:一元一次不等式(组)的解法1. 一元一次不等式的解法2. 一元一次不等式(组)的解法①按照一元一次不等式的解法解出每个不等式的解集②依据数轴取各不等式解集的公共部分一元一次不等式组解法及解集的四种情况无解大大小小则无解1.不等式3(2﹣x)>x+2的解在数轴上表示正确的是( )A.B.C.D.【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【解答】解:∵3(2﹣x)>x+2,∴6﹣3x>x+2,﹣3x﹣x>2﹣6,﹣4x>﹣4,x<1,故选:C.2.在平面直角坐标系中,点A(a,2)在第二象限内,则a的取值可以是( )A.1B.﹣C.0D.4或﹣4【分析】根据第二象限内点的坐标特点列出关于a的不等式,求出a的取值范围即可.【解答】解:∵点A(a,2)是第二象限内的点,∴a<0,四个选项中符合题意的数是,故选:B.3.关于x的方程ax=2x﹣7的解为负数,则a的取值范围是 a>2 .【分析】先解方程得到x=,根据题意得到<0,所以2﹣a<0,然后解不等式即可.【解答】解:解方程ax=2x﹣7的得x=,∵方程ax=2x﹣7的解为负数,∴<0,∴2﹣a<0,解得a>2,即a的取值范围为a>2.故答案为:a>2.4.已知x>2是关于x的不等式x﹣3m+1>0的解集,那么m的值为 1 .【分析】先把m看作常数,求出不等式的解集,再根据不等式解集为x>2,建立关于m的方程,求解即可.【解答】解:x﹣3m+1>0x>3m﹣1,∵x>2 是关于x的不等式x﹣3m+1>0 的解集,∴3m﹣1=2,解得:m=1,故答案为:1.5.若关于的不等式﹣ax>bx﹣b(ab≠0)的解集为x>,则关于x的不等式3bx<ax﹣b的解集是 x>﹣1 .【分析】根据已知不等式的解集,即可确定的值以及a+b的符号,进而求得a=2b,进一步求得b<0,从而解不等式即可.【解答】解:移项,得:(a+b)x<b,根据题意得:a+b<0且=,即3b=a+b,则a=2b,又a+b<0,即3b<0,则b<0,则关于x的不等式3bx<ax﹣b化为:3bx<2bx﹣b,解得x>﹣1.故答案为:x>﹣1.6.解下列不等式,并将解集在数轴上表示出来.(1)﹣x+19≥2(x+5);(2).【分析】(1)先去括号,再移项、合并同类项,把x的系数化为1,再把不等式的解集在数轴上表示出来即可;(2)不等式两边都乘12去分母后,去括号,移项合并,将x系数化为1,求出解集,表示在数轴上即可.【解答】解:(1)﹣x+19≥2(x+5),去括号,得)﹣x+19≥2x+10,移项,得﹣x﹣2x≥10﹣19,合并同类项,得﹣3x≥﹣9,系数化为1,得x≤3.将解集在数轴上表示为:(2),去分母,得3(x+4)﹣12<4(4x﹣13),去括号,得3x+12﹣12<16x﹣52,移项,得3x﹣16x<﹣52﹣12+12,合并同类项,得﹣13x<﹣52,系数化为1,得x>4.解集在数轴上表示为:7.关于x的方程5x﹣2k=6+4k﹣x的解是负数,求字母k的值.【分析】解方程得出x=k+1,根据方程的解为负数得出关于k的不等式,解之可得.【解答】解:解方程5x﹣2k=6+4k﹣x得x=k+1,∵方程的解是负数,∴k+1<0,∴k<﹣1.8.不等式组的解集在数轴上表示为( )A.B.C.D.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:,解不等式①,得:x≥1,解不等式②,得:x≥2,故原不等式组的解集是x≥2,其解集在数轴上表示如下:,故选:C.9.对于任意实数x,我们用{x}表示不小于x的最小整数.如:{2.7}=3,{2022}=2022,{﹣3.14}=﹣3,若{2x+3}=﹣2,则x的取值范围是( )A.B.C.D.【分析】根据{x}表示不小于x的最小整数,可得﹣3<2x+3≤﹣2,然后进行计算即可解答.【解答】解:∵{2x+3}=﹣2,∴﹣3<2x+3≤﹣2,∴﹣6<2x≤﹣5,∴﹣3<x≤﹣,故选:D.10.不等式组的解集是 x<3 .【分析】先求出每个一元一次不等式的解集,再求出它们的公共部分即为不等式组的解集.【解答】解:,解①得:x≤8,解②得:x<3,∴不等式组的解集为x<3.故答案为:x<3.11.解不等式(组),并把解集在数轴上表示出来:(1)2(x﹣1)+2<3x;(2).【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)∵2(x﹣1)+2<3x,∴2x﹣2+2<3x,∴2x﹣3x<2﹣2,∴﹣x<0,则x>0,将解集表示在数轴上如下:(2)解不等式3x﹣(x﹣2)≥6,得:x≥2,解不等式x+1>,得:x<4,则不等式组的解集为2≤x<4,将不等式组的解集表示在数轴上如下:考向三:求不等式组中参数的值或范围方法步骤总结:①解出不等式(组)的解集——用含参数的表达式表示;②根据题目要求,借助数轴,确定参数表达式的范围,必在两个相邻整数之间;③由空心、实心判断参数两边边界哪边可以取“=”,哪边不能取“=”。

一元一次不等式组应用实例及答案

一元一次不等式组应用实例及答案

一元一次不等式组应用实例及答案本文介绍了一元一次不等式组的应用实例及其答案。

一元一次不等式组是用来解决不等式问题的数学工具。

它由多个一元一次不等式组成,其中每个不等式都含有一个未知数,并且未知数的指数为1。

应用实例下面是一些应用实例,展示了如何使用一元一次不等式组解决实际问题。

实例1:商店促销某商店打折销售苹果和橙子,苹果每个1元,橙子每个2元。

现有100元购物券,问最多可以购买多少个苹果和橙子?解析:设购买苹果的个数为x,购买橙子的个数为y。

根据题意,我们可以列出以下两个一元一次不等式:- 苹果总价为x元:1 * x ≤ 100- 橙子总价为2y元:2 * y ≤ 100接下来,我们可以求解这个不等式组,找到满足约束条件的x和y的取值范围。

实例2:生产计划某工厂有两个生产部门A和B,每天生产产品的数量不等。

已知部门A每天最多生产50个产品,部门B每天最多生产30个产品。

同时,工厂每天总共生产的产品数量不得超过80个。

问部门A和部门B每天生产的产品数量应如何分配,使得生产数量最大化?解析:设部门A每天生产的产品数量为x,部门B每天生产的产品数量为y。

根据题意,我们可以列出以下三个一元一次不等式:- 部门A每天最多生产50个产品:x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80通过求解这个不等式组,我们可以找到生产数量最大化时部门A和部门B每天生产的产品数量的合理分配方案。

答案实例1的答案:- 苹果总价不得超过100元:1 * x ≤ 100,解得x ≤ 100- 橙子总价不得超过100元:2 * y ≤ 100,解得y ≤ 50根据题意,购买苹果和橙子的个数必须是整数,所以最多可以购买的苹果个数为100个,最多可以购买的橙子个数为50个。

实例2的答案:- 部门A每天最多生产50个产品:x ≤ 50,解得x ≤ 50- 部门B每天最多生产30个产品:y ≤ 30,解得y ≤ 30- 总产量不得超过80个产品:x + y ≤ 80,解得x + y ≤ 80通过求解这个不等式组,我们可以得到合理的生产方案,例如部门A每天生产50个产品,部门B每天生产30个产品,总产量为80个产品。

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.

一元一次不等式(组)应用题及练习(含答案)

一元一次不等式(组)应用题及练习(含答案)

类型一例1.*校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,则正好坐满;假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游"(2)请你帮该校设计一种最省钱的租车方案.【思路点拨】此题的关键语句是:"假设只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人〞.理解这句话,有两层不等关系.(1)租用36座客车*辆的座位数小于租用42座客车(*-1)辆的座位数.(2)租用36座客车*辆的座位数大于租用42座客车(*-2)辆的座位数+30.【答案与解析】解:(1)设租36座的车*辆.据题意得:3642(1)3642(2)30x xx x<-⎧⎨>-+⎩,解得:79xx>⎧⎨<⎩.由题意*应取8,则春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元),方案②:租42座车7辆的费用:7×440=3080(元),方案③:因为42×6+36×1=288,所以租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元) .所以方案③:租42座车6辆和36座车1辆最省钱.练习一:1.将一筐橘子分给几个儿童,假设每人分4个,则剩下9个橘子;假设每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.2. 5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李〔药品、器械〕,租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车*辆,请你设计所有可能的租车方案;(2) 假设甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.类型二例2.*市局部地区遭受了罕见的旱灾,"旱灾无情人有情〞.*单位给*乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.〔1〕求饮用水和蔬菜各有多少件?〔2〕现方案租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.〔3〕在〔2〕的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?解:〔1〕设饮用水有*件,蔬菜有y件,依题意,得320,80, x yx y+=⎧⎨-=⎩解得200,120.xy=⎧⎨=⎩所以饮用水和蔬菜分别为200件和120件.〔2〕设租用甲种货车m辆,则租用乙种货车(8-m)辆.依题意得4020(8)200,1020(8)120.m mm m+-≥⎧⎨+-≥⎩解得2≤m≤4.又因为m为整数,所以m=2或3或4.所以安排甲、乙两种货车时有3种方案.设计方案分别为:①2×400+6×360=2960〔元〕;②3×400+5×360=3000〔元〕;③4×400+4×360=3040〔元〕.所以方案①运费最少,最少运费是2960元.练习二:1.户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积〔单位:亩〕种植B类蔬菜面积〔单位:亩〕总收入〔单位:元〕甲 3 1 12500乙 2 3 16500说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵ *种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积〔两类蔬菜的种植面积均为整数〕,求该种植户所有租地方案.2、*公司为了更好得节约能源,决定购置一批节省能源的10台新机器。

一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析

一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。

2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。

一元一次不等式的所有解组成的集合是一元一次不等式的解集。

注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a>或 )x a xa ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ( (不要漏乘!每一项都得乘)去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变) 合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 三、一元一次不等式组含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.四、一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <) < > ≤ ≥①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图: 同大取大 同小取小③⎩⎨⎧<>b x a x 的解集是b x a <<,如下图: ④⎩⎨⎧><b x a x 无解,如下图: 大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时6 一元一次不等式(组)及其应用
班级______ 姓名______ 【课前热身】
1.设a <b ,用不等号连接下列各题中的两式。

(1)a+c________b+c (2)-2a________-2b (3)a-b_________0 (4)m 2a________ m 2b (5)-ca_________-cb(c <0)
2.不等式-032>-x 的解是_______________
3.一个一元一次不等式组的解集在数轴上的表示如下图,则该不等式组的解集是
A .13x -≤<
B . 13x -<≤
C .1x ≥-
D . 3x <
4. 不等式组1
10320.x x ⎧+>⎪⎨⎪-⎩

≥的解集是( )
A .-
3
1<x ≤2 B .-3<x ≤2 C .x ≥2 D .x <-3
【考点链接】
1.用不等号表示 关系的式子叫不等式;使不等式成立的未知数的 ,叫做不等式的解;不等式的 的集合,叫做不等式的解集. 2.不等式的基本性质:
(1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或c a c
b );
(3)若a >b ,c <0则ac bc (或
c
a c
b ).
3.一元一次不等式:只含有 未知数,未知数的最高次数是 的不等式,称为一元
一次不等式;其解法与一元一次方程的解法类似. 4.不等式组中各个不等式的解集的 ,叫做不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <)
x a x b <⎧⎨<⎩的解集是__________; x a
x b
>⎧⎨>⎩的解集是_________; x a x b >⎧⎨
<⎩
的解集是__________; x a
x b <⎧⎨>⎩的解集是_________.
【典例精析】
例1(1)解不等式 ,并把它的解集在数轴上表示出来.
(2)解不等式组
3(2)4
1213
x x x
x --≤⎧⎪
+⎨-⎪
⎩ , 并将它的解集在数轴上表示出来.
例2.已知不等式组1x x a
⎧⎨

(1) 如果这个不等式组无解,则a 的取值范围是___________.
(2) 如果这个不等式组有解,则a 的取值范围是___________.
(3) 如果这个不等式组只有3个正整数解,则a 的取值范围是_________
例3.根据对话内容,求出饼干和牛奶的标价各是多少? 孩子:阿姨,我要买一盒饼干和一袋牛奶(递上10元钱)
阿姨:小朋友,本来你用10元买一盒饼干有剩余的钱,但要再买一袋牛奶就不够了!今天是儿童节,我给你买的饼干打9折,两样东西请拿好!还有找你的8角钱. 话外音:一盒饼干的价钱可以整数元哦!~
例4.填空(1)已知y=2x+1,求当x=______时,y=3;当y=_______时,x=3;当y <1时,x 的取值范围为__________;当-3≤x <1时,y 的取值范围为_________
(2)直线121y x =+与直线22y x =--的位置关系是__________,画出图象并根据图象说明:当x 取__________时12y y ≥(你还有其它方法求解吗?)
63
43
2
x x +-≤+
x
【当堂反馈】 1、解不等式(组)
(121343
6
x x --≤
; (2)1103
34(1)1x x +⎧-⎪
⎨⎪--<⎩

2.若常数m 满足11m m -=-,则关于x 的不等式3m x x + 的解集是___________
3.若不等式组,420
x a x >⎧⎨
->⎩的解集是12x -<<,则a = .
4. 一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是( )
A .2x >-
B .0x >
C .2x <-
D .0x <
5.如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x = 过点A ,则不等式
20x kx b <+<的解集为( )
A .2x <-
B .21x -<<-
C .20x -<<
D .10x -<<
6.2008年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票. ⑴若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?
⑵若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?
x
b
+
【课后精练】 1.(1)解不等式
13
15>--x x ,并将解集在数轴上表示出来.
(2)解不等式组3(2)4-x
2513
x x x --≥⎧⎪
-⎨<-⎪
⎩并写出该不等式组的整数解.
2.某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x (张)满足的不等式为 .
3.关于x 的不等式组12
x m x m >->+⎧⎨
⎩的解集是1x >-,则m = .
4.若不等式组0,122
x a x x +⎧⎨
->-⎩≥有解,则a 的取值范围是( )
A .1a >-
B .1a -≥
C .1a ≤
D .1a < 5.已知2222,2,24,1A a a B C a a a =-+==-+ 其中, (1)求证:0A B -
(2)试比较A 、B 、C 三者之间的大小关系,并说明理由。

6. 某食品加工厂,准备研制加工两种口味的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现有主要原料可可粉410克,核桃粉520克.计划利用这两种主要原料,研制加工上述两种口味的巧克力共50块.加工一块原味核桃巧克力需可可粉13克,需核桃粉4克;加工一块益智核桃巧克力需可可粉5克,需核桃粉14克.加工一块原味核桃巧克力的成本是1.2元,加工一块益智核桃巧克力的成本是2元.设这次研制加工的原味核桃巧克力x 块.
(1)求该工厂加工这两种口味的巧克力有哪几种方案?
(2)设加工两种巧克力的总成本为y 元,求y 与x 的函数关系式,并说明哪种加工方案使总成本最低?总成本最低是多少元?。

相关文档
最新文档