1.2.2(3)真子集、集合相等
122123真子集集合相等
含有1个元素的子集有{a}、{b}; 含有2个元素的子集有{a, b}. ∴A中的所有子集有:
、{a}、{b}、 {a, b} ;共4个
其中真子集有: 、{a}、{b}。
例3、判断集合A={x x2 2x 3 0}与 集合B={3,-1}的关系。
结合教材P6中例2,你能总结出什 么规律?
谢 谢 大 家!
0={0}。等
练习1、P6中练一练答 Nhomakorabea:1、 、{3}、{4}、 {3, 4} ;
其中非空真子集{3}、{4}。
2、(1) B={1,2,3, 6} ∴AB
(2)在数轴上画出两不等式的范围:
0 23
x
由图形知:集合A包含集合B
∴ A B (或B A)
2、P7练一练
答案: 1、
(1)
一、真子集的定义:
设有A、B两个集合,如果A是B的 子集,并且B中至少有一个元素不属 于A,则称A是B的真子集。
记作A B (或B A ) 读作“A真包含于B”(或“B真包含 A”)
图示: B A
二、真子集的性质:
空集是任何非空集合的真子集。 即 A,且A不是空集。
提问:
子集的符号“”、“ ”与
解: 解方程 x2 2x 3 0 得: X=3,x=-1
用列举法表示集合A={3,-1} ∴A=B
小提示 几个易混淆的概念
①实数集的正确表示方法是:R或{实数} 而表示成{R}或{实数集}等都是错误的。
②0,{0}, 三者之间的关系:
正确的是:0{0}, {0}( {0}) 不能写成: ={0},{0},
不等式 a < b (或b > a)
高职高考数学集合之间的关系
)
A.{1}
B.{-1}
C.{0,1}
D.{-1,0,1}
【答案】D
二、填空题
11.选择适当的符号(∈,∉,⊆,⊇,⊈,⫋,=)填空.
(1)0 ∈ {0};
(2)∅ ⫋ {0};
(3)∅ ⫋ {0,1,5};
(4){a,b} ⊆ {d,a,b};
(5)0 ∉ {x|x2-1=0,x∈R};
系是“从属关系”:“属于”或“不属于”,集合与集合的关
系是“包含关系”:“包含”或“不包含”;正确区分子集与
真子集.
【例2】 (1)集合A={-2,2},B={-2,0,2},则 (
A.A⊈B
B.A⫋B
C.A=B
)
D.A∈B
【点评】 由真子集、集合相等的概念,集合与集合的关系
很快排除A、C、D.
(2)已知集合M={x|x2=4}与集合N={-2,2},则下列关系正确的是
)
D.没有关系
4.下列关系表达正确的是 (
)
A.2⫋{x|x<4}
B.{x|x>4且x<0}=∅
C.{(1,2)}∈{(x,y)|x+y=3,x∈N+,y∈N+}
D.(1,2)∉{(x,y)|x+y=3,x∈N+,y∈N+}
【答案】B
5.下列关系正确的是 (
A.0⊆{0}
C.(1,2)⊆{(1,2)}
【答案】B
)
B.(1,2)∈{(1,2)}
D.1∈{(1,2)}
6.集合A={0,1,2}非空真子集的个数是
A.8 B.7 C.6 D.5
【答案】C
(
)
高中数学集合知识总结
高中数学知识总结高中数学集合知识总结集合语言是现代数学的基本语言,使用集合语言可以简洁、准确地表达数学的一些相关内容.以下是小编搜集整合了高中数学集合知识,希望可以帮助大家更好的学习这些知识。
高中数学知识总结篇1一、集合间的关系1.子集:如果集合A中所有元素都是集合B中的元素,则称集合A为集合B的子集。
2.真子集:如果集合AB,但存在元素a∈B,且a不属于A,则称集合A是集合B的真子集。
3.集合相等:集合A与集合B中元素相同那么就说集合A与集合B相等。
子集:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作:AB(或BA),读作“A包含于B”(或“B包含A”),这时我们说集合是集合的子集,更多集合关系的知识点见集合间的基本关系二、集合的运算1.并集并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}2.交集交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}3.补集三、高中数学集合知识归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。
集合间的基本关系及运算
1.2集合间的基本关系及运算【知识要点】1、子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆B或B⊇A.2、集合相等:如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B。
3、真子集:如果A ⊆B,且A ≠B,那么集合A称为集合B的真子集,A⊂≠B .4、设A ⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作S C A5、元素与集合、集合与集合之间的关系6、有限集合的子集个数(1)n个元素的集合有n2个子集(2)n个元素的集合有n2-1个真子集(3)n个元素的集合有n2-1个非空子集(4)n个元素的集合有n2-2个非空真子集7、交集:由属于集合A且属于集合B的所有元素组成的集合叫A与B的交集,记作A⋂B。
8、并集:由所有属于集合A或属于B的元素构成的集合称为A与B的并集,记A⋃B。
9、集合的运算性质及运用【知识应用】1.理解方法:看到一个集合A里的所有元素都包含在另一个集合里B,那么A就是B的子集,也就是说集合A中的任何一个元素都是集合B中的元素,即由任意x∈A能推出x∈B。
【J】例1.指出下列各组中集合A与集合B之间的关系(1)A={-1,1},B=Z (2)A={1,3,5,15},B={x|x是15的正约数}【L】例2.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m取值范围。
【C】例3. 已知集合A⊆{0,1,2,3},至少有一个奇数,这样的集合A的子集有几个,请一一写出。
2.解题方法:证明2个集合相等的方法:(1)若A、B两个集合是元素较少的有限集,可用列举法将元素一一列举出来,比较之或者看集合中的代表元素是否一致且代表元素满足的条件是否一致,若均一致,则两集合相等。
(2)利用集合相等的定义证明A⊆B,且B⊆A,则A=B.【J】例1.下列各组中的两个集合相等的有()(1)P={x|x=2n,n∈Z}, Q={x|x=2(n-1),n∈Z}(2)P={x|x=2n-1,n∈N+}, Q={x|x=2n+1,n∈N+}(3) P={x|2x-x=0}, Q={x|x=1(1)2n+-,n∈Z}【L】例2.已知集合A={x|x=12kπ+4π,k∈Z},B={x|x=14kπ+2π,k∈Z},判断集合A与集合B是否相等。
集合间的关系-相等、子集、真子集教案
教学过程一、复习预习复习集合的定义、分类、表示方法、集合与元素的关系,预习集合间的关系.二、知识讲解1. 集合相等的概念若集合A 中元素与集合B 中的元素完全相同,则称集合A=B等价定义:若B A A B B A =⊆⊆则,,特别的,φφ=2. 子集与真子集的概念子集的概念:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 含于B(或B 包含A)真子集的概念:若A 为B 的子集,且A ≠B,则称A 为B 的真子集,记作B A ≠⊂ 注:A ⊆φ考点1集合相等的证明方法若B A A B B A =⊆⊆则,,特别的,φφ=考点2子集与真子集的应用解题(1)A ⊆φ(2)子集与真子集的区别考点3子集和真子集的个数问题若集合A中的元素的个数为n,则其子集个数为n2个2 n个真子集个数为1三、例题精析【例题1】【题干】已知M={x|﹣2<x<5},N={x|a+1≤x≤2a﹣1}.是否存在实数a使得M∩N=M,若不存在求说明理由,若存在,求出a【解析】∵M∩N=M∴M⊆N,∴,解得a∈∅,故不存在.【题干】已知M={x|﹣2<x<5},N={x|a+1≤x≤2a﹣1}.是否存在实数a使得M∪N=M,若不存在求说明理由,若存在,求出a.【解析】∵M∪N=M∴N⊆M①当N=∅时,即a+1>2a﹣1,有a<2;②当N≠∅,则,解得2≤a<3,)综合①②得a的取值范围为a<3【题干】满足{-1,0}M⊆{-1,0,1,2,3}的集合M的个数是( )A.4个B.6 个C.7个D.8个答案:C【解析】依题意知集合M除含有元素-1,0之外,必须还含有1,2,3中的一个,或多个.因而问题转化为求含有3个元素的集合所含的非空子集的个数问题,故有23-1=7个.故选C.四、课堂运用【基础】1. 已知集合A={-1,1},B{x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为( )A.{-1} B.{1} C.{-1,1} D.{-1,0,1}答案:D解析:当a=1,-1时显然成立,当a=0时,B=∅也成立,所以选D2. 设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是( ) A.a≥2 B.a≤1C.a≥1 D.a≤2答案:A解析:.A={x|1<x<2},B={x|x<a},要使A B,则应有a≥2,故选A【巩固】1.集合M={x|x2-3x-a2+2=0,a∈R}的子集的个数为________答案:4解析:∵Δ=9-4(2-a2)=1+4a2>0,∴M恒有2个元素,所以子集有4个2. 定义A-B={x|x∈A且x∉B},若A={1,3,5,7,9},B={2,3,5},则A-B等于( )A.A B.B C.{2} D.{1,7,9}答案:D解析:从定义可看出,元素在A中但是不能在B中,所以只能是D【拔高】已知集合A ={a ,a +b ,a +2b },B ={a ,ac ,ac 2},若A =B ,求c 的值解析:①若⎩⎪⎨⎪⎧a +b =ac a +2b =ac 2,消去b 得a +ac 2-2ac =0, 即a (c 2-2c +1)=0.当a =0时,集合B 中的三个元素相同,不满足集合中元素的互异性,故a ≠0,c 2-2c +1=0,即c =1;当c =1时,集合B 中的三个元素也相同,∴c =1舍去,即此时无解. ②若⎩⎪⎨⎪⎧a +b =ac 2a +2b =ac ,消去b 得2ac 2-ac -a =0, 即a (2c 2-c -1)=0.新课标第一网∵a ≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0.又∵c ≠1,∴c =-12.课程小结1.集合相等的概念与应用2.子集的概念与应用3.真子集的概念与应用课后作业【基础】1. 设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|yx=1},则A 、B 间的关系为_______答案:BA 解析:在A 中,(0,0)∈A ,而(0,0)∉B , 故BA .2. 设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则a的值为_______答案:-1或2解析:A⊇B,则a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a=1,结合集合元素的互异性,可确定a=-1或a=2【巩固】1.已知A={x|x<-1或x>5},B={x|a≤x<a+4},若A B,则实数a的取值范围是________答案:{a|a>5或a≤-5}解析:作出数轴可得,要使A B,则必须a+4≤-1或a>5,解之得{a|a>5或a≤-5}2. 已知集合A={x|1≤x≤2},B={x|1≤x≤a,a≥1}.(1)若A B,求a的取值范围;(2)若B⊆A,求a的取值范围.解析:(1)若A B,由图可知,a>2.(2)若B⊆A,由图可知,1≤a≤2.【拔高】1. 若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且BA ,求实数m 的值.解析: A ={x |x 2+x -6=0}={-3,2}.∵B A ,∴mx +1=0的解为-3或2或无解.当mx +1=0的解为-3时,由m ·(-3)+1=0,得m =13; 当mx +1=0的解为2时,由m ·2+1=0,得m =-12; 当mx +1=0无解时,m =0. 综上所述,m =13或m =-12或m =0.2.记关于x 的不等式x -a x +1<0的解集为P ,不等式||x -1≤1的解集为Q . (1)若a =3,求P ; (2)若Q ⊆P ,求正数a 的取值范围.解析:(1)由x -3x +1<0,得P =⎩⎨⎧⎭⎬⎫x |-1<x <3. (2)Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ ||x -1≤1=⎩⎨⎧⎭⎬⎫x | 0≤x ≤2. 由a >0,得P =⎩⎨⎧⎭⎬⎫x |-1<x <a ,又Q ⊆P ,所以a >2, 即a 的取值范围是(2,+∞).。
集合间的基本关系(教学设计)高一数学(人教A版2019必修第一册)
学生优势:学生在义务教育阶段数学学习中,已经接触过集合,对于数集、点集等有了一定的感性认识.从初中到高中,从直观到抽象,了解集合的含义及其性质,并不困难学生劣势:难点在于两种关系的识别——元素与集合、集合与集合,特别是符号语言的表述,提升了这部分内容学习的抽象度,例如,{a}A与a∈A,A B与B A、A B等. 本节课的教学难点是集合基本关系的符号表述及识别,对空集的了解.预备策略:尽量创设使学生运用集合语言进行表达和交流的情境和机会,紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生更容易理解。
问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1){1,2,3},{1,2,3,4,5}A B ==; (2)设A 为新华中学高一(2)班女生的全体组成的集合,B 为这个班学生的全体组成的集合; (3)设{|},{|};C x xD x x ==是两条边相等的三角形是等腰三角形总结:判断集合间关系的常用方法(1)列举观察法:当集合中元素较少时,可列出集合中的全部元素,通过定义得出集合之间的关系.(2)集合元素特征法:首先确定集合的代表元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用V enn 图、数轴等直观地判断集合间的关系.一般地,判断不等式的解集之间的关系,适合画出数轴. 提示:若A ⊆B 和A B 同时成立,则A B 更能准确表达集合A ,B 之间的关系.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集. 记作:()A BB A ⊆⊇或读作:A 含于B(或B 包含A).真子集:如果集合A ⊆B ,但存在元素x ∈B ,且x ∉A ,就称集合A 是集合B 的真子集,记作。
集合之间的关系—集合的相等与包含
集合之间的关系——集合的相等与包含【新课导入】1. 考察下列两组集合,观察它们的元素有何关系.(1) 集合P ={1,2}与集合Q ={}2320x x x -+=;(2) 集合P ={x ︱x 为非负整数}与自然数集N .答:(1) 在第一组集合中,Q ={}2320x x x -+=={1,2},它与集合P 的元素完全相同;(2) 在第二组集合中,因为集合P ={x ︱x 为非负整数}={0,1,2,3,……},它与自然数集的元素也 完全相同.可见,相等是集合之间的一种重要关系.2. 再来看看小亮的家庭,他家的成员有爷爷、奶奶、 爸爸、妈妈、姐姐和小亮. 若姐姐和小亮构成一个集 合P ,全家成员构成一个集合Q , 显然集合P 中的元素都属于集合Q ,那么P 与Q 有怎样的关系呢?很明显,集合P 中的元素也是集合Q 中的元素,也就是集合Q 可以包含集合P .可见,包含也是集合之间的一种重要关系.【双基讲解】1.集合的相等一般地,如果集合A 和集合B 所含的元素完全相同,那么叫做集合A 与集合B 相等,记作A =B ,读作“集合A 等于集合B ”.如果集合A ={1,3,5,7}, 集合B ={3,5,1,7},那么A 与B 相等吗?2.集合的包含------子集一般地,对于两个集合A 和B ,如果集合A 中的任何一个元素都属于集合B ,那么集合A 叫做集合B 的子集,记作A ⊆B 或B ⊇A ,读作“A 包含于B ”或“B 包含A ”.在小亮家庭里,明显可以看出:P ⊆Q .3. 集合的包含------真子集一般地,对于两个集合A 和集合B ,如果A ⊆B 并且B 中至少有一个元素不属于A ,,那么集合A 叫做集合B 的真子集,记作AB , 或B A ,读作“A 真包含于B ”或“B 真包含A ”. 在小亮家庭里,P Q 也是成立的.4.文氏图(Ve nn Di A gr A m )用平面区域来表示集合之间关系的方法叫做集合的图示法,所用图叫做文氏图(Venn diagram.).AB 可以表示为【示范例题】例1 已知集合A ={x|x ≤5,x 是正偶数},集合B ={A ,2},且 A =B ,求A 的值.解 集合A ={x|x ≤5,x 是正偶数}={2,4}.A =B ,∴A = 4 .例2 已知集合S ={2x ,x+y }与集合T ={2,1}相等 , 求x ,y 的值.分析:因为集合中的元素,前后顺序交换,仍是这个集合,所以这里必须列出两个二元一次方程组.解 由S = T ,可知 221x x y =⎧⎨+=⎩ 或 212x x y =⎧⎨+=⎩解方程组,得 10x y =⎧⎨=⎩ 或 1232x y ⎧=⎪⎪⎨⎪=⎪⎩. 【巩固练习】1. 判断下列两个集合是否相等,并说明理由.(1) 集合A ={}2210x x x ++=和集合B ={}210x x -=;(2) 集合A ={1,2,3,4,6,12}和集合B ={x ∣x 为12的因数}.2. 已知集合A ={0,3},集合B ={2x-y ,2y-x },且A =B ,求x ,y 的值.3. 已知集合S ={2x+y ,x-y }与集合T ={3,0}相等,求x ,y 的值.【示范例题】例3 试判断下列各组的两个集合是否具有包含关系,并用符号表示.(1) 集合E ={2,4,6,…}与集合D ={}2,n n k k =∈;(2) 集合A ={…,-4,-2,0,2,4,…}与集合B ={}2,n n k k =∈. 解 (1) 集合E 是正偶数集,而集合D ={}2,n n k k =∈={0,2,4,6,…}是非负偶数集, 0∉E ,但0∈D ,E D ⊆所以.(2) 集合A 是偶数集,对于A 中的任何一个偶数A ,都可以表示成A =21k ,1k ∈Z .可见,必有,a B ∈,所以A B ⊆.对于集合B 中的任何一个元素n ,因为2,n k k =∈,故n 必为偶数,于是B A ⊆.说明:一般地,对于集合A 和B ,如果A B ⊆,同时A B ⊇,那么集合A 和B 是相等的,即A =B .【巩固练习】1. 判断下列结论是否正确,并说明理由.(1)对任何集合A ,必有AA ; (2)若AB ,A A ,则必有A B ; (3)若A B ,BC ,则A C .2. 用符号“⊆”或“⊇”把下列每两个集合连接起来.(1) A ={}21,n n k k =+∈与B ={…,-3,-1,0,1,3,…}(1) C ={}21,n n k k =+∈与B ={…,-3,-1,1,3,…} (3) A 是所有水果组成的集合,B 是油桃、黄桃、蟠桃组成的集合,C 是所有桃子组成的集合.【示范例题】例4 试写出4的正因数的集合A 的所有子集和真子集.解4的正因数是1,2,4 ,∴ A ={1,2,4} .∴A 的子集是 φ, {1},{2},{4},{1,2},{1,4},{2,4},{1,2,4}, ∴A 的子集是 φ, {1},{2},{4},{1,2},{1,4},{2,4} .例5 已知集合A ={1},集合B ={}210x x -=,试用文氏图表示集合A 与B 的关系. 解 210x -=, 1x ∴=± . ∴ B ={1,-1}.A ={1} ,A B .【巩固练习】1. 用真包含符号“”或“”把数集N ,Z ,Q ,R 连接起来.2. 已知区间[1,2] ,(1,2),[1,2),试用符号表示它们之间的包含关系.3. 已知集合A ={}2230x x x --=和集合B ={}10x x +=,试用文氏图表示集合A 与B 的关系. 六 课堂小结1.集合的相等的概念;2.集合的包含 —— 子集的概念;3.集合的包含 —— 真子集的概念;4.文氏图表示集合的关系 .七 布置作业由老师根据学生的具体情况灵活布置八 教学后记根据上课的具体情况,由老师书写教案编制人:。
2.1.3《子集、真子集、集合的相等》
(1)A={2,4,5,7},B={2,5}; (2)E={x∣x²=1},F={-1,1}; (3)G={x∣x是正奇数},H={x∣x是正整数}.
第二章:集合与不等式
解:(1)B ⫋ A( B ⊆ A ); (2)E = F; (3)G ⫋ H( G ⊆ H ).
判断:图中A是否为B的子集?
B
A
(1)
x
B
A
(2)
x
第二章:集合与不等式
观察集合A与B有啥关系?
(1)A={1,2,3},B={1,3,2}; (2)A={-1,1},B={x|x²-1=0}.
第二章:集合与不等式
2 集合相等
如果两个集合的元素完全相同,那么我 们就说这两个集合相等。集合A等于集合B, 记做
第二章:集合与不等式
结论:
通过观察就会发现,这三组集合中,集 合A都是集合B的一部分。从而有:
第二章:集合与不等式
2.1 子集
对于两个集合A与B,如果集合A的每一个 元素都是集合B的元素,那么集合A称为集合B 的子集,记做
A ⊆B 或 B ⊇ A, 读作“A包含于B”,或“B包含A”
第二章:集合与不等式
我们用文氏图来表示子集的关系: A⊆B
A
B
A(
(1)集合A不包含于集合B,或集合B不 包含集合A,记做A ⊈B(B ⊉ A);
(2)任意一个集合A都是它本身的子
集,即
A ⊆ A.
(3)规定:空集是任何集合的子集。 即对任何集合A,都有
Ø ⊆ A.
第二章:集合与不等式
第二章:集合与不等式
本节课我们学习的内容
(1)集合之间的关系:子集、真子集; (2)集合的相等.
1.2集合间的基本关系-【新教材】人教A版(2019)高中数学必修第一册讲义
新教材必修第一册1.2:集合间的基本关系课标解读:1.子集的含义.(理解)2.真子集的含义.(理解)3.集合相等的含义.(理解)4.空集的含义.(理解)5.Veen图.(了解)学习指导:1.准确理解子集的概念,把握子集与真子集之间的关系.2.注意灵活运用集合的三种语言(文字语言、符号语言、图形语言)分析解决有关问题.3.谨防掉进“空集”陷阱.4.本节难点是对相似概念及符号的理解,例如:区别元素与集合,属于与包含等概念及其符号表示.知识导图:教材全解知识点1:Veen图在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图形称为Veen图.例1-1:用Veen图表示集合之间的关系:}xxB=,是平行四边形xA=x|{|}{是菱形,xxD=是矩形xC=x}|}.,{|{是正方形答案:知识点2:子集例2-2:给出下列说法:①任意集合必有子集;②若集合BA⊆,则A中元素的个数一定少于集合B中的元素个数;③若集合A是集合B的子集,集合B是集合C的子集,集合C是集合D的子集,则集合A是集合D的子集;④若不属于集合A的元素也一定不属于集合B,则集合B是集合A的子集,其中正确的是()A. ②③B.①③④C.①③D.①②④ 答案:B例2-3:设集合}1,1{},,3,1{2+-==a a B a A ,且A B ⊆,则a 的值为 . 答案:-1或2知识点3:集合的相等一般地,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等,记作A=B.也就是说,若B A ⊆且A B ⊆,则A=B.例3-4:集合},12|{Z n n x x X ∈+==,},14|{z k k y y Y ∈±==,试证明Y X =. 答案:(1)设X x ∈0,则,1200+=n x 且.0Z n ∈①若0n 是偶数,可设Z m m n ∈=,20,则Z m m x ∈+=,140,∴Y x ∈0②若0n 是奇数,可设Z m m n ∈-=,120,则Z m m m x ∈-=+-=,141)12(20,∴Y x ∈0 ∴不论0n 是奇数还是偶数,都有Y x ∈0. ∴Y X ⊆. (2)设Y y ∈0,则.,141400000Z k k y k y ∈-=+=,或∵Z k k k y k k y ∈+-⋅=-=+⋅=+=00000001)12(21412214,,或, ,12,200Z k Z k ∈-∈ ∴X y ∈0,则X Y ⊆ 由(1)(2)得,Y X =. 知识点4:真子集例4-5:在“新冠肺炎”疫情期间,某社区男、女党员自发组成自愿者队伍,参加社区防疫工作.若集合A={参与防疫工作的志愿者},集合B={参与防疫工作的男党员},集合C={参与防疫工作的女党员},则下列关系正确的是( ) A. B A ⊆ B. C B ⊆ C.A C ⊄ D.B ⫋A 答案:D例4-6:指出下列各组集合之间的关系: (1))};1,1(),1,1(),1,1(),1,1{(},1,1{----=-=B A (2)}6,3,2{=A ,B=}12|{的约数是x x ;(3)}|{}|{是等腰三角形,是等边三角形x x B x x A ==; (4)},12|{+∈-==N n n x x M ,},12|{+∈+==N n n x x N .答案:(1)A 与B 无包含关系;(2)A ⫋B ;(3)A ⫋B ;(4)N ⫋M .知识点5:空集 1.空集的定义一般地,我们把不含任何元素的集合叫做空集,记为∅. 2.空集的性质(1)空集是任何集合的子集;(2)空集的任何非空集合的真子集,即∅⫋A (A 为非空集合). 由上述性质可知空集只有一个子集,即它本身. 辨析明理:∅、0、{0}、{ ∅}之间的关系:例5-7:下面四个集合中,表示空集的是( ). A. {0} B.},01|{2R x x x ∈=+ C.},01|{2R x x x ∈>- D.},,0|),{(22R y R x y x y x ∈∈=+ 答案:B例5-8:若集合==+-=}02|{2m x x x A ∅,则实数m 的取值范围是( ) A.1-<m B.1<m C.1>m D.1≥m 答案:C知识点6:有限集合的子集个数 对于集合A 的子集我们有如下结论: 集合AA的所有子集子集个数 真子集个数 非空真子集个数}{a ∅,}{a 122= 1 0 },{b a ∅,}{a ,}{b ,},{b a 224=3 2 },,{c b a∅,}{a ,}{b ,}{c ,},{b a ,},{c a ,},{c b ,},,{c b a328=76猜想:A=},...,,{21n a a a n 2 12-n 22-n例6-9:已知集合},,01234|),{(++∈∈<-+=N y N x y x y x A ,则集合A 的子集个数为( ).A.3B.4C.7D.8 答案:D例6-10:已知集合M 满足}2,1{⫋M }5,4,3,2,1{⊆,则有满足条件的集合M 的个数是( ).A.6B.7C.8D.9 答案:B知识点7:集合的图示法 1.Veen 图(1)用Veen 图表示集合间基本关系,如图所示:(2)用Veen图表示集合之间的关系:A⫋B⫋C可表示为如图:2.数轴法对于由连续实数组成的集合,通常用数轴表示,这也属于集合表示的图示法.在数轴上,若端点值是集合中元素,则用实心点表示;若端点值不是集合中的元素,则用空心点表示.集合}3<-xx≤xx与用数轴分别表示如图:{{≥}5|1|例7-11:图中反映的是“文学作品”、“散文”、“小说”、“叙事散文”这四个文学概念之间的关系,请在下面的空格上填入适当的内容:A为;B为;C为;D为 .答案:{小说} {文学作品} {叙述散文} {散文}例7-12:已知集合A=}2{<≤-xx,则集合A与B的关系是 .|2{-≥x|x,集合B=}8答案:B⫋A题型与方法例13:指出下列各组集合之间的关系: (1)}.50|{},51|{<<=<<-=x x B x x A (2)}.,4|{},,2|{Z n n x x B Z n n x x A ∈==∈==(3)}.,2)1(1|{},0|{2Z n x x B x x x A n∈-+===-= (4)}.0,00,0|),{(},0|),{(<<>>=>=y x y x y x B xy y x A 或 (5)}.,54|),{(},,1|{22++∈+-==∈+==N a a a x y x B N a a x x A答案:(1)B ⫋A ;(2)B ⫋A ;(3)A=B ;(4)A=B ;(5)B A ⊆;(6)A ⫋B.例14:已知集合}|{},3,2,1{A x x Y A ⊆==,则下列结论错误的是( ) A.Y ⊆}1{ B.Y A ∈ C.∅Y ⊆ D.{∅}⫋Y 答案:A变式训练:已知集合},612|{},312|{},,61|{Z c c x x C Z b b x x B Z a a x x A ∈+==∈-==∈+==,,则A ,B ,C 满足的关系是( )A. A=B ⫋CB. A ⫋B=CC. A ⫋B ⫋CD.B ⫋C ⫋A 答案:B题型2:确定集合的子集、真子集例15:设}0)45)(16(|{22=++-=x x x x A ,写出集合A 的子集,并指出其中哪些是它的真子集.答案:集合A 的子集为:∅、{-4}、{-1}、{4}、{-4、-1}、{-4、4}、{-1、4}、{-4、-1、4},集合A 的真子集为:∅、{-4}、{-1}、{4}、{-4、-1}、{-4、4}、{-1、4}.例16:已知集合A={1,3,5},则集合A 的所有非空子集的元素之和为 . 答案:36变式训练:已知集合A=}065|{},033|{22=+-∈==++∈x x R x B x x R x ,A P ⊆⫋B ,求满足条件的集合P. 答案:∅或{2}或{3}例17:已知}012|{},082|{222=-++∈==+-∈=a ax x R x B x x R x A ,若A=B ,则实数a 的取值范围为 . 答案:}44|{>-<a a a 或例18:已知集合}.121|{},52|{-≤≤+=≤≤-=m x m x B x x A (1)若B ⫋A ,求实数m 的取值范围; (2)若B A ⊆,求实数m 的取值范围.答案:(1)}.3|{≤m m (2)不存在m 使得B A ⊆.变式训练:已知}|{},31|{a x x B x x A <=<<-=,若B A ⊄,则实数a 的取值范围是( ). A.}3|{<a a B.}3|{≤a a C.}1|{->a a D.}1|{-≥a a 答案:A例19:已知集合},|{},,12|{},1,1|{2A x x z z C A x x y y B R a a a x x A ∈==∈-==∈->≤≤-=且,是否存在实数a 使得B C ⊆?若存在,求出实数a 的取值范围;若不存在,请说明理由. 答案:当1=a 时,B C ⊆易错题型易错1:混淆属于关系和包含关系例20:已知集合A={0,1},B=}|{A x x ⊆,则下列关于集合A 与B 的关系正确的是( ) A.A B ⊆ B.A ⫋B C.B ⫋A D.B A ∈ 答案D易错2:忽略对参数的讨论例21:已知集合},0)1(|{},0|{22=--===x a x x F x x E 判断集合E 和F 的关系. 答案:①当1=a 时,E=F ;②当1≠a 时,E ⫋F.易错3:忽略空集例22:已知集合A={-1,1},B=A B ax x x ⊆+=若},1|{,则实数a 的所有可能取值组成的集合为( ).A.{-1}B.{1}C.{-1,1}D.{-1,0,1} 答案:D易错4:利用数轴求参数范围时,忽略端点值是否能取到例23:已知集合},31|{},54|{R a a x a x B x x x A ∈+≤≤+=-<≥=或,若A B ⊆,则a 的取值范围为 .答案:}38|{≥-<a a a 或创新升级例24:已知非空集合21A A ,是集合A 的子集,若同时满足两个条件:(1)若21A a A a ∉∈,则;(2)若12A a A a ∉∈,则,则称),(21A A 是集合A 的“互斥子集”,并规定),(21A A 与),(12A A 为不同的“互斥子集组”,则集合A={1,2,3,4}的不同“互斥子集组”的个数是 . 答案:50组感知高考考向1:集合间关系判定及应用例25:已知集合A={1,2,3},B={2,3},则( )A.A=BB.A B ∈C.A ⫋BD.B ⫋A答案:D例26:已知集合A=},1{a ,B={1,2,3},那么( ).A.若3=a ,则B A ⊆B.若B A ⊆,则3=aC.若3=a ,则B A ⊄D.若B A ⊆,则2=a 答案:C 考向2 :子集的个数 例27:已知集合A=},023|{2R x x x x ∈=+-,B=},50|{N x x x ∈<<,则满足条件B C A ⊆⊆的集合C 的个数为( ).A. 1B. 2C. 3D. 4答案:D基础巩固:1.已知下列四个命题:①;则且若C A C B B A ⊆⊆⊆,②且若B A ⊆B ⫋C ,则A ⫋C ;③若A ⫋B 且B ⊆C ,则A ⫋C ;④若A ⫋B 且B ⫋C ,则A ⫋C.其中正确命题的个数是( )A. 1B. 2C. 3D. 42.满足M a ⊆}{⫋},,,{d c b a 的集合M 共有( )A.6个B. 7个C. 8个D.15个3.已知集合U=R ,则正确表示集合U ,M={-1,0,1},N=}0|{2=+x x x 之间的Veen 图是().4.集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则( )A.N M =B.N ⫋MC.M ⫋ND.M 与N 没有相同的元素5.设结合A={-1,1},集合B=},1|{R a ax x ∈=,则使得A B ⊆的a 的所有取值构成的集合是 .6.已知7.已知集合A=}.52|{≤≤-x x(1)若}126{-≤≤-=⊆m x m B B A ,,求实数m 的取值范围;(2)是否存在实数m ,使得A=B ,}126{-≤≤-=m x m B ?若存在,求出实数m 的范围;若不存在,请说明理由.综合提升:8.集合A=},,1{y x ,B=}2,,1{2y x ,若A=B ,则实数x 的取值集合为( ) A.{21} B.{2121-,} C.{210,} D.{21210-,,}9.下列四个结合中,是空集的是( )A.}33|{=+x xB.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x xD.},01|{2R x x x x ∈=+-10.集合},54|{2R a a a x x A ∈+-==,},344|{2R b b b y y B ∈++==,则下列关系正确的是( ). A. A=B B.B ⫋A C.A B ⊆ D.A B ⊄11.同时满足①}5,4,3,2,1{⊆M ,②M a M a ∈-∈6,且的非空集合M 的个数为( )A. 16B.15C. 7D. 612.若一个集合中含有n 个元素,则称该元素集合为“n 元集合”,已知集合}4,3,21,2{-=A ,则其“2元子集”的个数为( )A. 6B. 8C. 9D. 1013.设集合A=}023|{2=+-x x x ,集合B=},04|{2为常数a a x x x =+-,若A B ⊆,则实数a 的取值范围是 .14.已知集合A=}40|{≤<∈x Z x ,若A M ⊆,且M 中至少有一个偶数,则这样的集合M 的个数为 .15.若规定E=},...,,{1021a a a 的子集},...,,{21ni i i a a a 为E 的第k 个子集,其中1112...2221---+++=ni i i k ,则:(1)},{31a a 是E 的第 个子集;(2)E 的第211个子集为 .16.已知三个集合}02|{}01|{},023|{222=+-==-+-==+-=bx x x C a ax x x B x x x A ,,同时满足B ⫋A ,C ⊆A 的实数b a ,是否存在?若存在,求出b a ,的所有值;若不存在,请说明理由.参考答案1. D2. B3. B4. C5. {-1,0,1}6. }41|{≤a a7. (1)}43|{≤≤m m ;(2)不存在.8. A9. D10.B11.C12.A13.}4|{≥a a14. 1215.(1)5;(2)},,,,{87521a a a a a .16.存在2222,23,2<<-===b a b a 或满足要求.。
1.2 集合间的基本关系
[对点练清] 1.[变条件]本例若将集合 A,B 分别改为 A={-1,3,2m-1},B={3,m2},
其他条件不变,则实数 m=________. 解析:因为 B⊆A,所以 m2=2m-1, 即(m-1)2=0,所以 m=1, 当 m=1 时,A={-1,3,1},B={3,1}. 满足 B⊆A. 故实数 m 的值为 1. 答案:1
N.故选 D.
知识点二 空集 (一)教材梳理填空
定义 记法
我们把不__含__任__何__元__素__的集合叫做空集 ∅
规定
空集是任何集合的_子__集__,即∅ ⊆A
(1)空集只有一个子集,即它的本身,∅ ⊆∅ ; 特性
(2)若 A≠∅ ,则∅ _____A
[微思考] {0},∅与{∅}之间有什么区别与联系? 提示:{0}是含有一个元素 0 的集合,∅ 是不含任何元素的集合,因
此有∅ {0},而{∅ }是含有一个元素∅ 的集合.因此,∅ 作为一个元素
时,有∅ ∈{∅ },∅ 作为一个集合时,有∅ {∅ }.
(二)基本知能小试 1.判断正误
(1)∅和{∅}都表示空集. (2)任何集合都有子集和真子集.
(3)集合{x|x2+1=0,x∈R }=∅. 答案:(1)× (2)× (3)√
含有 4 个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5}.
含有 5 个元素:{1,2,3,4,5}.
故满足条件的集合 M:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},
{1,2,4,5},{1,2,3,4,5}. [答案] B
[方法技巧] 求集合子集、真子集个数的 3 个步骤
3.(多选)如下四个结论中,正确的有
集合之间的关系(子集
集合之间的关系(子集篇一:集合之间的关系教案1.2集合之间的关系与运算1.2.1 集合之间的关系【学习要求】1.理解子集、真子集、两个集合相等的概念.2.掌握有关子集、真子集的符号及表示方法,能利用Venn图表达集合间的关系.3.会求已知集合的子集、真子集.4.能判断两集合间的包含、相等关系,并会用符号准确地表示出来.【学法指导】通过使用基本的集合语言表示有关的数学对象,感受集合语言在描述客观现实和数学问题中的意义;培养用集合的观点分析问题、解决问题的能力;学习用数学的思维方式解决问题、认识世界.填一填:知识要点、记下疑难点1.子集:一般地,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A?B或B?A,读作“A包含于B”,或“B包含A”.2.子集的性质:①A?A(任意一个集合A都是它本身的子集);②??A(空集是任意一个集合的子集).3.真子集:如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作A B (或BA),读作“A真包含于B ”,或“B真包含A ”.4.维恩图:我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图.5.集合相等:一般地,如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,我们就说集合A等于集合B ,记作A=B .用数学语言表示为:如果A?B ,且B?A ,那么A=B .6.一般地,设A={x|p(x)},B={x|q(x)},如果A?B,则x∈A?x∈B,即p(x)?q(x) .反之,如果p(x)?q(x),则A?B研一研:问题探究、课堂更高效[问题情境] 已知任意两个实数a,b,则它们的大小关系可能是ab,那么对任意的两个集合A,B,它们之间有什么关系?今天我们就来研究这个问题.探究点一子集与真子集的概念导引前面我们学习了集合、集合元素的概念以及集合的表示方法.下面我们来看这样三组集合:(1)A={1,3},B={1,3,5,6};(2)C={x|x是长方形},D={x|x是平行四边形};(3)P={x|x是菱形},Q={x|x是正方形}.问题1 哪些集合表示方法是列举法?哪些集合表示方法是描述法?答:集合A,B的表示是用列举法;集合C,D,P,Q的表示是用描述法.问题2 这三组集合每组彼此之间有何关系?答:集合A中的任意一个元素都是集合B的元素,集合C中的任意一个元素都是集合D的元素,集合Q中的任意一个元素都是集合P的元素.小结:一般地,如果集合A中的任意一个元素都是集合B中的元素,那么集合A叫做集合B的子集.记作:A?B或B?A,读作:A 包含于B或B包含A.问题3 类比表示两集合间子集关系的符号与表示两个实数大小关系的等号之间有什么类似之处?答:在实数中如果a大于或等于b,则a,b的关系可表示为a ≥b或b≤a;在集合中如果集合A是集合B的子集,则A,B的关系可表示为A?B(或B?A).所以这是它们的相似之处.问题4 在导引中集合P与集合Q之间的关系如何表示?答:集合P不包含于Q,或Q不包含P,分别记作P Q或QP.问题5 空集与任意一个集合A有什么关系,集合A与它本身有什么关系?答:(1)空集是任意一个集合的子集;(2)任何一个集合A是它本身的子集.问题6 对于集合A,B,C,如果A?B,B?C,那么集合A与C 有什么关系?答:A与C的关系为A?C.问题7 “导引”中集合A中的元素都是集合B的元素,集合B 中的元素不都是集合A的元素,我们说集合A是集合B的真子集,那么如何定义集合A是集合B的真子集?答:如果说集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作:A B(或B A),读作“A真包含于B”或“B真包含A”.问题8 集合A,B的关系能不能用图直观形象的表示出来?1 / 3答:能.我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图.问题9 如何用维恩(Venn)图表示集合A是集合B的真子集?答:如图所示:例1 写出集合A={1,2,3}的所有子集和真子集.分析:为了一个不漏地写出集合A={1,2,3}的所有子集,可以分类写,即空集,含一个元素的子集,含两个元素的子集,含三个元素的子集.解:集合A的所有子集是:?,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.在上述子集中,除去集合A本身,即{1,2,3},剩下的都是A的真子集.3小结:集合A={1,2,3}中有三个元素,其子集的个数为8个,即2个,事实上,如果一个集合含有n个元素,则它的子集个数为2个.跟踪训练1 写出满足{3,4}P?{0,1,2,3,4}的所有集合P.解:由题意知,集合P中一定含有元素3,4并且是至少含有三个元素的集合.此所有满足题意的集合P为{0,3,4},{1,3,4},{2,3,4},{0,1,3,4},{0,2,3,4},{1,2,3,4},{0,1,2,3,4}.探究点二集合的相等问题1 观察下面几个例子,你能发现两个集合间有什么关系吗?(1)集合C={x|x是两条边相等的三角形},D={x|x是等腰三角形};(2)集合C={2,4,6},D={6,4,2};(3)集合A={x|(x+1)(x+2)=0},B={-1,-2}.答:可以看出每组的两个集合的元素完全相同,只是表达形式不同.问题2 与实数中的结论“若a≥b,且b≥a,则a=b”相类比,在集合中,你能得出什么结论?答:若A?B,且B?A,则A=B.小结:一般地,对于两个集合A与B,如果集合A的每一个元素都是集合B的元素,同时集合B的每一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B.即:如果A?B,且B?A,那么A=B.例2 说出下列每对集合之间的关系:(1)A={1,2,3,4,5},B={1,3,5};2(2)P={x|x=1},Q={x||x|=1};(3)C={x|x是奇数},D={x|x是整数}.解(1)B A;(2)P=Q;(3)C D.小结:在两个集合A,B的关系中,有一个集合是另一个集合的“子集”;或一个集合是另一个集合的“真子集”;或两个集合“相等”;另外还可能有“集合A不包含于B”或“集合B不包含于A”.跟踪训练2 用适当的符号(∈,?)填空:(1)0______{0};0______?;?______{0};22(2)?______{x|x+1=0,x∈R};{0}______{x|x+1=0,x∈R};(3)设A={x|x=2n-1,n∈Z},B={x|x=2m+1,m∈Z},C={x|x =4k±1,k∈Z},则A______B______C. 解析(1)0∈{0},0??,?{0};22(2)?={x|x+1=0,x∈R},{0}{x|x+1=0,x∈R};(3)A,B,C均表示所有奇数组成的集合,∴A=B=C.探究点三集合关系与其特征性质之间的关系问题1 已知集合A的特征性质为p(x),集合B的特征性质为q(x).“如果p(x),那么q(x)”是正确命题,试问集合A和B的关系如何?并举例说明.答:集合A是集合B的子集,例如Q={x|x是有理数},P={x|x 是实数},易知Q?P,也容易判断命题“如果x是有理数,则x是实数”是正确命题.这个命题还可以表述为:x是有理数?x是实数,符号“?”表示推出.小结:一般地,设A={x|p(x)},B={x|q(x)},如果A?B,则x∈A?x∈B,即p(x)?q(x).反之,如果p(x)?q(x),则A?B.问题2 如果命题“p(x)?q(x)”和命题“q(x)?p(x)”都是正确的命题,那么怎样表示p(x),q(x)的关系?答:p(x)?q(x),符号“?”表示相互推出.例3 判定下列集合A与集合B的关系:(1)A={x|x是12的约数},B={x|x是36的约数};(2)A={x|x>3},B={x|x>5};(3)A={x|x是矩形},B={x|x是有一个角为直角的平行四边形}.解:(1)因为x是12的约数?x是36的约数,所以A?B;2 / 3n(2)因为x>5?x>3,所以B?A;(3)因为x是矩形?x是有一个角为直角的平行四边形,所以A=B.小结:当判定用特征性质描述法表示的两个集合关系时,一是可用赋值法,二是从两集合元素的特征性质p(x)入手,通过整理化简,看是否是一类元素.跟踪训练3 确定下列每组两个集合的包含关系或相等关系:(1)A={n|n=2k+1,k∈Z}和B={m|m=2l-1,l∈Z};**(2)C={n|n=2k+1,k∈N}和D={m|m=2l-1,l∈N}.解(1)当k∈Z,l∈Z时,n=2k+1?m=2l-1,所以A=B;**(2)当k∈N,l∈N时,n=2k+1?m=2l-1,所以C?D.练一练:当堂检测、目标达成落实处1.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若?A,则A≠?.其中正确的个数是( )A.0B.1C.2D.3解析:由于任何集合都是它本身的子集,故①错;空集只有一个子集就是它本身,故②错;空集是任何非空集合的真子集,故③错;2.满足条件{1,2}M?{1,2,3,4,5}的集合M的个数是( )A.3 B.6C.7 D.8解析:M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.3.若集合{2x,x+y}={7,4},则整数x,y分别等于__________.???2x=7?2x=4?解:由集合相等的定义得或?,?x+y=4?x+y =7??7x=??2∴?1y=??2舍?x=2?或???y=5 .∴x,y的值分别是2,5.4.观察下面几组集合,集合A与集合B具有什么关系?(1)A={1,2,3},B={1,2,3,4,5}.(2)A={x|x>3},B={x|3x-6>0}.(3)A={正方形},B={四边形}.(4)A={育才中学高一(11)班的女生},B={育才中学高一(11)班的学生}.解:通过观察就会发现,这四组集合中,集合A都是集合B的一部分,从而有A?B.课堂小结:1.能判断存在子集关系的两个集合,谁是谁的子集,进一步确定其是否为真子集;注意:子集并不是由原来集合中的部分元素组成的集合.2.空集是任何集合的子集,是任何非空集合的真子集.3.注意区别“包含于”,“包含”,“真包含”.4.注意区分“∈”与“?”的不同涵义.3 / 3篇二:集合间的基本关系知识点集合间的基本关系1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分,(2)A与B是同一集合。
高中数学同步教学课件 集合的基本关系 (2)
7
8
9
10
11
12
13
14
15
1
2
,∅;当a=1时,集合A
16
10.集合A={x|1<x<5},C={x|3a-2<x<4a-3},若C⊆A,求实数a的取值范围.
∵C⊆A,∴分C=∅和C≠∅两种情况讨论.
当C=∅时,3a-2≥4a-3,解得a≤1;
当C≠∅时,3a-2<4a-3,解得a>1,
又C⊆A,数轴表示如图:
> 1,
∴ቐ3 − 2 ≥ 1, 解得1 < ≤ 2.
4 − 3 ≤ 5,
综上所述,实数a的取值范围是{a|a≤2}.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
综合运用
2
11.集合M= ฬ = +
1
,
3
A.M=N
∈ ,N= ฬ = +
1
,
3
∈ ,则
B.M⊆N
个,非空真子集有(2n-2)个.
跟踪训练 2 满足{1,2}
由题意可得{1,2}
M⊆{1,2,3,4}的集合M有 3 个.
M⊆{1,2,3,4},可以确定集合M必含有元素1,2,且含
有元素3,4中的至少一个,因此依据集合M的元素个数分类如下:
含有三个元素,{1,2,3},{1,2,4};
含有四个元素,{1,2,3,4}.
(2)集合间关系的判断,求子集、真子集的个数问题.
(3)由集合间的关系求参数的值或范围.
新版高中数学必修一课件:1.2集合间的基本关系
A.16
B.8
C.7
D.4
答ห้องสมุดไป่ตู้:C
解析:∵A={x∈N|1≤x<4}={1,2,3}, ∴A={x∈N|1≤x<4}的真子集为:∅,{1},{2},{3},{1,2},{1,3},{2,3}共7个.
(2)满足∅⊊M⊆{1,2,3}的集合M共有( ) A.6个 B.7个 C.8个 D.15个
答案:B
助学批注
批注❶ 子集是刻画两个集合之间关系的,它反映的是局部与整体 之间的关系(而元素与集合之间的关系是个体与整体之间的关系).
批注❷ 若两集合相等,则两集合所含元素完全相同,与元素排列
顺序无关. 批注❸ {0}与∅的区别:{0}表示一个集合,且集合中有且仅有一
个元素0;而∅表示空集,其不含有任何元素,故{0}≠∅.
B.B∈A
C.A⊆B
D.B⊆A
答案:D 解析:由Venn图易知B是A的子集,即B⊆A,故选D.
3.下列四个集合中,是空集的为( )
A.{0}
B.{x|x>8,且x<5}
C.{x∈N|x2-1=0} D.{x|x>4}
答案:B
解析:x>8,且x<5的数x不存在,∴选项B中的集合不含有任何元素,故选B.
基础自测 1.思考辨析(正确的画“√”,错误的画“×”) (1)空集中只有元素0,而无其余元素.( × ) (2)任何一个集合都有子集.( √ ) (3)若A=B,则A⊆B.( √ ) (4)空集是任何集合的真子集.( × )
2.A和B两个集合的大小情况如图所示,则A和B的关系是( )
A. A∈B
(2)若A={2,3,4},B={x|x=mn,m,n∈A且m≠n},则集合B的 子集个数为____8____,非空真子集的个数为____6____.
1.2.2真子集
中专一年级数学导学案 第一章 《集合》 制作人:中三数学组勿以恶小而为之勿以善小而不为 精诚所至金石为开第1页,共1页 1.2.2真子集班级: 姓名: 小组: 评价: 【学习目标】 (1)掌握真子集的概念和表示符号; (2)会图示一个集合是另一个集合的真子集。
(3)掌握含有n 个元素的集合子集、真子集的个数及书写方法 【学习重点】真子集的概念和表示符号.【学习难点】子集、真子集的书写【课堂六环节】一、“导”——教师导入新课。
二、“思”——自主学习。
学生结合课本自主学习,完成以下有关内容。
阅读课本第8—9页“真子集”部分,将你认为重要的部分勾画出来,然后合上课本,完成下面内容。
1、真子集如果集合B 是集合A 的子集,并且集合A 中至少有一个元素不属于集合B ,那么把集合B 叫做集合A 的 .2、表示记作 , 读作 .3、空集是任何非空集合的真子集.三、“议”——学生起立讨论。
小组集体商议以上学习的内容,每位小组成员根据自己的学习思考结果核对、复述、更正、补充以上的学习内容,还可讨论与以上学习内容相关的拓展性知识。
四、“展”——学生激情展示。
小组代表或教师随机指定学生展示。
五、“评”——教师点评,教师总结规律,点评共性问题,或拓展延伸。
六、“检”——课堂检测。
可根据学科、课题特点不同,采用多样的检测形式。
【课堂检测练习】 1、选用适当的符号填空:(1){1,3,5}_ _{1,2,3,4,5};(2){2}_ _ {x | |x |=2}; (3){1} _∅.2、设集合{}0,1,2M =,试写出M 的所有子集,并指出其中的真子集。
1.2 集合间的基本关系知识点总结与例题讲解
②当 时,则有: ,解之得: ≤ ≤2.
综上,实数 的取值范围为 .
例3.设集合 , ,若 ,则实数 的值取值范围为__________.
分析:在进行分类讨论时要做到不重不漏,特别注意不能漏掉对 的讨论.解决本题还要明白以下两点:(1)空集是任何集合的子集;(2)空集是任何非空集合的真子集.
解:
∵ ,
∴分为两种情况:
(1)当 时,方程 没有实数根
∴ ,解之得Leabharlann ;(2)当 时,则有 或 或
①当 或 时,方程 有两个相等的实数根
∴ ,解之得:
∴ 符合题意;
②当 时,由根与系数的关系定理可得:
解之得: .
综上,实数 的值取值范围为 .
例4.已知集合 .
(1)若 , ,求实数 的取值范围;
(2)若 , ,求实数 的取值范围;
若 ,在未指明A非空时,要分两种情况进行讨论:
① ;
② .
知识点三 集合相等
如果集合A是集合B的子集( ),且集合B是集合A的子集( ),此时集合A与集合B的元素是一样的,集合A与集合B相等,叫做 .
上面也即互为子集的两个集合相等.
集合 的符号表述:若 ,且 ,则 .
如何证明两个集合相等
对于两个集合A,B,若要证明 ,只需证明 与 均成立即可.
(2)空集的只有一个子集,是空集,即它本身.
(3)空集是任何非空集合的真子集,即若 ,则 .
重要提醒:在由集合间的关系确定参数的值或参数的取值范围时,注意对空集的讨论.
知识点六 子集、真子集个数的确定
若集合A含有 个元素,则集合A:
(1)含有 个子集;
(2)含有 个非空子集;
教案《集合的基本关系》
课题:集合的基本关系教学目的:知识目标:(1)使学生了解集合的包含、相等关系的意义;(2)使学生理解子集、真子集的概念;(3)使学生理解补集的概念;(4)使学生了解全集的意义。
能力目标:(1)重视基础知识的教学、基本技能的训练和能力的培养;(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力;德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。
教学重点:子集、补集的概念教学难点:弄清元素与子集、属于与包含的关系授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入::1.复习(1)回答概念:集合、元素、有限集、无限集、列举法、描述法。
(2)用列举法表示下列集合:①}022|{23=+--x x x x {-1,1,2}②数字和为5的两位数} {14,23,32,41,50}(3)用描述法表示集合:}51,41,31,21,1{ }5,1|{*≤∈=n N n nx x 且 (4)集合中元素的特性是什么?(5)用列举法和描述法分别表示:“与2相差3的所有整数所组成的集合” }3|2||{=-∈x Z x {-1,5}2. 引课:问题:观察下列两组集合,说出集合A 与集合B 的关系(三个事例共性)(组论讨论,给出结论)(1)A={1,2,3},B={1,2,3,4,5}(2)A=N ,B=Q(3)A={-2,4},}082|{2=--=x x x B(集合A 中的任何一个元素都是集合B 的元素)二、新课: (阅读教材第七页至第八页例1之前自己梳理本节知识)子集1.定义:(1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。
离散数学第三章集合的基本概念和运算
3.1 集合的基本概念
3.2 集合的基本运算
3.3 集合中元素的计数
3.1 集合的基本概念
1.子集:若 B⊆A⇔∀x(x∈B→x∈A),则称B为A的子集. 2.真子集:若 B⊆A ∧ B≠A,则称B为A的真子集. 3.集合相等: B⊆A ∧ A⊆B⇔A=B,称集合A与B相等. 4.空集:不含任何元素的集合称为空集.记作φ. 空集是一切集合的子集;空集是唯一的. 5.n元集:含有n个元素的集合称为n元集. 6.全集:如果所涉及的集合都是某个集合的子集,则称这个集 合为全集(E). 7.幂集:设A为集合,把A的全体子集构成的集合,称为A的幂集 记作P(A),P(A)={x|x⊆A}. 若A是n元集,则P(A)有2n个元集(n元集有2n个子集).
二.集合运算的算律 幂等律:A∪A=A, A∩A=A;
结合律: (A∪B)∪C=A∪(B∪C), (A∩B)∩C=A∩(B∩C); 交换律: A∪B=B∪A , A∩B=B∩A; 分配律: A∪(B∩C)=(A∪B)∩(A∪C), A∩(B∪C)=(A∩B)∪(A∩C); 同一律: A∪φ=A, 排中律: A∪~A=E; A∩E=A; 零律: A∪E=E, A∩φ=φ;
| Ai I A j I Ak | +... + ( −1) m | A1 I A2 I ...I Am | ∑
推论: 推论:在S中至少具有一条性质的元素数是
| A1 U A 2 U ... U A m |= +
1≤ i < j < k ≤ m
∑|A
i =1
m
i
|−
1≤ i < j ≤ m
∑|AI
i
二.包含排斥原理 包含排斥原理
1.2集合间的基本关系-2024-2025学年高一数学必修第一册+课件(人教A版2019)
(2)
集合
⌀
{a}
{a,b}
{a,b,c}
集合的子集
⌀
⌀,{a}
⌀,{a},{b},{a,b}
⌀,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}
子集的个数
1
2
4
8
由此猜想:含n个元素的集合{a1,a2,…,an}的所有子集的个数是2 ?真子集的个数
及非空真子集的个数是2 -2.
确定集合的子集、真子集
设A={x(x-16)(x+5x+4)=0},写出集合A的子集,并指出其中哪些是它的真子集?
解:由(x2-16)(x2+5x+4)=0,得(x-4)(x+1)(x+4)2=0,解方程得x=-4或x=-1
或x=4.
故集合A={-4,-1,4}.由0个元素构成的子集为∅;
由1个元素构成的子集为{-4},{-1},{4};
由2个元素构成的子集为{-4,-1},{-4,4},{-1,4};
由3个元素构成的子集为{-4,-1,4}.
因此集合A的子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4},{4,-1,4}.
真子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}.
知识讲解
2.填空
一般地,如果集合A的任何一个元素都是集合B的元素,同时集合B
的任何一个元素都是集合A的元素,那么集合A与集合B相等,记作
A=B.
也就是说,若A⊆B,且B⊆A,则A=B.
3.做一做
集合相等的概念记作
集合相等的概念记作集合相等的概念是指两个集合具有相同的元素。
在数学中,集合是由一组特定元素组成的。
集合相等是指两个集合包含的元素完全相同,而且顺序无关紧要。
如果两个集合A和B包含相同的元素,则可以表示为A = B。
例如,如果A = {1, 2, 3},B = {3, 2, 1},则可以说A和B是相等的集合。
为了验证两个集合的相等性,可以使用集合相等的定义进行比较。
首先,需要检查两个集合的元素个数是否相等。
如果两个集合的元素个数不同,那么它们肯定不相等。
然后,需要检查两个集合中的每个元素是否相等。
如果每个元素都在另一个集合中找到,那么这两个集合是相等的。
要注意的是,集合的相等性并不依赖于元素的顺序。
换句话说,集合中元素的排列顺序不影响集合的相等性。
因此,{1, 2, 3}和{3, 2, 1}是相等的集合,因为它们具有相同的元素。
另外,与集合相等性相关的概念是子集和真子集。
如果一个集合的所有元素都包含在另一个集合中,那么称这个集合是另一个集合的子集。
子集的符号为⊆。
例如,对于集合A = {1, 2, 3, 4}和B = {1, 2, 3},可以说B是A的子集,表示为B ⊆A。
如果一个集合是另一个集合的子集,并且两个集合不相等,那么这个子集被称为真子集。
用符号表示为B ⊂A。
例如,对于集合A = {1, 2, 3, 4}和B = {1, 2, 3},可以说B是A的真子集。
要证明集合的相等性,可以使用集合相等的定义和逻辑推理。
假设有两个集合A 和B,要证明A = B,需要证明以下两个条件:1. 对于A中的每个元素x,x也必须是B的成员。
可以使用反证法来证明这一点。
假设存在一个元素x在A中但不在B中,那么可以得出一个矛盾,即A和B不相等。
因此,A中的每个元素都必须是B的成员。
2. 对于B中的每个元素y,y也必须是A的成员。
可以使用类似的推理来证明这一点。
假设存在一个元素y在B中但不在A中,那么可以得出一个矛盾,即A和B不相等。
2020-2021学年高中数学人教A版必修第一册:1.2 集合间的基本关系
答案:{-1,0} {-1,0} 3.因为A={(x,y)|x+y=2,x,y∈N}, 所以A={(0,2),(1,1),(2,0)}. 所以A的子集有: ,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)}, {(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.
【思考】集合M,N是两个至少含有一个元素的集合,试画图说明这两个集合关 系有哪几种? 提示:有以下五种关系
3.空集 (1)定义:_不__含__任__何__元__素__的集合叫做空集,记为⌀. (2)规定:_空__集__是任何集合的子集.
【思考】⌀与0,{0},{⌀}有何区别? 提示:
4.集合间关系的性质 (1)任何一个集合都是它本身的子集,即_A_⊆_A_. (2)对于集合A,B,C,若A⊆B,且B⊆C,则__A_⊆_C.
【思考】 符号“∈”与“⊆”有什么区别? 提示:①“∈”是表示元素与集合之间的关系,比如1∈N,-1∉N. ②“⊆”是表示集合与集合之间的关系,比如N⊆R,{1,2,3}⊆{3,2,1}. ③“∈”的左边是元素,右边是集合,而“⊆”的两边均为集合.
(2)集合相等
(3)真子集
(4)本质:集合之间的关系是对集合深入认识的开始,同时也是集合在整个高 中学习应用的基础和关键,是能否理解和掌握集合知识的重要部分. (5)应用:①用数学语言表达集合之间的关系.②求参数的值或范围.
由1个元素构成的子集为:{-4},{-1},{4}. 由2个元素构成的子集为:{-4,-1},{-4,4},{-1,4}. 由3个元素构成的子集为:{-4,-1,4}. 因此集合A的子集为: ,{-4},{-1},{4},{-4,-1},{-4,4}, {-1,4},{-4,-1,4}. 真子集为: ,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2 /3 真子集和集合相等
一、学习目标
1、理解集合之间真包含与相等关系,能识别给定集合的子集和真子集,能准确的使用相关术语和符号;
2、会使用Venn 图、数轴表示集合间的关系,体会Venn 图在分析理解集合问题中的作用;
(下面请同学们按部就班的自学教材,逐一的完成我们的学习目标)
二、复习内容:一般地,对于两个集合A 、B ,如果集合A 中
任意一个元素都是集合B 的元素,我们就说这两个集合有包含关 系,称集合A 为集合B 的子集,记作:B A ⊆(或A B ⊇)读作: “A 包含于B ”(或“B 包含A ”).空集是任何集合的子集
三、自学内容和要求及自学过程
阅读教材第8、9页内容,然后回答下列问题
(自学引导:要学会通过例子,归纳结论.通过我们书上的例子,归纳出真子集的定义)
<1>根据教材上的例子,你能发现集合间有什么关系吗?
<2>根据上面阐述,你能总结出真子集的描述性定义并理解之吗?
<1>可以发现:对于题目中的集合M ,真子集比子集少了一
个(它本身),第三个例子中集合A 和集合B 是相等的.
<2>教材上例子①中集合N 是集合M 的子集,集合P 是集合M 的子
集,同样是子集,有什么区别?你能由此得出真子集的描述性定义吗?
<3>例子①中A ⊆B,但有两个元素4∈B ,5∈B 且4∉A ,5∉A ; 而例子③中集合C 和集合D 中的元素完全相同;由此,我们可以
得到真子集的描述性定义:如果集合A ⊆B ,但存在元素, B x ∈,
且A x ∉,我们称集合A 是B 的真子集,记作:A B (或B A )
<4>类比实数中的结论:“若b a ≥,且a b ≥,则b a =”,在集合
中,你发现了什么结论?
<5>如果集合A 是集合B 的子集(A ⊆B ),且集合B 是集
合A 的子集A ⊆B ,此时,集合A 与集合B 中的元素是一样的,因
此,集合A 与集合B 相等,记作:A=B.
<6>空集是任何集合的子集,即∅⊆A ;空集是任何非空集
合的真子集,即∅ A.
<7>试用Venn 图表示例子①中集合A 和集合B ;若已知A=B,试用Venn 图表示集合A 和B 的关系.
、
、 、
四、练习与巩固 练习一:<1>教材第9页练习1.2.2;练习二:教材第9页练习1.2.3.
五、作业 P10习题1.2 A 组 2.。