Flexible solid-state electrochemical supercapacitors
模具专业英语
GLOSSARYAabrasive grinding 强力磨削L 3 abrasive[☜'breisiv] a.磨料的, 研磨的L2,3 absence ['✌bs☜ns] n.. 不在,缺席L17 accesssory[✌k'ses☜ri] n.附件L10 accommodate[☜'k m☜deit] v. 适应L 5 accordingly[☜'k :di☠li] adv.因此,从而,相应地L7,13 accuracy['✌kjur☜si] n精度,准确性L1,3 act uat e['✌kt jueit] vt.开动(机器), 驱动L8 adequate['✌dikwit] a. 足够的L13 adhesive[☜d'hi:siv] n. 粘合剂L22 adjacent[☜'d✞eisnt] a. 邻近的L13 adopt[☜'d pt] vt. 采用L 4 advance [☜d'v✌:ns] n.进步L7 advisable [☜d'vaizbl] adj. 可取的 L20 agitate['✌d✞iteit] v. 摇动L 2 a large extent 很大程度L4,13 algorithm ['✌l♈☜ri❆☜m] n. 算法L 6 align [☜'lain] v 定位,调准L17 alignment[☜'lainm☜nt] n. 校直L11 all-too-frequent 频繁L17 allowance[☜'l☜uens] n. 容差, 余量L5 alternate[' :lt☜nit]v.交替,轮流L 1 alternative[ :l't☜:n☜tiv] n. 替换物L 3 alt ernat ively[ :l't☜:n☜tivli] ad. 做为选择, 也许L 5 aluminiun[ ✌lju'minj☜m] n.铝L 2 ample['✌mpl] adj. 充足的L20 analysis [☜'n✌l☜sis] n. 分析L 6 ancillary['✌nsil☜ri] a.补助的, 副的L 4 angular ['✌♈jul☜] adj. 有角的L20 annealing[☜'li:li☠] n.退火L 2 aperture ['✌p☜t☞☜] n.孔L17 applied loads 作用力L 1 appropriate [☜'pr☜uprieit] a. 适当的L6,20 arc[a:k] n.弧, 弓形L10 arise[☜'raiz] vi. 出现, 发生L21 arrange[☜'reid✞] v. 安排L12 article['a:tikl] n.制品, 产品L21 ascertain[ ✌s☜'tein] vt. 确定, 查明L 1 assemble[☜'sembl] vt.组装L 4 attitude ['✌titju:d] n 态度L17 auxiliary [ :♈'zilj☜ri]adj. 辅助的L8 avoid[☜'v id] v.避免L7 axis['✌ksis] n.轴L 5 axle['✌ksl] n.轮轴, 车轴L 1Bbackup['b✌k ✈p] n. 备份L9 batch [b✌t☞] n 一批L17 bearing['b☪☜ri☠] n.轴承,支座L21 bed[bed] n. 床身L 5 behavior[bi'heivj☜] n. 性能L 1 bench-work 钳工工作L 4 bend[bend] v.弯曲L 1 beneath[bi'ni: ] prep在···下L 4 bin [bin] n. 仓,料架L19 blank [bl✌☠k] n. 坯料L20 blank [bl✌☠k] v. 冲裁,落料L17 blanking tool 落料模L17 blast [bl✈st] n.一阵(风)L18 blemish['blemi☞] n. 缺点, 污点L13 bolster['b☜ulst☜] n. 模座,垫板L4,5boost[bu:st] n. 推进L9 boring['b :ri☠] n.镗削, 镗孔L4,5 bracket ['br✌kit] n. 支架L19 brass [br✌s] n.黄铜L 2 break down 破坏L 1 breakage ['breikid✞] n.破坏L17121bridge piece L16 brine[brain] n. 盐水L 2 brittle['britl] adv.易碎的L 1 buffer [b✈f☜] n.缓冲器L8 built-in 内装的L9 bulging [b✈ld✞i☠] n. 凸肚L22 burr [b☜:] n. 毛刺L17 bush [bu☞] n. 衬套L17 bush[bu☞]n. 衬套L 5 by far (修饰比较级, 最高级)···得多, 最L 3 by means of 借助于L 5Ccabinet ['k✌binit] n.橱柜L7 call upon 要求L17 carbide['ka:baid] n.碳化物L10 carburzing['ka:bjureti☠] n. 渗碳L 2 carriage['k✌rid✞] n.拖板, 大拖板L 5 carry along 一起带走L18 carry down over 从···上取下L21 carry out 完成L17 case hardening 表面硬化L 2 case[keis] n. 壳, 套L 2 cast steel 铸钢L17 casting['ka:sti☠] n. 铸造,铸件L 3 category['k✌t☜♈☜uri] n. 种类L6,15 caution ['k :☞☜n] n. 警告,警示L17 cavity and core plates 凹模和凸模板L11 cavity['k✌viti] n.型腔, 腔, 洞L4,10 centre-drilling 中心孔L 5 ceramic[si'r✌mik] n.陶瓷制品L 3 chain doted line 点划线L11 channel['t☞✌nl] n.通道, 信道L8 characteristic[k✌r☜kt☜'ristik] n.特性L 1 check[t☞ek] v.核算L21 chip[t☞ip] n.切屑, 铁屑L 3 chuck [t☞✈k] n.卡盘L5,8 chute [☞u:t] n. 斜道L19 circa ['s☜k☜:] adv. 大约L7 circlip['s☜:klip] n.(开口)簧环L22 circuit['s☜:kit] n. 回路, 环路L13 circular supoport block L 5 circulate['s☜:kjuleid] v.(使)循环L13 clamp [kl✌mp] vt 夹紧L17 clamp[kl✌mp] n.压板L1 2 clay[klei] n. 泥土L2,7 clearance ['kli☜r☜ns] n. 间隙L17 clip [klip] vt. 切断,夹住L19 cold hobbing 冷挤压L 4 cold slug well 冷料井L12 collapse[k☜'l✌ps] vi.崩塌, 瓦解L22 collapsible[k☜'l✌ps☜bl] adj.可分解的L22 combination [k mbi'nei☞☜n] n. 组合L18 commence[k☜'mens] v. 开始, 着手L16 commence[k☜'mens]v. 开始L21 commercial [k☜'m☜:☞☜l] adj. 商业的L7 competitive[k☜m'petitiv] a. 竞争的L9 comp lementary[ k mpli'ment☜ri] a. 互补的L 5 complexity [kem'pleksiti] n.复杂性L8 comp licat ed['k mpl☜keitid] adj.复杂的L2 complication [k mpli'kei☞☜n] n. 复杂化L5,20 compression [k☜m'pre☞☜n] n.压缩L 1 comprise[k☜m'prais] vt.包含L16 compromise['k mpr☜maiz] n. 妥协, 折衷L1 3 concern with 关于L 6 concise[k☜n'sais] a. 简明的, 简练的L9 confront[k☜n'fr✈nt] vt. 使面临L14 connect or[k☜'nekt☜] n. 连接口, 接头L14 consequent['k nsikw☜nt] a. 随之发生的, 必然的L 3 console ['k nsoul] n.控制台L8 consume [k☜n'sjum] vt. 消耗, 占用L7 consummate [k☜n's✈meit] vt. 使完善L 6122container[k☜n'tein☜] n. 容器L11 cont ingent[ken'tind✞☜nt] a.可能发生的L9 contour['k☜ntu☜] n.轮廓L5,21 conventional[k☜n'ven☞☜nl] a. 常规的L4 converge[k☜n'v☜:d✞] v.集中于一点L21 conversant[k n'v☜:s☜nt] a. 熟悉的L15 conversion[k☜n'v☜:☞☜n] n 换算, 转换L7 conveyer[ken'vei☜] n. 运送装置L12 coolant['ku:l☜nt] n. 冷却液L1 3 coordinate [k☜u' :dnit] vt. (使)协调L8 cop y machine 仿形(加工)机床L4 core[k :] n. 型芯, 核心L2,4 corresponding [ka:ri'sp di☠] n.相应的L7 counteract [kaunt☜'r✌kt] vt. 反作用,抵抗L20 couple with 伴随L20 CPU (central processing unit) 中央处理器L9 crack[kr✌k ] v.(使)破裂,裂纹L1,17 critical['kritikl] adj.临界的L 2 cross-hatching 剖面线L16 cross-section drawn 剖面图L1 1 cross-slide 横向滑板L 5 CRT(cat hoder-ray tube) 阴极射线管L9 crush[kr✈☞]vt.压碎L 1 cryogenic[ krai☜'d✞enik ]a.低温学的 L 1 crystal['kristl] adj.结晶状的L 1 cubic['kju:bik] a. 立方的, 立方体的L 3 cup [k✈p] vt (使)成杯状, 引伸L18 curable ['kjur☜bl] adj. 可矫正的L20 curvature['k☜:v☜t☞☜] n.弧线L21 curve [k☜:v] vt. 使弯曲L20 cutter bit 刀头, 刀片L 3 cyanide['sai☜naid] n.氰化物L 2Ddash [d✌☞] n. 破折号L 6 daylight ['deilait] n. 板距L12 decline[di'klain] v.下落,下降,减少, L3,9 deform[di'f :m] v. (使)变形L1, 3 demonstrate['dem☜streit ] v证明L21 depict[di'pikt ] vt 描述L18 deposite [di'p zit] vt. 放置L20 depression[di'pre☞☜n] n. 凹穴L12 descend [di'sent] v. 下降L20 desirable[di'zair☜bl] a. 合适的L 2 detail ['diteil] n.细节,详情L17 det erioration[diti☜ri:☜'rei☞☜n] n. 退化, 恶化L1 2 determine[di't☜:min] v.决定L1 6 diagrammmatic[ dai☜gr☜'m✌tik].a.图解的,图表的L10 dictate['dikteit] v. 支配L12 die[dai] n.模具, 冲模, 凹模L 2 dielectric[daii'lektrik] n. 电介质L10 die-set 模架L19 digital ['did✞itl ] n.数字式数字, a.数字的L3, 6 dimensional[dddi'men☞☜nl] a. 尺寸的, 空间的L 3 discharge[dis't☞a:d✞] n.v. 放电, 卸下, 排出L 3 discharge[dis't☞a:d✞] v.卸下L8 discret e [dis'cri:t] adj. 离散的,分立的L7 dislodge[dis'l d✞] v. 拉出, 取出 L1 2 dissolution[dis☜'lu:☞☜n] n.结束L9 distinct [dis'ti☠kt] a.不同的,显著的L 6 distort [dis'd :t] vt. 扭曲L20 distort[dis't :t] vt. (使)变形, 扭曲L 1 distributed system 分布式系统L9 dowel ['dau☜l] n. 销子L19 dramat iclly[dr☜'m✌tikli] adv. 显著地L7 drastic ['dr✌stik] a.激烈的L17 draughting[dra:fti☠] n. 绘图L1 6 draughtsman['dr✌ftsm☜n] n. 起草人L16 drawing['dr :i☠] n. 制图L11 drill press 钻床L8123drum [dr✈m] n.鼓轮L8 dual ['dju:☜l] adv. 双的,双重的 L18 ductility [d✈k'tiliti ] n.延展性L1,21 dynamic [dai'n✌mik ] adj 动力的L 6Eedge [ed✞] n .边缘L20 e.g.(exempli gratia) [拉] 例如L12 ejector [i'd✞ekt☜] n.排出器,L18 ejector plate 顶出板L16 ejector rob 顶杆L 5 elasticity[il✌'stisiti] n.弹性L 1 elect ric dicharge machining 电火花加工L3 electrical discharge machining电火花加工L10 elect rochemical machining 电化学加工L3 electrode[i'lektr☜ud] n. 电极L10 electro-deposition 电铸L 4 elementary [el☜'ment☜ri] adj.基本的L 2 eliminate[i'limineit] vt. 消除, 除去L10 elongate[i'l ☠♈et] vt. (使)伸长, 延长L 1 emerge [i'm☜:d✞] vi. 形成, 显现 L20 emphasise['emf☜saiz] vt. 强调L 4 endeavour[en'dev☜] n. 尽力L17 engagement[in'♈eid✞ment] n. 约束, 接合L2 2 enhance[in'h✌ns] vt. 提高, 增强L9 ensure [in'☞u☜] vt. 确保,保证L17 envisage[in'vizid✞] vt.设想L15 erase[i'reis] vt. 抹去, 擦掉L16 evaluation[i'v✌lju ei☞☜n] n. 评价, 估价L1 eventually[i'v☜nt☞u☜li ] adv.终于L2 1 evolution[ev☜'lu:☞☜n] n.进展L16 excecution[eksi'kju:☞☜n] n. 执行, 完成L9 execute ['ekskju:t] v. 执行L8 exerte [i♈'z☜:t] vt. 施加L20 experience[iks'piri☜ns] n. 经验L16 explosive[iks'pl☜usiv]adj.爆炸(性)的L22 extend[eks'tend] v. 伸展L 2 external[eks't☜:nl] a. 外部的L5,11 extract[eks'tr✌kt] v. 拔出L14 extreme[iks'tri:m] n. 极端L13 extremely[iks'tri:mli] adv. 非常地 L1 2 extremity[iks'tmiti] n. 极端L13 extrusion[eks'tru:✞☜n] n. 挤压, 挤出L 3FF (Fahrenheit)['f✌r☜nhait]n.华氏温度L2 fabricate ['f✌brikeit] vt.制作,制造L7 facilitate [f☜'siliteit] vt. 帮助L 6 facility[f☜'siliti] n. 设备L 4 facing[feisi☠] n. 端面车削L 5 fall within 属于, 适合于L15 fan[f✌n] n.风扇L7 far from 毫不, 一点不, 远非L9 fatigue[f☜'ti♈] n.疲劳L 1 feasible ['fi:z☜bl] a 可行的L18 feature ['fi:t☞☜] n.特色, 特征L7,17 feed[fi:d] n.. 进给L 5 feedback ['fi:db✌k] n. 反馈L8 female['fi:meil] a. 阴的, 凹形的L11 ferrule['fer☜l] n. 套管L1 4 file system 文件系统L9 fitter['fit☜] n.装配工, 钳工L 4 fix[fiks] vt. 使固定, 安装, vi. 固定L11 fixed half and moving half 定模和动模L1 1 flat-p anel t echnology 平面(显示)技术L9 flexibilit y[fleksi'biliti] n. 适应性, 柔性L9 flexible['fleks☜bl] a. 柔韧的L13 flow mark 流动斑点L13 follow-on tool 连续模L18 foregoing ['f :'♈☜ui☠]adj. 在前的,前面的L8124foret ell[f :'t ell] vt. 预测, 预示, 预言L9 forge[f :d✞] n. v. 锻造L 3 forming[f :mi☠] n. 成型L 3 four screen quadrants 四屏幕象限L9 fracture['fr✌kt☞☜] n.破裂L21 free from 免于L21Ggap[♈✌p] n. 裂口, 间隙L10 gearbox['♈i☜b ks] n.齿轮箱L 5 general arrangement L16 govern['♈✈v☜n] v.统治, 支配, 管理 L13 grain [♈rein] n. 纹理L20 graphic ['♈r✌fik] adj. 图解的L 6 grasp [♈r✌sp] vt. 抓住L8 grid[♈rid] n. 格子, 网格L16 grind[♈raind] v. 磨, 磨削, 研磨L 3 grinding ['♈raindi☠] n. 磨光,磨削L3,20 grinding machine 磨床L 5 gripper[♈rip☜] n. 抓爪, 夹具L9 groove[♈ru:v] n. 凹槽L12 guide bush 导套L 5 guide pillar 导柱L 5 guide pillars and bushes 导柱和导套L11Hhandset['h✌ndset] n. 电话听筒L 4 hardness['ha:dnis] n.硬度L1,2 hardware ['ha:dw☪☜] n. 硬件L 6 headst ock['hedst k] n.床头箱, 主轴箱L5 hexagonal[hek's✌♈☜nl] a. 六角形的, 六角的L1 1 hindrance['hindr☜ns] n.障碍, 障碍物L11 hob[h b] n. 滚刀, 冲头L 4 hollow-ware 空心件L21 horizontal[h ri'z ntl] a. 水平的L16 hose[h☜uz] n. 软管, 水管L13 hyperbolic [haip☜'b lik] adj.双曲线的L7Ii.e. (id est) [拉] 也就是L12 identical[ai'dentikl] a同样的L1 6 identify [ai'dentifai] v. 确定, 识别L7 idle ['aidl] adj.空闲的L8 immediately[i'mi:dj☜tli] adv. 正好, 恰好L1 2 impact['imp✌kt] n.冲击L 1 impart [im'pa:t] v.给予L11,17 implement ['implim☜nt] vt 实现L 6 impossibility[imp s☜'biliti] n.不可能L21 impression[im'pre☞☜n] n. 型腔L11 in contact with 接触L 1 in terms of 依据L 1 inasmuch (as)[in☜z'm✈t☞] conj.因为, 由于L 3 inch-to-metric conversions 英公制转换L7 inclinable [in'klain☜bl] adj. 可倾斜的L20 inclusion [in'klu☞☜n] n. 内含物L19 inconspicuous[ink☜n'spikju☜s] a. 不显眼的L1 4 incorporate [in'k :p☜reit] v 合并,混合L17 indentation[ inden'tei☞☜n ] n.压痕L 1 indenter[in'dent☜] n. 压头L 1 indep endently[indi'pein☜ntli] a. 独自地, 独立地L1 6 inevitably[in'evit☜bli] ad. 不可避免地L14 inexpensive[inik'spensiv]adj. 便宜的L 2 inherently [in'hi☜r☜ntli] adv.固有的L7 injection mould 注塑模L11 injection[in'd✞ek☞☜n] n. 注射L11 in-line-of-draw 直接脱模L14 insert[in's☜:t] n. 嵌件L1 6 inserted die 嵌入式凹模L19 inspection[in'spek☞☜n] n.检查,监督L9 installation[inst☜'lei☞☜n] n. 安装L10 integration [inti'♈rei☞☜n] n.集成125L 6 intelligent[in'telid✞☜nt]a. 智能的L9 intentinonally [in'ten☞☜n☜li] adv 加强地,集中地L17 interface ['int☜feis] n.. 界面L 6 internal[in't☜:nl] a. 内部的L1,5 int erp olat ion [int☜p☜'lei☞☜n] n.插值法L7 investment casting 熔模铸造L 4 irregular [i'regjul☜] adj. 不规则的,无规律L17 irrespective of 不论, 不管L1 1 irrespective[iri'spektiv] a. 不顾的, 不考虑的L1 1 issue ['isju] vt. 发布,发出L 6Jjoint line 结合线L14Kkerosene['ker☜si:n] n.煤油L10 keyboard ['ki:b :d ] n. 健盘L 6 knock [n k] v 敲,敲打L17Llance [la:ns] v. 切缝L19 lathe[lei❆] n. 车床L 4 latitude ['l✌titju:d] n. 自由L17 lay out 布置L1 3 limitation[limi'tei☞☜n] n.限度,限制,局限(性)L 3 local intelligence局部智能L9 locate [l☜u'keit] vt. 定位L18 logic ['l d✞ik] n. 逻辑L7 longit udinal['l nd✞☜'tju:dinl] a. 纵向的L5 longitudinally['l nd✞☜'tju:dinl] a. 纵向的L1 3 look upon 视作, 看待L17 lubrication[lju:bri'kei☞☜n ] n.润滑L21M machine shop 车间L 2 machine table 工作台L8 machining[m☜'☞i:ni☠] n. 加工L 3 made-to-measure 定做L15 maint enance['meintin☜ns] n.维护,维修L7 majority[m☜'d✞a:riti] n.多数L21 make use of 利用L 2 male[meil] a. 阳的, 凸形的L1 1 malfunction['m✌l'f✈☠☞☜n] n. 故障L9 mandrel['m✌dtil] n.心轴L22 manifestation[m✌nif☜s'tei☞☜n] n. 表现, 显示L9 massiveness ['m✌sivnis ] 厚实,大块L19 measure['me✞☜] n. 大小, 度量L 1 microcomputer 微型计算机L9 microns['maikr n] n.微米L10 microprocessor 微处理器L9 mild steel 低碳钢L17 milling machine 铣床L 4 mineral['min☜r☜l] n.矿物, 矿产L 2 minimise['minimaiz] v.把···减到最少, 最小化L1 3 minute['minit] a.微小的L10 mirror image 镜像L16 mirror['mir☜] n. 镜子L16 M I T(M a s s a c h u set t s Inst it ut e of Technology) 麻省理工学院L7 moderate['m d☜rit]adj. 适度的L1,2 modification [m difi'kei☞☜n ] n. 修改, 修正L 6 modulus['m djul☜s] n.系数L 1 mold[m☜uld] n. 模, 铸模, v. 制模, 造型L 3 monitor ['m nit☜ ] v. 监控L 6 monograph['m n☜♈ra:f] n. 专著L 4 more often than not 常常L20 motivation[m☜uti'vei☞☜n] n. 动机L9126mould split line 模具分型线L12 moulding['m☜udi☠] n. 注塑件L5,11 move away from 抛弃L17 multi-imprssion mould 多型腔模L12Nnarrow['n✌r☜u] a. 狭窄的L12 NC (numerical control ) 数控L7 nevertheless[ nev☜❆☜'les] conj.,adv.然而,不过L1 1 nonferrous['n n'fer☜s] adj.不含铁的, 非铁的L 2 normally['n :mli]adv.通常地L22 novice['n vis] n. 新手, 初学者L16 nozzle['n zl] n. 喷嘴, 注口L12 numerical [nju'merikl] n. 数字的L 6Oobject ionable [☜b'd✞ek☞☜bl] adj. 有异议的,讨厌的L17 observe[☜b'z☜:v] vt. 观察L 2 obviously [' bvi☜sli] adv 明显地L17 off-line 脱机的L 6 on-line 联机L9 operational [ p☜'rei☞☜nl] adj.操作的, 运作的L8 opportunity[ p☜'tju:niti] n. 时机, 机会L1 3 opposing[☜'p☜uzi☠] a.对立的, 对面的L12 opposite[' p☜zit] n. 反面L1a.对立的,对面的L12 optimization [ ptimai'zei☞☜n] n.最优化L6 orient [' :ri☜nt] vt. 确定方向L8 orthodox [' : ☜d ks] adj. 正统的,正规的L19 overall['☜uv☜r :l] a.全面的,全部的L8,13 overbend v.过度弯曲L20 overcome[☜uv☜'k✈m] vt.克服, 战胜L10 overlaping['☜uv☜'l✌pi☠] n. 重叠L 4 overriding[☜uv☜'raidi☠] a. 主要的, 占优势的L1 1Ppack[p✌k] v. 包装L 2 package ['p✌kid✞] vt.包装L7 pallet ['p✌lit] n.货盘L8 panel ['p✌nl] n.面板L7 paraffin['p✌r☜fin] n. 石蜡L10 parallel[p✌r☜lel] a.平行的L 5 penetration[peni'trei☞☜n ] n.穿透L 1 peripheral [p☜'rif☜r☜l] adj 外围的L 6 periphery [p☜'rif☜ri] n. 外围L18 permit[p☜'mit] v. 许可, 允许L16 pessure casting 压力铸造L 4 pillar['pil☜] n. 柱子, 导柱L5,17 pin[pin] n. 销, 栓, 钉L5,17 pin-point gate 针点式浇口L12 piston ['pist☜n] n.活塞L 1 plan view 主视图L16 plasma['pl✌zm☜] n. 等离子L9 plastic['pl✌stik] n. 塑料L 3 platen['pl✌t☜n] n. 压板L12 plotter[pl t☜] n. 绘图机L9 plunge [pl✈nd✞] v翻孔L18 plunge[pl✈nd✞] v.投入L 2 plunger ['pl✈nd✞☜ ] n. 柱塞L19 pocket-size 袖珍L9 portray[p :'trei] v.描绘L21 pot[p t] n.壶L21 pour[p :] vt. 灌, 注L22 practicable['pr✌ktik☜b] a. 行得通的L14 preferable['pref☜r☜bl] a.更好的, 更可取的L 3 preliminary [pri'limin☜ri] adj 初步的,预备的L19 press setter 装模工L17 p ress[p res] n.压,压床,冲床,压力机L2,8 prevent [pri'vent] v. 妨碍L20127primarily['praim☜rili] adv.主要地L 4 procedure[pr☜'si:d✞☜] n.步骤, 方法, 程序L2,1 6 p roductivity.[pr☜ud✈k'tiviti] n. 生产力L9 profile ['pr☜ufail] n.轮廓L10 progressively[pr☜'♈resiv] ad.渐进地L15 project[pr☜'d✞ekt] n.项目L 2 project[pr☜'d✞ekt] v. 凸出L11 p roject ion[p r☜'d✞ek☞☜n] n.突出部分L2 1 proper['pr p☜] a. 本身的L10 property['pr p☜ti] n.特性L 1 prototype ['pr☜ut☜taip] n. 原形L7 proximity[pr k'simiti] n.接近L9 prudent['pru:d☜nt] a. 谨慎的L16 punch [p✈nt☞] v. 冲孔L 3 punch shapper tool 刨模机L17 punch-cum-blanking die 凹凸模L18 punched tape 穿孔带L 3 purchase ['p☜:t☞☜s] vt. 买,购买L 6 push back pin 回程杆L 5 pyrometer[pai'n mit☜] n. 高温计L 2Qquality['kwaliti] n. 质量L1,3 quandrant['kw dr☜nt] n. 象限L9 quantity ['kw ntiti] n. 量,数量L17 quench[kwent☞] vt. 淬火L 2Rradial['reidi☜l] adv.放射状的L22 ram [r✌m] n 撞锤. L17 rapid['r✌pid]adj. 迅速的L 2 rapidly['r✌pidli]adv. 迅速地L 1 raster['r✌st☜] n. 光栅L9 raw [r :] adj. 未加工的L 6 raw material 原材料L 3 ream [ri:m] v 铰大L17 reaming[ri:mi☠] n. 扩孔, 铰孔L8 recall[ri'k :l] vt. 记起, 想起L13 recede [ri'si:d] v. 收回, 后退L20 recess [ri'ses] n. 凹槽,凹座,凹进处L4,18 redundancy[ri'd✈nd☜nsi] n. 过多L9 re-entrant 凹入的L12 refer[ri'f☜:] v. 指, 涉及, 谈及L1,12 reference['ref☜r☜ns] n.参照,参考L21 refresh display 刷新显示L9 register ring 定位环L11 regist er['red✞st☜] v. 记录, 显示, 记数L2 regrind[ri:'♈aind](reground[ri:'gru:nd]) vt. 再磨研L1 2 relative['rel☜tiv] a. 相当的, 比较的L12 relay ['ri:lei] n. 继电器L7 release[ri'li:s] vt. 释放L1 relegate['rel☜geit] vt. 把··降低到L9 reliability [rilai☜'biliti] n. 可靠性L7 relief valves 安全阀L22 relief[ri'li:f] n.解除L22 relieve[ri'li:v ]vt.减轻, 解除L 2 remainder[ri'meind☜] n. 剩余物, 其余部分L 4 removal[ri'mu:vl] n. 取出L14 remove[ri'mu:v] v. 切除, 切削L 4 reposition [rip☜'zi☞☜n] n.重新安排L17 represent[ repri'zent☜] v 代表,象征L11 reputable['repjut☜bl] a. 有名的, 受尊敬的L1 5 reservoir['rez☜vwa: ] n.容器, 储存器L22 resident['rezid☜nt] a. 驻存的L9 resist[ri'zist] vt.抵抗L 1 resistance[ri'zist☜ns] n.阻力, 抵抗L1 resolution[ rez☜'lu:☞☜n] n. 分辨率L9 resp ect ive[ri'spektiv] a.分别的,各自的L11 respond[ris'p nd] v.响应, 作出反应L9 responsibility[risp ns☜'biliti] n.责任L13 restrain[ris'trein]v.抑制L21128restrict [ris'trikt] vt 限制,限定L18 restriction[ris'trik☞☜n] n. 限制L12 retain[ri'tein] vt.保持, 保留L2,1 2 retaining plate 顶出固定板L16 reveal [ri'vil] vt.显示,展现L17 reversal [ri'v☜sl] n. 反向L1,20 right-angled 成直角的L20 rigidity[ri'd✞iditi] n. 刚度L 1 rod[r d] n. 杆, 棒L1,5 rotate['r☜uteit] vt.(使)旋转L 5 rough machining 粗加工L 5 rough[r✈f] a. 粗略的L5,21 routine [ru:'ti:n] n. 程序L7 rubber['r✈b☜] n.橡胶L3,22 runner and gate systems 流道和浇口系统L1 1Ssand casting 砂型铸造L 3 satisfactorily[ s✌tis'f✌ktrili] adv. 满意地L 1 saw[a :] n. 锯子L 4 scale[skeil]n. 硬壳L 2 score[sk :] v. 刻划L14 scrap[skr✌p] n.废料, 边角料, 切屑L2,3 screwcutting 切螺纹L 4 seal[si:l] vt.密封L22 secondary storage L9 section cutting plane 剖切面L16 secure[si'kju☜] v.固定L22 secure[si'kju☜] vt.紧固,夹紧,固定L5,22 segment['se♈m☜nt] v. 分割L10 sensitive['sensitiv]a.敏感的L1,7 sequence ['si:kw☜ns] n. 次序L 6 sequential[si'kwen☞☜l] a.相继的L16 seriously['si☜ri☜sli] adv.严重地L 1 servomechanism ['s☜:v☜'mek☜nizm] n.伺服机构L7 Servomechanism Laboratoies 伺服机构实验室L7 servomotor ['s☜:v☜m☜ut☜] n.伺服马达L8 setter ['set☜] n 安装者L17 set-up 机构L20 sever ['sev☜] v 切断L17 severity [si'veriti] n. 严重L20 shaded[☞✌did] adj.阴影的L21 shank [☞✌☠k] n. 柄. L17 shear[☞i☜]n.剪,切L 1 shot[☞t] n. 注射L12 shrink[☞ri☠k] vi. 收缩L11 side sectional view 侧视图L1 6 signal ['si♈nl] n.信号L8 similarity[simi'l✌riti] n.类似L1 5 simplicity[sim'plisiti] n. 简单L12 single-point cutting tool 单刃刀具L 5 situate['sitjueit] vt. 使位于, 使处于L11 slide [slaid] vi. 滑动, 滑落L20 slideway['slaidwei] n. 导轨L 5 slot[sl t] n. 槽L 4 slug[sl✈♈] n. 嵌条L12 soak[s☜uk] v. 浸, 泡, 均热L 2 software ['s ftw☪☜] n. 软件L 6 solid['s lid] n.立体, 固体L9 solidify[s☜'lidifai] vt.vi. (使)凝固, (使)固化L1 3 solution[s☜'lu:☞☜n] n.溶液L 2 sophisiticated [s☜'fistikeitid] adj.尖端的,完善的L8 sound[saund] a. 结实的, 坚固的) L 1 spark erosion 火花蚀刻L10 spindle['spindl] n. 主轴L5,8 spline[splain] n.花键L 4 split[split] n. 侧向分型, 分型L12,14 spool[spu:l] n. 线轴L14 springback n.反弹L20129spring-loaded 装弹簧的L18 sprue bush 主流道衬套L11 sprue puller 浇道拉杆L12 square[skw☪☜] v. 使成方形L 4 stage [steid✞] n. 阶段L16,19 st andardisation[ st✌nd☜dai'zei☞☜n] n. 标准化L1 5 startling['sta:tli☠] a. 令人吃惊的L10 steadily['sted☜li ] adv. 稳定地L21 step-by-step 逐步L8 stickiness['stikinis] n.粘性L22 stiffness['stifnis] n. 刚度L 1 stock[st k] n.毛坯, 坯料L 3 storage tube display 储存管显示L9 storage['st :rid✞] n. 储存器L9 st raight forward[streit'f :w☜d]a.直接的L10 strain[strein] n.应变L 1 strength[stre☠] n.强度L 1 stress[stres] n.压力,应力L 1 stress-strain应力--应变L 6 stretch[stret☞] v.伸展L1,21 strike [straik] vt. 冲击L20 stringent['strind✞☜nt ] a.严厉的L22 stripper[strip☜] n. 推板L15 stroke[strouk] n. 冲程, 行程L12 structrural build-up 结构上形成的L11 sub-base 垫板L19 subject['s✈bd✞ikt] vt.使受到L21 submerge[s☜b'm☜:d✞] v.淹没L22 subsequent ['s✈bsikwent] adj. 后来的L20 subsequently ['s✈bsikwentli] adv. 后来, 随后L 5 substantial[s☜b'st✌n☞☜l] a. 实质的L10 substitute ['s✈bstitju:t] vt. 代替,.替换L7 subtract[s☜b'tr✌kt] v.减, 减去L15 suit able['su:t☜bl] a. 合适的, 适当的L5 suitably['su:t☜bli] ad.合适地L15 sunk[s✈☠k](sink的过去分词) v. 下沉, 下陷L11 superior[s☜'pi☜ri☜] adj.上好的L22 susceptible[s☜'sept☜bl] adj.易受影响的L7 sweep away 扫过L17 symmetrical[si'metrikl] a. 对称的L1 4 sy nchronize ['si☠kr☜naiz] v.同步,同时发生L8Ttactile['t✌ktail] a. 触觉的, 有触觉的L9 tailstock['teilst k] n.尾架L 5 tapered['teip☜d] a. 锥形的L12 tapping['t✌pi☠] n. 攻丝L8 technique[tek'ni:k] n. 技术L16 tempering['temp☜r☠] n.回火L2 tendency['tend☜nsi] n. 趋向, 倾向L1 3 t ensile['tensail] a.拉力的, 可拉伸的L2 拉紧的, 张紧的L 1 tension ['ten☞☜n] n.拉紧,张紧L 1 terminal ['t☜:m☜nl ] n. 终端机L 6 terminology[t☜:mi'n l☜d✞i ] n. 术语, 用辞L1 1 theoretically [ i:☜'retikli ] adv.理论地L21 thereby['❆☪☜bai] ad. 因此, 从而L15 thermoplastic[' ☜:m☜u'pl✌stik] a. 热塑性的, n. 热塑性塑料L 3 thermoset[' ☜:m☜set] n.热固性L12 thoroughly[' ✈r☜uli] adv.十分地, 彻底地L 2 thread pitch 螺距L 5 thread[ red] n. 螺纹L 5 thrown up 推上L17 tilt [tilt] n. 倾斜, 翘起L20 tolerance ['t l☜r☜ns] n..公差L17 tong[t ☠] n. 火钳L 2 tonnage['t✈nid✞] n.吨位, 总吨数L 3 tool point 刀锋L 3130glossary131 tool room 工具车间 L 10 t oolholder['t u:lh ☜uld ☜] n.刀夹,工具柄 L5 t oolmaker ['tu:l'meik ☜] n 模具制造者 L17 toolpost grinder 工具磨床 L 4 toolpost['tu:l'p ☜ust] n. 刀架 L 4 torsional ['t :☞☜nl] a 扭转的 . L 1 toughness['t fnis] n. 韧性 L 2 trace [treis] vt.追踪 L 7 tracer-controlled milling machine 仿形铣床 L 4 transverse[tr ✌ns'v ☜:s] a. 横向的 L 5 tray [trei] n. 盘,盘子,蝶 L 19 treatment['tri:tm ☜nt] n.处理L 2 tremendous[tri'mend ☜s] a. 惊人的, 巨大的 L 9 trend [trend] n.趋势 L 7 trigger stop 始用挡料销 L 17 tungsten['t ✈☠st ☜n] n.钨 L 10 turning['t ☜:ni ☠] n.车削 L 4, 5 twist[twist ] v.扭曲,扭转 L 1 two-plate mould 双板式注射模 L 12Uultimately['✈ltimitli] adv 终于. L 6 undercut moulding 侧向分型模 L 1 4 undercut['✈nd ☜k ✈t] n. 侧向分型L 1 4 undercut['✈nd ☜k ✈t] n.底切L 1 2 underfeed['✈nd ☜'fi:d] a, 底部进料的 L 15 undergo[✈nd ☜'♈☜u] vt.经受 L 1 underside['✈nd ☜said] n 下面,下侧 L 11 undue[✈n'dju:] a.不适当的, 过度的 L4,10 uniform['ju:nif :m] a.统一的, 一致的 L 12 utilize ['ju:tilaiz] v 利用 L 17 Ut op ian[ju't ☜upi ☜n] adj.乌托邦的, 理想化的 L 2 1V valve[v ✌lv] n.阀 L 2 2 vaporize['veip ☜raiz] vt.vi. 汽化, (使)蒸发 L 10 variation [v ☪☜ri'ei ☞☜n] n. 变化 L 20 various ['v ☪☜ri ☜s] a.不同的,各种的 L1,20 vector feedrate computation 向量进刀速率计算 L 7 vee [vi:] n. v 字形 L 20 velocity[vi'l siti] n.速度 L 1 versatile['v ☜s ☜tail] a.多才多艺的,万用的 L 5,8 vertical['v ☜:tikl] a. 垂直的 L 16 via [vai ☜] prep.经,通过 L 8 vicinity[v ☜'siniti] n.附近 L 13 viewpoint['vju:p int] n. 观点 L 4 W wander['w nd ☜] v. 偏离方向 L 13 warp[w :p] v. 翘曲 L 2 washer ['w ☞☜] n. 垫圈 L 18 wear [w ☪☜] v.磨损 L 7 well line 结合线 L 13 whereupon [hw ☪☜r ☜'p n] adv. 于是 L 19 winding ['waindi ☠] n. 绕, 卷 L 8 with respect to 相对于 L 1,5 wit hst and[wi ❆'st ✌nd] vt.经受,经得起 L1 work[w ☜:k] n. 工件 L 4 workstage 工序 L 19 wrinkle['ri ☠kl] n.皱纹vt.使皱 L 21 Y yield[ji:ld] v. 生产 L 9 Z zoom[zu:] n. 图象电子放大 L 9。
ZnMn2O4_多孔微球作为水系锌离子电池正极材料的合成及其电化学性能
第52卷第8期 辽 宁 化 工 Vol.52,No. 8 2023年8月 Liaoning Chemical Industry August,2023收稿日期: 2022-08-10ZnMn 2O 4多孔微球作为水系锌离子电池 正极材料的合成及其电化学性能卢彦虎,刘晨阳,马雷(沈阳化工大学 材料科学与工程学院,辽宁 沈阳 110142)摘 要: 采用水热法制备了ZnMn 2O 4水系锌离子电池正极材料,并采用X 射线衍射、X 射线光电子能谱、扫描电镜和电化学工作站等手段对材料进行了表征。
结果表明:水热温度对ZnMn 2O 4正极材料的形貌和电学性能均有较大影响。
当水热温度为160 ℃时,ZnMn 2O 4为尖晶石型多孔状球体,在 1 mA ·g -1的电流密度下获得了155 mAh ·g -1的比容量,良好的电化学性能表现主要得益于其多孔结构。
关 键 词:锌电池; 正极材料; ZMO 多孔微球; 电化学性能中图分类号:TM911 文献标识码: A 文章编号: 1004-0935(2023)08-1122-04尖晶石型锌锰氧化物ZnMn 2O 4(ZMO)材料具有安全性好、成本低、环保等优点[1-3],在数据存储、生物技术、光催化剂、气敏元件、电池电极材料等领域得到了广泛的研究[4-5]。
目前,尖晶石结构的氧化物(如LiMn 2O 4、LiCo 2O 4)已经在LIBs 中被成功应用并且商业化[6-7]。
因此借鉴这一成功经验,ZMO 电极材料在水系锌离子中的应用成为当下研究的 热点[8-9]。
先前的尖晶石材料多采用高温固相反应法合成,大多是采用研磨氧化物、含碳酸根的盐类化合物的混合物,并进行高温热处理以获得所需材料。
制备温度较高,晶体形貌较难控制[10]。
现在多采用温和的化学方法进行合成,例如溶胶-凝胶法[11]。
WU[12]等通过聚乙烯醇吡咯烷酮分散的溶剂热碳为模板制备的ZMO 材料,在100 mA ·g -1的条件下比容量可达106.5 mAh ·g -1。
模具制造业常用英语中文解说
模具制造业常用英语中文解说作者:佚名来源:不详发布时间:2008-3-9 0:58:18 发布人:admin减小字体增大字体Aabrasive grinding 强力磨削 L3abrasive[E'breisiv] a.磨料的, 研磨的 L2,3absence ['AbsEns] n.. 不在,缺席 L17accesssory[Ak'sesEri] n.附件 L10accommodate[E'kCmEdeit] v. 适应 L5accordingly[E'kC:diNli] adv.因此,从而,相应地 L7,13accuracy['AkjurEsi] n精度,准确性 L1,3actuate['Aktjueit] vt.开动(机器), 驱动 L8adequate['Adikwit] a. 足够的 L13adhesive[Ed'hi:siv] n. 粘合剂 L22adjacent[E'dVeisnt] a. 邻近的 L13adopt[E'dCpt] vt. 采用 L4advance [Ed'vA:ns] n.进步 L7advisable [Ed'vaizbl] adj. 可取的 L20agitate['AdViteit] v. 摇动 L2a large extent 很大程度 L4,13algorithm ['Al^EriTEm] n. 算法 L6align [E'lain] v 定位,调准 L17alignment[E'lainmEnt] n. 校直 L11all-too-frequent 频繁 L17allowance[E'lEuens] n. 容差, 余量 L5alternate['C:ltEnit]v.交替,轮流 L1alternative[C:l'tE:nEtiv] n. 替换物 L3alternatively[C:l'tE:nEtivli] ad. 做为选择, 也许 L5aluminiun[7Alju'minjEm] n.铝 L2ample['Ampl] adj. 充足的 L20analysis [E'nAlEsis] n. 分析 L6ancillary['AnsilEri] a.补助的, 副的 L4angular ['A^julE] adj. 有角的 L20annealing[E'li:liN] n.退火 L2aperture ['ApEtFE] n.孔 L17applied loads 作用力 L1appropriate [E'prEuprieit] a. 适当的 L6,20arc[a:k] n.弧, 弓形 L10arise[E'raiz] vi. 出现, 发生 L21arrange[E'reidV] v. 安排 L12article['a:tikl] n.制品, 产品 L21ascertain[7AsE'tein] vt. 确定, 查明 L1assemble[E'sembl] vt.组装 L4attitude ['Atitju:d] n 态度 L17auxiliary [C:^'ziljEri]adj. 辅助的 L8avoid[E'vCid] v.避免 L7axis['Aksis] n.轴 L5axle['Aksl] n.轮轴, 车轴 L1Bbackup['bAk7Qp] n. 备份 L9batch [bAtF] n 一批 L17bearing['bZEriN] n.轴承,支座 L21bed[bed] n. 床身 L5behavior[bi'heivjE] n. 性能 L1bench-work 钳工工作 L4bend[bend] v.弯曲 L1beneath[bi'ni:W] prep在···下 L4bin [bin] n. 仓,料架 L19blank [blANk] n. 坯料 L20blank [blANk] v. 冲裁,落料 L17blanking tool 落料模 L17blast [blQst] n.一阵(风) L18blemish['blemiF] n. 缺点, 污点 L13bolster['bEulstE] n. 模座,垫板 L4,5boost[bu:st] n. 推进 L9boring['bC:riN] n.镗削, 镗孔 L4,5bracket ['brAkit] n. 支架 L19brass [brAs] n.黄铜 L2break down 破坏 L1breakage ['breikidV] n.破坏 L17bridge piece L16brine[brain] n. 盐水 L2brittle['britl] adv.易碎的 L1buffer [bQfE] n.缓冲器 L8built-in 内装的 L9bulging [bQldViN] n. 凸肚 L22burr [bE:] n. 毛刺 L17bush [buF] n. 衬套 L17bush[buF]n. 衬套 L5by far (修饰比较级, 最高级)···得多, 最 L3 by means of 借助于 L5Ccabinet ['kAbinit] n.橱柜 L7call upon 要求 L17carbide['ka:baid] n.碳化物 L10carburzing['ka:bjuretiN] n. 渗碳 L2carriage['kAridV] n.拖板, 大拖板 L5carry along 一起带走 L18carry down over 从···上取下 L21carry out 完成 L17case hardening 表面硬化 L2case[keis] n. 壳, 套 L2cast steel 铸钢 L17casting['ka:stiN] n. 铸造,铸件 L3category['kAtE^Euri] n. 种类 L6,15caution ['kC:FEn] n. 警告,警示 L17cavity and core plates 凹模和凸模板 L11cavity['kAviti] n.型腔, 腔, 洞 L4,10centre-drilling 中心孔 L5ceramic[si'rAmik] n.陶瓷制品 L3chain doted line 点划线 L11channel['tFAnl] n.通道, 信道 L8characteristic[kArEktE'ristik] n.特性 L1check[tFek] v.核算 L21chip[tFip] n.切屑, 铁屑 L3chuck [tFQk] n.卡盘 L5,8chute [Fu:t] n. 斜道 L19circa ['sEkE:] adv. 大约 L7circlip['sE:klip] n.(开口)簧环 L22circuit['sE:kit] n. 回路, 环路 L13circular supoport block L5circulate['sE:kjuleid] v.(使)循环 L13clamp [klAmp] vt 夹紧 L17clamp[klAmp] n.压板 L12clay[klei] n. 泥土 L2,7clearance ['kliErEns] n. 间隙 L17clip [klip] vt. 切断,夹住 L19cold hobbing 冷挤压 L4cold slug well 冷料井 L12collapse[kE'lAps] vi.崩塌, 瓦解 L22collapsible[kE'lApsEbl] adj.可分解的 L22combination [kCmbi'neiFEn] n. 组合 L18commence[kE'mens] v. 开始, 着手 L16commence[kE'mens]v. 开始 L21commercial [kE'mE:FEl] adj. 商业的 L7competitive[kEm'petitiv] a. 竞争的 L9complementary[7kCmpli'mentEri] a. 互补的 L5 complexity [kem'pleksiti] n.复杂性 L8complicated['kCmplEkeitid] adj.复杂的 L2complication [kCmpli'keiFEn] n. 复杂化 L5,20compression [kEm'preFEn] n.压缩 L1comprise[kEm'prais] vt.包含 L16compromise['kCmprEmaiz] n. 妥协, 折衷 L13 concern with 关于 L6concise[kEn'sais] a. 简明的, 简练的 L9confront[kEn'frQnt] vt. 使面临 L14connector[kE'nektE] n. 连接口, 接头 L14consequent['kCnsikwEnt] a. 随之发生的, 必然的 L3 console ['kCnsoul] n.控制台 L8consume [kEn'sjum] vt. 消耗, 占用 L7consummate [kEn'sQmeit] vt. 使完善 L6container[kEn'teinE] n. 容器 L11contingent[ken'tindVEnt] a.可能发生的 L9contour['kEntuE] n.轮廓 L5,21conventional[kEn'venFEnl] a. 常规的 L4converge[kEn'vE:dV] v.集中于一点 L21conversant[kCn'vE:sEnt] a. 熟悉的 L15conversion[kEn'vE:FEn] n 换算, 转换 L7conveyer[ken'veiE] n. 运送装置 L12coolant['ku:lEnt] n. 冷却液 L13coordinate [kEu'C:dnit] vt. (使)协调 L8copy machine 仿形(加工)机床 L4core[kC:] n. 型芯, 核心 L2,4corresponding [ka:ri'spCdiN] n.相应的 L7counteract [kauntE'rAkt] vt. 反作用,抵抗 L20 couple with 伴随 L20CPU (central processing unit) 中央处理器 L9 crack[krAk ] v.(使)破裂,裂纹 L1,17critical['kritikl] adj.临界的 L2cross-hatching 剖面线 L16cross-section drawn 剖面图 L11cross-slide 横向滑板 L5CRT (cathoder-ray tube) 阴极射线管 L9crush[krQF]vt.压碎 L1cryogenic[7kraiE'dVenik ]a.低温学的 L1crystal['kristl] adj.结晶状的 L1cubic['kju:bik] a. 立方的, 立方体的 L3cup [kQp] vt (使)成杯状, 引伸 L18curable ['kjurEbl] adj. 可矫正的 L20curvature['kE:vEtFE] n.弧线 L21curve [kE:v] vt. 使弯曲 L20cutter bit 刀头, 刀片 L3cyanide['saiEnaid] n.氰化物 L2Ddash [dAF] n. 破折号 L6daylight ['deilait] n. 板距 L12decline[di'klain] v.下落,下降,减少, L3,9deform[di'fC:m] v. (使)变形 L1,3demonstrate['demEstreit ] v证明 L21depict[di'pikt ] vt 描述 L18deposite [di'pCzit] vt. 放置 L20depression[di'preFEn] n. 凹穴 L12descend [di'sent] v. 下降 L20desirable[di'zairEbl] a. 合适的 L2detail ['diteil] n.细节,详情 L17deterioration[ditiEri:E'reiFEn] n. 退化, 恶化 L12 determine[di'tE:min] v.决定 L16diagrammmatic[7daiEgrE'mAtik].a.图解的,图表的 L10 dictate['dikteit] v. 支配 L12die[dai] n.模具, 冲模, 凹模 L2dielectric[daii'lektrik] n. 电介质 L10die-set 模架 L19digital ['didVitl ] n.数字式数字, a.数字的 L3,6 dimensional[dddi'menFEnl] a. 尺寸的, 空间的 L3 discharge[dis'tFa:dV] n.v. 放电, 卸下, 排出 L3 discharge[dis'tFa:dV] v.卸下 L8discrete [dis'cri:t] adj. 离散的,分立的 L7dislodge[dis'lCdV] v. 拉出, 取出 L12dissolution[disE'lu:FEn] n.结束 L9distinct [dis'tiNkt] a.不同的,显著的 L6distort [dis'dC:t] vt. 扭曲 L20distort[dis'tC:t] vt. (使)变形, 扭曲 L1distributed system 分布式系统 L9dowel ['dauEl] n. 销子 L19dramaticlly [drE'mAtikli] adv. 显著地 L7drastic ['drAstik] a.激烈的 L17draughting[dra:ftiN] n. 绘图 L16draughtsman['drAftsmEn] n. 起草人 L16drawing['drC:iN] n. 制图 L11drill press 钻床 L8drum [drQm] n.鼓轮 L8dual ['dju:El] adv. 双的,双重的 L18ductility [dQk'tiliti ] n.延展性 L1,21dynamic [dai'nAmik ] adj 动力的 L6Eedge [edV] n .边缘 L20e.g.(exempli gratia) [拉] 例如 L12ejector [i'dVektE] n.排出器, L18ejector plate 顶出板 L16ejector rob 顶杆 L5elasticity[ilA'stisiti] n.弹性 L1electric dicharge machining 电火花加工L3electrical discharge machining电火花加工 L10electrochemical machining 电化学加工L3electrode[i'lektrEud] n. 电极 L10electro-deposition 电铸 L4elementary [elE'mentEri] adj.基本的 L2eliminate[i'limineit] vt. 消除, 除去 L10elongate[i'lCN^et] vt. (使)伸长, 延长 L1emerge [i'mE:dV] vi. 形成, 显现 L20emphasise['emfEsaiz] vt. 强调 L4endeavour[en'devE] n. 尽力 L17engagement[in'^eidVment] n. 约束, 接合 L22 enhance[in'hAns] vt. 提高, 增强 L9ensure [in'FuE] vt. 确保,保证 L17envisage[in'vizidV] vt.设想 L15erase[i'reis] vt. 抹去, 擦掉 L16evaluation[i'vAlju7eiFEn] n. 评价, 估价L1eventually[i'vEntFuEli ] adv.终于 L21evolution[evE'lu:FEn] n.进展 L16excecution[eksi'kju:FEn] n. 执行, 完成 L9 execute ['ekskju:t] v. 执行 L8exerte [i^'zE:t] vt. 施加 L20experience[iks'piriEns] n. 经验 L16explosive[iks'plEusiv]adj.爆炸(性)的 L22extend[eks'tend] v. 伸展 L2external[eks'tE:nl] a. 外部的 L5,11extract[eks'trAkt] v. 拔出 L14extreme[iks'tri:m] n. 极端 L13extremely[iks'tri:mli] adv. 非常地 L12extremity[iks'tmiti] n. 极端 L13extrusion[eks'tru:VEn] n. 挤压, 挤出 L3FF (Fahrenheit)['fArEnhait]n.华氏温度 L2fabricate ['fAbrikeit] vt.制作,制造 L7facilitate [fE'siliteit] vt. 帮助 L6facility[fE'siliti] n. 设备 L4facing[feisiN] n. 端面车削 L5fall within 属于, 适合于 L15fan[fAn] n.风扇 L7far from 毫不, 一点不, 远非 L9fatigue[fE'ti^] n.疲劳 L1feasible ['fi:zEbl] a 可行的 L18feature ['fi:tFE] n.特色, 特征 L7,17feed[fi:d] n.. 进给 L5feedback ['fi:dbAk] n. 反馈 L8female['fi:meil] a. 阴的, 凹形的 L11ferrule['ferEl] n. 套管 L14file system 文件系统 L9fitter['fitE] n.装配工, 钳工 L4fix[fiks] vt. 使固定, 安装, vi. 固定 L11fixed half and moving half 定模和动模 L11 flat-panel technology 平面(显示)技术 L9flexibility[fleksi'biliti] n. 适应性, 柔性 L9flexible['fleksEbl] a. 柔韧的 L13flow mark 流动斑点 L13follow-on tool 连续模 L18foregoing ['fC:'^EuiN]adj. 在前的,前面的L8foretell[fC:'tell] vt. 预测, 预示, 预言 L9forge[fC:dV] n. v. 锻造 L3forming[fC:miN] n. 成型 L3four screen quadrants 四屏幕象限 L9fracture['frAktFE] n.破裂 L21free from 免于 L21Ggap[^Ap] n. 裂口, 间隙 L10gearbox['^iEbCks] n.齿轮箱 L5general arrangement L16govern['^QvEn] v.统治, 支配, 管理 L13grain [^rein] n. 纹理 L20graphic ['^rAfik] adj. 图解的 L6grasp [^rAsp] vt. 抓住 L8grid[^rid] n. 格子, 网格 L16grind[^raind] v. 磨, 磨削, 研磨 L3grinding ['^raindiN] n. 磨光,磨削 L3,20grinding machine 磨床 L5gripper[^ripE] n. 抓爪, 夹具 L9groove[^ru:v] n. 凹槽 L12guide bush 导套 L5guide pillar 导柱 L5guide pillars and bushes 导柱和导套 L11Hhandset['hAndset] n. 电话听筒 L4hardness['ha:dnis] n.硬度 L1,2hardware ['ha:dwZE] n. 硬件 L6headstock['hedstCk] n.床头箱, 主轴箱 L5hexagonal[hek'sA^Enl] a. 六角形的, 六角的 L11 hindrance['hindrEns] n.障碍, 障碍物 L11hob[hCb] n. 滚刀, 冲头 L4hollow-ware 空心件 L21horizontal[hCri'zCntl] a. 水平的 L16hose[hEuz] n. 软管, 水管 L13hyperbolic [haipE'bClik] adj.双曲线的 L7Ii.e. (id est) [拉] 也就是 L12identical[ai'dentikl] a同样的 L16identify [ai'dentifai] v. 确定, 识别 L7idle ['aidl] adj.空闲的 L8immediately[i'mi:djEtli] adv. 正好, 恰好 L12 impact['impAkt] n.冲击 L1impart [im'pa:t] v.给予 L11,17implement ['implimEnt] vt 实现 L6impossibility[impCsE'biliti] n.不可能 L21impression[im'preFEn] n. 型腔 L11in contact with 接触 L1in terms of 依据 L1inasmuch (as)[inEz'mQtF] conj.因为, 由于L3inch-to-metric conversions 英公制转换 L7 inclinable [in'klainEbl] adj. 可倾斜的 L20inclusion [in'kluFEn] n. 内含物 L19inconspicuous[inkEn'spikjuEs] a. 不显眼的 L14 incorporate [in'kC:pEreit] v 合并,混合L17indentation[7inden'teiFEn ] n.压痕 L1indenter[in'dentE] n. 压头 L1independently[indi'peinEntli] a. 独自地, 独立地 L16 inevitably[in'evitEbli] ad. 不可避免地 L14inexpensive[inik'spensiv]adj. 便宜的 L2inherently [in'hiErEntli] adv.固有的 L7injection mould 注塑模 L11injection[in'dVekFEn] n. 注射 L11in-line-of-draw 直接脱模 L14insert[in'sE:t] n. 嵌件 L16inserted die 嵌入式凹模 L19inspection[in'spekFEn] n.检查,监督 L9installation[instE'leiFEn] n. 安装 L10integration [inti'^reiFEn] n.集成 L6intelligent[in'telidVEnt]a. 智能的 L9intentinonally [in'tenFEnEli] adv 加强地,集中地 L17 interface ['intEfeis] n.. 界面 L6internal[in'tE:nl] a. 内部的 L1,5interpolation [intEpE'leiFEn] n.插值法 L7investment casting 熔模铸造 L4irregular [i'regjulE] adj. 不规则的,无规律 L17 irrespective of 不论, 不管 L11irrespective[iri'spektiv] a. 不顾的, 不考虑的 L11 issue ['isju] vt. 发布,发出 L6Jjoint line 结合线 L14Kkerosene['kerEsi:n] n.煤油 L10keyboard ['ki:bC:d ] n. 健盘 L6knock [nRk] v 敲,敲打 L17Llance [la:ns] v. 切缝 L19lathe[leiT] n. 车床 L4latitude ['lAtitju:d] n. 自由 L17lay out 布置 L13limitation[limi'teiFEn] n.限度,限制,局限(性) L3 local intelligence局部智能 L9locate [lEu'keit] vt. 定位 L18logic ['lCdVik] n. 逻辑 L7longitudinal['lCndVE'tju:dinl] a. 纵向的 L5longitudinally['lCndVE'tju:dinl] a. 纵向的 L13 look upon 视作, 看待 L17lubrication[lju:bri'keiFEn ] n.润滑 L21Mmachine shop 车间 L2machine table 工作台 L8machining[mE'Fi:niN] n. 加工 L3made-to-measure 定做 L15maintenance['meintinEns] n.维护,维修 L7majority[mE'dVa:riti] n.多数 L21make use of 利用 L2male[meil] a. 阳的, 凸形的 L11malfunction['mAl'fQNFEn] n. 故障 L9mandrel['mAdtil] n.心轴 L22manifestation[mAnifEs'teiFEn] n. 表现, 显示 L9 massiveness ['mAsivnis ] 厚实,大块 L19measure['meVE] n. 大小, 度量 L1microcomputer 微型计算机 L9microns['maikrCn] n.微米 L10microprocessor 微处理器 L9mild steel 低碳钢 L17milling machine 铣床 L4mineral['minErEl] n.矿物, 矿产 L2minimise['minimaiz] v.把···减到最少, 最小化 L13 minute['minit] a.微小的 L10mirror image 镜像 L16mirror['mirE] n. 镜子 L16MIT (Massachusetts Institute of Technology) 麻省理工学院 L7 moderate['mCdErit]adj. 适度的 L1,2modification [mRdifi'keiFEn ] n. 修改, 修正 L6 modulus['mCdjulEs] n.系数 L1mold[mEuld] n. 模, 铸模, v. 制模, 造型 L3monitor ['mCnitE ] v. 监控 L6monograph['mCnE^ra:f] n. 专著 L4more often than not 常常 L20motivation[mEuti'veiFEn] n. 动机 L9mould split line 模具分型线 L12moulding['mEudiN] n. 注塑件 L5,11move away from 抛弃 L17multi-imprssion mould 多型腔模 L12Nnarrow['nArEu] a. 狭窄的 L12NC (numerical control ) 数控 L7nevertheless[7nevETE'les] conj.,adv.然而,不过 L11 nonferrous['nCn'ferEs] adj.不含铁的, 非铁的 L2 normally['nC:mli]adv.通常地 L22novice['nCvis] n. 新手, 初学者 L16nozzle['nCzl] n. 喷嘴, 注口 L12numerical [nju'merikl] n. 数字的 L6Oobjectionable [Eb'dVekFEbl] adj. 有异议的,讨厌的 L17 observe[Eb'zE:v] vt. 观察 L2obviously ['CbviEsli] adv 明显地 L17off-line 脱机的 L6on-line 联机 L9operational [CpE'reiFEnl] adj.操作的, 运作的 L8 opportunity[CpE'tju:niti] n. 时机, 机会 L13 opposing[E'pEuziN] a.对立的, 对面的L12opposite['CpEzit] n. 反面 L1 a.对立的,对面的 L12 optimization [Rptimai'zeiFEn] n.最优化 L6orient ['C:riEnt] vt. 确定方向 L8orthodox ['C:WEdCks] adj. 正统的,正规的 L19overall['EuvErC:l] a.全面的,全部的 L8,13overbend v.过度弯曲 L20overcome[EuvE'kQm] vt.克服, 战胜 L10overlaping['EuvE'lApiN] n. 重叠 L4overriding[EuvE'raidiN] a. 主要的, 占优势的 L11Ppack[pAk] v. 包装 L2package ['pAkidV] vt.包装 L7pallet ['pAlit] n.货盘 L8panel ['pAnl] n.面板 L7paraffin['pArEfin] n. 石蜡 L10parallel[pArElel] a.平行的 L5penetration[peni'treiFEn ] n.穿透 L1peripheral [pE'rifErEl] adj 外围的 L6periphery [pE'rifEri] n. 外围 L18permit[pE'mit] v. 许可, 允许 L16pessure casting 压力铸造 L4pillar['pilE] n. 柱子, 导柱 L5,17pin[pin] n. 销, 栓, 钉 L5,17pin-point gate 针点式浇口 L12piston ['pistEn] n.活塞 L1plan view 主视图 L16plasma['plAzmE] n. 等离子 L9plastic['plAstik] n. 塑料 L3platen['plAtEn] n. 压板 L12plotter[plCtE] n. 绘图机 L9plunge [plQndV] v翻孔 L18plunge[plQndV] v.投入 L2plunger ['plQndVE ] n. 柱塞 L19pocket-size 袖珍 L9portray[pC:'trei] v.描绘 L21pot[pCt] n.壶 L21pour[pC:] vt. 灌, 注 L22practicable['prAktikEb] a. 行得通的 L14preferable['prefErEbl] a.更好的, 更可取的 L3 preliminary [pri'liminEri] adj 初步的,预备的 L19 press setter 装模工 L17press[pres] n.压,压床,冲床,压力机 L2,8prevent [pri'vent] v. 妨碍 L20primarily['praimErili] adv.主要地 L4procedure[prE'si:dVE] n.步骤, 方法, 程序 L2,16 productivity.[prEudQk'tiviti] n. 生产力 L9profile ['prEufail] n.轮廓 L10progressively[prE'^resiv] ad.渐进地 L15project[prE'dVekt] n.项目 L2project[prE'dVekt] v. 凸出 L11projection[prE'dVekFEn] n.突出部分 L21proper['prCpE] a. 本身的 L10property['prCpEti] n.特性 L1prototype ['prEutEtaip] n. 原形 L7proximity[prCk'simiti] n.接近 L9prudent['pru:dEnt] a. 谨慎的 L16punch [pQntF] v. 冲孔 L3punch shapper tool 刨模机 L17punch-cum-blanking die 凹凸模 L18punched tape 穿孔带 L3purchase ['pE:tFEs] vt. 买,购买 L6push back pin 回程杆 L5pyrometer[pai'nCmitE] n. 高温计 L2Qquality['kwaliti] n. 质量 L1,3quandrant['kwCdrEnt] n. 象限 L9quantity ['kwCntiti] n. 量,数量 L17quench[kwentF] vt. 淬火 L2Rradial['reidiEl] adv.放射状的 L22ram [rAm] n 撞锤. L17rapid['rApid]adj. 迅速的 L2rapidly['rApidli]adv. 迅速地 L1raster['rAstE] n. 光栅 L9raw [rC:] adj. 未加工的 L6raw material 原材料 L3ream [ri:m] v 铰大 L17reaming[ri:miN] n. 扩孔, 铰孔 L8recall[ri'kC:l] vt. 记起, 想起 L13recede [ri'si:d] v. 收回, 后退 L20recess [ri'ses] n. 凹槽,凹座,凹进处 L4,18redundancy[ri'dQndEnsi] n. 过多 L9re-entrant 凹入的 L12refer[ri'fE:] v. 指, 涉及, 谈及 L1,12reference['refErEns] n.参照,参考 L21refresh display 刷新显示 L9register ring 定位环 L11register['redVstE] v. 记录, 显示, 记数 L2regrind[ri:'^aind](reground[ri:'gru:nd]) vt. 再磨研 L12 relative['relEtiv] a. 相当的, 比较的 L12relay ['ri:lei] n. 继电器 L7release[ri'li:s] vt. 释放 L1relegate['relE7geit] vt. 把··降低到 L9reliability [rilaiE'biliti] n. 可靠性 L7relief valves 安全阀 L22relief[ri'li:f] n.解除 L22relieve[ri'li:v ]vt.减轻, 解除 L2remainder[ri'meindE] n. 剩余物, 其余部分 L4 removal[ri'mu:vl] n. 取出 L14remove[ri'mu:v] v. 切除, 切削 L4reposition [ripE'ziFEn] n.重新安排 L17represent[7repri'zentE] v 代表,象征 L11reputable['repjutEbl] a. 有名的, 受尊敬的 L15 reservoir['rezEvwa: ] n.容器, 储存器 L22resident['rezidEnt] a. 驻存的 L9resist[ri'zist] vt.抵抗 L1resistance[ri'zistEns] n.阻力, 抵抗 L1resolution[7rezE'lu:FEn] n. 分辨率 L9respective[ri'spektiv] a.分别的,各自的 L11respond[ris'pCnd] v.响应, 作出反应 L9responsibility[rispCnsE'biliti] n.责任 L13restrain[ris'trein]v.抑制 L21restrict [ris'trikt] vt 限制,限定 L18restriction[ris'trikFEn] n. 限制 L12retain[ri'tein] vt.保持, 保留 L2,12retaining plate 顶出固定板 L16reveal [ri'vil] vt.显示,展现 L17reversal [ri'vEsl] n. 反向 L1,20right-angled 成直角的 L20rigidity[ri'dViditi] n. 刚度 L1rod[rCd] n. 杆, 棒 L1,5rotate['rEuteit] vt.(使)旋转 L5rough machining 粗加工 L5rough[rQf] a. 粗略的 L5,21routine [ru:'ti:n] n. 程序 L7rubber['rQbE] n.橡胶 L3,22runner and gate systems 流道和浇口系统 L11Ssand casting 砂型铸造 L3satisfactorily[7sAtis'fAktrili] adv. 满意地 L1 saw[aC:] n. 锯子 L4scale[skeil]n. 硬壳 L2score[skC:] v. 刻划 L14scrap[skrAp] n.废料, 边角料, 切屑 L2,3screwcutting 切螺纹 L4seal[si:l] vt.密封 L22secondary storage L9section cutting plane 剖切面 L16secure[si'kjuE] v.固定 L22secure[si'kjuE] vt.紧固,夹紧,固定 L5,22segment['se^mEnt] v. 分割 L10sensitive['sensitiv]a.敏感的 L1,7sequence ['si:kwEns] n. 次序 L6sequential[si'kwenFEl] a.相继的 L16seriously['siEriEsli] adv.严重地 L1servomechanism ['sE:vE'mekEnizm] n.伺服机构 L7 Servomechanism Laboratoies 伺服机构实验室 L7 servomotor ['sE:vEmEutE] n.伺服马达 L8setter ['setE] n 安装者 L17set-up 机构 L20sever ['sevE] v 切断 L17severity [si'veriti] n. 严重 L20shaded[FAdid] adj.阴影的 L21shank [FANk] n. 柄. L17shear[FiE]n.剪,切 L1shot[FCt] n. 注射 L12shrink[FriNk] vi. 收缩 L11side sectional view 侧视图 L16signal ['si^nl] n.信号 L8similarity[simi'lAriti] n.类似 L15simplicity[sim'plisiti] n. 简单 L12single-point cutting tool 单刃刀具 L5situate['sitjueit] vt. 使位于, 使处于 L11slide [slaid] vi. 滑动, 滑落 L20slideway['slaidwei] n. 导轨 L5slot[slCt] n. 槽 L4slug[slQ^] n. 嵌条 L12soak[sEuk] v. 浸, 泡, 均热 L2software ['sCftwZE] n. 软件 L6solid['sClid] n.立体, 固体 L9solidify[sE'lidifai] vt.vi. (使)凝固, (使)固化 L13 solution[sE'lu:FEn] n.溶液 L2sophisiticated [sE'fistikeitid] adj.尖端的,完善的 L8 sound[saund] a. 结实的, 坚固的) L1spark erosion 火花蚀刻 L10spindle['spindl] n. 主轴 L5,8spline[splain] n.花键 L4split[split] n. 侧向分型, 分型 L12,14spool[spu:l] n. 线轴 L14springback n.反弹 L20spring-loaded 装弹簧的 L18sprue bush 主流道衬套 L11sprue puller 浇道拉杆 L12square[skwZE] v. 使成方形 L4stage [steidV] n. 阶段 L16,19standardisation[7stAndEdai'zeiFEn] n. 标准化 L15 startling['sta:tliN] a. 令人吃惊的 L10steadily['stedEli ] adv. 稳定地 L21step-by-step 逐步 L8stickiness['stikinis] n.粘性 L22stiffness['stifnis] n. 刚度 L1stock[stCk] n.毛坯, 坯料 L3storage tube display 储存管显示 L9storage['stC:ridV] n. 储存器 L9straightforward[streit'fC:wEd]a.直接的 L10strain[strein] n.应变 L1strength[streNW] n.强度 L1stress[stres] n.压力,应力 L1stress-strain应力--应变 L6stretch[stretF] v.伸展 L1,21strike [straik] vt. 冲击 L20stringent['strindVEnt ] a.严厉的 L22stripper[stripE] n. 推板 L15stroke[strouk] n. 冲程, 行程 L12structrural build-up 结构上形成的 L11sub-base 垫板 L19subject['sQbdVikt] vt.使受到 L21submerge[sEb'mE:dV] v.淹没 L22subsequent ['sQbsikwent] adj. 后来的 L20subsequently ['sQbsikwentli] adv. 后来, 随后 L5 substantial[sEb'stAnFEl] a. 实质的 L10substitute ['sQbstitju:t] vt. 代替,.替换 L7subtract[sEb'trAkt] v.减, 减去 L15suitable['su:tEbl] a. 合适的, 适当的 L5suitably['su:tEbli] ad.合适地 L15sunk[sQNk](sink的过去分词) v. 下沉, 下陷 L11 superior[sE'piEriE] adj.上好的 L22susceptible[sE'septEbl] adj.易受影响的 L7sweep away 扫过 L17symmetrical[si'metrikl] a. 对称的 L14synchronize ['siNkrEnaiz] v.同步,同时发生L8Ttactile['tAktail] a. 触觉的, 有触觉的 L9tailstock['teilstCk] n.尾架 L5tapered['teipEd] a. 锥形的 L12tapping['tApiN] n. 攻丝 L8technique[tek'ni:k] n. 技术 L16tempering['tempErN] n.回火 L2tendency['tendEnsi] n. 趋向, 倾向 L13tensile['tensail] a.拉力的, 可拉伸的 L2 拉紧的, 张紧的 L1tension ['tenFEn] n.拉紧,张紧 L1terminal ['tE:mEnl ] n. 终端机 L6terminology[tE:mi'nClEdVi ] n. 术语, 用辞 L11 theoretically [Wi:E'retikli ] adv.理论地 L21thereby['TZEbai] ad. 因此, 从而 L15thermoplastic['WE:mEu'plAstik] a. 热塑性的, n. 热塑性塑料 L3 thermoset['WE:mEset] n.热固性 L12thoroughly['WQrEuli] adv.十分地, 彻底地 L2thread pitch 螺距 L5thread[Wred] n. 螺纹 L5thrown up 推上 L17tilt [tilt] n. 倾斜, 翘起 L20tolerance ['tClErEns] n..公差 L17tong[tCN] n. 火钳 L2tonnage['tQnidV] n.吨位, 总吨数 L3tool point 刀锋 L3tool room 工具车间 L10toolholder['tu:lhEuldE] n.刀夹,工具柄 L5toolmaker ['tu:l'meikE] n 模具制造者 L17toolpost grinder 工具磨床 L4toolpost['tu:l'pEust] n. 刀架 L4torsional ['tC:FEnl] a扭转的 . L1toughness['tCfnis] n. 韧性 L2trace [treis] vt.追踪 L7tracer-controlled milling machine 仿形铣床 L4 transverse[trAns'vE:s] a. 横向的 L5tray [trei] n. 盘,盘子,蝶 L19treatment['tri:tmEnt] n.处理 L2tremendous[tri'mendEs] a. 惊人的, 巨大的 L9trend [trend] n.趋势 L7trigger stop 始用挡料销 L17tungsten['tQNstEn] n.钨 L10turning['tE:niN] n.车削 L4,5twist[twist ] v.扭曲,扭转 L1two-plate mould 双板式注射模 L12Uultimately['Qltimitli] adv终于. L6undercut moulding 侧向分型模 L14undercut['QndEkQt] n. 侧向分型 L14undercut['QndEkQt] n.底切 L12underfeed['QndE'fi:d] a, 底部进料的 L15undergo[QndE'^Eu] vt.经受 L1underside['QndEsaid] n 下面,下侧 L11undue[Qn'dju:] a.不适当的, 过度的 L4,10uniform['ju:nifC:m] a.统一的, 一致的 L12utilize ['ju:tilaiz] v 利用 L17Utopian[ju'tEupiEn] adj.乌托邦的, 理想化的 L21 Vvalve[vAlv] n.阀 L22vaporize['veipEraiz] vt.vi. 汽化, (使)蒸发 L10 variation [vZEri'eiFEn] n. 变化 L20various ['vZEriEs] a.不同的,各种的 L1,20vector feedrate computation 向量进刀速率计算 L7 vee [vi:] n. v字形 L20velocity[vi'lCsiti] n.速度 L1versatile['vEsEtail] a.多才多艺的,万用的 L5,8 vertical['vE:tikl] a. 垂直的 L16via [vaiE] prep.经,通过 L8vicinity[vE'siniti] n.附近 L13viewpoint['vju:pCint] n. 观点 L4Wwander['wCndE] v. 偏离方向 L13warp[wC:p] v. 翘曲 L2washer ['wCFE] n. 垫圈 L18wear [wZE] v.磨损 L7well line 结合线 L13whereupon [hwZErE'pCn] adv. 于是 L19winding ['waindiN] n. 绕, 卷 L8with respect to 相对于 L1,5withstand[wiT'stAnd] vt.经受,经得起 L1work[wE:k] n. 工件 L4workstage 工序 L19wrinkle['riNkl] n.皱纹vt.使皱 L21Yyield[ji:ld] v. 生产 L9Zzoom[zu:] n. 图象电子放大 L9。
电化学技术表征能量存储器件的性能
电化学技术表征能量存储器件的性能一. 循环伏安曲线(CV)【原理简介】循环伏安法是以线性扫描伏安法的电位扫描到头后,再回过头来扫描到原来的起始电位值,所得的电流—电压曲线为基础的分析方法。
扫描电压呈等腰三角形。
如果前半部扫描(电压上升部分)为去极化剂在电极上被还原的阴极过程,则后半部扫描(电压下降部分)为还原产物重新被氧化的阳极过程。
一次三角波扫描完成一个还原过程和氧化过程的循环,故称为循环伏安法。
在一个典型的循环伏安实验中,工作电极一般为浸在溶液中的固定电极。
为了尽可能降低欧姆电阻,最好采用三电极系统。
在三电极系统中,电流通过工作电极和对电极。
工作电极电位是以一个分开的参比电极(如饱和甘汞电极,SCE)为基准的相对电位。
在循环伏安测试实验中,工作电极的电位以10 mV/s 到200 mV/s 的扫描速度随时间线性变化(Fig.1a),在此同时记录在不同电位下的电流(Fig.1b)。
图一【实验原理】若电极反应为O+e →R,反应前溶液中只含有反应粒子O且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势φ正得多的起始电势j i处开始势作0附近时,O 正向电扫描,电流响应曲线则如图所示。
当电极电势逐渐负移到φ平开始在电极上还原,并有法拉第电流通过。
由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。
当O的表面浓度下降到近于零,电流也增加到最大值I pc,然后电流逐渐下降。
当电势达到j r后,又改为反向扫描。
随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大,0时,表面上的电化学平衡应当向着越来越有利于生成R 在电势接近并通过φ平的方向发展。
于是R开始被氧化,并且电流增大到峰值氧化电流I pa,随后又由于R的显著消耗而引起电流衰降。
整个曲线称为“循环伏安曲线”。
如图2所示:图二【应用】基于CV曲线的电容器容量计算,可以根据公式(1)计算。
(ν为扫速,单位V/s) (1)从式(1)来看,对于一个电容器来说,在一定的扫速下做CV测试。
机械制造专业英语专有名词缩写
机械制造专业英语缩写AC=alternative current交流AGV=Automated Guided Vehicle自动导引小车AGVS= Automated Guided Vehicle System自动导引小车系统AMT=advanced manufacturing technology先进制造技术ANSI=American National Standards Institute美国国家标准协会APT=Automatically Programmed Tools自动数控程序BOM=Bill of Material物料清单CAA=Computer Aided Analysis Process计算机辅助分析过程CAD=Computer-Aided Design计算机辅助设计CADD=Computer-Aided Design Drafting计算机辅助设计制图CAE=computer aided engineering计算机辅助工程CAM=Computer-Aided Manufacturing计算机辅助制造CAIT=computer aided testing and inspection计算机辅助实验与检测CAPP=Computer Aided Process Planning计算机辅助工艺设计CHP=chemical Polishing 化学抛光CIM=Computer integrated manufacturing计算机集成制造CBN=Cubic Boron Nitride立方氮化硼CMM=Coordinate Measuring Machine三坐标测量机CNC=computer numerical control电脑数字控制DC=direct current直流DNC=Direct Numerical Control直接数字控制DOF=degrees of freedom自由度DXF=data exchange format数据交换格式ECM=Electrochemical Machining电解加工EBM=Electron beam machining电子束加工EDM=Electrical Discharge Machining电火花加工EGM= enhanced graphics module增强型图形模组FA=factory automation工厂自动化FDM=Fused Deposition Modelling熔融沉积成型FEA=Finite element analysis有限元分析FMC=flexible manufacturing component柔性制造单元FMS=Flexible Manufacturing System柔性制造系统Finite-element有限元Four-bar linkage四连杆机构GNC=graphical numerical control图形数控GT=Grease Trap润滑脂分离器HPM=hard-part machining硬态切削HSS=High-Speed-Steel高速钢IGES=initial graphic exchange specification初始图形交换规则ISO=International Standardization Organization国际标准组织IT=International Tolerance(grade)国际公差JIT=Just in Time准时生产LBM=Laser beam machining激光切削加工LED=light-emitting diode发光二级管LMC=least material condition最小实体状态LOM=Laminated Object Manufacturing叠层实体制造技术MMC=maximum material condition最大实体状态MATL=material材料MC=machining center加工中心NC=Numerical Control数字控制NMP=Nontraditional Manufacturing Processes特种加工技术PCB=printed circuit boards印刷电路板PLC=Programmable Logic Controller PLC控制PKW=parallel kinematics machine并联机床QTY=quantity required需求数量RGV=rail guided vehicle有轨自动导引小车RPM=Rapid Prototype Manufacturing快速成型技术SL= Stereo Lithography光固化成型SLA=Stereo Lithography Apparatus立体印刷技术/光固化立体造型SLS=Selective Laser Sintering选择性激光烧结USM=Ultrasonic Machining超声波加工VNC=voice numerical control声音控制WEDM=Wirecut Electrical Discharge Machining电火花线切割加工WJM/C=water-jet machining/cutting水射流切削3D PRINT 3D打印。
CoNi2S4上电沉积NiS用于柔性固态非对称超级电容器
收稿日期:2020⁃07⁃23。
收修改稿日期:2020⁃11⁃09。
国家重点研发项目(No.2018YFB2001204)资助。
*通信联系人。
E⁃mail :*******************,**********************.cn第37卷第1期2021年1月Vol.37No.1171⁃179无机化学学报CHINESE JOURNAL OF INORGANIC CHEMISTRYCoNi 2S 4上电沉积NiS 用于柔性固态非对称超级电容器何业增*,1赵后强1柳朋1隋艳伟1委福祥1戚继球1孟庆坤1任耀剑1庄栋栋*,2(1中国矿业大学材料与物理学院,徐州221116)(2江苏大学材料科学与工程学院,镇江212013)摘要:采用一种在CoNi 2S 4上电沉积NiS 的有效方法来改善钴/镍硫化物的性能。
CoNi 2S 4@NiS 电极材料在1A·g -1时比电容达到1433F·g -1,并具有很好的倍率性能。
CoNi 2S 4@NiS 和还原氧化石墨烯组装成的柔性固态非对称超级电容器的能量密度在功率密度为800W·kg -1时达到36.6Wh·kg -1,并且在10000次充放电后表现出良好的循环性能,循环保持率达87.8%。
关键词:电化学;超级电容器;设计合成;CoNi 2S 4;NiS ;电沉积;固态中图分类号:O614.81+3;O614.81+2文献标识码:A文章编号:1001⁃4861(2021)01⁃0171⁃09DOI :10.11862/CJIC.2021.011Electrodeposition of NiS on CoNi 2S 4for Flexible Solid⁃State Asymmetric SupercapacitorsHE Ye⁃Zeng *,1ZHAO Hou⁃Qiang 1LIU Peng 1SUI Yan⁃Wei 1WEI Fu⁃Xiang 1QI Ji⁃Qiu 1MENG Qing⁃Kun 1REN Yao⁃Jian 1ZHUANG Dong⁃Dong *,2(1School of Materials and Physics,China University of Mining and Technology,Xuzhou,Jiangsu 221116,China )(2School of Material Science and Engineering,Jiangsu University,Zhenjiang,Jiangsu 212013,China )Abstract:An effective approach of depositing NiS on CoNi 2S 4was adopted to improve the performance of bimetalliccobalt/nickel⁃sulfide.The as⁃obtained CoNi 2S 4@NiS had an excellent specific capacitance of 1433F·g -1at 1A·g -1and shows a superior rate performance of 69.6%at 10A·g -1.A flexible solid ⁃state asymmetric supercapacitorassembled with CoNi 2S 4@NiS and the reduced graphene oxide showed a high energy density of 36.6Wh·kg -1at a power density of 800W·kg -1and had a fantastic cycle performance of 78.7%retention after 10000cycles,indicat⁃ing that the CoNi 2S 4@NiS nanocomposite is a promising electrode material for energy storage devices.Keywords:electrochemistry;supercapacitor;synthesis design;CoNi 2S 4;NiS;electrodeposition;solid⁃state0IntroductionWith the development of science and technology,the increasing demands of high efficiency energy stor⁃age units in modern electronics are becoming more salient [1⁃4].In the last few years,the supercapacitor hasbecome one of the promising effective and practical energy storage devices for its high power density,goodcycle stability and fast charging rate [5⁃7].The perfor⁃mance and application of supercapacitors are mainly determined by the electrode materials.Therefore,improving the performance of the electrode materials has become a hotspot in the field of energy storage [8⁃9].Transition metal sulfide,a new type of electrodematerial,has been extensively researched due to its su⁃perior electrochemical performance [10⁃12].Among all sul⁃无机化学学报第37卷fides,CoNi2S4has received increasing attention be⁃cause of the synergistic effect of nickel sulfide and co⁃baltous sulfide[13⁃16].Compared with the oxidation prod⁃ucts(CoNi2O4),the extension of chemical bonds inCoNi2S4is beneficial to form a more flexible structureand makes it easier for ion transport[17⁃20].However,therapid decay of specific capacitance during the charge⁃discharge cycles restricts the further application inenergy storage[21⁃24].To overcome this shortcoming,de⁃veloping composite materials has been proven to be themost efficient way and has been widely used in thepreparation of the electrode materials[25⁃26].It has beenreported that the hierarchical CoNi2S4@CC nanowire issuccessfully designed and synthesized by the hydro⁃thermal process,which shows excellent specific capaci⁃tance(1872F·g-1at1A·g-1),fantastic rate capabilityand superior cycling stability when utilized as the elec⁃trode material of supercapacitors[27].Furthermore,Co0.85Se@CoNi2S4/GF(graphene foam)nanotubes,applied to the electrode material of supercapacitors,are successfully prepared by a concise one⁃step electro⁃chemical method,which have excellent interface effectand hollow structure and show outstanding specificcapacitance of5.25F·cm-2at1mA·cm-2,remarkablecharge storage capacity and superior rate perfor⁃mance[28].In this work,CoNi2S4@NiS nanocomposites weresuccessfully synthesized by combining the hydrother⁃mal and electrodeposition methods.The synthesizedCoNi2S4@NiS electrode showed an excellent perfor⁃mance of1433F·g-1at1A·g-1,which is superior tothe CoNi2S4and NiS electrodes.Moreover,a flexiblesolid⁃state asymmetric supercapacitor CoNi2S4@NiS//rGO was assembled by CoNi2S4@NiS and reduced gra⁃phene oxide(rGO),which exhibits an outstanding elec⁃trochemical performance and has promising potentialfor application in supercapacitors.1Experimental1.1Synthesis of CoNi2S4on carbon fiber cloth(CoNi2S4@CC)The carbon fiber cloth(CC,1.0cm×2.0cm)was ultrasonically cleaned with0.5mol·L-1KMnO4for30min individually and then was washed with ethanol and deionized water for several times and desiccated in a vacuum oven at70℃for12h.The CoNi2S4was pre⁃pared by a hydrothermal reaction.0.291g Co(NO3)2·6H2O,0.237g NiCl2·6H2O,0.060g CO(NH2)2and 0.300g thioacetamide(TAA)were used as sources, respectively.Under the continuous magnetic stirring for30min,the above reagents were immersed in30 mL deionized water to get a uniform solution.Subse⁃quently,the uniform solution was transferred into50 mL Teflon⁃lined autoclave and the treated CC was immersed into the solution,then the autoclave was heated at180℃for24h.The final product was ultra⁃sonically rinsed with deionized water and ethanol, respectively.After dried at70℃for12h,the product was denoted as CoNi2S4@CC.1.2Synthesis of CoNi2S4@NiSThe NiS was synthesized by facile and effective three⁃electrode system electrodeposition.2.376g NiCl2·6H2O and7.612g CH4N2S were mixed in100 mL deionized water and stirred for30min to obtain a homogenous solution.Then,the electrodeposition pro⁃cess was conducted for5min at an invariable voltage of0.9V,while the CoNi2S4@CC was served as the work electrode.After that,the samples were washed with eth⁃anol and deionized water separately,and the products were dried in a vacuum environment at70℃.For com⁃parison,the pure NiS without CoNi2S4was also synthe⁃sized on the CC under the same procedure.1.3CharacterizationThe crystalline and structural of the synthesized samples were examined by X⁃ray diffraction(XRD) using Bruker D8Advance diffractometer with Cu Kαradiation(0.154nm)at40kV and30mA,and at a scan rate of6(°)·min-1in the2θrange from10°to80°. The microstructure of the samples was investigated using scanning microscopy(SEM)at5kV,transmis⁃sion electron microscopy(TEM)with an accelerating voltage of200kV,high⁃resolution transmission elec⁃tron microscopy(HRTEM)and selected area electron diffraction(SAED).X⁃ray photoelectron spectroscopy (XPS,1486.7eV)was used to observe the elemental analysis and chemical valence state of the lased irradi⁃172第1期ated samples.1.4Electrochemical measurementsThe electrochemical performance of the samplewas measured on an electrochemical workstation(CHI660E).Cyclic voltammetry (CV),galvanostaticcharge/discharge (GCD)and electrochemical imped⁃ance spectroscopy (EIS)were conducted as the mainpaths to exhibit the electrochemical behaviors.The electrochemical test was proceeded in a three⁃electro configuration in 2mol·L -1KOH electrolyte and the positive and the negative electrode were the as⁃sample and the Pt,the Hg/HgO serve as the reference elec⁃trode,respectively.The specific capacitance can be calculated from the GCD curves by the following equa⁃tion (1):C A =I Δtm ΔV(1)Where I (A)represents discharge current,m (g)repre⁃sents the accurate weight of the active material,Δt (s)represents the discharge time,and ΔV represents the potential window,respectively.1.5Fabrication and electrochemical measure⁃ments of asymmetric supercapacitorThe all⁃solid⁃state asymmetric hybrid supercapac⁃itor (ASC)device was assembled by using the CoNi 2S 4@CC as the positive electrode and rGO as the negativeelectrode,while the PVA⁃KOH gel (PVA=polyvinyl al⁃cohol)performed as the electrolyte.The positive andnegative electrode were dissolved in the PVA⁃KOH gel solution,then two electrodes were combined at roomtemperature and dry until the electrolyte is completely cured,and the solid⁃state supercapacitor was prepared.So as to obtain an ASC with excellent electrochemical properties,it is required to balance the relationship (q +=q -)of the two electrodes charge.As the stored charge of the electrode,the q can be calculated by theequation (2):q =Cm ΔV(2)where C (F·g -1)represents the specific capacitance,m(g)is the mass of the active material and ΔV (V)is the potential window.Meanwhile,the ideal mass ratio canbe calculated by the equation (3):m +m -=C -ΔV -C +ΔV +(3)Where,C +(F·g -1)and C -(F·g -1)represent the specificcapacitance of CoNi 2S 4@NiS and rGO electrode.ΔV +(V)and ΔV -(V)represent the voltage range of CoNi 2S 4@NiS and rGO electrode,respectively.The power den⁃sity (P ,W·kg -1)and the energy density (E ,Wh·kg -1)of CoNi 2S 4@NiS//rGO ASC device can be calculated bythe equations (4,5):E =12C (ΔV )2(4)P =E Δt(5)Where Δt (s)is the discharge time,ΔV (V)is the volt⁃age range and C (F·g -1)is the specific capacitance ofCoNi 2S 4@NiS//rGO ASC device.2Result and discussions2.1Structural and morphological characteriza⁃tionThe XRD patterns of NiS,CoNi 2S 4@CC and CoNi 2S 4@NiS composite are illustrated in Fig.1.TheXRD pattern of the NiS had the same diffraction peakswith the CoNi 2S 4@NiS at 2θ=30.31°,34.77°,46.08°and 53.58°,which can be attributed to the (100),(101),(102)and (110)planes of the NiS (PDF No.75⁃0613).The patterns of the CoNi 2S 4@CC and CoNi 2S 4@NiSshow the same peaks at 2θ=16.28°,26.82°,31.52°,38.30°,47.33°,50.29°and 55.22°,which are indexed to the (111),(220),(311),(400),(422),(511)and (440)planes of the CoNi 2S 4(PDF No.24⁃0334),respectively.In addition,the XRD patterns of the threesamples Fig.1XRD patterns of the NiS,CoNi 2S 4@CC and CoNi 2S 4@NiS何业增等:CoNi 2S 4上电沉积NiS 用于柔性固态非对称超级电容器173无机化学学报第37卷exhibited the extra diffraction peak at2θ=26°,which can be contributed to the carbon fiber cloth substrate (PDF No.26⁃1080).Moreover,there were no other im⁃purity peaks on the patterns,indicating that the suc⁃cessful synthesis of CoNi2S4@NiS on the carbon fiber cloth.The surface element analysis and chemical valence state of the CoNi2S4@NiS sample were further confirmed by XPS as plotted in Fig.2.Fig.2a exhibited the survey spectrum and revealed the presence of Ni, Co,S and C elements in the multiple materials.The Co2p XPS spectrum of the CoNi2S4@NiS is shown in Fig.2b.The peaks situated at779.78and795.15eV are attributed to the Co2p3/2and Co2p1/2levels of Co2+. The peaks situated at778.55and793.33eV reveal the Co2p3/2and Co2p1/2levels of Co3+.It proves that the coexistence of Co2+and Co3+in the CoNi2S4@NiS composite[29].The Ni2p spectrum is shown in Fig.2c, the diffraction peaks situated at853.45and872.38eV are attributed to Ni2+and the peak at856.16and 876.21eV are related to Ni3+[30].The S2p spectrum is displayed in Fig.2d,the diffraction peaks located at 162.98and161.68eV can be assigned to S2p1/2and S2p3/2[18].Moreover,the peak at169.13eV indicates that the existence of S⁃O[31].The morphology of NiS,CoNi2S4/CC and CoNi2S4 @NiS electrode materials can be observed in SEM im⁃ages(Fig.3).As exhibited in Fig.3a and3b,the Co⁃Ni2S4@CC presented a hexagonal flaky cubic structure and were tightly attached to the CC.Fig.3c and3d ex⁃hibit the morphology of the NiS,which presented a granular structure with a size of about50~200nm. These cross⁃linked nanoparticles would provide a high⁃er electrode/electrolyte active sites for reaction and a shorter ion diffusion way[32⁃33].The microstructure of the CoNi2S4@NiS is shown in Fig.3e and3f,the NiS nanoparticles were anchored onto the surface of Co⁃Ni2S4@NiS and form a dense film.The unique structure provides a large specific surface area,which enhance the active sites and would effectively enhance the spe⁃cific capacitance of composite materials.To better understand the chemical compositeand Fig.2(a)XPS survey spectrum of CoNi2S4@NiS;(b~d)XPS spectra of Co2p,Ni2p and S2p174第1期detailed structures of the synthesized CoNi2S4@NiS, HRTEM and element mapping analyses were conduct⁃ed.The HRTEM images of the CoNi2S4@NiS are shown in Fig.4a and4b.The interplanar spacing can be mea⁃sured to be0.20and0.28nm,which can be ascribe to the(102)lattice plane of NiS and(311)lattice plane of CoNi2S4,respectively.The consequences are match with the XRD and XPS tests.Fig.4c and4f displays the elemental mappings of the Co,Ni,Co/Ni and S in the CoNi2S4@NiS samples.The distribution area of the Ni element was slightly larger than the Co element.The Ni and Co element coexisted in the central regionof Fig.3SEM images of(a,b)CoNi2S4@CC,(c,d)NiS and(e,f)CoNi2S4@NiSFig.4(a,b)TEM images of CoNi2S4@NiS;(c~f)Element mappings of the Co,Ni,Co/Ni and S何业增等:CoNi2S4上电沉积NiS用于柔性固态非对称超级电容器175无机化学学报第37卷the sample,while in the outside of the sample there is only Ni element left.In consideration of that CoNi2S4 contained Ni and Co element while NiS had no Co ele⁃ment,it can be deduced that the outer layer of the com⁃posite is NiS which wraps the inner CoNi2S4.2.2Electrochemical performanceThe electrochemical performance of CoNi2S4@CC, NiS,and CoNi2S4@NiS electrodes were tested on a three ⁃electrode configuration with2mol·L-1KOH electro⁃lyte.Fig.5a shows the CV curves for CoNi2S4@CC,NiS, and CoNi2S4@NiS electrodes measured at a scan rate of 10mV·s-1.The CoNi2S4@NiS exhibited superior specif⁃ic capacitance and the redox peaks can be regard as the symbol of Faradaic feature.The improvement of the specific capacitance of the CoNi2S4@NiS is mainly con⁃tributed to the fact that the elements in the two sub⁃stances have multiple valence states,which can carry out the redox reaction more effectively[34].The CV curves of CoNi2S4@NiS electrode at different scan rates from10to50mV·s-1are shown in Fig.5b.The trend of the CV curves was basically maintained with the scan rate increasing,indicating the CoNi2S4@NiS electrode possess ideal pseudocapacitance characteristic and superior rate performance.The large deviation of the shape in large scan rate can be explained by the mis⁃match between charge transfer and diffusion.It can be observed that the cathode peak moved to a lower poten⁃tial,and meanwhile,the anode peak moved to ahigherFig.5Electrochemical performance of CoNi2S4,NiS and CoNi2S4@NiS:(a)CV curves of the CoNi2S4,NiS and CoNi2S4@NiS samples at a scan rate of10mV·s-1;(b)CV curves of the CoNi2S4@NiS sample at various scan rates;(c)GCD curvesof the CoNi2S4CC,NiS and CoNi2S4@NiS samples at a current density of1A·g-1;(d)GCD curves of the CoNi2S4@NiSat various current densities;(e)Comparison of specific capacitance;(f)EIS Nyquist plots of the CoNi2S4,NiS andCoNi2S4@NiS samples176第1期potential when the scan rate continued to increase, which can be explained by the polarization in different scan rates[35].As displayed in Fig.5c,the GCD curves of CoNi2S4@CC,NiS,and CoNi2S4@NiS electrode were measured at a current density of1A·g-1to confirm the advantage of the CoNi2S4@NiS.The discharge time of CoNi2S4@NiS was larger than NiS and CoNi2S4@CC, suggesting the composite structure is conducive to en⁃hance the specific paring to the NiS (1245F·g-1at1A·g-1)and CoNi2S4/CC(1165F·g-1 at1A·g-1),CoNi2S4@NiS(1433F·g-1at1A·g-1)ex⁃hibited higher specific capacitances.Fig.5d illustrates the GCD curves of CoNi2S4@NiS at different current densities to further investigate charge and discharge mechanism.It can be found that the curves show an apparent voltage platform,which is characteristic of typical pseudocapacitor behavior.The result can sup⁃plement the above conclusion.Moreover,the nonlinear curves of the GCD maintained the similarity and sym⁃metry indicating the good stability.The specific capaci⁃tances of NiS,CoNi2S4@CC and CoNi2S4@NiS calculat⁃ed are illustrated in Fig.5e.The specific capacitances of CoNi2S4@NiS were1433,1284,1248,1170,1073 and998F·g-1at1,2,3,5,8and10A·g-1,which possess better rate stability compared with the NiS and CoNi2S4@CC.The electrode cannot fully participate in the reaction when the current density increases,and the utilization rate of the electrochemically active mate⁃rial is insufficient,so the specific capacitance will decrease at a higher current density.As is shown in Fig.5f,the EIS curve of CoNi2S4@CC,NiS,and CoNi2S4 @NiS were fitted using the equivalent circuit model, where CPE is the constant phase angle original and Z W is the Warburg resistance.The equivalent series resis⁃tance(R s)value of NiS,CoNi2S4@CC and CoNi2S4@NiS were1.12,1.56and1.01Ω,indicating that the CoNi2S4 @CC electrode had the lowest internal impedance. Moreover,the value of charge transfer resistance(R ct) can be fitted to be0.25,1.62and0.56Ωfor the NiS, CoNi2S4@CC and CoNi2S4@NiS,suggesting that the CoNi2S4@CC electrode had much large R ct than that of the NiS and CoNi2S4@NiS electrode.Besides,the slope of the samples was greater than45°in the low frequen⁃cy region,indicating the ions and electrolyte are effec⁃tively diffused in the entire system,resulting in a re⁃duction in the diffusion resistance of the NiS,Co⁃Ni2S4@CC and CoNi2S4@NiS electrodes[36].A flexible solid⁃state asymmetric supercapacitor (ASC)device(CoNi2S4@NiS//rGO)was assembled to confirm the energy storage properties for practical ap⁃plication.Fig.6a is the CV curves of the CoNi2S4@NiS and rGO electrode under the three⁃electrode configura⁃tion at the scan rate of10mV·s-1.Obviously,the poten⁃tial windows of the positive and negative electrode were connected,indicating that the loss of potential is nonexistent.The CV curves of CoNi2S4@NiS//rGO at different scan rates(10~100mV·s-1)are displayed in Fig.6b.Significantly,the curves maintained the similar trend with the scan rate increase,and the polarization phenomenon was minimal even at the scan rate of100 mV·s-1,suggesting the device has excellent electro⁃chemical reversibility.Fig.6c exhibits the GCD curves of CoNi2S4@NiS//rGO at different current densities, which possessed good symmetry and had no obvious electrochemical reaction platform.Fig.6d exhibits an excellent specific capacitance of the CoNi2S4@NiS// rGO ASC(103.43F·g-1at1A·g-1and maintained 61.25F·g-1at10A·g-1),revealing excellent rate capa⁃bility.The EIS of the CoNi2S4@NiS//rGO ASC device is shown in Fig.6e.In the high⁃frequency region,the R s and R ct can be calculated to be1.019and4.89Ω.Fur⁃thermore,cycling performance is also a significant indi⁃cator to evaluate the practical application of superca⁃pacitor electrode materials.Fig.6f exhibits a superior cycle performance,which maintained78.7%after 10000cycles at10A·g-1.The superiority of specific capacitance and capacitance retention may be contrib⁃uted to the special nanostructure.The unique structure can provide large space for reaction between electrode and electrolyte by large interface which may supply more active sites.The energy and power density calculated to evalu⁃ated the properties of the CoNi2S4@NiS//rGO ASC device.Fig.7exhibits the Ragone plot of the CoNi2S4 @NiS//rGO ASC.The CoNi2S4@NiS//rGO ASC device exhibited a high energy density of36.6Wh·kg-1at800何业增等:CoNi2S4上电沉积NiS用于柔性固态非对称超级电容器177无机化学学报第37卷W·kg -1and the energy density maintained 21.7Wh·kg -1even at 8000W·kg -1.The CoNi 2S 4@NiS//rGOASC device have an advantage over some other report⁃ed devices,such as CoNi 2S 4//YS⁃CS (yolk⁃shell carbonspheres)(35Wh·kg -1at 640W·kg -1),Ni 3S 2/MWCNT(multiwalled carbon nanotube)⁃NC//AC (19.8Wh·kg -1at 798W·kg -1),NiCo 2S 4//rGO (16.6Wh·kg -1at 2348W·kg -1)and NiS/rGO//AC (18.7Wh·kg -1at 1240W·kg -1)[37⁃40].3ConclusionsIn conclusion,the CoNi 2S 4@NiS was successfullysynthesized by combining the hydrothermal and elec⁃trodeposition methods.The as⁃obtained samples exhib⁃ited an excellent specific capacitance (1433F·g -1at 1A·g -1)and superior rate performance (998F·g -1at 10A·g -1).The flexible solid⁃state asymmetricsupercapac⁃Fig.7Ragone plot of the ASC deviceFig.6Electrochemical measurements of the resultant CoNi 2S 4@NiS//rGO:(a)CV curves of the resultant CoNi 2S 4@NiSand rGO at 10mV·s -1;(b)CV curves of the device at different current densities;(c)GCD curves of the ASC device;(d)Specific capacitance at various current densities;(e)EIS Nyquist plots of the device;(f)Cycling performance ofthe device at 10A·g -1for 10000cycles178第1期itor assembled with CoNi2S4as the positive electrode and the reduced rGO as the negative electrode showed superior energy density of36.6Wh·kg-1at a power density of800W·kg-1,remarkable rate performance, and excellent cycle performance(78.7%at a high current density of10A·g-1after10000cycles).The results indicate that the CoNi2S4@NiS would be a prom⁃ising electrode material for the flexible solid⁃state asymmetric supercapacitors.References:[1]Zhang N,Li Y F,Xu J Y,Li J J,Wei B,Ding Y,Arnorim I,Thomas R,Thalluri S M,Liu Y Y,Yu G H,Liu L F.ACS Nano,2019,13(9): 10612⁃10621[2]Hou B H,Wang Y Y,Guo J Z,Zhang Y,Ning Q L,Yang Y,Li W H, Zhang J P,Wang X L,Wu X L.ACS Appl.Mater.Interfaces,2018,10 (4):3581⁃3589[3]Liu D H,Li W H,Zheng Y P,Cui Z,Yan X,Liu D S,Wang J W, Zhang Y,Lu H Y,Bai F Y,Guo J Z,Wu X L.Adv.Mater.,2018,30 (21):1706317[4]Wang B,Cheng Y F,Su H,Cheng M,Li Y,Geng H B,Dai Z F.ChemSusChem,2020,13(16):4078⁃4085[5]Sun L M,Wang X H,Wang Y R,Xiao D Y,Cai W F,Jing Y,Wang Y R,Hu F J,Zhang Q.Front.Chem.,2019,7:512[6]Wang R,Wang Q R,Yao M J,Chen K N,Wang X Y,Liu L L,Niu Z Q,Chen J.Rare Met.,2018,37(6):536⁃542[7]Wan L,Hu S Y,Liu J X,Chen D Q,Liu S S,Xiao R,Zhang Y,Chen J,Du C,Xie M J.Ionics,2020,26(5):2549⁃2561[8]Trowbridge A,Walton S M,Gaunt M J.Chem.Rev.,2020,120(5):2613⁃2692[9]田地,卢晓峰,李闱墨,李悦,王策.物理化学学报,2020,36(2): 1904056TIAN D,LU X F,LI W M,LI Y,WANG C.Acta Phys.⁃Chim.Sin., 2020,36(2):1904056[10]Zhai M M,Cheng Y,Jin Y,Hu J B.Int.J.Hydrogen Energy,2019,44 (26):13456⁃13465[11]Lv Z J,Zhong Q,Zhao Z Y,Bu Y F.J.Mater.Sci.⁃Mater.Electron.,2017,28(23):18064⁃18074[12]Liu Y,Zhao D P,Liu H Q,Umar A,Wu X.Chin.Chem.Lett.,2019,30(5):1105⁃1110[13]He W D,Wang C G,Li H Q,Deng X L,Xu X J,Zhai T Y.Adv.EnergyMater.,2017,7(21):1700983[14]Ding X B,Zhu J S,Hu G Z,Zhang S Q.Ionics,2019,25(2):897⁃901[15]Cheng J P,Wang W D,Wang X C,Liu F.Chem.Eng.J.,2020,393: 124747[16]Guo R,Li J,Jia Y F,Xin F E,Sun J,Dang L Q,Liu Z H,Lei Z B.J.Mater.Chem.A,2019,7(8):4165⁃4174[17]Evariste U,Jiang G H,Yu B,Liu Y K,Huang Z,Lu Q L,Ma P P.J.Mater.Res.,2019,34(14):2445⁃2455[18]Saddique J,Cheng X P,Shi H F,Wu R,Zhang Y F.Applied Sciences⁃Basel,2019,9(15):3082[19]Wen Y X,Liu Y P,Dang S,Tian S H,Li H Q,Wang Z L,He D Y, Wu Z S,Cao G Z,Peng S L.J.Power Sources,2019,423:106⁃114 [20]Zhou X Y,Qu X Y,Zhao W,Ren Y F,Lu Y,Wang Q,Yang D P, Wang W J,Dong X C.Nanoscale,2020,12(20):11143⁃11152 [21]Li X D,Ding R,Shi W,Xu Q L,Liu E H.Chem.Eur.J.,2017,23 (28):6896⁃6904[22]Gopi C V V M,Ravi S,Rao S S,Reddy A E,Kim H J.Sci.Rep.,2017,7:46519[23]Zhang X L,Wang J M,Ji X,Sui Y W,Wei F X,Qi J Q,Meng Q K, Ren Y J,He Y Z.J.Alloys Compd.,2020,825:154069 [24]Deng Q W,Tian Z,Wang X M,Yang Z W,Wu Y C.Chem.⁃Eur.J.,2020,26(3):650⁃658[25]Yan H L,Zhu K J,Liu X,Wang Y H,Wang Y B,Zhang D Y,Lu Y, Peng T,Liu Y X,Luo Y S.RSC Adv.,2020,10(15):8760⁃8765 [26]Tan Y,Xue W D,Zhang Y,He D X,Wang W J,Zhao R.J.AlloysCompd.,2019,806:1068⁃1076[27]Yang Y Y,Zhang Y,Zhu C M,Xie Y D,Lv L W,Chen W L,He Y Y,Hu Z G.J.Alloys Compd.,2020,823:153855[28]Zhang C Y,Hou M Z,Cai X Y,Lin J J,Liu X,Wang R R,Zhou L J, Gao J C,Li B S,Lai L F.J.Mater.Chem.A,2018,6(32):15630⁃15639 [29]Liu X X,Wu R,Wang Y,Xiao S H,He Q,Niu X B,Blackwood D J, Chen J S.Electrochim.Acta,2019,311:221⁃229[30]Hou L Y,Du Q H,Su L,Di S L,Ma Z P,Chen L,Shao G J.Mater.Lett.,2019,237:262⁃265[31]Khalafallah D,Zou Q,Zhi M J,Hong Z L.Electrochim.Acta,2020,350:136399[32]Nan H S,Liu M,Zhang Q,Wang M,Liu S J,Qiao L,Hu X Y,Tian H W.J.Power Sources,2020,451:227822[33]Liu P,Sui Y W,Wei F X,Qi J Q,Meng Q K,Ren Y J,He Y Z.J.Mater.Sci.⁃Mater.Electron.,2019,30(21):19077⁃19086 [34]Que R H,Ji G,Liu D S,Li M L,Liu S.ChemNanoMat,2019,5(6): 814⁃819[35]Guo M C,Zhou L X,Li Y,Zheng Q J,Xie F Y,Lin D M.J.Mater.Chem.A,2019,7(21):13130⁃13141[36]Mishra R K,Krishnaih M,Kim S Y,Kushwaha A K,Jin S H.Mater.Lett.,2019,236:167⁃170[37]Wang Q H,Gao F,Xu B Y,Cai F X,Zhan F P,Gao F,Wang Q X.Chem.Eng.J.,2017,327:387⁃396[38]Dai C S,Chien P Y,Lin J Y,Chou S W,Wu W K,Li P H,Wu K Y, Lin T W.ACS Appl.Mater.Interfaces,2013,5(22):12168⁃12174 [39]Chen H C,Jiang J J,Zhang L,Xia D D,Zhao Y D,Guo D Q,Qi T, Wan H Z.J.Power Sources,2014,254:249⁃257[40]Cai F,Sun R,Kang Y R,Chen H Y,Chen M H,Li Q W.RSC Adv.,2015,5(29):23073⁃23079何业增等:CoNi2S4上电沉积NiS用于柔性固态非对称超级电容器179。
柔性全固态薄膜锂电池
滋A/cm2 电流充 / 放电时,首次放电面积比容量达到 13.1 滋Ah/cm2。电池可以 65 滋A/cm2(5 )恒电流充 / 放电。
关键词:柔性;PVD;全固态;薄膜锂电池
中图分类号:TM912.9
文献标识码:A
文章编号:1002-087X(2019)08-1250-03
Flexible all-solid-state thin-film lithium battery
WANG Sheng-li, FU Fang-qiao, NING Fan-yu, DING Fei, LIU Xing-jiang
Abstract: The flexible all-solid-state thin-film lithium battery has the characteristics of lightweight, formability and so on. It has shown great promise as a flexible power sources in the fields of wearable, flexible display and others. Thin-film deposition of key materials such as LiCoO2 positive electrode, LiPON solid electrolyte and metal Li negative electrode was realized by PVD technology. Finally, the flexible all-solid-state thin-film lithium battery of LiCoO2/LiPON/Li was successfully fabricated on the flexible ultra-thin stainless steel. The structure and morphology of the film were characterized by XRD and SEM. The electrochemical performance of the battery was tested and analyzed by using the LAND test system and electrochemical workstation. When the battery was charged/discharged with a current of 10 滋A/cm2, the first discharge capacity reached 13.1 滋Ah/cm2. The battery could be charged/ discharged at a constant current of 65 滋A /cm2(5 ). Key words: flexible; PVD; all-solid-state; thin-film lithium battery
Journal of Solid State Electrochemistry固态电化学投稿要求
Journal of Solid State Electrochemistry——Instructions for AuthorsMANUSCRIPT SUBMISSIONManuscript SubmissionSubmission of a manuscript implies: that the work described has not been published before; that it is not under consideration for publication anywhere else; that its publication has been approved by all co-authors, if any, as well as by the responsible authorities – tacitly or explicitly – at the institute where the work has been carried out. The publisher will not be held legally responsible should there be any claims for compensation.PermissionsAuthors wishing to include figures, tables, or text passages that have already been published elsewhere are required to obtain permission from the copyright owner(s) for both the print and online format and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.Online SubmissionAuthors should submit their manuscripts online. Electronic submission substantially reduces the editorial processing and reviewing times and shortens overall publication times. Please follow the hyperlink “Submit online” on the right and upload all of your manuscript files following the instructions given on the screen.TITLE PAGETitle PageThe title page should include:∙The name(s) of the author(s)∙ A concise and informative title∙The affiliation(s) and address(es) of the author(s)∙The e-mail address, telephone and fax numbers of the corresponding authorAbstractPlease provide an abstract of 150 to 250 words. The abstract should not contain any undefined abbreviations or unspecified references.KeywordsPlease provide 4 to 6 keywords which can be used for indexing purposes.TEXTText FormattingManuscripts should be submitted in Word.∙Use a normal, plain font (e.g., 10-point Times Roman) for text.∙Use italics for emphasis.∙Use the automatic page numbering function to number the pages.∙Do not use field functions.∙Use tab stops or other commands for indents, not the space bar.∙Use the table function, not spreadsheets, to make tables.∙Use the equation editor or MathType for equations.∙Save your file in docx format (Word 2007 or higher) or doc format (older Word versions).Manuscripts with mathematical content can also be submitted in LaTeX.∙LaTeX macro package (zip, 182 kB)HeadingsPlease use no more than three levels of displayed headings.AbbreviationsAbbreviations should be defined at first mention and used consistently thereafter.FootnotesFootnotes can be used to give additional information, which may include the citation of a reference included in the reference list. They should not consist solely of a reference citation, and they should never include the bibliographic details of a reference. They should also not contain any figures or tables.Footnotes to the text are numbered consecutively; those to tables should be indicated by superscript lower-case letters (or asterisks for significance values and other statistical data). Footnotes to the title or the authors of the article are not given reference symbols.Always use footnotes instead of endnotes.AcknowledgmentsAcknowledgments of people, grants, funds, etc. should be placed in a separate section before thereference list. The names of funding organizations should be written in full.SCIENTIFIC STYLE∙Please always use internationally accepted signs and symbols for units (SI units).∙Nomenclature: Insofar as possible, authors should use systematic names similar to those used by Chemical Abstract Service or IUPAC.∙Genus and species names should be in italics.∙Generic names of drugs and pesticides are preferred; if trade names are used, the generic name should be given at first mention.∙Please use the standard mathematical notation for formulae, symbols, etc.:Italic for single letters that denote mathematical constants, variables, and unknownquantitiesRoman/upright for numerals, operators, and punctuation, and commonly defined functionsor abbreviations, e.g., cos, det, e or exp, lim, log, max, min, sin, tan, d (for derivative)Bold for vectors, tensors, and matrices.REFERENCESCitationReference citations in the text should be identified by numbers in square brackets. Some examples:1. Negotiation research spans many disciplines [3].2. This result was later contradicted by Becker and Seligman [5].3. This effect has been widely studied [1-3, 7].Reference listThe list of references should only include works that are cited in the text and that have been published or accepted for publication. Personal communications and unpublished works should only be mentioned in the text. Do not use footnotes or endnotes as a substitute for a reference list.The entries in the list should be numbered consecutively.∙Journal articleNugen S, Baeumner HJ (2008) Trends and opportunities in food pathogen detection. AnalBioanal Chem 391:451-454orNugen S, Baeumner HJ (2008) Anal Bioanal Chem 391:451-454∙Article by DOISlifka MK, Whitton JL (2000) Clinical implications of dysregulated cytokine production. JMol Med. Doi:10.1007/s001090000086∙BookSouth J, Blass B (2001) The future of modern genomics. Blackwell, London∙Book chapterBrown B, Aaron M (2001) In: Smith J (ed) The rise of modern genomics, 3rd edn. Wiley,New York∙Online documentHealthwise Knowledgebase (1998) US Pharmacopeia, Rockville.. Accessed 21 Sept 1998Always use the standard abbreviation of a journal’s name according to the ISSN List of Title WordAbbreviations, see∙/2-22661-LTWA-online.phpFor authors using EndNote, Springer provides an output style that supports the formatting of in-text citations and reference list.∙EndNote style (zip, 2 kB)TABLES∙All tables are to be numbered using Arabic numerals.∙Tables should always be cited in text in consecutive numerical order.∙For each table, please supply a table caption (title) explaining the components of the table.∙Identify any previously published material by giving the original source in the form of a reference at the end of the table caption.∙Footnotes to tables should be indicated by superscript lower-case letters (or asterisks for significance values and other statistical data) and included beneath the table body.ARTWORK AND ILLUSTRATIONS GUIDELINESFor the best quality final product, it is highly recommended that you submit all of your artwork –photographs, line drawings, etc. – in an electronic format. Your art will then be produced to the higheststandards with the greatest accuracy to detail. The published work will directly reflect the quality of the artwork provided.Electronic Figure Submission∙Supply all figures electronically.∙Indicate what graphics program was used to create the artwork.∙For vector graphics, the preferred format is EPS; for halftones, please use TIFF format.MS Office files are also acceptable.∙Vector graphics containing fonts must have the fonts embedded in the files.∙Name your figure files with "Fig" and the figure number, e.g., Fig1.eps.Line Art∙Definition: Black and white graphic with no shading.∙Do not use faint lines and/or lettering and check that all lines and lettering within the figures are legible at final size.∙All lines should be at least 0.1 mm (0.3 pt) wide.∙Scanned line drawings and line drawings in bitmap format should have a minimum resolution of 1200 dpi.∙Vector graphics containing fonts must have the fonts embedded in the files.Halftone Art∙Definition: Photographs, drawings, or paintings with fine shading, etc.∙If any magnification is used in the photographs, indicate this by using scale bars within the figures themselves.∙Halftones should have a minimum resolution of 300 dpi.Combination Art∙Definition: a combination of halftone and line art, e.g., halftones containing line drawing, extensive lettering, color diagrams, etc.∙Combination artwork should have a minimum resolution of 600 dpi.Color Art∙Color art is free of charge for online publication.∙If black and white will be shown in the print version, make sure that the main information will still be visible. Many colors are not distinguishable from one another when converted to black and white. A simple way to check this is to make a xerographic copy to see if the necessary distinctions between the different colors are still apparent.∙If the figures will be printed in black and white, do not refer to color in the captions.∙Color illustrations should be submitted as RGB (8 bits per channel).Figure Lettering∙To add lettering, it is best to use Helvetica or Arial (sans serif fonts).∙Keep lettering consistently sized throughout your final-sized artwork, usually about 2–3 mm (8–12 pt).∙Variance of type size within an illustration should be minimal, e.g., do not use 8-pt type on an axis and 20-pt type for the axis label.∙Avoid effects such as shading, outline letters, etc.∙Do not include titles or captions within your illustrations.Figure Numbering∙All figures are to be numbered using Arabic numerals.∙Figures should always be cited in text in consecutive numerical order.∙Figure parts should be denoted by lowercase letters (a, b, c, etc.).∙If an appendix appears in your article and it contains one or more figures, continue the consecutive numbering of the main text. Do not number the appendix figures, "A1, A2, A3, etc." Figures in online appendices (Electronic Supplementary Material) should, however, be numbered separately.Figure Captions∙Each figure should have a concise caption describing accurately what the figure depicts.Include the captions in the text file of the manuscript, not in the figure file.∙Figure captions begin with the term Fig. in bold type, followed by the figure number, also in bold type.∙No punctuation is to be included after the number, nor is any punctuation to be placed at the end of the caption.∙Identify all elements found in the figure in the figure caption; and use boxes, circles, etc., as coordinate points in graphs.∙Identify previously published material by giving the original source in the form of a reference citation at the end of the figure caption.Figure Placement and Size∙When preparing your figures, size figures to fit in the column width.∙For most journals the figures should be 39 mm, 84 mm, 129 mm, or 174 mm wide and not higher than 234 mm.∙For books and book-sized journals, the figures should be 80 mm or 122 mm wide and not higher than 198 mm.PermissionsIf you include figures that have already been published elsewhere, you must obtain permission from the copyright owner(s) for both the print and online format. Please be aware that some publishers do not grant electronic rights for free and that Springer will not be able to refund any costs that may have occurred to receive these permissions. In such cases, material from other sources should be used.AccessibilityIn order to give people of all abilities and disabilities access to the content of your figures, please make sure that∙All figures have descriptive captions (blind users could then use a text-to-speech software or a text-to-Braille hardware)∙Patterns are used instead of or in addition to colors for conveying information (color-blind users would then be able to distinguish the visual elements)∙Any figure lettering has a contrast ratio of at least 4.5:1ELECTRONIC SUPPLEMENTARY MATERIALSpringer accepts electronic multimedia files (animations, movies, audio, etc.) and other supplementary files to be published online along with an article or a book chapter. This feature can add dimension to the author's article, as certain information cannot be printed or is more convenient in electronic form.Submission∙Supply all supplementary material in standard file formats.∙Please include in each file the following information: article title, journal name, author names; affiliation and e-mail address of the corresponding author.∙To accommodate user downloads, please keep in mind that larger-sized files may require very long download times and that some users may experience other problems duringdownloading.Audio, Video, and Animations∙Always use MPEG-1 (.mpg) format.Text and Presentations∙Submit your material in PDF format; .doc or .ppt files are not suitable for long-term viability.∙ A collection of figures may also be combined in a PDF file.Spreadsheets∙Spreadsheets should be converted to PDF if no interaction with the data is intended.∙If the readers should be encouraged to make their own calculations, spreadsheets should be submitted as .xls files (MS Excel).Specialized Formats∙Specialized format such as .pdb (chemical), .wrl (VRML), .nb (Mathematica notebook), and .tex can also be supplied.Collecting Multiple Files∙It is possible to collect multiple files in a .zip or .gz file.Numbering∙If supplying any supplementary material, the text must make specific mention of the material as a citation, similar to that of figures and tables.∙Refer to the supplementary files as “Online Resource”, e.g., "... as shown in the animation (Online Resource 3)", “... additional data are given in Online Resource 4”.∙Name the files consecutively, e.g. “ESM_3.mpg”, “ESM_4.pdf”.Captions∙For each supplementary material, please supply a concise caption describing the content of the file.Processing of supplementary files∙Electronic supplementary material will be published as received from the author without any conversion, editing, or reformatting.AccessibilityIn order to give people of all abilities and disabilities access to the content of your supplementary files, please make sure that∙The manuscript contains a descriptive caption for each supplementary material∙Video files do not contain anything that flashes more than three times per second (so that users prone to seizures caused by such effects are not put at risk)DOES SPRINGER PROVIDE ENGLISH LANGUAGE SUPPORT?Manuscripts that are accepted for publication will be checked by our copyeditors for spelling and formal style. This may not be sufficient if English is not your native language and substantial editing would be required. In that case, you may want to have your manuscript edited by a native speaker prior to submission. A clear and concise language will help editors and reviewers concentrate on the scientific content of your paper and thus smooth the peer review process.The following editing service provides language editing for scientific articles in all areas Springer publishes in.Use of an editing service is neither a requirement nor a guarantee of acceptance for publication. Please contact the editing service directly to make arrangements for editing and payment.For Authors from China文章在投稿前进行专业的语言润色将对作者的投稿进程有所帮助。
具有荧光的金属有机框架
具有荧光的金属有机框架摘要:金属-有机骨架材料(Metal-Organic Frameworks,英文简称MOFs)是一种新型的多孔晶体材料。
由于制备方式多样,配体及中心金属离子可调控,造就了金属有机骨架广泛的应用前景:如催化、选择性吸附、气体储存、药物缓释、荧光传感和磁性材料等领域。
近年来它已成为一个热门的研究领域。
通过简单快速的三乙胺超声扩散法制备以不同稀土金属作为中心离子的多种金属有机骨架材料,通过中心离子和配体的调控,证明了超声法是一种适用范围很广的MOF材料制备方法。
通过对超声频率的调控,发现产物形貌以及XRD强度都有着相应的改变,以此为基础分析超声法制备金属有机骨架晶体的形成过程。
关键词:金属-有机骨架;超声;荧光传感。
金属-有机骨架(Metal-Organic Frameworks,英文缩写MOFs)1,2材料是近年来得到迅速发展的一类新型多孔晶体材料,这类多孔材料以过渡金属和多官能团有机配体为基本构件组装而成。
与传统有机和无机多孔材料(如沸石和多孔碳材料等)相比,纳米孔洞金属-有机骨架材料具有密度小、比表面积高、制备条件温和等特点,更为重要的是,通过设计具有不同结构和功能的有机配体以及使用众多过渡金属离子,可以方便地对金属-有机骨架材料进行结构剪裁,从而达到对这类多孔材料的性质进行有效调控。
近年来,科研工作者们将分子,设计和晶体工程充分应用于纳米孔洞金属-有机骨架材料的设计并取得了巨大的成功。
目前人们已经开发出Langmuir比表面积超过10000 m2/g的金属-有机骨架材料(如MOF-210 的 Langmuir 比表面积 10400 m2/g, BET 比表面积 6240 m2/g3,这几乎是结构稳定固体多孔材料的极限值,是其他任何一种传统多孔材料所无法比拟的。
由于在气体存储吸附和选择性分离、催化分子传感4-9等诸多领域具有广阔的应用前景,自上世纪90年代以来,此类材料的设计及其应用迅速成为无机化学、材料科学、物理化学等领域科学家们的研究热点10-14。
SMT不良描述中英文对照
常用英语词汇与缩写:Accuracy:精度Additive Process:加成工艺Adhesion:附着力Aerosol:气溶剂Angle of attack:迎角Anisotropic adhesive:各异向性胶Annular ring:环状圈Application specific integrated circuit :ASIC特殊应用集成电路Array:列阵Artwork:布线图Automated test equipment:ATE自动测试设备Bond lift-off:焊接升离Bonding agent:粘合剂CAD/CAM system:计算机辅助设计与制造系统Capillary action:毛细管作用Chip on board :COB板面芯片Circuit tester:电路测试机Cladding:覆盖层Cold cleaning:冷清洗Cold solder joint:冷焊锡点Conductive epoxy:导电性环氧树脂Conductive ink:导电墨水Conformal coating:共形涂层Copper foil:铜箔Copper mirror test:铜镜测试Cure:烘焙固化AOI(Automatic optical inspection):自动光学检查Assembly:组件ATE(Automated test equipment):自动测试设备Bare Chip:裸芯片BGA(Ball grid array)球栅列阵Blind via:盲孔Blowholes:吹孔Bridge:锡桥Bridging:搭锡bulk feeder:散装式供料器Buried via:埋孔Chamber System:炉膛系统Chip:片状元件Circuit tester:电路测试机cleaning after soldering:焊后清洗Cold solder joint:冷焊锡点Component Check:元件检查Component density:元件密度Component Pick-Up:元件拾取Component Transport:元件传送Component:元件convection reflow soldering:热对流再流焊Copper Clad Laminates:覆铜箔层压板Copper foil:铜箔Copper mirror test:铜镜测试CSP(Chip Scale Package):芯片规模的封装CTE(Coefficient of the thermal expansion):温度膨胀系数Cure:烘焙固化Cursting:发生皮层Cycle rate:循环速率Data recorder:数据记录器Defect:缺陷Delamination:分层Desoldering:卸焊Dewetting:去湿DFM:为制造着想的设计Dispersant:分散剂Documentation:文件编制Downtime:停机时间Durometer:硬度计Desoldering:卸焊Device:器件Dewetting:缩锡DIP:双列直插Downtime:停机时间Dpm(defects per million):百万缺陷率dual wave soldering:双波峰焊Dull Joint:焊点灰暗Environmental test:环境测试Eutectic solders:共晶焊锡Excessive Paste:膏量太多FCT(Functional test):功能测试feeder holder:供料器架feeders:供料器Fiducial:基准点Fillet:焊角Fine-pitch technology :FPT密脚距技术Fixture:夹具Flexibility:柔性flexible stencil:柔性金属漏版Flip chip:倒装芯片flux bubbles:焊剂气泡flying:飞片FPT(Fine-pitch technology):密脚距技术Full liquidus temperature:完全液化温度Golden boy:金样Fundamentals of Solders and Soldering焊料及焊接基础知识Soldering Theory焊接理论Microstructure and Soldering显微结构及焊接Effect of Elemental Constituents on Wetting焊料成分对润湿的影响Effect of Impurities on Soldering杂质对焊接的影响Solder Paste Technology焊膏工艺Solder Powder 锡粉Solder Paste Rheology锡膏流变学Solder Paste Composition & Manufacturing锡膏成分和制造SMT Problems Occurred Prior to Reflow回流前SMT问题Flux Separation助焊剂分离Paste Hardening焊膏硬化Poor Stencil Life网板寿命问题Poor Print Thickness印刷厚度不理想Poor Paste Release From Squeegee锡膏脱离刮刀问题Smear印锡模糊Insufficiency锡不足Needle Clogging针孔堵塞Slump塌落Low Tack低粘性Short Tack Time 粘性时间短SMT Problems Occurred During Reflow回流过程中的SMT问题Cold Joints冷焊Nonwetting不润湿Dewetting反润湿Leaching浸析Intermetallics金属互化物Tombstoning立碑Skewing歪斜Wicking焊料上吸Bridging桥连Voiding空洞Opening开路Solder Balling锡球Solder Beading锡珠Spattering飞溅SMT Problems Occurred at Post Reflow Stage回流后问题White Residue白色残留物Charred Residue炭化残留物Poor Probing Contact探针测接问题Surface Insulation Resistance or Electrochemical Migration Failure表面绝缘阻抗或电化迁移缺陷Delamination/Voiding/Non-curing Of Conformal Coating/Encapsulants分层/空洞/敷形涂覆或包封的固化问题Challenges at BGA and CSP Assembly and Rework Stage BGA、CSP组装和翻修的挑战Starved Solder Joint少锡焊点Poor Self-Alignment自对位问题Poor Wetting润湿不良Voiding空洞Bridging桥连Uneven Joint Height焊点高度不均Open开路Popcorn and Delamination爆米花和分层Solder Webbing锡网Solder Balling锡球Problems Occurred at Flip Chip Reflow Attachment倒装晶片回流期间发生的问题Misalignment位置不准Poor Wetting润湿不良Solder Voiding空洞Underfill Voiding底部填充空洞Bridging桥连Open开路Underfill Crack底部填充裂缝Delamination分层)Filler Segregation填充分离Insufficient Underfilling底部填充不充分Optimizing Reflow Profile via Defect Mechanisms Analysis回流曲线优化与缺陷机理分析Flux Reaction助焊剂反应Peak Temperature峰值温度Cooling Stage冷却阶段Heating Stage加热阶段Timing Considerations时间研究Optimization of Profile曲线优化Comparison with Conventional Profiles与传统曲线的比较Discussion讨论Implementing Linear Ramp Up Profile斜坡式曲线general placement equipment:中速贴装机Golden boy:金样Halides:卤化物Hard water:硬水Hardener:硬化剂high speed placement equipment:高速贴装机hot air reflow soldering:热风再流焊ICT(In-circuit test):在线测试In-circuit test:在线测试Insufficient Paste:膏量不足JIT(Just-in-time):刚好准时laser reflow soldering:激光再流焊LCCC(Leadless Ceramic Chip Carrier):无引脚陶瓷芯片载体Lead configuration:引脚外形Line certification:生产线确认located soldering:局部软钎焊low speed placement equipment:低速贴装机low temperature paste:低温焊膏Machine vision:机器视觉Mean time between failure :MTBF平均故障间隔时间Manhattan effect:曼哈顿现象melf:圆柱形元件metal stencil:金属漏版Misalignment:偏斜Modularity:模块化Movement:移位no-clean solder paste:免清洗焊膏Non-Dewetting:不沾锡Nonwetting:不熔湿的optic correction system :光学校准系统Organic activated :OA有机活性的Packaging density:装配密度Photoploter:相片绘图仪Placement equipment:贴装设备past mask:焊膏膜(漏板)paste shelf life:焊膏贮存寿命PCB(Printed circuit board):印刷电路板Pick-and-place:拾取-贴装设备placement accuracy:贴装精度placement direction:贴装方位Placement equipment:贴装设备placement pressure:贴装压力Placement Procedure:元件放置placement speed:贴装速度PLCC(Plastic Leaded Chip Carrier):塑型有引脚芯片载体Poor Tack Retention:粘着力不足precise placement equipment:精密贴装机PTH (Pin Through the Hole):通孔安装QFP(Quad Flat Package):多引脚方形扁平封装Reflow soldering:回流焊接Repair:修理Repeatability:可重复性Rheology:流变学repeatability:重复性resolution:分辨率Rework:返工rotating deviation:旋转偏差Schematic:原理图Semi-aqueous cleaning:不完全水清洗Shadowing:阴影Silver chromate test:铬酸银测试Slump:坍落Solder bump:焊锡球Solderability:可焊性Soldermask:阻焊Solids:固体。
石墨烯在锂离子电池电极材料中的应用
石墨烯在锂离子电池电极材料中的应用沈文卓;郭守武【摘要】随着电子产品的普及,对锂离子电池的可逆容量、倍率充放电能力和循环稳定性提出了更高的要求.石墨烯由于其独特的电子共轭态和单一的原子层结构,具有优越的电子迁移性、大的表面积和良好的热和化学稳定性.因此,众多研究者致力于借助石墨烯的独有特性来改善锂离子电池正极和负极材料的综合电化学性能.本文对石墨烯在锂离子电池正负极材料中的应用情况以及面临的主要问题做了简要综述.%It is challenging to develop lithium ion batteries (LIBs) possessing simultaneously large reversible capacity,high rate capability,and good cycling stability.Graphene sheets,owing to the unique electronic conjugate state within the basal plane and also the single atomic layered morphology,have superior electronic mobility,large surface area,and decent thermal and chemical stability.Hence,many works have been devoted to the improvements of the cathode and anode materials with graphene.In the work,the achievements and the main problem in the area are overviewed.【期刊名称】《电子元件与材料》【年(卷),期】2017(036)009【总页数】4页(P79-82)【关键词】石墨烯;正极材料;综述;负极材料;电化学性能;锂离子电池【作者】沈文卓;郭守武【作者单位】上海交通大学电子信息与电气工程学院,上海200240;上海交通大学电子信息与电气工程学院,上海200240【正文语种】中文【中图分类】O613.71与其他种类的二次电池相比,锂离子电池具有高能量密度、高电压、无记忆效应、低自放电率等优点[1-2],在日用电子产品(如手机、手提电脑、摄像机、电玩)、电动汽车(EV/PHEV/HEV)以及储能电站等领域得到普遍应用。
仪器仪表常用词汇英语
[转帖]仪器仪表常用词汇英语翻译pH计 pH meterX射线衍射仪 X-ray diffractometerX射线荧光光谱仪 X-ray fluorescence spectrometer力测量仪表 force measuring instrument孔板 orifice plate文丘里管 venturi tube水表 water meter加速度仪 accelerometer可编程序控制器 programmable controller平衡机 balancing machine皮托管 Pitot tube皮带秤 belt weigher光线示波器 light beam oscillograph光学高温计 optical pyrometer光学显微镜 optical microscope光谱仪器 optical spectrum instrument吊车秤 crane weigher地中衡 platform weigher字符图形显示器 character and graphic display位移测量仪表 displacement measuring instrument巡迴检测装置 data logger波纹管 bellows长度测量工具 dimensional measuring instrument长度传感器 linear transducer厚度计 thickness gauge差热分析仪 differential thermal analyzer扇形磁场质谱计 sector magnetic field mass spectrometer 料斗秤 hopper weigher核磁共振波谱仪 nuclear magnetic resonance spectrometer 气相色谱仪 gas chromatograph浮球调节阀 float adjusting valve真空计 vacuum gauge动圈仪表 moving-coil instrument基地式调节仪表 local-mounted controller密度计 densitometer液位计 liquid level meter组装式仪表 package system减压阀 pressure reducing valve测功器 dynamometer紫外和可见光分光光度计 ultraviolet-visible spectrometer 顺序控制器 sequence controller微处理器 microprocessor温度调节仪表 temperature controller煤气表 gas meter节流阀 throttle valve电子自动平衡仪表 electronic self-balance instrument电子秤 electronic weigher电子微探针 electron microprobe电子显微镜 electron microscope弹簧管 bourdon tube数字式显示仪表 digital display instrument热流计 heat-flow meter热量计 heat flux meter热电阻 resistance temperature热电偶 thermocouple膜片和膜盒 diaphragm and diaphragm capsule调节阀 regulating valve噪声计 noise meter应变仪 strain measuring instrument湿度计 hygrometer声级计 sound lever meter黏度计 viscosimeter转矩测量仪表 torque measuring instrument转速测量仪表 tachometer露点仪 dew-point meter变送器 transmitter英语电子类翻译词汇总结(2)发布时间:2010-5-24 作者:互联网来源: 九重歌访问次数: 54 EDM instrument,电磁波测距仪effective aperture,有效孔径effective area,有效面积effective data transfer rate,有效数据传送率effective diaphragm area,膜片有效面积effective emissivity,有效发射率effective excitaion force,有效激振力effective magnetic field,有效磁场effective mass of the moving element,运动部件有效质量effective path length,有效光程长度effective radiation exitance,有效辐(射)出(射)度effective range,有效范围;有效量限;测量范围effective sound pressure,有效声压effectiveness,有效性effectiveness theory,效益理论efflux viscometer,流出式粘度计egoless programming,无私程序设计egoless programming,无私程序设计EI-CI source,电子轰击-化学电离源eigen frequency,特征频率Ekman current meter,厄克曼海流计elastic after-effect,弹性后效elastic background,弹性元件elastic limit,弹性极限elastic scatter,弹性散射elastic system,弹性系统elasticity,弹性elastomer diaphragm,橡胶膜片electret microphone,驻极体传声器electric actuator,电动执行机构electric contact liquid-in-glass thermometer,电接点玻璃温度计electric contact set,电接点装置electric control,电动控制electric current transducer[sensor],电流传感器electric field controller,电场控制仪electric field strength transducer[sensor],电场强度传感器electric hydraulic converter,电-液转换器electric logger,电测井仪器electric measurement technique of strain gauge,应变计电测技术electric operationg station,电动操作器electric pneumatic converter,位置发送器electric quantity transducer[sensor],电学量传感器electric resistance and dielectric constant measuring unit,电阻-静电容量测量仪electric system,电气系统electrical capacitance level measuring device,电容物位测量装置electrical center,电中心dlectrical conductance level measuring device,电导液闰测量装置electrical conductivity detector,电导检测器electrical hygrometer,电气湿度计;电测湿度表electrical(measurement)method,电测法electrical measurement method of optical pyrometer,光学高温计电测法electrical measuring instrument,电(工)测量仪器仪表;电法勘探仪器electrical power consumption ,(电)功耗electrical resonance frequency of the miving element,运动部件电谐振频率electrical signal,电信号electrical thermometer,电测温度表electrical wind vane and anemometer,电传风向风速仪electrical zero,电零位;电零点electrical zero adjuster,电零位调节器;电零点调整器electrically heated drying cabinet,电热干燥箱electro-cardiography transducer[sensor],心电图(ECG)传感器electo-hydraulic servocontrolled fatigue testing machine,电液伺服疲劳试验机electro-optical distance meter,光电测距仪electroacoustic transducer,电声换能器electroacoustical reciprocity theorem,电声互易定理electrochemical analysis,电化学分析(法)electrochemical analyzer,电化学式分析器electrochemical transducer[sensor],电化学式传感器electrode,电极electrode potential,电极电位electrode signal,电极信号electrode type salinometer,电极式盐度计electrode with a mobile carrier,流动载体电极electrodeless-discharge lamp,无极放电灯electrodialysis method for desalination,电渗析淡化法electrodynamic instrument,电动系仪表electrodynamic meter,电动系电度表electrodynamic vibrator,电动振动器electroence-phalographic transducer[sensor],脑电图(EEG)传感器electrogravimetric analysis,电重量分析(法)electrohydraulic control,电液执行机构electrohydraulic control,电液伺服阀electrolysis humidity transducer[sensor],电解式湿度传感器electrolytic cell,电解池electrolytic hygrometer,电解湿度计electromagnet,电磁铁electromagnet damping galvanometer,电磁阻尼振动子electromagnet fluid damping galvanometer,电磁液体阻尼振动子electromagnetic brake,电磁制动器electromagnetic braking,电磁制动electromagnetic counter,电磁计数器electromagnetic current meter,电磁海流计electromagnetic damper,电磁阻尼器electromagnetic deflector alignment system,电磁偏转对中系统electromagnetic distance meter,电磁波测距仪electromagnetic element,电磁元件electromagnetic flowmeter,电磁流量计electromagnetic gun,电磁枪electromagnetic induction,电磁感应electromagnetic interference,电磁感应法仪器electromagnetic imterference,电磁干扰electromagnetic lens,电磁透镜electromagnetic method instrument,电磁法仪器液压词汇中英文对对照 2008-10-27 中国设备网文字选择:大中小流体传动 hydraulic power液压技术 hydraulics液力技术 hydrodynamics气液技术 hydropneumatics运行工况 operating conditions额定工况 rated conditions极限工况 limited conditions瞬态工况 instantaneous conditions稳态工况 steady-state conditions许用工况 acceptable conditions连续工况 continuous working conditions实际工况 actual conditions效率 efficiency旋转方向 direction of rotation公称压力 nominal pressure工作压力 working pressure进口压力 inlet pressure出口压力 outlet pressure压降 pressure drop;differential pressure 背压 back pressure启动压力 breakout pressure充油压力 charge pressure开启压力 cracking pressure峰值压力 peak pressure运行压力 operating pressure耐压试验压力 proof pressure冲击压力 surge pressure静压力 static pressure系统压力 system pressure控制压力 pilot pressure充气压力 pre-charge pressure吸入压力 suction pressure调压偏差 override pressure额定压力 rated pressure耗气量 air consumption泄漏 leakage内泄漏 internal leakage外泄漏 external leakage层流 laminar flow紊流 turbulent flow气穴 cavitation流量 flow rate排量 displacement额定流量 rated flow供给流量 supply flow流量系数 flower factor滞环 hysteresis图形符号 graphical symbol液压气动元件图形符号 symbols for hydraulic and pneumatic components 流体逻辑元件图形符号 symbols for fluid logic devices逻辑功能图形符号 symbols for logic functions回路图 circuit diagram压力-时间图 pressure time diagram功能图 function diagram循环 circle自动循环 automatic cycle工作循环 working cycle循环速度 cycling speed工步 phase停止工步 dwell phase工作工步 working phase快进工步 rapid advance phase快退工步 rapid return phase频率响应 frequency response重复性 repeat ability复现性 reproducibility漂移 drift波动 ripple线性度 linearity线性区 linear region液压锁紧 hydraulic lock液压卡紧 sticking变量泵 variable displacement pump泵的控制 control of pump齿轮泵 gear pump叶片泵 vane pump柱塞泵 piston pump轴向柱塞泵 axial piston pump法兰安装 flange mounting底座安装 foot mounting液压马达 hydraulic motor刚度 stiffness中位 neutral position零位 zero position自由位 free position缸 cylinder有杆端 rod end无杆端 rear end外伸行程 extend stroke内缩行程 retract stroke缓冲 cushioning工作行程 working stroke负载压力 induced pressure输出力 force实际输出力 actual force单作用缸 single-acting cylinder双作用缸 double-acting cylinder差动缸 differential cylinder伸缩缸 telescopic cylinder阀 valve底板 sub-plate油路块 manifold block板式阀 sub-plate valve叠加阀 sandwich valve插装阀 cartridge valve滑阀 slide valve锥阀 poppet valve阀芯 valve element阀芯位置 valve element position单向阀 check valve液控单向阀 pilot-controlled check valve 梭阀 shuttle valve压力控制阀 pressure relief valve溢流阀 pressure relief valve顺序阀 sequence valve减压阀 pressure reducingvalve平衡阀 counterbalance valve卸荷阀 unloading valve直动式 directly operated type先导式 pilot-operated type机械控制式 mechanically controlled type 手动式 manually operated type液控式 hydraulic controlled type流量控制阀 flow control valve固定节流阀 fixed restrictive valve可调节流阀 adjustable restrictive valve 单向节流阀 one-way restrictive valve调速阀 speed regulator valve分流阀 flow divider valve集流阀 flow-combining valve截止阀 shut-off valve球阀 global(ball) valve针阀 needle valve闸阀 gate valve膜片阀 diaphragm valve蝶阀 butterfly valve噪声等级noise level放大器 amplifier模拟放大器 analogue amplifier数字放大器 digital amplifier传感器 sensor阈值 threshold伺服阀 servo-valve四通阀 four-way valve喷嘴挡板 nozzle flapper液压放大器 hydraulic amplifier颤振 dither阀极性 valve polarity流量增益 flow gain对称度 symmetry流量极限 flow limit零位内泄漏 null(quiescent) leakage 遮盖 lap零遮盖 zero lap正遮盖 over lap负遮盖 under lap开口 opening零偏 null bias零漂 null drift阀压降 valve pressure drop分辨率 resolution频率响应 frequency response幅值比 amplitude ratio相位移 phase lag传递函数 transfer function管路 flow line硬管 rigid tube软管 flexible hose工作管路 working line回油管路 return line补液管路 replenishing line控制管路 pilot line泄油管路 drain line放气管路 bleed line接头 fitting;connection焊接式接头 welded fitting扩口式接头 flared fitting快换接头 quick release coupling法兰接头 flange connection弯头 elbow异径接头 reducer fitting流道 flow pass油口 port闭式油箱 sealed reservoir油箱容量 reservoir fluid capacity气囊式蓄能器bladder accumulator空气污染 air contamination固体颗粒污染 solid contamination液体污染 liquid contamination空气过滤器 air filter油雾气 lubricator热交换器 heat exchanger冷却器 cooler加热器 heater温度控制器 thermostat消声器 silencer双筒过滤器 duplex filter过滤器压降 filter pressure drop有效过滤面积 effective filtration area 公称过滤精度 nominal filtration rating 压溃压力 collapse pressure填料密封 packing seal机械密封 mechanical seal径向密封 radial seal旋转密封 rotary seal活塞密封 piston seal活塞杆密封 rod seal防尘圈密封 wiper seal;scraper组合垫圈 bonded washer复合密封件 composite seal弹性密封件 elastomer seal丁腈橡胶 nitrile butadiene rubber;NBR 聚四氟乙烯 polytetrafluoroethene;PTFE 优先控制 override control压力表 pressure gauge压力传感器 electrical pressure transducer 压差计 differential pressure instrument液位计 liquid level measuring instrument 流量计 flow meter压力开关 pressure switch脉冲发生器 pulse generator液压泵站 power station空气处理单元 air conditioner unit压力控制回路 pressure control circuit安全回路 safety circuit差动回路 differential circuit调速回路 flow control circuit进口节流回路 meter-in circuit出口节流回路 meter-out circuit同步回路 synchronizing circuit开式回路 open circuit闭式回路 closed circuit管路布置 pipe-work管卡 clamper联轴器 drive shaft coupling操作台 control console控制屏 control panel避震喉 compensator粘度 viscosity运动粘度 kinematic viscosity密度 density含水量 water content闪点 flash point防锈性 rust protection抗腐蚀性 anti-corrosive quality便携式颗粒检测仪 portable particle counter 电磁阀 Solenoid valve单向阀 Check valve插装阀 Cartridge valve叠加阀 Sandwich plate valve先导阀 Pilot valve液控单向阀 Pilot operated check valve板式安装 Sub-plate mount集成块 Manifold block压力溢流阀 Pressure relief valve流量阀 Flow valve节流阀 Throttle valve双单向节流阀 Double throttle check valve 旋钮 Rotary knob节流板 Rectifier plate伺服阀 Servo valve比例阀 Proportional valve位置反馈Position feedback渐增流量 Progressive flow电磁铁释放 De-energizing of solenoid二、介质类磷酸甘油酯Phosphate ester (HFD-R)水-乙二醇Water-glycol (HFC)乳化液 Emulsion缓蚀剂 Inhibitor合成油 Synthetic lubricating oil三、液压安装工程污染 Contamination灌浆 Grout失效 Failure点动 Jog爬行 Creep摩擦 Abrasion(活塞杆)伸出Retract(活塞杆)缩回Extension误动作 Malfunction酸洗 Pickling冲洗Flushing槽式酸洗 Dipping process循环 Re-circulation钝化Passivity柠檬酸 Nitric acid氩气Argon对接焊Butt welding套管焊Socket welding惰性气体焊 Inert gas welding四、管接头Bite type fittings 卡套式管接头Tube to tube fittings接管接头union 直通接管接头union elbow 直角管接头union tee 三通管接头union cross 四通管接头Mal stud fittings 端直通管接头Bulkhead fittings 长直通管接头Weld fittings 焊接式管接头Female connector fittings 接头螺母Reducers extenders 变径管接头Banjo fittings 铰接式管接头Adjustable fittings/swivel nut 旋转接头五、伺服阀及伺服系统性能参数Dynamic response 动态频响DDV-direct drive valve 直动式伺服阀NFPA-National Fluid Power Association 美国流体控制学会Phase lag 相位滞后Nozzle flapper valve 喷嘴挡板阀Servo-jet pilot valve 射流管阀Dither 颤振电流Coil impedance 线圈阻抗Flow saturation 流量饱和Linearity 线形度Symmetry 对称性Hysterics 滞环Threshold 灵敏度Lap 滞后Pressure gain 压力增益Null 零位Null bias 零偏Null shift 零飘Frequency response 频率响应Slope 曲线斜坡液压系统(hydraulic system)执行元件(actuator)液压缸(cylinder)液压马达(motor)液压回路(circuit)压力控制回路(pressure control)流量(速度)控制回路(speed control)方向控制回路(directional valve control)安全回路(security control)定位回路(position control)同步回路(synchronise circuit)顺序动作回路(sequeunt circuit)液压泵(pump)阀(valve)压力控制阀(pressure valve)流量控制阀(flow valve)方向控制阀(directional valve)液压辅件(accessory)普通阀(common valve)插装阀(cartridge valve)叠加阀(superimposed valve)"流量计等"相关例句(12)1.The products supplied as follows: solenoid valves series,flow meterseries, kinds of pure coppers and plastic material and so on.产品主要分为:电磁阀系列、流量计系列、各种全铜、塑料材质等产品。
复合固态电解质英文
复合固态电解质英文Solid-state electrolyte1. The solid-state electrolyte is a key component insolid-state batteries.固态电解质是固态电池的关键组件。
2. Solid-state electrolytes have higher conductivity compared to liquid-state electrolytes.与液态电解质相比,固态电解质具有更高的导电性能。
3. Solid-state electrolytes offer increased safety in battery applications, as they are less prone to leakage or explosions.固态电解质在电池应用中能提供更高的安全性,因为它们不易发生泄漏或爆炸。
4. The development of solid-state electrolytes is crucial for the advancement of solid-state battery technology.固态电解质的发展对于固态电池技术的进步至关重要。
5. Solid-state electrolytes can be composed of various materials, such as ceramics or polymers.固态电解质可以由多种材料组成,如陶瓷或聚合物。
6. The conductivity of solid-state electrolytes can be enhanced through the addition of certain dopants.通过加入特定的掺杂剂可以增强固态电解质的导电性能。
7. Solid-state electrolytes are being investigated for use in electric vehicle batteries to improve their energy density and safety.正在研究固态电解质用于电动汽车电池,以提高其能量密度和安全性。
latp-peo复合电解质成膜及离子电导率特性
第26卷第1期2020年1月Vol.26No.1Jan.2020中国粉体技术CHINA POWDER SCIENCE AND TECHNOLOGY文章编号:1008-5548(2020)01-0009-08doi:10.13732/j.issn.l008-5548.2020.01.002 LATP-PEO复合电解质成膜及离子电导率特性卢玉晓,刘磊,石光跃,孙之剑,马蕾,张磊(河北大学电子信息工程学院,河北保定071002)摘要:以纳米Li13Al03Ti17(PO4)3(LATP)固体电解质为填料,聚氧化乙烯(PEO)为粘结剂,双三氟甲烷磺酰亚胺锂(LiTFSI)为添加剂,乙睛为溶剂,利用流延法制备LATP-PEO固体复合电解质薄膜;采用X射线衍射(XRD)、扫描电镜(SEM)和交流阻抗(EIS)等方法,研究样品的结构特征、形貌特征以及离子导电性能;探讨PEO摩尔质量与含量对LATP-PEO复合电解质薄膜成膜特性的影响。
结果表明:PEO摩尔质量为5000k^mol,LATP与PEO质量比为1:0.43时,可以获得膜厚为25叩,颗粒分布均匀的柔性LATP-PEO;LATP-PEO离子电导率随温度增高而增大,25咒时为1.36x10-5S/cm,100咒达到4.60x10"S/cm;温度在-20~60咒时,该薄膜离子活化能为4.86eV,温度在60-100V时,离子活化能为0.22eV。
关键词:柔性固体复合电解质;Li1.3Al0.3Ti L7(PO4)3;M子电导率;离子活化能中图分类号:TN4文献标志码:AFilm-forming and ionic conductivity characteristics ofLATP-PEO composite electrolyteLU Yuxiao,LIU Lei,SHI Guangyue,SUN Zhijian,MA Lei,ZHANG Lei(College of Electronic and Information Engineering,Hebei University,Baoding071002,China)Abstract:Solid composite dielectric films were prepared using a tape casting method with Li T3Al03Ti T7(PO4)3(LATP) particles as filler,polyethylene oxide(PEO)as binder,LiTFSI as additive,and acetonitrile as solvent.X-ray diffraction (XRD),scanning electron microscopy(SEM),and electrochemical impedance spectroscopy(EIS)were used to analyzethe structures,morphologies,and ionic conductivities of the samples.The effects of molecular weight and content of PEOon the film forming characteristics of LATP-PEO composite electrolyte films were studied.The results show that a flexible solid composite electrolyte film with a thickness of25jxm can be obtained when the mass ratio of LATP and PEO is 1•0.43.The film processes a uniform particle distribution and high ionic conductivities of1.36X10~5S/cm at25°Cand4.60X10~4S/cm at100咒.The ion activation energies are4.86eV and0.22eV,respectively,when the temperatures are at-20-60°C and60〜100°C.Keywords:flexible solid composite electrolyte;Li T3Al03Ti T7(PO4)3;ionic conductivity;ion activation energy固体电解质薄膜作为全固态锂离子电池中的电子绝缘层,同时需要具有较高的离子导电特性。
三元大单体_最佳截止电压_解释说明以及概述
三元大单体最佳截止电压解释说明以及概述1. 引言1.1 概述三元大单体是一种用于能源储存和释放的材料,具有优异的电化学性能。
随着可再生能源技术的快速发展,对高性能储能装置的需求不断增加,三元大单体在锂离子电池和超级电容器等领域得到了广泛应用。
本文旨在探讨最佳截止电压对三元大单体性能的影响,并提供选择最佳截止电压的方法和解释说明。
通过深入研究截止电压概念、影响因素分析和选择方法,我们可以更好地理解如何优化储能装置的性能。
1.2 文章结构本文共包含五个部分:引言、三元大单体、最佳截止电压解释说明、结论以及参考文献。
在引言部分,我们将提供关于本文主题的概述,并介绍文章所涉及的各个章节内容。
接下来,将详细介绍三元大单体的定义与特性、应用领域、优势与挑战。
然后,我们将重点讨论最佳截止电压的概念、影响因素分析以及选择方法。
在结论部分,将对本文进行总结,并提出几个重要的论点。
最后,我们将列出参考文献,供读者进行进一步阅读和研究。
1.3 目的本文的目的是探索三元大单体中最佳截止电压对其性能的影响,并提供选择最佳截止电压的方法和解释说明。
通过清晰地描述截止电压概念、影响因素以及选择方法,我们旨在帮助读者更好地理解这些关键概念,并在实际应用中做出明智的决策。
希望本文能够为储能装置领域的研究和开发提供有益的指导和启示。
2. 三元大单体2.1 定义与特性三元大单体是一种由镍、锰和钴组成的材料,在电池技术中被广泛应用。
它具有高能量密度、较长的寿命和良好的充放电效率等特点。
三元大单体可以作为锂离子电池的正极材料,能够存储和释放更多的能量,因此在现代科技领域具有重要的应用价值。
2.2 应用领域三元大单体在许多领域都有广泛的应用。
最常见的是作为动力电池,用于电动汽车、混合动力车辆和无人机等交通工具中。
由于其高能量密度和较稳定的性能,三元大单体还被广泛应用于智能手机、笔记本电脑、平板电脑等便携式设备中。
此外,它还可用于储能站和太阳能系统等领域。
PEC电气工程专业英语证书考试-电力系统专业英语词汇doc资料
PEC电气工程专业英语证书考试-电力系统专业英语词汇active filter 有源滤波器Active power 有功功率ammeter-电流表taped-transformer-多级变压器amplitude modulation (AM) 调幅analytical 解析的Arc reignition 电弧重燃Arc suppression coil 消弧线圈arc-extinguishing-chamber-灭弧室dynamo-直流发电机Armature 电枢Armature--电枢Internal--combustion--engine--内燃机Automatic oscillograph 自动录波仪Automatic-control-自动控制Principles-of-electric-circuits-电路原理Automatic--meter--reading--自动抄表Boiler--锅炉Autotransformer 自藕变压器Autotransformer 自耦变压器baghouse 集尘室Bare conductor 裸导线binary 二进制Blackout 断电、停电Brush--电刷Deenergize--断电Bus tie breaker 母联断路器Bushing 套管bushing-tap-grounding-wire-套管末屏接地线power-transformer-电力变压器calibrate 校准Capacitor bank 电容器组Carbon brush 炭刷cascade-transformer-串级变压器disconnector-隔离开关Combustion turbine 燃气轮机Commutator--换向器Underground--cable--地下电缆Composite insulator 合成绝缘子conductor-导线current-transformer-CT-电流互感器Converter (inverter) 换流器(逆变器)Copper loss 铜损Counter--emf--反电势coupling-capacitor-耦合电容earthing-switch-接地开关Creep distance 爬电距离crusher 碎煤机decimal 十进制Demagnetization 退磁,去磁detection-impedance-检测阻抗asynchronous-machine-异步电机Digital-signal-processing-数字信号处理Dispatcher 调度员Distribution dispatch center 配电调度中心Distribution system 配电系统Distribution--automation--system--配电网自动化系统Servomechanism--伺服系统Domestic load 民用电Drum 汽包,炉筒Eddy current 涡流electrostatic-voltmeter-静电电压表variable-transformer-调压变压器EMC (electromagnetic compatibility) 电磁兼容exciting-winding-激磁绕组grading-ring-均压环Extra-high voltage (EHV) 超高压Feeder 馈电线FFT (fast Fourier transform) 快速傅立叶变换fixed-contact-静触头steam-turbine-汽轮机flash-counter-雷电计数器charging(damping)-resistor-充电(阻尼)电阻Flexible AC transmission system(FACTS) 灵活交流输电系统Fossil-fired power plant 火电厂frequency modulation (FM) 调频frequency-domain 频域fuse 保险丝,熔丝gas-insulated-substation-GIS-气体绝缘变电站turbogenerator-汽轮发电机generator-发电机GIS (gas insulated substation, geographic information system) 气体绝缘变电站,地理信息系统glass-insulator-玻璃绝缘子inverter-station-换流站glow-discharge-辉光放电harmonic-谐波grounding-capacitance-对地电容step-up-(down)-transformer-升(降)压变压器hexadecimal 十六进制high-voltage-testing-technology-高电压试验技术Power-electronics-电力电子humidity 湿度hydro-power-station-水力发电站lightning-arrester-避雷器IC (integrated circuit) 集成电路IEC (international Electrotechnical Commission) 国际电工(技术)委员会IEE (Institution of Electrical Engineers) 电气工程师学会(英)IEEE (Institute of Electrical and Electronic Engineers) 电气与电子工程师学会(美)impulse-current-冲击电流power-network-电力网络impulse-flashover-冲击闪络insulation-绝缘Independent pole operation 分相操作Induction 感应Inductive (Capacitive) 电感的(电容的)inhomogenous-field-不均匀场overvoltage-过电压Instrument transducer 测量互感器insulation-coordination-绝缘配合aging-老化internal-discharge-内部放电alternating-current-交流电Iron loss 铁损ISO (international standardization organization) 国际标准化组织Kinetic(potential) energy 动(势)能LAN (local area network) 局域网Lateral 支线Leakage flux 漏磁通LED (light emitting diode) 发光二极管Light(boiling)-water reactor 轻(沸)水反应堆lightning-overvoltage-雷电过电压arc-discharge-电弧放电lightning-stroke-雷电波AC-transmission-system-交流输电系统Line trap 线路限波器Load shedding 甩负荷Loop system 环网系统loss-angle(介质)损耗角attachment-coefficient-附着系数magnetic-field-磁场attenuation-factor-衰减系数Main and transfer busbar 单母线带旁路Malfunction 失灵mean-free-path-平均自由行程anode-(cathode)-阳极(阴极)mean-molecular-velocity-平均分子速度breakdown-(电)击穿mixed-divider-(阻容)混合分压器transmission-line-传输线moisture 潮湿,湿气moving-contact-动触头hydraulic-turbine-水轮机Nameplate 铭牌negative-ions-负离子bubble-breakdown-气泡击穿neutral-point-中性点hydrogenerator-水轮发电机non-destructive-testing-非破坏性试验cathode-ray-oscilloscope-阴极射线示波器non-uniform-field-不均匀场cavity-空穴,腔nuclear-power-station-核电站bus-bar-母线numerical 数字的octal 八进制oil-filled-power-cable-充油电力电缆overhead-line-架空线Oil-impregnated paper 油浸纸绝缘operation amplifier 运算放大器operation amplifier 运算放大器Operation mechanism 操动机构oscilloscope-示波器sulphur-hexafluoride-breaker-SF6-断路器Outgoing (incoming) line 出(进)线partial-discharge-局部放电corona-电晕passive filter 无源滤波器Peak-load 峰荷peak-reverse-voltage-反向峰值电压composite-insulation-组合绝缘peak-voltmeter-峰值电压表potential-transformer-PT-电压互感器Phase displacement (shift) 相移Phase Lead(lag) 相位超前(滞后)Phase shifter 移相器phase-to-phase-voltage-线电压Dielectric-电介质,绝缘体photoelectric-emission-光电发射critical-breakdown-voltage-临界击穿电压photon-光子Discharge-放电Pneumatic(hydraulic) 气动(液压)point-plane-gap-针板间隙earth(ground)-wire-接地线polarity-effect-极性效应dielectric-constant-介质常数porcelain-insulator-陶瓷绝缘子front(tail)-resistance-波头(尾)电阻Potential stress 电位应力(电场强度)Power factor 功率因数Power line carrier (PLC) 电力线载波(器)power-capacitor-电力电容dielectric-loss-介质损耗Power--factor--功率因数Torque--力矩Power-flow current 工频续流power-system-电力系统Primary(backup) relaying 主(后备)继电保护Prime grid substation 主网变电站Protective relaying 继电保护pulverizer 磨煤机Pulverizer 磨煤机Pumped storage power station 抽水蓄能电站quasi-uniform-field-稍不均匀场direct-current-直流电radio-interference-无线干扰divider-ratio-分压器分压比rated 额定的rating-of-equipment-设备额定值grounding-接地Reactance (impedance) 电抗(阻抗)Reactive 电抗的,无功的Reactive power` 无功功率Reactor 电抗器Reclosing 重合闸Recovery voltage 恢复电压Rectifier 整流器Relay panel 继电器屏relay-继电器iron-core-铁芯Reserve capacity 备用容量residual-capacitance-残余电容electrochemical-deterioration-电化学腐蚀resonance 谐振,共振Restriking 电弧重燃Retaining ring 护环RF (radio frequency) 射频Right-of-way 线路走廊Rms (root mean square) 均方根值Rogowski-coil-罗可夫斯基线圈vacuum-circuit-breaker-真空断路器routing-testing-常规试验electric-field-电场Rpm (revolution per minute) 转/分Salient-pole 凸极scale 刻度,量程Schering-bridge-西林电桥live-tank-oil-circuit-breaker-少油断路器Series (shunt) compensation 串(并)联补偿Shaft 转轴Shield wire 避雷线-shielding-屏蔽electron-avalanche-电子崩Short-circuit ratio 短路比short-circuit-testing-短路试验electronegative-gas-电负性气体Shunt reactor 并联电抗器Silicon carbide 碳化硅Silicon rubber 硅橡胶Single (dual, ring) bus 单(双,环形)母线Skin effect 集肤效应Slip ring 滑环space-charge-空间电荷epoxy-resin-环氧树脂sparkover 放电sphere-gap-球隙rotor-转子Spot power price 实时电价Static var compensation (SVC) 静止无功补偿Stationary (moving) blade 固定(可动)叶片Stator(rotor) 定(转)子steel-reinforced-aluminum-conductor--钢芯铝绞线tank-箱体stray-capacitance-杂散电容motor-电动机stray-inductance-杂散电感stator-定子streamer-breakdown-流注击穿expulsion-gap-灭弧间隙substation-变电站Insulator-绝缘子Superheater 过热器Supervisory control and data acquisition (SCADA) 监控与数据采集surface-breakdown-表面击穿field-strength-场强Surge 冲击,过电压surge-impedance-波阻抗dead-tank-oil-circuit-breaker-多油断路器suspension-insulator-悬式绝缘子bushing-套管sustained--discharge--自持放电field--stress--电场力Switchboard 配电盘,开关屏switching--overvoltage--操作过电压field--distortion--场畸变Synchronous condenser 同步调相机Synchronous condenser 同步调相机Tap 分接头Telemeter 遥测terminal 接线端子Tertiary winding 第三绕组test-object-被试品synchronous-generator-同步发电机thermal--breakdown--热击穿field--gradient--场梯度thermal-power-station-火力发电站metal-oxide-arrester-MOA-氧化锌避雷器Tidal current 潮流time-domain 时域Time-of-use(tariff) 分时(电价)Transfer switching 倒闸操作treeing--树枝放电field--emission--场致发射trigger-electrode-触发电极highvoltage-engineering-高电压工程Trip circuit 跳闸电路Trip coil 跳闸线圈tuned-circuit-调谐电路winding-绕组Turn (turn ratio) 匝(匝比,变比)Ultra-high voltage (UHV) 特高压uniform--field--均匀场flashover--闪络Uninterruptible power supply 不间断电源voltage-divider-分压器circuit-breaker-CB-断路器wave--front(tail)--波头(尾)gaseous--insulation--气体绝缘Withstand test 耐压试验withstand--voltage--耐受电压Prime--mover--原动机XLPE(Cross Linked Polyethylene )交联聚乙烯(电缆)XLPE-cable-交链聚乙烯电缆(coaxial)-cable-(同轴)电缆Zero sequence current 零序电流Zinc oxide 氧化锌。
自支撑二维Ti_(3)C_(2)T_(x)(MXene)薄膜电化学性能
自支撑二维Ti 3C 2T x (MXene)薄膜电化学性能武 伟,王恩会,杨 涛✉,侯新梅北京科技大学钢铁共性技术协同创新中心,北京 100083✉通信作者,E-mail :********************.cn摘 要 采用LiF‒HCl 混合溶液刻蚀法刻蚀Ti 3AlC 2得到Ti 3C 2T x (MXene)胶体溶液,通过真空抽滤法抽滤MXene 胶体溶液得到柔性MXene 薄膜. 使用X 射线衍射(XRD)、扫描电子显微镜(SEM)、能量色散谱(EDS)和X 射线光电子能谱(XPS)等方法表征MXene 的物相、形貌及化学元素,并采用循环伏安、恒电流充放电、交流阻抗法等电化学测试手段研究MXene 薄膜电极的电化学性能. 研究显示:当电解液为H 2SO 4,MXene 薄膜的厚度为6.6 μm 时,在5 mV·s −1扫速下质量比电容达到228 F·g −1;同时随着扫速从5 mV·s −1提升至100 mV·s −1时,电容保持率为51%,是40.2 μm 厚度MXene 薄膜电极的3倍. 该研究展示酸性电解液和较薄的薄膜厚度有利于提高MXene 材料基超级电容器的性能.关键词 MXene ;二维材料;薄膜;电化学性能;电解液;厚度分类号 TQ134.1+1Electrochemical performance of self-assembled two-dimensional Ti 3C 2T x (MXene) thin filmsWU Wei ,WANG En-Hui ,YANG Tao ✉,HOU Xin-meiCollaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China✉Corresponding author, E-mail: ********************.cnABSTRACT With the rapid growth in the demand for portable/wearable electronic products, the demand for high-performance,flexible, and lightweight power is becoming stronger. Given the excellent cyclic stability, high rate of charge/discharge, and high power density of supercapacitors, they have become ideal devices to meet the power requirements of portable/wearable electronic products. The most effective method to enhance supercapacitor performance is to improve the electrode materials. Lately, researchers have concentrated on exploring and developing excellent-performance electrode materials. Two-dimensional (2D) materials are the most prospective supercapacitor materials owing to their outstanding properties. Transition-metal carbides and nitrides (MXene), a novel family of 2D materials, have been found to exhibit relatively better chemical stability, higher surface area and active surface sites,excellent hydrophilicity, and higher electrical conductivity. The earliest explored and the most widely applied MXene is Ti 3C 2T x . In several types of energy-storage systems, such as electrochemical hydrogen storage, supercapacitors, and lithium-ion batteries, Ti 3C 2T x has shown exceptional performance as potential electrode material. In this work, Ti 3C 2T x colloidal solution was prepared by etching Ti 3AlC 2 with a LiF –HCl mixed solution and a flexible MXene film was obtained via vacuum filtration. The physical structures and morphologies of graphene and chemical elements were characterized via X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The capacitance properties of the MXene film electrode were studied via cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy. The research shows that收稿日期: 2020−12−05基金项目: 国家杰出青年基金资助项目(52025041);国家自然科学基金资助项目(51904021,51902020);中央高校基本科研业务费资助项目(FRF-TP-19-004B2Z ,FRF-TP-18-045A1)工程科学学报,第 43 卷,第 6 期:808−815,2021 年 6 月Chinese Journal of Engineering, Vol. 43, No. 6: 808−815, June 2021https:///10.13374/j.issn2095-9389.2020.12.05.001; in H2SO4 electrolyte, the MXene film thickness is 6.6 μm, and the mass-specific capacitance can reach 228 F·g−1 at 5 mV·s−1. When the scanning speed increases to 100 mV·s−1, the capacitance retention rate can reach 51%, which is three times that of the 40.2 μm MXene film electrode. The research shows that acidic electrolyte and thin film are beneficial to improve the performance of MXene supercapacitors.KEY WORDS MXene;2D materials;film;electrochemical properties;electrolyte;thickness近年来,随着便携式/可穿戴电子产品需求的快速增长,高性能、柔性、轻量化的电源得到了广泛的研究和开发[1]. 超级电容器作为一种新型的储能装置被认为是非常具有潜力的可用于便携式/可穿戴电子产品的电源. 它比传统电容器具有更高的能量密度和比电容,其功率密度也远高于普通电池,因而填补了传统电池和电容器之间的空白,具有比能量和比功率高、循环寿命长、使用安全性高、无记忆效应、充放电效率高、对环境无污染、维护成本低等突出优点. 然而超级电容器能量密度与电池相比仍有较大差距,这大大限制了其进一步的实用化,目前很多研究者致力于解决此问题. 由于电极材料的性能在超级电容器中起着主导作用,因此开发出具有高性能的电极材料成为最有前景的解决方法[2−5].二维材料因其高比表面积以及优异的电子和机械性能而成为最有前途的超级电容器电极材料之一[6]. 在过去的十年中,过渡金属碳化物和氮化物(MXene)作为一种新型的二维材料家族,尤其是最先发现的Ti3C2T x(T x代表表面上‒OH、‒O、‒F 等不同的官能团)[7],由于其相对较好的化学稳定性、更高的比表面积和活性表面位置、优异的亲水性和更高的导电性[8−9]而被广泛的研究. 到目前为止,在电化学储氢[10]、超级电容器[11−21]和锂离子电池[22−24]等多种类型的储能系统中,可以看出MXene作为电极材料表现出了优异的性能和实用价值.本研究采用LiF‒HCl混合溶液刻蚀法,刻蚀MAX相材料Ti3AlC2得到MXene胶体溶液,通过真空抽滤法抽滤MXene胶体溶液得到柔性MXene 薄膜. 使用循环伏安、恒电流充放电、交流阻抗法等电化学测试手段研究MXene薄膜在不同电解质溶液体系中的电化学性能和不同厚度MXene薄膜的电化学性能.1 实验1.1 实验原料Ti3AlC2(99%, 400目),由凯烯陶瓷材料有限公司提供;氟化锂(LiF)为分析纯,由阿拉丁试剂公司提供;盐酸(HCl)、硫酸(H2SO4)、氢氧化钾(KOH)、硫酸钠(Na2SO4)等均为分析纯,由国药化学试剂公司提供.1.2 MXene胶体溶液及薄膜的制备MXene胶体溶液的制备:将20 mL 浓度为12 mol·L−1 HCl加入到100 mL聚四氟乙烯的烧杯中,将1 g LiF加入烧杯中,利用磁力搅拌搅拌20 min,使得LiF溶解,混合刻蚀液澄清至其中没有明显的颗粒. 然后,将1 g Ti3AlC2缓慢地加入到LiF‒HCl 混合刻蚀液中,利用水浴锅控制温度在35 ℃,在500 r·min−1转速下搅拌24 h. 经过24 h刻蚀反应,可以观察到混合溶液由灰黑色变为黑色. 利用离心机和去离子水多次循环离心清洗酸性混合物. 每个清洗循环过程包括对上述腐蚀产物以2500 r·min−1离心3 min,每次循环后,将酸性的上清液倒出,然后再用去离子水以手摇的方式震荡2~4 min. 经过6~8次循环,离心后清洗后上清液的pH值高于6. 将制备的MXene沉淀分散在100 mL去离子水中,利用超声处理1 h溶液. 超声过程中向溶液中通入Ar气作为保护气体,并且在冰浴下进行,防止温度升高氧化MXene纳米片. 将超声处理后的溶液以3500 r·min−1的速度离心60 min,然后用滴管吸取上层部分80%的悬浊液,收集备用.MXene薄膜的制备:取5 mL MXene胶体溶液通过纤维素微孔滤膜真空抽滤,并在室温下干燥24 h,使MXene薄膜从纤维素过滤膜上分离下来.称量MXene薄膜的质量,进而计算MXene胶体溶液的浓度. 将已知浓度的MXene胶体溶液,计算30、65和180 mg所需的体积,通过纤维素过滤膜进行真空抽滤得到不同厚度的MXene薄膜,分别命名MXene-1、MXene-2和MXene-3.1.3 表征与测试利用日本理学TTRⅢ多功能X射线衍射仪(CuKα,λ=0.15406 nm)对样品进行物相分析(扫描范围5°~55°,速度10°·min−1). 采用日本电子株式会社的JSM-6701F型冷场发射扫描电镜(SEM)对试样的微观形貌进行表征,设备本身配置的能量武 伟等: 自支撑二维Ti3C2T x(MXene)薄膜电化学性能· 809 ·色散谱仪(EDS)对材料表面的元素组成进行分析.采用英国克雷托斯集团公司的AXISULTRA-DLD型X射线光电子能谱仪(XPS)对元素化学状态进行分析,结果根据C‒C键标准峰位284.8 eV 进行矫正.采用上海辰华仪器公司生产的CHI760E型电化学工作站. 使用三电极体系,MXene薄膜电极为工作电极(1 cm×1.5 cm的矩形),Ag/AgCl为参比电极,铂丝为辅助电极,对样品的电化学性质进行研究. 电解质溶液浓度为1 mol·L−1 Na2SO4、3 mol·L−1 KOH和1 mol·L−1 H2SO4. 电化学测试方法采用循环伏安法(CV)测试工作电极在不同扫速下的电化学性能;采用恒电流充放电法(GCD)测试工作电极在不同电流密度下的充放电性能;采用交流阻抗法(EIS)测试工作电极的电荷传质阻抗.2 结果与讨论2.1 物相与形貌表征图1(a)为Ti3AlC2、沉淀物和抽滤的薄膜的X射线衍射图(该薄膜厚度为6.6 μm). Ti3AlC2的特征峰分别位于9.4°、19.0°、33.94°、38.9°、41.6°和48.3°对应于(002)、(004)、(101)、(104)、(105)和(107)晶面. 沉淀物X射线衍射图显示经过LiF‒HCl混合液刻蚀后,Ti3AlC2的(104)特征峰在38.9°处完全消失,这表明Ti3AlC2中的Al原子层完全被选择性刻蚀,且得到刻蚀产物的(002)特征峰较Ti3AlC2的(002)特征峰向左偏移,这表明成功的合成了MXene材料. 经过抽滤MXene胶体溶液得到的MXene薄膜(002)特征峰较刻蚀产物向左偏移,表明经过超声剥离后纳米片层之间的间距变大.为了进一步对所制备的MXene薄膜进行表征,图1(b)为MXene样品X射线光电子能谱全谱图.从图中可以看出,在0~800 eV检测范围内,MXene 样品中存在Ti 2p、C 1s、O 1s、F 1s和Cl 2p特征峰,其中没有Al元素的特征峰,说明Al完全被选择性刻蚀. O 1s、F 1s和Cl 2p存在表明,使用LiF‒HCl混合刻蚀溶液刻蚀Al原子层后,MXene 表面形成‒O,‒OH,‒F 和‒Cl基团[25].图 1 (a)Ti3AlC2、MXene沉淀和MXene薄膜的X射线衍射图;(b)MXene薄膜的XPS全谱图Fig.1 (a) XRD patterns of Ti3AlC2, MXene sediment, and MXene films; (b) XPS profiles of MXene film图2(a)和2(b)为通过真空抽滤MXene胶体溶液得到的MXene薄膜的实物照片. 通过真空抽滤和干燥后可以得到一张完整的直径为40 mm的MXene薄膜. 另外,MXene薄膜可以蜷曲在玻璃棒上并且保持其完整性,表明MXene薄膜具有良好的柔韧性. 图2(c)为前驱体MAX相材料Ti3AlC2的扫描电镜图. 从图中可以看出来Ti3AlC2呈现结构紧密的层状结构,颗粒表面干净. 图2(d)为HCl与LiF混合溶液刻蚀后的扫描电镜图,刻蚀产物MXene沉淀的扫描电镜照片. 从图中可以看出,经过刻蚀后,由于Al原子层被选择性刻蚀,母体相Ti3AlC2出现了明显的层间距分层结构,并且可以看到刻蚀产物表面有些褶皱的薄层. 图2(e)和2(f)为经过真空抽滤MXene胶体溶液后得到的MXene薄膜的顶视图和侧截面图的扫描电镜图片,可以看到经过真空抽滤 MXene纳米片一层一层地堆积形成了MXene薄膜. MXene纳米片薄膜通过纳米片的致密再堆积而形成层状结构,是二维材料经过真空抽滤和干燥后形成的典型形貌.分别将含有30,65和180 mg MXene的胶体溶液通过纤维素过滤膜进行真空抽滤得到不同厚度的MXene薄膜. 从图2(g)~2(i)中,可以看到MXene 薄膜厚度均匀,MXene-1、MXene-2和MXene-3厚度分别为6.6、14.9和40.2 μm,与制备时所用的质量线性相关.从图3中可以看到MXene中Ti、C、O、F、Cl· 810 ·工程科学学报,第 43 卷,第 6 期元素是均匀分布的. 与图1(b ) MXene 样品X 射线光电子能谱全谱图的结果相符合. 使用LiF‒HCl 混合刻蚀溶液刻蚀Al 原子层后,MXene 样品除了C 、Ti 元素外还有均匀分布的O 、F 、Cl 原子. O 原子主要来源为刻蚀后MXene 表面形成‒O 和‒OH 基团[25]. F 、Cl 原子主要是由于刻蚀过程中使用的LiF 和HCl.图 3 MXene 薄膜的表面元素分布. (a )MXene 薄膜;(b )Ti ;(c )C ;(d )O ;(e )F ;(e )ClFig.3 Distribution of elements of MXene film: (a) MXene film; (b) Ti;(c) C; (d) O; (e) F; (e) Cl2.2 不同电解质对MXene 电化学性能的影响图4(a )所示为MXene-1薄膜电极在H 2SO 4、KOH 、Na 2SO 4电解液中在5 mV·s −1的循环伏安曲线. 从图中可以看出,在KOH 、Na 2SO 4电解液中循环伏安曲线呈近似标准矩形,意味着MXene-1电极在KOH 、Na 2SO 4电解液中为双电层电容.而在H 2SO 4电解液中循环伏安曲线呈变形的矩形,在−0.25~−0.1 V 范围内存在明显的氧化还原峰[26]. 同时以循环伏安曲线计算比电容,H 2SO 4、KOH 、Na 2SO 4电解液的比电容分别为228、106和83 F·g −1. MXene-1薄膜电极在H 2SO 4电解液中的比电容明显比KOH 、Na 2SO 4电解液大,其主要原因有二,一是MXene 中过渡金属钛原子在充放电过程中价态变化产生了赝电容;二是H 2SO 4电解液中H +是尺寸最小的阳离子,可以接触到更多的电化学活性位点. 因此,在H 2SO 4电解液中MXene 材料电化学电容性能更加优异. 图4(b )是在H 2SO 4、KOH 、Na 2SO 4电解液中MXene-1薄膜的交流阻抗谱图. 高频区域与X 轴的截距反应了体系的等效串联电阻(R s )[27−28],在H 2SO 4、KOH 、Na 2SO 4电解液中的R s 分别为2.5、5.1和5.4 Ω. 在高频奈奎斯特图中,半圆弧的直径代表电荷转移电阻(R ct ) [27−28],在KOH 、Na 2SO 4电解液中可以看到微小的圆弧,而在H 2SO 4电解液中看不到明显的半圆,说明在H 2SO 4电解液中MXene-1的测试结果值R ct 非常小. 低频区的直线的斜率反应电解液中的电荷在电极表面的扩散电阻[29],在H 2SO 4电解液中离子扩散阻力最小,在Na 2SO 4电解液中离子扩散阻力最大. 由此说明,MXene 在H 2SO 4电解液中具有较小的阻抗和良好的电容性能.图5(a )、(b )和(c )为MXene-1薄膜电极在H 2SO 4、KOH 、Na 2SO 4电解液中在不同扫描速度下的循环伏安图. 随着扫描速率的增加,循环伏安曲线产生了变形,这种现象是由于在高速率下的离子反应缓慢引起的. 在H 2SO 4电解液中随着扫速的增加循环伏安曲线形状产生了变形,但是循环伏安曲线的形状保持较为良好. 而在KOH 、Na 2SO 4电解液中循环伏安曲线产生较大的形变,由矩形逐渐变为梭形. 结合图5(d ),在H 2SO 4电解液中,比电容从228 F·g −1下降到116 F·g −1,电容保持率为51%;在KOH 电解液中,比电容从106 F·g −1下降到36 F·g −1,电容保持率为34%;在Na 2SO 4电解液中,比电容从83 F·g −1下降到23 F·g −1,电容保持率为28%. 通过对比,在H 2SO 4电解液中MXene 不仅拥有较大的比电容,同时还具有良好倍率性能.图6为MXene-1分别在H 2SO 4、KOH 、Na 2SO 4电解液充放电曲线. 在图6(a )H 2SO 4电解液中的充放电曲线几乎是对称的线性三角形,说明MXene-1具有可逆的充放电过程和良好的电容行为. 在图6(b )KOH 电解液和图6(c )Na 2SO 4电解液中充放电曲线近似呈三角形,有轻微的偏差. 并且出现明显的电压降,说明KOH 、Na 2SO 4电解液电阻相对较大. 而且通过计算,在1 A·g −1的充放(d)(e)(f)(g)(h)(i)1 cm1 cm1 μm1 μm1 μm1 μm6.6 μm10 μm20 μm 100 μm40.2 μm14.9 μm图 2 MXene 薄膜的实物照片和扫描电镜图. (a )展开;(b )卷在玻璃棒上;(c )Ti 3AlC 2;(d )MXene 沉淀;(e )MXene 薄膜顶视图;(f )MXene 薄膜截面图;(g )MXene-1薄膜;(h )MXene-2薄膜;(i )MXene-3薄膜Fig.2 Photoes and SEM image of MXene film: (a) unfolding; (b) rolled on a glass rod; (c) Ti 3AlC 2; (d) MXene sediment; (e) MXene film;(f) cross-sectional image of MXene film; (g) MXene-1 film; (h) MXene-2film; (i) MXene-3 film武 伟等: 自支撑二维Ti 3C 2T x (MXene)薄膜电化学性能· 811 ·电电流密度时,在H 2SO 4、KOH 和Na 2SO 4电解液放电时间分别为203、63和47 s ,在H 2SO 4电解液中放电时间最长;在其他电流密度时,具有相同的情况,说明在H 2SO 4电解液中,MXene 材料电化学电容性能更加优异,与前面图5得出的结论相符合. 在下步实验中皆选用1 mol·L −1 H 2SO 4溶液为电解液.2.3 不同厚度对MXene 电化学性能的影响图7(a )为不同厚度的MXene 薄膜在扫描速度5 mV·s −1 时循环伏安曲线. 从图7(a )中可以看出,MXene 薄膜电极在扫描速度5 mV·s −1时循环伏安形状随薄膜厚度的变化,图中MXene-1、图 4 (a )MXene-1在H 2SO 4、KOH 、Na 2SO 4电解液中在5 mV· s −1时的循环伏安曲线;(b )在H 2SO 4、KOH 、Na 2SO 4电解液中MXene 薄膜的交流阻抗谱图Fig.4 (a) CV curves of MXene-1 in H 2SO 4, KOH, and Na 2SO 4 at 5 mV·s −1; (b) EIS spectra of MXene film electrodes in H 2SO 4, KOH, and Na 2SO 4图 5 MXene-1在H 2SO 4(a )、KOH (b )、Na 2SO 4(c )电解液中在不同扫描速度下的循环伏安曲线;(d )在不同电解液中比电容随扫速的变化Fig.5 CV curves of MXene-1 electrode with different scan rates in H 2SO 4 (a), KOH (b), and Na 2SO 4 (c); (d) specific capacitance of MXene-1 electrode vs scan rate· 812 ·工程科学学报,第 43 卷,第 6 期MXene-2和MXene-3的循环伏安曲线的面积依次减少. 通过计算MXene-1、MXene-2和MXene-3的比电容分别为228与、204和163 F·g−1. 相比于MXene-1,MXene-2厚度增加了1.3倍(图2(g)和(h)),比电容保持率为89%;相比于MXene-2,MXene-3厚度增加了1.7倍(图2(h)和(i)),比电容保持率为80%;相比于MXene-1,MXene-3厚度增加了5.1倍(图2(g)和(i)),比电容保持率为71%. 在低速扫速下,MXene薄膜厚度增加后MXene薄膜仍然具有较高的比电容,并且厚度增加5.1倍仍有71%的比电容保持率. 如图7(b)所示MXene-1、MXene-2和MXene-3的R s分别为2.45、2.49和2.51 Ω,说明厚度变化对MXene薄膜的固有电阻影响不大. 在高频奈奎斯特图中,从图中看不到明显的半圆,说明MXene的测试结果值非常小并且厚度变化对MXene薄膜的固有电阻影图 6 MXene-1在H2SO4(a)、KOH(b)和Na2SO4(c)电解液中,在不同充放电电流密度下的充放电曲线Fig.6 GCDs of MXene-1 electrode with different current densities in H2SO4 (a), KOH (b), and Na2SO4 (c)图 7 (a)不同厚度的MXene薄膜在扫描速度5 mV·s−1时循环伏安曲线;(b)不同厚度的MXene薄膜的交流阻抗谱图Fig.7 (a) CV curves of MXene film with different thicknesses at 5 mV·s−1; (b) EIS spectra of MXene film electrodes武 伟等: 自支撑二维Ti3C2T x(MXene)薄膜电化学性能· 813 ·响不大. 此外,对比低频区的直线的斜率发现,MXene薄膜的离子扩散阻力随着厚度的增加而增加. 说明MXene厚度变化主要影响了MXene薄膜的离子扩散阻力导致MXene电容性能受到影响.图8(a)为不同厚度的MXene薄膜电极比电容随扫速增加(5~100 mV·s−1)的趋势图. MXene薄膜电极在扫描速度100 mV·s−1时,通过计算MXene-1、MXene-2和MXene-3的比电容分别为116、58和28 F·g−1. 在高速扫速下,MXene薄膜厚度增加对MXene薄膜比电容影响严重. MXene-1的比电容从228 F·g−1下降到116 F·g−1,电容保持率为51%;MXene-2的比电容从204 F·g−1下降到58 F·g−1,电容保持率为28%;MXene-3的比电容从163 F·g−1下降到28 F·g−1,电容保持率为17%. MXene 薄膜厚度增加后,其倍率性能恶化更加严重. 其原因主要是由于采用真空抽滤得到MXene薄膜的过程中,随着厚度增加需要的MXene胶体溶液的体积变多,抽滤时间增长,导致在抽滤过程中MXene纳米片发生了自堆叠,同时纳米片层之间也更加紧密,导致离子不能快速的到达纳米片表面. 图8(b)为不同厚度的MXene薄膜电极分别在在电流密度1 A·g−1的充放电测试结果. 图中的充放电曲线几乎是对称的线性三角形,说明MXene 具有可逆的充放电过程和良好的电容行为. 而且在相同的电流密度时,MXene-1、MXene-2和MXene-3放电时间分别为203、138和119 s,说明在MXene薄膜厚度越薄薄膜电极的比电容好,充放电测试结果与循环伏安曲线相符合.图 8 不同厚度的MXene薄膜比电容随扫描速率变化图(a)和在电流密度为1 A·g−1的充放电曲线(b)Fig.8 Specific capacitance vs scan rate (a) and GCDs at 1 A·g−1 (b) of MXene electrode with different thicknesses3 结论(1)采用LiF‒HCl法刻蚀MAX相Ti3AlC2材料得到的MXene胶体溶液,通过真空抽滤得到了柔性良好的MXene薄膜,MXene薄膜致密再堆积而形成层状结构,其表面形成‒O,‒OH,‒F和‒Cl 基团. MXene薄膜可以不需添加额外的黏结剂通过机械裁剪直接作为工作电极.(2)在不同电解质中测试厚度为6.6 μm的MXene薄膜的电化学性能,扫描速度为5 mV·s−1时,在H2SO4电解液中,MXene质量比电容能达到228 F·g−1;在KOH电解液中,MXene质量比电容能达到 106 F·g−1;在Na2SO4电解液中,质量比电容能达到 83 F·g−1;可知在H2SO4电解液中,MXene具有更好的电容性能.(3)不同厚度的MXene薄膜电极中,较薄的MXene薄膜电极具有更高的质量比电容(扫速为5 mV·s−1时,厚度为6.6、14.9和40.2 μm的MXene薄膜电极的质量比电容分别为228、204和163 F·g−1);且在较高的扫速下,较薄的MXene薄膜电极具有更高的电容保持率(扫速从5提升至100 mV·s−1,电容保持率由薄到厚分别为51%、28%、17%).参 考 文 献Kim B C, Hong J Y, Wallace G G, et al. Recent progress inflexible electrochemical capacitors: electrode materials, deviceconfiguration, and functions. Adv Energy Mater, 2015, 5(22):1500959[1]Yan P T, Zhang R J, Jia J, et al. Enhanced supercapacitiveperformance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte. J PowerSources, 2015, 284: 38[2]Lin T Q, Chen I W, Liu F X, et al. Nitrogen-doped mesoporouscarbon of extraordinary capacitance for electrochemical energystorage. Science, 2015, 350(6267): 1508[3]· 814 ·工程科学学报,第 43 卷,第 6 期Zhang Y, Chang C R, Wang S W, et al. Preparation andsupercapacitive performance of pinecone-like NiMoO 4/MnO 2composite material. Chin J Eng , 2019, 41(5): 646(张勇, 常翠荣, 王诗文, 等. 类松果状NiMoO 4/MnO 2复合材料的合成及超级电容性能. 工程科学学报, 2019, 41(5):646)[4]Yang T, Liu H J, Bai F, et al. Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance. Int J Miner Metall Mater , 2020, 27(2): 220[5]Tan C L, Cao X H, Wu X J, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev , 2017, 117(9): 6225[6]Naguib M, Kurtoglu M, Presser V, et al. Two-dimensionalnanocrystals produced by exfoliation of Ti 3AlC 2. Adv Mater , 2011,23(37): 4248[7]Xia Q X, Fu J J, Yun J M, et al. High volumetric energy densityannealed-MXene-nickel oxide/MXene asymmetric supercapacitor.RSC Adv , 2017, 7(18): 11000[8]Couly C, Alhabeb M, Van Aken K L, et al. Asymmetric flexible mxene-reduced graphene oxide micro-supercapacitor. Adv Electron Mater , 2018, 4(1): 1700339[9]Hu Q K, Sun D D, Wu Q H, et al. MXene: a new family ofpromising hydrogen storage medium. J Phys Chem A , 2013,117(51): 14253[10]Boota M, Anasori B, Voigt C A, et al. Pseudocapacitive electrodesproduced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater , 2016, 28(7):1517[11]Ghidiu M, Kota S, Halim J, et al. Alkylammonium cationintercalation into Ti 3C 2 (MXene): effects on properties and ion-exchange capacity estimation. Chem Mater , 2017, 29(3): 1099[12]Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacita-nce. Nature , 2014, 516(7529): 78[13]Mashtalir O, Lukatskaya M R, Kolesnikov A I, et al. The effect ofhydrazine intercalation on the structure and capacitance of 2D titanium carbide (MXene). Nanoscale , 2016, 8(17): 9128[14]Wen Y Y, Rufford T E, Chen X Z, et al. Nitrogen-doped Ti 3C 2T xMXene electrodes for high-performance supercapacitors. Nano Energy , 2017, 38: 368[15]Zhao M Q, Ren C E, Ling Z, et al. Flexible MXene/carbonnanotube composite paper with high volumetric capacitance. Adv Mater , 2015, 27(2): 339[16]Ren Y Y, Zhu J F, Wang L, et al. Synthesis of polyaniline[17]nanoparticles deposited on two-dimensional titanium carbide for high-performance supercapacitors. Mater Lett , 2018, 214: 84Xu S K, Wei G D, Li J Z, et al. Binder-free Ti 3C 2T x MXeneelectrode film for supercapacitor produced by electrophoretic deposition method. Chem Eng J , 2017, 317: 1026[18]Tang Y, Zhu J F, Wu W L, et al. Synthesis of nitrogen-doped two-dimensional Ti 3C 2 with enhanced electrochemical performance. J Electrochem Soc , 2017, 164(4): A923[19]Yang C H, Que W X, Yin X T, et al. Improved capacitance ofnitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis. Electrochim Acta , 2017, 225: 416[20]Huang Y Y, Li G H, Zhao B, et al. Preparation and energy storageproperties of V 2O 5/MXene nanocomposites. Chin J Eng , 2020,42(8): 1018(黄莹莹, 李庚辉, 赵博, 等. V 2O 5/MXene 纳米复合材料制备及储能性能. 工程科学学报, 2020, 42(8):1018)[21]Naguib M, Halim J, Lu J, et al. New two-dimensional niobium andvanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc , 2013, 135(43): 15966[22]Ahmed B, Anjum D H, Gogotsi Y, et al. Atomic layer depositionof SnO 2 on MXene for Li-ion battery anodes. Nano Energy , 2017,34: 249[23]Zhao M Q, Torelli M, Ren C E, et al. 2D titanium carbide andtransition metal oxides hybrid electrodes for Li-ion storage. Nano Energy , 2016, 30: 603[24]Naguib M, Kurtoglu M, Presser V, et al. Two-dimensionalnanocrystals: two-dimensional nanocrystals produced byexfoliation of Ti 3AlC 2. Adv Mater , 2011, 23(37): 4207[25]Lukatskaya M R, Bak S M, Yu X Q, et al. Probing the mechanismof high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv Energy Mater , 2015, 5(15):1500589[26]Li H Y, Hou Y, Wang F X, et al. Flexible all-solid-statesupercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv Energy Mater , 2017, 7(4): 1601847[27]Singh S K, Dhavale V M, Boukherroub R, et al. N-doped porousreduced graphene oxide as an efficient electrode material for high performance flexible solid-state supercapacitor. Appl Mater Today ,2017, 8: 141[28]Mashtalir O, Lukatskaya M R, Zhao M Q, et al. Amine-assisteddelamination of Nb 2C MXene for Li-ion energy storage devices.Adv Mater , 2015, 27(23): 3501[29]武 伟等: 自支撑二维Ti 3C 2T x (MXene)薄膜电化学性能· 815 ·。
线路板词汇中英文对照
线路板词汇中英文对照2009-08—20 18:42A/W (artwork) 底片ﻫAblation烧溶(laser),切除ﻫﻫabrade 粗化abrasion resistance 耐磨性absorption 吸收ﻫACC ( accept ) 允收ﻫaccelerated corrosiontest 加速腐蚀ﻫaccelerated test 加速试验acceleration 速化反应ﻫaccelerator 加速剂ﻫacceptable 允收activator 活化液ﻫactive work in process实际在制品ﻫﻫadhesion附着力ﻫﻫadhesive method 黏着法air inclusion 气泡air knife 风刀ﻫamorphous change 不定形的改变ﻫamount 总量ﻫamylnitrite 硝基戊烷ﻫanalyzer分析仪anneal回火ﻫannular ring 环状垫圈;孔环ﻫﻫanode slime (sludge) 阳极泥ﻫanodizing 阳极处理ﻫﻫAOI( automaticoptical inspection ) 自动:光学检测applicable documents 引用之文件ﻫAQL sampling 允收水准抽样aqueousphotoresist 液态光阻ﻫﻫaspectratio 纵横比(厚宽比) ﻫAs received到货时back lighting 背光ﻫﻫback—up垫板ﻫﻫbanked work in process 预留在制品ﻫﻫbase material 基材ﻫbaseline performance基准绩效batch批ﻫbeta backscattering贝他射线照射法ﻫbeveling 切斜边;斜边ﻫbiaxial deformation 二方向之变形black—oxide 黑化ﻫﻫblank controller 空白对照组ﻫﻫblank panel空板ﻫﻫblanking挖空blip 弹开ﻫblister气泡;起泡blistering 气泡ﻫblow hole 吹孔ﻫﻫboard-thicknesserror 板厚错误ﻫﻫbonding plies 黏结层ﻫbow ;bowing 板弯breakout从平环内破出ﻫbridging 搭桥;桥接BTO (Build To Order) 接单生产ﻫﻫburning 烧焦ﻫﻫburr 毛边(毛头)ﻫﻫcamcorder 一体型摄录放机ﻫcarbide 碳化物ﻫcarlson pin定位梢carrier 载运剂ﻫcatalyzing 催化ﻫcatholic sputtering阴极溅射法ﻫcaul plate 隔板;钢板ﻫcalibration system requirements校验系统之各种要求center beammethod中心光束法ﻫﻫcentral projection集中式投射线ﻫﻫcertification 认证ﻫchamfer 倒角(金手指)ﻫchamfering切斜边;倒角ﻫcharacteristic impedance 特性阻抗charge transfer overpotential 电量传递过电压ﻫﻫchase网框checkboard 棋盘ﻫchelator 蟹和剂ﻫchemical bond 化学键chemical vapor deposition 化学蒸着镀ﻫcircumferential void 圆周性之孔破clad metal 包夹金属ﻫclean room 无尘室ﻫﻫclearance间隙ﻫﻫcoat镀外表coating error 防焊覆盖错误coefficient of thermal expansion (CTE) 热澎胀系数cold solder joint冷焊点ﻫcold—weld金属粉末冷焊ﻫﻫcolor 颜色ﻫcolor error 颜色错误ﻫcompensation 补偿ﻫﻫcompetitive performance 竞争力绩效ﻫﻫcomplexsalt错化物ﻫcomplexor错化物ﻫcomponent hole 零件孔ﻫcomponent side 零件面ﻫconcentric 同心ﻫconformance 密贴性ﻫconsumer products 消费性产品ﻫcontact resistance 接触电阻ﻫﻫcontinuous performance 连续发挥效能ﻫﻫcontract service 协力厂ﻫcontrolled split 均裂式ﻫconventional flow乱流方式conventional tensile test 传统张力测试法ﻫconversion coating 转化层ﻫconvex 突出ﻫcoordinate list 数据清单ﻫcopper claded laminates (CCL) 铜箔基板ﻫcopper exposure 线路露铜ﻫﻫcopper mirror 镜铜ﻫcopper pad 铜箔圆配ﻫcopper residue (copper splash)铜渣corrosion rate numbering 腐蚀速率计数系统ﻫﻫcorrosion resistance 抗蚀性ﻫcoulombs law 库伦定律ﻫﻫcountersink 喇叭孔ﻫcoupon试样ﻫcoupon location 试样点ﻫcovering power 遮盖力ﻫﻫCPU中央处理器ﻫﻫcrack 破裂;裂痕ﻫﻫcrazing 裂痕;白斑ﻫcross linking 交联聚合ﻫcross talk 呼应作用ﻫcrosslinking 交联ﻫcrystalcollection 结晶收集ﻫcuring 聚合体current efficiency 电流效率ﻫcut-outs挖空ﻫcutting 裁板ﻫcyanide 氰化物ﻫﻫcycles of learning 学习循环ﻫcycle-time reduction 交期缩短date code周期ﻫdeburring 去毛头ﻫdedicated 专用型degradation 退变ﻫdelamination分层ﻫdent / pin hole 凹陷/ 针孔ﻫdepartment of defense国防部ﻫﻫdesignation 字码简示法ﻫde-smear除胶渣ﻫdeveloping 显影ﻫdewetting 缩锡ﻫdewetting time缩锡时间dimension error外形尺寸错误ﻫdielectric constant 介质常数ﻫﻫdifficulty困难度ﻫdifunctional 双功能ﻫﻫdimension 尺寸dimension stability尺寸安定性ﻫdimensional stability 尺度安定性ﻫdimension and tolerance尺寸与公差dirtyhole 孔内异物discolor hole 孔黑;孔灰;氧化ﻫﻫdiscoloration 变色ﻫﻫdisposable eyeletmethod 消耗性铆钉法ﻫdistortion factor 尺寸变形函数ﻫﻫdouble side 双面板ﻫdowntime停机时间ﻫdrill 钻孔drill bit 钻头ﻫdrill facet 钻尖切萷面ﻫdrill pointer钻尖重(研)磨机ﻫﻫdrilled blank board 已钻孔之裸板drilling钻孔dry film 干膜ductility 延展性ﻫﻫeconomy of scale经济规模ﻫedge spacing板边空地ﻫﻫedge-board contact ( gold finger ) 金手指ﻫefficiency 能量效率ﻫﻫelectric test电测ﻫﻫelectricaltesting 电测;测试ﻫelectrochemical machine ECM 电化学加工法electrochemical reactor 电化学反应器ﻫﻫelectroforming 电铸ﻫﻫelectroless plate 化学铜ﻫelectroless-deposition 无电镀ﻫelectropolishing电解拋光ﻫelectrorefining 电解精炼ﻫﻫelectrowinning 电解萃取ﻫelliptical set椭圆形ﻫﻫembrittlement 脆性ﻫentitlement performance可达成绩效ﻫentrapment电镀夹杂物ﻫﻫepoxy 环氧树酯ﻫﻫequipotential电位线ﻫerror data file 异常情形ﻫetch rate蚀铜速率ﻫetchants 蚀刻液etchback 回蚀ﻫevaluation program 评估用程序ﻫexposure 曝光ﻫexternal pinmethod 外部插梢法eyelet hole 铆钉孔ﻫEyeletting铆眼ﻫﻫfabric 网布failure故障ﻫfast response 快速响应ﻫfault 瑕庛;缺陷ﻫﻫfiber exposure 纤维显露ﻫfiber protrusion纤维突出ﻫfiducial mark 光学点,基准记号filler 填充料film 底片ﻫfiltration 过滤ﻫfinished board 成品ﻫﻫfixing固着fixture电测夹具(治具)ﻫﻫflaking off 粹离ﻫﻫflammability rating 燃性等级ﻫflare 喇叭形孔ﻫflat cable 并排电缆ﻫﻫfeedback loop 回馈循环ﻫfirst—in—first-out (FIFO)先进先出flexible manufacturing system (FMS)弹性制造系统ﻫﻫflux 助焊剂ﻫfoil distortion 铜层变形fold 空泡ﻫforeign include 异物foreignmaterial 基材内异物ﻫfree radical chain polymerization自由基连锁聚合ﻫfully additive 加成法fully annealed type 彻底回火轫化之类形ﻫfunction 函数ﻫfundamental and basic 基本ﻫﻫfungus resistance 抗霉性ﻫfunnel flange 喇叭形折翼ﻫﻫgalvanized 加法尼化制程ﻫgap钻尖分开ﻫgaugelength 有效长度gel time 胶化时间general resist ink一般阻剂油墨ﻫﻫgeneral 通论ﻫgeneral industrial 一般性(电子)工业级geometrical levelling 几何平整ﻫglass transition temperature (Tg) 玻璃态转换温度ﻫGold 金ﻫgold finger 金手指ﻫgold plating 镀金ﻫgolden board 标准板ﻫﻫgouges 刷磨凹沟gouging 挖破ﻫgrain boundary 金属晶体之四边green 绿色ﻫﻫgrip夹头ﻫground plane 接地层ﻫﻫground plane clearance 接地空环ﻫhackers骇客ﻫHAL( hot airleveling ) 喷锡haloing 白边;白圈ﻫhardener 硬化剂ﻫﻫhardness 硬度ﻫhepa filter空气滤清器ﻫﻫhighperformance industrial高性能(电子)工业级ﻫhigh reliability 高可靠度ﻫhigh resolution 高分辨率ﻫhigh temperature elongation (HTE)高温延展性铜箔ﻫﻫhightemperature epoxy (HTE) 高温树酯ﻫhit 击ﻫhole counter 数孔机ﻫhole diameter 孔径ﻫhole diameter error 孔径错误ﻫhole location 孔位ﻫﻫhole number孔数ﻫhole wall quality 孔壁品质ﻫﻫhook 外弧hot dip 热浸法ﻫﻫhull cell 哈氏槽ﻫﻫhybrid混成集成电路ﻫﻫhydro gen bonding 氢键ﻫhydrolysis 水解ﻫhydrometallurgy 湿法冶金法ﻫimage analysissystem 影像分析系统ﻫimagetransfer影像转移immersion gold 浸金(化镍金)ﻫimmersion plating 浸镀法ﻫimpedance 阻抗infrared reflow 红外线重熔ﻫinhibitor 热聚合抑制剂ﻫﻫinjection mold射模ﻫink 油墨ﻫinnerlayer& outlayer 内外层ﻫinsulation resistance 绝缘电阻ﻫﻫintendedposition 应该在的位置ﻫﻫintensifier 增强器ﻫintensity 强度ﻫﻫinter molecular exchange 交互改变interconnection 互相连通ﻫﻫionic contaminants 离子性污染物ﻫionic contamination testing 离子污染试验ﻫIPA异丙醇ﻫ5I : inspiration (启蒙)ﻫidentification确认计划目标ﻫﻫimplementation 改善方案ﻫinformation数据ﻫinternalization制度化ﻫinvisible inventory无形的库存ﻫknife edges刀缘ﻫKnoop 努普(硬度单位)ﻫkraft paper 牛皮纸laminar flow 层流ﻫlaminate基层板ﻫlaminating 压合ﻫlamination 压合laminator 压膜机ﻫland 焊垫lay back刃角磨损ﻫlay up 组合叠板ﻫlayout 布线;布局ﻫlead screw 牵引螺丝ﻫleakage漏电ﻫlearning curve 学习曲线legend 文字标记ﻫleveling平整ﻫﻫlevelling additive 平整剂ﻫlevellingpower平整力ﻫlife support维系生命ﻫlimiting current极限电流ﻫﻫline space线距line width线宽ﻫﻫlinear variable differential transformer(LVDL) 线性可变差动:转换器ﻫliquid 液状(态)ﻫﻫliquid crystal resins 液晶树脂ﻫliquid photoimageable solder resist ink液态感光防焊油墨ﻫliquid photoresist ink 液态光阻剂油墨ﻫlotsize 批量ﻫlower carrier底部承载板ﻫmechanical plating机祴镀法ﻫmachine scrub 刷磨清洁法ﻫmacrothrowing power巨分布力ﻫﻫmargin 钻头刃带ﻫﻫmarket share 市场占有率ﻫﻫmarking error文字错误ﻫmasked leveling 儰装平整ﻫmasslamination大型压板masstransfer 质量传送效应ﻫmass transfer overpotential质量传递过电压ﻫﻫmass transporta tion 质传ﻫﻫmaster drawing 主图;蓝图material use factor 材料使用率mealing 泡点;白点ﻫﻫmemory 记忆装置ﻫmeniscograph solderability measurement 新月型焊锡效果ﻫmicroetch 微蚀microetching 微蚀microfocus 微焦距ﻫmicrofocus system 微焦距系统ﻫmicroprofile微表面ﻫmicrosectioning微切片法microthrowing power 微分布力migration 迁移ﻫmini-tensile tester 迷你拉力测试仪ﻫﻫmis hole location 孔位错误ﻫmisregistration 焊锡面与零件面对位偏差ﻫmisregsitration 对不准ﻫmoisture andinsulation resistance test湿气与绝缘电阻试验ﻫmolded circuit board(MCB) 模制电路板ﻫmonoethanalamine单乙醇氨monohydrate state水化物monomer 单分子膜;单体ﻫmouse bite 锯齿;蚀刻缺口ﻫmsec 毫秒ﻫﻫmufflefurnace 高温焚火炉multichip 超大IC型(多芯片模块)ﻫﻫmylar 保护膜ﻫﻫﻫnail head钉头NC drill 数字钻孔机ﻫnegative etchback反回蚀ﻫnegative film 负片ﻫnegative rake angle 负抠耙角ﻫnetwork 回路;网络ﻫﻫneutralization 中和ﻫnick 缺口ﻫnickel 镍ﻫﻫnodule 铜瘤;瘤粒ﻫno flow resin 不流树脂ﻫﻫnoise 噪声ﻫnominal 标示ﻫnominal dimension标定长度ﻫﻫnominal gel time 标示胶性时间ﻫnominal resin content 标示胶含量ﻫnominal resin flow 标示胶流量ﻫﻫnominal scaled flow thickness 标示比例流量厚度ﻫﻫOA equip 办公室自动:化设备ﻫobsolescence factor 报废因素ﻫOEM原设备制造商ﻫoffset—list 补偿数据清单ohmmeter 欧姆计ﻫopen 断路ﻫopen circuits断路openshort testing 断短路测试ﻫopening 开口ﻫoriginal art work (A/W)原稿底片ﻫﻫOthers 其它ﻫoutgrowth 增出over design牛刀杀鸡ﻫoverlap 钻尖重叠ﻫoverlayentry 盖板ﻫoverpotential 过电压ﻫoxidation 氧化ﻫoxide treatment 黑化处理ﻫﻫoxided cytochrome 氧化性之细包色素oxygen evolution氧气发生反应ﻫﻫﻫpackedbed充填床式pad 锡垫;圆配ﻫpadcopper exposure pad露铜panel 小型板面;母板panel plating 一次铜电镀ﻫﻫparasitic 寄生的partno. 料号ﻫpattern plating 二次铜电镀ﻫPCB (printcircuit board ) 印刷电路板ﻫpcs片ﻫpeel strength抗撕强度ﻫpeeling off 剥离(剥落)performance specification 性能规范ﻫpermittivity透电率ﻫperspectives on experience 经验透视PET 聚酯ﻫﻫphotodiode detector 发光二极管侦测器ﻫphoto initiator 感光启始剂ﻫphotoresist 光阻ﻫphototool光具(指工作底片)ﻫﻫpiece 子板面ﻫpinceton applied research 腐蚀测定仪pink ring 粉红圈ﻫﻫpit凹点ﻫpitch 脚距ﻫﻫplanar 平面plating 电镀plating exposure 下镀层露出ﻫplug gauge 插规ﻫplug hole孔塞PNL (panel)排板polar-polar interaction 极性之间的吸力ﻫpolyester 聚酯类ﻫﻫpolyglycols聚乙二醇ﻫﻫpolyimide聚亚醯氨ﻫpoor bevelling 磨边加工引起突起,剥离ﻫﻫpoor drill 孔形不良poor HAL 喷锡不良poor marking字体不良ﻫﻫpoorpad 锡垫不良ﻫﻫpoor printed 印刷偏差poor solderability 焊锡性不良ﻫpoor touch-up补线不良ﻫposition control system 位置控制系统ﻫﻫpositive rake angle 正抠耙角power curve model 幕次曲线模式ﻫpractice 工艺惯例ﻫpreferred 良好prematuretearing 提前撕裂ﻫprepolymer预聚合物ﻫﻫprepreg 胶片pre-process ( front-end)制前press压床ﻫpress cycle 压合周期ﻫprimary current distribution 一次电流分布ﻫprimary 主要ﻫﻫproductlifetimes 生命周期product process 制程ﻫpromoter 促进剂ﻫﻫprotocal 初步资料ﻫprussic acid 普鲁士酸ﻫPTF-based process 厚膜糊法ﻫPTH (plating thoughhole) 导通孔pull away拉开ﻫpumice 浮石粉pumice scrub喷砂清洁法ﻫpyrometallurgy火烧法冶炼ﻫﻫﻫQC ( quality control)品管ﻫQFP (quad flat pack ) 扁方型封装体ﻫqualification inspection 资格审查检验qualification testing资格检定ﻫquality classification 品质等级ﻫﻫquantitative 计量式测试ﻫﻫﻫrack挂架ﻫﻫradiometer能量剂ﻫrake angle 抠耙角ﻫRAM[Random Access Memory随机存取内存ﻫreal time关键时刻ﻫrecessed trace process 凹槽线路法ﻫrecovery tank 回收槽ﻫreduction 还原ﻫﻫre—eninforcement 强化ﻫﻫrefraction 折光率ﻫﻫreinforcementstyle 补强材料的型式ﻫﻫregister mark 对位用标记registration hole对位孔registrationpattern 长方形铜地ﻫﻫREJ ( reject ) 退货;拒收ﻫrejectable 拒收ﻫﻫrelease agent 脱模剂ﻫﻫrelief angle浮离角ﻫremark 备注ﻫﻫrepair 修理ﻫresin content树脂含量(胶含量)ﻫresin flow 胶流量ﻫresin flow percentage 树脂流量之百分率resinrecession 树脂下陷ﻫﻫresin smear胶渣ﻫﻫresist strippers 剥干膜剂resistor network 排列电阻resolution 解像度ﻫreturn on assets 资产报酬率reversibility 可逆性ﻫﻫrework 重工rosin 天然松香ﻫﻫrotating cylinder 旋转圆柱形ﻫroughtness 孔壁粗糙;粗慥ﻫrouting 切外形,成型ﻫrouting bit铣刀ﻫrunout 偏转ﻫﻫS/L on hole 孔内沾文字ﻫS/M (solder mask ), S/L 防焊文字ﻫﻫS/M (solder mask) 防焊ﻫS/M error 防焊种类错误ﻫS/M on hole 孔内绿漆ﻫﻫsaltspraytest 盐水喷雾试验ﻫsampling size 抽样数ﻫscope范围ﻫscored 刻痕scoring 枢槽;刮线scrap 废框scratches刮伤ﻫscreen printing网版印刷scum透明残膜ﻫsealing 封孔处理ﻫﻫsecondary次要semi-additive 半加成法sensitize 敏化ﻫﻫsensitizer 敏化液separator钢隔板ﻫsequential lamination 渐成式压法ﻫserrated edges 毛边ﻫﻫshatter破碎short短路shunt分路ﻫsilane treatment硅烷处理silicone coupling agent硅烷偶合剂ﻫsilk screen 文字印刷ﻫﻫsimulator仿真器ﻫsingle axis 单轴sizing 底片之伸缩补偿skip 漏印ﻫskip printing 跳印;漏印ﻫsliver 丝条ﻫslot 开槽ﻫslotting开槽ﻫSMD( surface mountdevice ) 表面黏着组件ﻫsmear 胶渣ﻫSMT ( surface mount technology )表面黏着技术ﻫsodium carbonate monohydrate 结晶水碳酸钠ﻫsoft tooling 软性工具solder焊锡;锡铅solder bridge 锡桥ﻫsolder bump 锡突ﻫﻫsolder float 漂锡ﻫsolder mask adhesion 绿漆附着力ﻫsolder on G/F金手指沾锡ﻫﻫsolder on trace 线路沾锡ﻫﻫsolder plug 锡塞ﻫﻫsolderside 焊锡面solderability 焊锡性solid carbide 实质碳化物spacing 间距ﻫﻫspacing nonenough 间距不足ﻫﻫSPC ( Statistical Proc ess Control ) 统计生管ﻫspecification规范ﻫspecial considerations 特别考虑spin coating旋转涂布ﻫspindle钻轴spiral contractometer 螺旋收缩仪ﻫspotface 铣靶ﻫspray coating 喷涂ﻫSqueegee刮刀ﻫﻫstacking structure 叠板结构stamping冲压ﻫstandard hydraulic lamination标准液压法ﻫﻫstandardizing标准化ﻫﻫstarvation缺胶ﻫsteptablet格片数ﻫstock option 认股选择权strain 应度ﻫﻫstrength 强度ﻫﻫstressmeter 应力计ﻫsubtractive 减除法ﻫsurface convex 表面突起ﻫsurface examination 表面检查ﻫﻫsurfaceinsulation resistanc e(SIR)表面绝缘电阻surface mount表面黏着方式surface roughness 表面粗慥度surges突波switch circuit开关线路ﻫtab 金手指ﻫﻫtack free 不黏ﻫtapedhole gauge 锥形孔规ﻫﻫtarget hole靶孔ﻫﻫtaskforce 任务编组ﻫtensile strength抗拉强度ﻫtensile stress 张性应力tent 浮盖ﻫterms and definitions 术语与定义ﻫtermination load 抗匹配负载test circuit 测试线路testmethod 试验方法ﻫtest point 测试点ﻫﻫthermal shock 热震荡试验ﻫthermal stress热应力试验ﻫﻫthermistor 热电感应式ﻫthermo cycling 热循环试验ﻫtheoretical cycletime理论性周期时间ﻫﻫthickness 厚度ﻫtime to market 上市时机ﻫthickness distribution厚度分布ﻫﻫthief 补助阴极ﻫﻫthin core 薄基板;内层板ﻫthrowing power分布力ﻫtolerance 公差;容差ﻫﻫtooling hole 工具孔ﻫtorque load 扭力拒之负载ﻫtotal quality program 全面的品质计划ﻫtoughness 坚度trace error 线路错误ﻫtrace nick & pin hole 线路缺口及针孔ﻫﻫtrace peeling线路剥离ﻫtracepin-hole 线路针孔ﻫﻫtrace surface roughness 线路表面粗糙ﻫtarnish and oxideresist 抗污抗氧化剂ﻫtransmittance 透光度ﻫtrim line 裁切线ﻫtrue levelling 真平整ﻫﻫtrue position 真正位置的孔;真位ﻫtwist板翘ﻫﻫtype种类ﻫﻫumbra 本影ﻫundercut 侧蚀ﻫuneven coating 喷锡厚镀不平整ﻫuniversal 万用型ﻫﻫuniversal tensile tester 万用拉力试验机ﻫuniversal tester 泛用型测试机ﻫupper carrier顶部承载钢ﻫﻫuptime稼动:时间vacuum deposition 真空蒸镀法ﻫvacuum hydraulic lamination真空液压法ﻫvaporizer 气化室ﻫV-cut V形槽ﻫﻫvertical microsection 垂直微切片ﻫvia hole 导通孔ﻫvisibleinventory 有形的库存ﻫﻫvisioninspection 目视检查ﻫVoid孔破ﻫﻫvoid in hole 孔壁上的破洞ﻫvoid in PTH hole 孔破walkman 随身听ﻫwarehouse 仓库ﻫwarp 板弯ﻫﻫwarp , warpage板弯ﻫwaterabsorption 吸水性wear resistance耐磨度ﻫweave exposure 纤纹显露weave texture 织纹隐现ﻫwedge angle契尖角week 周ﻫwet chemistry 湿式化学制程wet film湿膜ﻫﻫwet lamination 湿膜压膜法ﻫﻫwetprocess湿制程ﻫwetting沾锡ﻫﻫwetting balance沾锡平衡法ﻫﻫwicking 渗铜;渗入;灯蕊效应ﻫwidth 宽度ﻫwidth reduce 线细ﻫwidth-to—thickness ratio 宽度与厚度的比值window 操作范围work—in—process在制品ﻫwork order 工单working film 工作片ﻫworkingmaster 工作母片ﻫﻫyear年yellow 金黄色ﻫyield 良率。
2019年盘锦市自然科学学术成果奖名单
2019-L062
63
《自然资源利用与经济发展相关性分析方法浅析》
马兰天
二等奖
2019-L063
64
农村电商发展的本地生态圈模式分析—基于辽宁
金社裕农的实证研究
高飞
二等奖
2019-L064
65
中学生核心素养发展指导与训练
王旭飞王立民吕思琦黄庆发
(著作)
二等奖
2019-L065
66
S100A6基因作用对宫颈癌细胞增殖迁移能力的影响及其机制
牛宇
二等奖
2019-L073
74
超声联合血清肿瘤标记物CA125、B7同源体4(B7-H4)对卵巢癌的诊断价值
张亮
二等奖
2019-L074
75
小骨窗开颅手术治疗高血压脑出血疗效分析
张玉林
二等奖
2019-L075
76
梅花鹿鹿茸多肽对小鼠ADSCs迁移、黏附活性及增殖的影响
张郑瑶
二等奖
2019-L076
77
白藜芦醇对α-葡萄糖苷酶的抑制动力学及抑制机制研究
姜丽丽刘勇
二等奖
2019-L077
78
Healthy Education Exercise Prevention and Treatment Prescription for Senile Dementia
李祥虎
二等奖
2019-L078
79
微创小针刀手术治疗拇指狭窄性腱鞘炎
姚月荣
二等奖
2019-L066
67
“逆向色谱-树脂联用法”追踪核桃的神经保护活性部位
孟磊
二等奖
2019-L067
68
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
journal homepage: /locate/nanoenergyAvailable online at REVIEWFlexible solid-state electrochemical supercapacitorsPeihua Yang,Wenjie Mai nDepartment of Physics and Siyuan Laboratory,Jinan University,Guangzhou510632,ChinaReceived21April2014;received in revised form27May2014;accepted28May2014Available online12June2014KEYWORDSEnergy storage;Flexible;Solid-state;SupercapacitorAbstractWith the proliferation of microelectronic devices,the need for portable power supplies isevidently increasing.Possible candidates for micro energy storage devices are Li-ion batteriesand supercapacitors.Among them,theflexible solid-state supercapacitors combined withexceptionally long cycle life,high power density,environmental friendliness,safety,flexibilityand stability,afford a very promising option for energy storage applications.This paper reviewsflexible solid-state electrochemical supercapacitors and the performance metrics.A betterpractice by calculating released energy to evaluate material and device performance isproposed.In addition,an overview is given of the electrolyte and various electrode materialsthat are suitable forflexible solid-state supercapacitors.The review summarizes the recentresearch focusing on novel configurations offlexible solid-state supercapacitors for energystorage and applications,such as freestanding,asymmetric,interdigitated,andfiber-basedstly,some discussions on future research are presented.&2014Elsevier Ltd.All rights reserved.IntroductionDevices for the future electronics will be twistable anddeformable,thereby enabling applications that would beimpossible to achieve by using the hard,rigid electronics oftoday.Energy storage devices possessingflexibility,light weight,and even safety may meet the large proliferation of consumerelectronics.Sustainable energy research is attracting increasingattention as our planet facing enormous challenges related toenvironment and energy.Electrochemical capacitors,or namedas supercapacitors(SCs),combined with exceptionally longcycle life,very high power density and enhanced energydensity,afford a smart maneuver[1,2].Figure1a shows theRagone plot for the most important energy storage systems.SCsare used to provide high power in a short time,whereasbatteries(commonly Li-ion battery,LIB)are preferred for long-time operation of a pared with liquid electrolytebased SCs,solid-state SCs have many advantages,such as/10.1016/j.nanoen.2014.05.0222211-2855/&2014Elsevier Ltd.All rightsreserved.n Corresponding author.Tel.:+862085224386x315.E-mail address:wenjiemai@(W.Mai).Nano Energy(2014)8,274–290portability ,environmental friendliness,flexibility and stability ,which can broaden the application area of SCs [3,4].Therefore the need for solid-state SCs arises,which expedites the development of stand-alone microelectronic devices and enhance the applicability in the in vivo systems.T o enhance the power and energy density of these solid-state SCs new advanced concepts have been proposed,which are based on the exploration of new materials and architectures.In this review ,an overview will be given of various aspects of flexible solid-state SCs.Firstly ,a brief context will be outlined by illustrating the mechanism and performance metrics of SC electrodes and devices.Secondly ,the electrolyte of solid-state SCs will be discussed.In the third part of this review ,various commonly used flexible SC electrode materials will be described and compared.In the subsequent section,several cases of advanced concepts will be presented together .Although the present state-of-the-art flexible solid-state SCs does not yet allow a full comparison of the various approaches as only very few working devices have been demonstrated,it is interesting to highlight the advances that were already made and the remaining challenges that are still ahead.This may serve as a source of inspiration for further research and development in this interesting new scienti fic field.MechanismsIn general,SCs can be classi fied into electric double layer capacitors (EDLCs)and pseudocapacitors according to differ-ent charge storage mechanisms.EDLCIn EDLC,electrostatic energy storage is achieved by separa-tion of charges in a Helmholtz double layer at the interface between the surface of a conductive electrode and an electrolyte.The distance of the static separation of charges in a double-layer is on the order of a few Angstroms which is extremely small [5].The key to reaching high capacitance by charging the double layer is using high speci fic surface area (SSA)and electronically conducting electrodes [2].During thedischarge process,the voltage of an ideal EDLC decreases linearly ,but an ideal LIB remains constant (Figure 1b).As a result,the energy stored in ideal EDLC is proportional to the voltage squared,whereas the energy stored in ideal LIB is just proportional to the voltage.In addition,the voltage provides a convenient measure of the state of charge in EDLC,but not in LIB [6].In the condition of EDLC,carbon materials and their derivatives have been investigated and used in EDLC electrodes.The EDLCs generally store charges through surface absorption (up to 0.17–0.20electrons per atom at accessible surface),so they reveal high power density ,long cycle life but low energy density [1].PseudocapacitorIn contrast,in pseudocapacitors,electrochemical energy storage is associated with electron transfer ,which is Faradic in origin,involving the passage of charges across the double layer ,achieved by surface redox reactions with speci fically adsorbed ions from the electrolyte,intercalation of atoms in the layer lattice or electrosorption,underpotential deposition of hydrogen or metal adatoms in surface lattice sites which result in a reversible faradaic charge-transfer (ca.2.5electrons per atom at accessible surface)[1,7].Pseudocapacitors usually possess much higher energy density than EDLCs.The materials primarily for pseudoca-pacitor mainly are metal oxides/nitrides/sul fides and con-ducting polymer .For instance,the pseudocapacitive behavior of RuO 2is generally ascribed to a series of fast,reversible electron-transfer reactions that are coupled with adsorption of protons at or near the electrode surface (Figure 1c)[5].Performance metricsSingle electrodeFor a single electrode,its speci fic capacitance,C s (F/g)can be calculated from the charge –dischargecurves:Figure 1(a)Speci fic power density against speci fic energy density,also called a Ragone plot,for various electrical energy storage devices.Reproduced with permission from [2].Copyright 2008,Nature Publishing Group.(b)Difference of charge and discharge relationships for a capacitor and a battery.Reproduced with permission from [1].Copyright 1999,Springer Science +Business Media New York.(c)Schematic of charge storage via the process of electrochemical double-layer capacitance and pseudocapacitance.Reproduced with permission from [5].Copyright 2011,Cambridge University Press.275Electrochemical supercapacitorsC s ¼I Δt ð1Þwhere I is the discharge current,Δt is the discharge time,ΔU is the potential window,and m is the active material mass of the electrode.For the electrodes under the same testing condition (the same mass,potential window,and discharge current),a longer discharge time usually repre-sents a larger speci fic capacitance of the material.C s can also be calculated from the cyclic voltammogram (CV)curves:C s ¼Q m ΔUð2Þwhere Q is the average of the absolute values of charges during the charging and discharging processes,and ΔU is the potential window [8].Because the enclosed area S in the CV loop can be obtained by using:S ¼I I d U ¼I Iv d t ¼v I I d t ¼2vQ ð3Þwhere v is the potential scan rate,the enclosed area in the CV curve is proportional to the average charge Q at a certain scan rate according to the equation.So Eq.(2)can be replaced by:C s ¼S 2vm ΔUð4ÞIt can be seen that for the electrodes under the same testing condition (the same mass,potential window,and scan rate),a bigger CV loop usually means a larger speci fic capacitance of the material.For CV curves with a rectangular shape (common for EDLC,Figure 2a),becauseS ¼2I ΔU ð5Þwhere I is the constant current under the potential scan rate.Eq.(4)can be simpli fied to:C s ¼I mvð6ÞIn this condition,Eqs.(1)and (6)are similar ,but the speci fic capacitances (C s )calculated by charge-discharge curve and CV curve can be different due to their different current densities.In addition,discussions above,also commonly used in many publications [2,8–10],actually assume that the capa-citance is constant within the entire voltage window.However ,in reality,the situation can be very complicated and the capacitance can change signi ficantly at different voltage range (Figure 2b and d).Here,we propose a new metrics for evaluating performance of SC device from the energy point of view and discuss it in detail in the part named “Better practice for evaluating SC performance ”.DeviceA typical SC unit cell is a charge-storage device similar to batteries in design and manufacturing.As shown in Figure 3,an SC device is comprised of two electrodes (active materials on current collectors),an electrolyte,and a separator that electrically isolates two electrodes [11].Figure 3shows that the SC device can be treated as two capacitors in series,each of which represents one elec-trode.If the capacitances of the two electrodes,i.e.positive and negative,are constant and can be expressed as C p and C n ,respectively,the overall capacitance (C )oftheFigure 2Electrochemical characteristics distinguish an ideal and a practical SC.CV curves of an ideal SC (a)where the current is constant (I )and a practical SC (b)with variable current.(c)Galvanostatic charge and discharge behavior for an ideal SC is linear and symmetric,but (d)it can be distorted for a practical SC.P .Yang,W.Mai276SC device can be expressed as:1C ¼1C p þ1C nð7ÞIdeally,for symmetrical electrochemical capacitors,the two capacitor electrodes in Figure 3are identical (C p =C n ).However ,because of the capacity of the pseudocapacitor electrode is generally many times greater than that of the electric double layer capacitor electrode,the pseudocapa-citor electrode provides options to construct asymmetric electrochemical capacitors with enhanced energy densities [5].In this case,capacitances of two electrodes are different (C p a C n ).The operating voltage of the asym-metric design can be larger because the two electrodes have different working potentials.For this purpose,it must be considered that the charges at positive (q +)and negative (q À)electrodes should be balanced [12–14].q ¼C s m ΔU ð8Þq þ¼q Àð9Þm þm À¼C s ÀΔU ÀC s þΔU þð10Þwhere m +,C s +,ΔU +and m À,C s À,ΔU Àare the mass,speci fic capacitance,and the previous working potential window of the positive electrode and negative electrode,respectively.In some speci fic cases,the parameter m can be replaced by area (C s should be substituted by areal capaci-tance at the same time)for practical application.The most important component in an SC is the electrode material.Although the research to improve the electrode performance of nanomaterials has dramatically increased [15],it is still controversial for accurately determining a material's performance for use as an SC electrode.Various techniques and experimental procedures are currently being employed leading to wide variations in reported results.Recently,Stoller et al.[16]and Gogotsi et al.[17]discussed practice methods that will enable the more accurate determination and reporting of an SC device performance.Symmetric SCWhen a symmetric SC is charged,a voltage will build up across the two electrodes.The capacitance (C ,F)of the SC device is usually calculated from their charge –discharge curves:C ¼I d U =d tð11Þwhere I is the discharge current,t is the discharge time and U is the device potential.The value of d U /d t can be calcu-lated from the slope of the discharge curve,only when the curve is linear [16],and the Eq.(11)can be simpli fied to:C ¼I Δt ΔUð12Þwhere Δt means the discharging time from fully chargedvoltage U to zero.For non-linear curve (Figure 2d),we will discuss them in detail in the part named “Better practice for evaluating SC performance ”.For an ideal symmetric SC,the speci fic capacitance,C s (F/g)for the active material can be derived from the capacitance of the device:C s ¼4C Mð13Þwhere M is the total mass of active materials in an SCdevice.The multiplier of 4adjusts the capacitance of the device and the combined mass of two electrodes to the capacitance and mass of the active material in a single electrode [16].The energy density (E ),maximum power density (P m )and average power density (P a )of an ideal SC device can be expressed as:E ¼CU 22M ð14ÞP m ¼U 2s ð15ÞR s ¼U IR ΔI ¼U IR2I ð16ÞP a ¼E ð17Þwhere C is capacitance calculated before,U is the cell voltage,U IR is the IR drop,ΔI is the current change at charging/discharging switch,Δt is the discharge time,and R s is the equivalent series resistance and can be obtained from the fitting of IR drop vs current [18].If replaced M ,the weight of the active material with the total weight of the real device,you can obtain the overall energy densityandFigure 3Principles of a single-cell double-layer capacitor and illustration of the potential drop at the electrode/electrolyte interface.Reproduced with permission from [11].Copyright 2000,Elsevier .277Electrochemical supercapacitorspower density of the real SC,which can be much lower due to considering the weight of current collector ,electrolyte,separator ,etc .If the volume or area is more important for the targeted application,the electrode material's volume or area may be substituted for mass [17].It can be seen that both energy and power densities are proportional to the square of voltage;therefore,increasing the voltage may be another effective method to improve the SC's energy and power densities.To increase the SC's device voltage within the electrolyte's stability window,selecting electrode materials and optimizing device architectures can achieve high cell voltages.Asymmetric SCUsually ,the asymmetric SC involves the pseudocapacitor ,so in most cases,the CV curve has no longer rectangular shape and the discharge part in charge –discharge curves is no longer linear either .This means that C is not a constant during operation.The proper parameter to represent the actual performance of the supercapacitor becomes controversial.The capacitance calculation for pseudocapcacitors with non-linear charge –discharge curves will be much more complicated than that for symmetric carbon-based capaci-tors with linear charge –discharge curves.If people still use Eq.(12),it will cause large confusion.For example,using Eq.(12),the linear ,concave and convex discharging curves (Figure 4)with the same starting and ending points of three different devices will give the same values of C .This convex kind of discharging curves can be seen in literatures [19,20].In fact,for non-linear curves,d U /d t varies with voltage,which means the C is no longer a constant during charging or discharging.Some researchers suggested,especially for pseudocapacitive devices,it is important to calculate capacitance using the typical operating voltage range for the application that the device will be used.A better characterization of an asymmetric SC device is to calculate the capacitance based on the usable voltage operating range of the device.For practical applications of hybrid devices,most SCs will be operated in the range of U max to 1/2U max instead of be completely discharged,so some researchers suggested calculating the capacitance based on the voltage range between the U max and approximately 1/2U max in discharge curve [16,21].In this regard,a practicalmethod using two data points from the discharge curve is recommended:d U d t ¼U max À12U max T max 12T maxð18Þwhich reduces the impact from the varying capacitance,and it is practically realizable for an actual application.Indeed,C obtained using this practice can distinguish the different performances of the linear ,concave and convex discharging curves with the same starting and ending points of three different devices in some degree.Better practice for evaluating SC performanceIn this part,we are trying to propose a better practice for evaluating SC performance directly from energy point of view.The charges stored in three different devices are the same in Figure 4,but people can see they are obviously different in performance.It is not reasonable to continue to use Eq.(12)because the convex curve implies holding much more energy than the concave curve.Previously,people were not using clear and proper metrics to indicate such difference.Based on the discharge curves in Figure 4,the total energy that can be released from the device during discharging can be expressed as:E t ¼Z U d Q ¼Z UI d t ¼I Z U d t ¼IS ð19Þwhere I is the discharge current and S is the enclosed area of discharge curve and coordinate axis.The charges stored in three different devices are the same in Figure 4,but they actually contain different energy (E t 3o E t 2o E t 1).Energy instead of the varying capacitance is the indicator re flecting the true performance of SC.Therefore,we propose here that total stored energy instead of the capacitance should be calculated using Eq.(19)to evaluate the performance of the SC device or even SC electrodes in the future.People may choose upper and lower integral limits to calculate the usable stored energy according to the preferred working potential windows of the device.This practice should be better than previous ones and applicable to both electrode materials and devices.However ,because people would prefer to directly use speci fic capacitance and capacitance to evaluate electro-chemical performance of materials and devices,respec-tively,these two values can be deduced backward.For example,to calculate an effective device capacitance (C eff )within some de fined working potential window (e.g.U max to 0),firstly the E t should be obtained by using Eq.(19),and then C eff can be obtained from:E t ¼1C eff U2ð20ÞIt should be noted that the calculated C eff will be different if the device is operated at other working potential windows (for example,from U max to 1/2U max ).We believe many researchers have considered the above issue in the charge –discharge curves during their researches,but to the best of our knowledge,this is the first time for this method to be explicitly proposed.Because thethirdFigure 4Different discharging curves with the same startingand ending points.The charge released from the devices is same,but the total energy released is different (E t 3o E t 2o E t 1).P .Yang,W.Mai278kind of curves (Figure 4)are much more frequently observed,people would obtain a smaller value of capaci-tance using our method from energy perspective than using the previous method from charge perspective.Similarly,the total energy can be obtained in CV dis-charged part by using equation:E t ¼Z P d t ¼Z IU d t ¼1v ZIU d U ð21Þwhere P is instantaneous power ,I is the discharge current,U is the voltage,and v is the potential scan rate [22].Actually,it is relatively complicated to use Eq.(21),so Eq.(19)is recommended for calculating the released total energy in SC.ElectrolytesElectrolytes for solid-state SC can be classi fied into differ-ent types.The first type is aqueous polymeric gels [23].Polyvinyl alcohol (PVA)/H 3PO 4proton conducting polymer blend was made as a pioneer and the ionic conductivity could reach at 2.2Â10À5S/cm [24].Since then many types of gel electrolytes have been explored to satisfy the speci fic condition,for instance,PVA/H 2SO 4[25],PVA/KOH [26],polyethyleneoxide (PEO)/LiClO 4[27],poly(methylmethacry-late)(PMMA)/LiClO 4[28],polybenzimidazole/H 3PO 4[29],PVA/Na 2SO 4-silica [30],PVA/NaNO 3[31],PVA/LiCl [32],and so on.Generally,the neutral electrolytes like PVA/LiCl have a wider range of applications in pseudocapacitors,espe-cially for metal oxides based SCs (ZnO [33],V 2O 5[34],etc .).Another example is Na fion,a typical per fluoro-alkylsulfonate-based ionomer .Na fion can not only be used as membrane,but also as effective ionomer [35–37].An all-solid-state flexible SC prepared through the assembly of Na fion-functionalized reduced graphene oxide (rGO)thin films and solvent-cast Na fion electrolyte membranes showed a 2-fold higher speci fic capacitance and rate cap-ability compared to those of all-solid-state graphene SCs [38].The second type of electrolytes is nonaqueous polymeric gels [23].They consist of either plasticized polymer com-plexes with electrolytic salts or polar polymer matrices swollen with organic electrolyte solutions,and have been many combinations of polymer –salt –liquid systems so far proposed as the gel electrolytes of SCs.As an example,a polymeric gel electrolyte composed of PEO-modi fied PMMA swollen with propylene carbonate (PC)that dissolves tetra-ethylammonium tetra fluoroborate (TEABF 4)was success-fully applied in an all-solid-state EDLC system [39].Because the organic solvents such as acetonitrile or PC can operate under much higher potential windows,the cell voltage can reach 2.7–3.7V [40].According to Eq.(14),the energy density of SC device will be greatly increased.The third type is mainly inorganic solid materials.A Li 2.94PO 2.37N 0.75(Lipon)electrolyte film can be applied between ruthenium oxide electrodes [41].An all-solid-state thin film SC was fabricated with tungsten co-sputtered ruthenium oxide electrodes and Lipon electrolyte [42].The effective reaction of the solid-state SC can be presented by RuO 2+x Li +(from the Lipon)+x e À2Li x RuO 2.It was shown that the room-temperature charge –dischargebehavior of the thin film SC is similar to that of a bulk-type SC.If the SC was fabricated on flexible substrate,an excellent device with flexibility and durability SC device will be realized.Other inorganic electrolytes such as phosphotungstic acid/Al 2(SO 4)3Á18H 2O [43],and Li 2S –P 2S 5[44]have wide application in solid-state SC systems as well.In addition,the solid-state electrolytes for LIB can work as useful reference,which promote the research of solid-state electrolytes in SC systems [45].It is discovered that ionic conductivity of the electrolyte is improved when added mediators.For example,a quasi-solid-state SC was assembled by using PVA/KOH –KI as gel electrolyte and activated carbons electrodes [46].The introduction of KI increases the ionic conductivity of electrolyte,and improves the pseudocapacitance of the electrode,increasing by 74.28%compared to the PVA/KOH system at the same current density.Electrode materialsCarbon materialsHigh surface area carbon materials mainly include activated carbon [47,48],porous carbon [49],carbide-derived carbon [50],onion-like carbon [22],carbon aerogels [51],carbon nanotubes (CNTs)[52,53],carbon shell [54],graphene [55],and graphene quantum dots [56].CNT ,especially the single-walled carbon nanotube (SWCNT),has intrinsically excellent properties as active materials such as high SSA,high conductivity,high flexibility,regular pore structures,and electrochemical stability.Woong et al.fabricated all-solid-state flexible SCs using CNTs,regular of fice papers,and ionic-liquid-based silica gel electrolyte [57].Kaempgen et al.designed a kind of flexible electrodes made by coating CNTs on of fice papers by a drop-dry method [58].The maximum power and energy density of the SCs were 164kW/kg and 41Wh/kg,respectively.SWCNT network film printed on the flexible plastic substrate (polyethylene terephthalate,PET)was demonstrated as an easy-fabrication SC that showed very high energy and power densities.The SWCNTs formed an entangled random net-work on the PET (Figure 5a).The SWCNT networks and the gel electrolyte were sandwiched together constructing an SC device (Figure 5b).CV and charge –discharge curves showed good electrochemical stability and capacitance in the SWCNT networks (Figure 5c,d).Graphene-based materials are attractive because of their excellent mechanical and electrical properties as well as exceptionally high surface area [59,60].Recently,the intrinsic capacitance of single-layer graphene was reported to be $21μF/cm 2[61];this value now sets the upper limit for EDLC capacitance for all carbon-based materials.A direct laser reduces the graphite oxide (GO)to laser-scribed graphene (LSG)films,which are mechanically robust,show high electrical conductivity (1738S/m)and high speci fic surface area (1520m 2/g)[62].In order to evaluate the performance of the all-solid-state LSG-SC for flexible energy storage,a device placed under different bending conditions is shown in Figure 6.These SCs can be bent arbitrarily without degrading performance.Modi fica-tion or composite of graphene and other capacitive279Electrochemical supercapacitorsmaterials may be a good approach into the rational design and fabrication of all-solid-state flexible SCs based on graphene materials.Graphene aerogels (GAs)represent a new class of ultra-light and porous carbon materials that are associated with high surface-area-to-volume ratios.A simpli fied prototype device of high-performance all-solid-state SC based on three-dimensional nitrogen and boron co-doped monolithic gra-phene aerogels was achieved with using PVA/H 2SO 4gel electrolyte [25].The fabricated device exhibited not only minimized thickness,but also showed high speci fic capaci-tance (E 62F/g),good rate capability ,enhanced energy density (E 8.65Wh/kg)and power density (E 1.6kW/kg).Three dimensional graphene exhibits exceptional electrical conductivity and mechanical robustness,making it an excel-lent material for flexible energy storage devices.Xu et al.reported with a 120μm thick graphene hydrogel thin film flexible SC exhibited excellent capacitivecharacteristics,Figure 6(a)A schematic diagram of the all-solid-state LSG-SC.Inset is a digital photograph showing the flexibility of the device.(b)A comparison between performances of LSG-SC using gelled versus aqueous electrolytes.(c)Bending the device has almost no effect on its performance,as seen in these CVs collected at a scan rate of 1000mV/s.Reprinted with permission from [62].Copyright 2012,American Association for the Advancement ofScience.Figure 5(a)Scanning electron microscopy (SEM)image of as-deposited SWCNT networks.(b)Thin film SC using sprayed SWCNT films on PET as electrodes and a PVA/H 3PO 4based polymer electrolyte as electrolyte.(c)CV curves and (d)galvanostatic charge –discharge curve measured with a current density of 1mA/cm 2(30mA/mg)of an SWCNT SC device.Reprinted with permission from [58].Copyright 2009,American Chemical Society.P .Yang,W.Mai280including a high specific capacitance of186F/g,an unpre-cedented areal specific capacitance of372mF/cm2,low leakage current(10.6μA),excellent cycling stability,and extraordinary mechanicalflexibility[63].Porous graphene(PG)on carbon cloth via an electro-phoretic deposition process was used as electrodes for flexible all-solid-state SCs[64].The macroscopic porous morphology of carbon cloth is favorable for the ion diffusion and electron transport.The excellent mechanical stability andflexibility of PG on carbon cloth ensure the device with goodflexibility.The resultantflexible SCs showed high specific capacitance,good cycling stability,and enhanced energy density and power density(1.64Wh/kg and0.67kW/ kg).Another type of carbon,exfoliated graphite(EG),is proposed as an electrode material for solid-state electro-chemical capacitors[65].The EG-based capacitors assembled with a solid electrolyte show high areal capaci-tance in the range of0.74–0.98mF/cm2.Metal oxides/nitrides/sulfidesIn general,metal oxides such as ruthenium oxide(RuO x), manganese oxide(MnO x),nickel oxide(NiO x),cobalt oxide (CoO x),iron oxide(FeO x)and titanium oxide(TiO2),can provide higher energy density in SC applications than conventional carbon materials[18].They not only store energy like electrostatic carbon materials but also exhibit electrochemical faradaic reactions between electrode materials and ions within appropriate potential windows. In thefield of metal oxide inflexible solid-state SC,RuO x and MnO x are mainly discussed here.Among the transition metal oxides,RuO x has been themost extensively studied candidate due to its wide potentialwindow,highly reversible redox reactions,metallic typeconductivity,remarkably high specific capacitance,goodthermal stability,long cycle life,and high rate capability[66].As a typical pseudocapacitive material,solution-basedbinder-free synthetic approach of RuO2films enabled an all-solid-state SC.The all-solid-state nature combined withsuperior electrochemical performance makes RuO2-baseddevice an excellent candidate for power sources in portableelectronics[67].In another example,an all-solid-state SCusing Nafion solid polymer electrolyte membrane and RuO2combined Nafion ionomer electrode[68].The SC exhibits arelatively stable capacitance during10,000cycles of opera-tion(about30%loss).This implies that RuO2based all-solid-state SC with a Nafion membrane can be operated withacceptable stability.However,the high costs of RuO x haveprompted the search for less-expensive metal oxides thatcan also display pseudocapacitance.In comparison,MnO x is often considered as the promisingtransition metal oxide for pseudocapacitors due to its hightheoretical specific capacitance(1100–1300F/g),low cost,environmental benignity and abundant resource[8,69,70].To overcome the drawback of poor ionic conductivity,MnO xwas usually composited with CNTs,graphene,and conduc-tive scaffold[71–74].Yuan et al.reported a highlyflexiblesolid-state SC based on a carbon nanoparticles(CNPs)/MnO2nanorods hybrid structure using PVA/H3PO4electrolyte(Figure7)[75].The device exhibited good electrochemicalperformance with an energy density of 4.8Wh/kg at apower density of14kW/kg.Inspired by this work,Yanget al.developed a new kind of worm-like amorphous MnO2 Figure7(a)Optical photographs of the fabricated solid-state SC device.(b)CV curves for a CNPs/MnO2nanorod SC at different curvatures.(c)Galvanostatic charging–discharging curves for CNPs/MnO2nanorod solid-state SC at different current densities.(d)Cycling stability of a CNPs/MnO2nanorod SC device over10,000cycles.Reprinted with permission from[75].Copyright2012, American Chemical Society.281 Electrochemical supercapacitors。