自动重合闸
第五章自动重合闸
单侧电源线路的三相一次自动重合闸, 实现简单:
1. 在单侧电源的线路上,不需要考虑电源间的同步合 闸问题;
2. 三相同时跳开与合上不需要考虑区分故障类别和选 择故障相;
3. 只需要满足在希望重合时、断路器允许重合的条件 下、经预定的延时,发出一次合闸脉冲。
这种重合闸的实现器件有电磁继电器组合式、晶 体管式、集成电路式、可编程逻辑控制式和与数字保 护一体化工作的数字式等多种。
4) 对断路器本身由于机构不良或继电保护误动而 引起的误跳,也能起纠正作用。
缺点:
1) 当重合于永久性故障时,使电力系统又一 次受到故障的冲击。
2) 使断路器的工作条件变得更加恶劣 。因为 它要在很短的时间内,连续切断两次短路 电流。这种情况对于油断路器必须加以考 虑,因为在第一次跳闸时,由于电弧的作 用,已使油的绝缘强度降低,在重合后第 二次跳闸时,是在绝缘已经降低的不利条 件下进行的。
除此之外,也有“永久性故障”。
例如:由于线路倒杆,断线,绝缘子击穿 或损坏等引起的故障,在线路被断开以 后,它们仍然是存在的。这时,即使再 合上电源,由于故障依然存在,线路还 要被继电保护再次断开,因而就不能恢 复正常的供电。
由于送电线路上的故障具有以上的 性质,因此,在线路被断开以后再进行 一次合闸就有可能大大提高供电的可靠 性。为此在电力系统中广泛采用了当断 路器跳闸以后能够自动地将断路器重新 合闸的自动重合闸装置。
一、作用
单相故障占了70%以上,且大都是“瞬时性”故 障,在我国一般保证只重合一次,成功率在60%-90%
优之点间:。
1) 大大提高了供电的可靠性,减少了线路停电的 次数,特别是对单侧电源的单回线路尤为显著。
2) 在高压输电线路上采用重合闸,可以提高电力 系统并列运行的稳定性。
第二章自动重合闸
四、检定无压和检定同期的三相ARD
电力系统 自动装置原理
四、检定无压和检定同期的三相ARD
电力系统 自动装置原理
四、检定无压和检定同期的三相ARD
电力系统 自动装置原理
四、检定无压和检定同期的三相ARD
电力系统 自动装置原理
四、检定无压和检定同期的三相ARD
电力系统 自动装置原理
四、检定无压和检定同期的三相ARD
断路器重合成
功后,其辅助触点 QF1断开,继电器 KCT、KT、KM均 返回,电容器C重 新充电,经15~ 25S后C充满电, 装置整组复归,准 备下次动作。
三、工作原理
电力系统 自动装置原理
3.线路发生永久 性故障时
重合闸装置的动作 过程与上述相同。
三、工作原理
电力系统 自动装置原理
三、工作原理
电力系统 自动装置原理
三、工作原理
电力系统 自动装置原理
三、工作原理
电力系统 自动装置原理
四、接线特点
电力系统 自动装置原理
重合闸重合于永久性故障上,对电力系 统有什么不利影响?
答:当重合于永久性故障时,会使电力系统再一次受 到故障冲击,对系统稳定运行不利,可能会引起电力 系统的振荡,降低系统稳定性。另外,由于在很短时间 内断路器要连续两次切断短路电流,从而使断路器的 工作条件变得恶化。
应动作,使断路器重新合闸;
(3)自动重合闸的次数应符合预先的规定;
(4)自动重合闸之后,能自动复归,准备好下一次的动作;
(5)自动重合闸时间能够整定,能与继电保护配合;
(6)双电源——同步
电力系统 自动装置原理
三、 ARD的分类
(3)按组成元件的动作原理: 机械式,电气式
安全自动装置之自动重合闸讲解
安全自动装置之自动重合闸讲解一、自动重合闸的原理自动重合闸是在电力系统出现短路故障后,通过自动执行器将高压断路器的闭锁机构解开,达到重新合闸、恢复电力供应的目的。
其原理主要包括两个方面:故障检测和重合闸操作。
故障检测:通过电流、电压等传感器感知电力系统的工作状态,当检测到电力系统出现短路故障时,自动重合闸装置会向控制器发送故障信号。
重合闸操作:控制器接收到故障信号后,会发出命令控制自动执行器,将断路器的闭锁机构解开,实现断路器的合闸操作。
然后,控制器会检测电力系统是否恢复正常,如果正常,则保持断路器合闸;如果仍然存在故障,断路器会再次断开,以避免电力系统受到更大损坏。
二、自动重合闸的工作流程自动重合闸的工作流程主要包括以下几个步骤:检测故障、解锁闭锁机构、合闸操作和故障恢复判断。
1.检测故障:自动重合闸通过安装在电力系统中的传感器检测电流、电压等参数,当检测到电力系统出现故障时,会发出故障信号。
2.解锁闭锁机构:控制器接收到故障信号后,会发出命令控制自动执行器,将断路器的闭锁机构解开,使断路器能够合闸。
3.合闸操作:经过解锁闭锁机构后,自动执行器会控制断路器合闸,使电力系统重新供电。
4.故障恢复判断:控制器会监测电力系统的运行状态,如果检测到故障已经消除,电力系统恢复正常,则保持断路器合闸;如果仍然存在故障,断路器会再次断开。
三、自动重合闸的应用场景自动重合闸适用于各种电力系统,特别是对于较大容量的电力系统,自动重合闸可以快速恢复电力供应,减少停电时间,提高电力系统的可靠性。
以下是一些自动重合闸的应用场景。
1.供电可靠性要求高的场所:如医院、飞机场、铁路等场所,对电力系统的稳定供电要求较高,一旦出现故障需要快速恢复供电。
2.对停电时间要求较短的场所:有些生产流程、数据中心等场所,对停电时间的要求非常严格,自动重合闸可以帮助尽快恢复供电,减少生产线和数据的中断。
3.长距离输电线路:对于长距离输电线路,一旦发生短路故障,停电范围较大,自动重合闸可以帮助恢复供电,减少停电范围。
自动重合闸
自动重合闸一.基本概念(1)瞬时性故障:在线路被继电保护迅速断开后,电弧即行熄灭,故障点的绝缘强度重新恢复,外界物体也被电弧烧掉而消失,此时,如果把断开的线路断路器再合上,就能恢复正常的供电,因此称这类故障为“瞬时性故障”。
(2)永久性故障:在线路被断开以后,故障仍然存在,这时即使再合上电源,由于故障仍然存在,线路还要被继电保护再次断开,因而就不能恢复正常的供电。
此类故障称为“永久性故障”。
二.基本要求1,在下列情况下,重合闸不应动作:1)由值班人员手动操作或通过遥控装置将断路器断开时;2)手动投入断路器,由于线路上有故障,而随即被继电保护将其断开时。
因为在这种情况下,故障是属于永久性的,它可能是由于检修质量不合格、隐患未消除或者保安的接地线忘记拆除等原因所产生,因此再重合一次也不可能成功。
2,除上述条件外,当断路器由继电保护动作或其它原因而跳闸后,重合闸均应动作,使断路器重新合闸。
3,为了能够满足第1、2项所提出的要求,应优先采用由控制开关的位置与断路器位置不对应的原则来起动重合闸,即当控制开关在合闸位置而断路器实际上在断开位置的情况下,使重合闸起动,这样就可以保证不论是任何原因使断路器跳闸以后,都可以进行一次重合。
当用手动操作控制开关使断路器跳闸以后,控制开关与断路器的位置仍然是对应的。
因此,重合闸就不会起动。
4,自动重合闸装置的动作次数应符合预先的规定。
如一次式重合闸就应该只动作一次,当重合于永久性故障而再次跳闸以后,就不应该在动作;对二次式重合闸就应该能够动作两次,当第二次重合于永久性故障而跳闸以后,它不应该再动作。
5,自动重合闸在动作以后,一般应能自动复归,准备好下一次再动作。
但对10KV及以下电压的线路,如当地有值班人员时,为简化重合闸的实现,也可采用手动复归的方式。
采用手动复归的缺点是:当重合闸动作后,在值班人员未及时复归以前,而又一次发生故障时,重合闸将拒绝动作,这在雷雨季节,雷害活动较多的地方尤其可能发生。
第5章 自动重合闸
5.3 高压输电线路的单相自动重合闸
5.3.2单相自动重合闸的特点
2、动作时限的选择 满足:故障点灭弧和周围介质去游离时间,大于断路器及其操作 机构复归原状准备好再次动作的时间。
此外考虑: (1)两侧不同时限切除故障的可能性; (2)潜供电流对灭弧所产生的影响,图5.13(P161) 根据实测确定灭弧时间,我国电力系统220KV 的线路上为0.6s以 上。
5.2 输电线路的三相一次自动重合闸
2、双侧电源线路重合闸的主要方式
(2)非同期自动重合闸
当重合闸时间不够快,两侧电势功角摆开较快,但冲击电流未超 过规定值,可采用非同期自动重合闸。 (3)检同期自动重合闸 当必须满足同期条件才能重合闸时,需要采用检同期自动重合闸。 具体方法: 1)系统有3个及3个以上联系线路,可以不检同步重合闸;
5.2 输电线路的三相一次自动重合闸
(3)检同期自动重合闸
方法:
2)双回线路,检查另一线路有电流时,可以重合(见图5.2);
5.2 输电线路的三相一次自动重合闸
3)必须检定同步的重合,其步骤:一侧先检无压合闸,另一侧再 同步合闸(图5.3所示) 3、具有同步检定和无电压检定的重合闸 缺陷:检查线 路无压合闸的 一侧,若正常 时误跳,这时 由于对侧并未 动作,线路上 有电压,因而 不能实现重合。
在220KV-500KV 的线路上获得了广泛的应用。110KV不推荐使用 。
5.3 高压输电线路的单相自动重合闸
5.3.3 输电线路自适应单相重合闸的概念
能自动识别故障的性质,在永久故障时不重合的重合
闸称之为自适应重合闸。 参考文献【3】
5.4 高压输电线路的综合重合闸简介
在线路上设计自动重合闸装置时,将单相重合闸和三相重合闸综 合在一起,当发生单相接地故障时,采用单相重合闸方式工作; 当发生相间短路时,采用三相重合闸方式工作。综合考虑这两种 重合闸方式的装置称为综合重合闸装置。
继电保护原理第五自动重合闸
2、自动重合闸概念 自动重合闸装置是将因故障跳开后的断路器按需要自动投入 的一种自动装置,简称ARC(旧称ZCH) 。
瞬时性故障 ☞ 重合成功 永久性故障 ☞ 重合不成功
3、自动重合闸的作用: (1)对暂时性故障,可迅速恢复供电,提高供电的可靠性。 输电线路80%~90%为瞬时性故障;
(5)动作的次数应符合预先的规定。 如一次重合闸就只能重合一次;当重合于永久性故障而
断路器再次跳闸后,就不应再重合。 (6)动作后应能自动复归,为下一次动作做好准备; (7)重合闸时间应能整定,并有可能在重合闸以前或重合闸 以后加速继电保护的动作,以便更好地与继电保护相配合,
加速故障地切除。
(8)当断路器处于不正常状态时(如操动机构中使用的气压、 液压异常等),应将ARC装置闭锁。
(2)非同期重合闸方式: 就是不考虑系统是否同步而进行自动重合闸的方式(期望系 统自动拉入同步,须校验冲击电流,防止保护误动)。 (3)检查双回线另一回线电流的重合闸方式 在没有其他旁路联系的双回线路上,当不能采用非同步合闸 时,可采用检定另一回线路上有无电流的重合闸。
采用这种重 合方式的优 点是因为电 流检定比同 步检定简单。
3. 综合重合闸 单相重合闸和三相重合闸综合到一起,发生单相接地故障时, 采用单相重合闸方式工作;当发生相间短路时,采用三相重合 闸方式工作。综合考虑这两种重合闸方式的装置称为综合重合 闸装置。
对一个具体的线路,究竟使用何种重合闸方式,要结合系统的 稳定性分析选取,一般遵循下列原则: (1) 没有特殊要求的单电源线路,采用一般的三相重合闸; (2) 凡是选用简单的三相重合闸能满足要求的线路,都应选用 三相重合闸; (3) 当发生单相接地短路时,如果使用三相重合闸不能满足稳 定性要求而出现大面积停电或重要用户停电者,应当选用单相 重合闸和综合重合闸。
第5章 自动重合闸
5.1.2对自动重合闸装臵的基本要求
4、动作后自动复归 自动重合闸装臵动作后应能自动复归,准备好下次再动作。 对于10kV及以下电压级别的线路,如无人值班时也可采用 手动复归方式。 5、用不对应原则启动 一般自动重合闸可采用控制开关位臵与断路器位臵不对应原 则启动重合闸装臵,对综合自动重合闸,宜采用不对应原 则和保护同时启动。 6、与继电保护相配合 自动重合闸能与继电保护相配合,在重合闸前或重合闸后加 速继电保护动作,以便更好地与继电保护装臵相配合,加 速故障切除时间,提高供电的可靠性。
5.1.1自动重合闸的作用
电力系统的故障中,输电线路的故障占绝大部分,大都 是“暂时性”的故障 ,在线路被继电保护迅速动作控制断路 器,如果把断开的线路断路器重新合上,就能够恢复正常的 供电。自动重合闸成功率(60%-90%)。此外,还有“永久性 故障”, “永久性故障”在线路被断开之后,它们仍然是存 在的,即使合上电源,也不能恢复正常供电。 因此,在电力系统中采用了自动重合闸装臵(AAR), 即是当断路器由继电保护动作或其它非人工操作而跳闸后, 能够自动控制断路器重新合闸的一种装臵。
障也可采用自动重合闸装置。 • 根据自动重合闸运行的经验可知,线路自动重合闸的配置和选择应根
据不同系统结构、实际运行条件和规程要求具体确定。一般选择自动
重合闸类型可按下述条件进行。
2、自动重闸的配置原则
1)110kV及以下电压的系统单侧电源线路一般采用三相一次重合闸装臵; 2)220kV、110kV及以下双电源线路用合适方式的三相重合闸能满足系统稳 定和运行要求时可采用三相自动重合闸装臵。 3)220kV线路采用各种方式三相自动重合闸不能满足系统稳定和运行要求 时,采用综合重合闸装臵; 4)330~500kV线路,一般情况下应装设综合重合闸装臵; 5)在带有分支的线路上使用单相重合闸时,分支线侧是否采用单相重合闸, 应根据有无分支电源,以及电源大小和负荷大小确定; 6)双电源220kV及以上电压等级的单回路联络线,适合采用单相重合闸; 主要的110kV双电源回路联络线,采用单相重合闸对电网安全运行效果 显著时,可采用单相重合闸。
第5章 自动重合闸
重合闸 起动
t ZCH
一次合闸 脉冲元件
(放电)
与 执行元件
控制开关KK
(3)一次合闸脉冲元件 保证重合闸装置只重合一次 控制开关KK对一次合闸脉冲元件放电的作用 是为了防止手动跳闸和手动合闸时重合闸进行重合
重合闸 起动
t ZCH
一次合闸 脉冲元件
(放电)
与 执行元件
控制开关KK
(4)执行元件 启动合闸回路和信号回路,还可与保护配 合,实现重合闸后加速保护。
进行自动重合。
使用条件 • 线路两侧均装有全线瞬时动作的保护 • 有快速动作的断路器,如快速空气断路器 • 冲击电流未超过允许值
冲击电流周期分量的估算
2E I sin Z 2
当非同步重合闸时,冲击电流周期分量不应超过下表数值 机组类型 汽轮发电机 水轮发电机 有阻尼回路 允许值 0.65IN/X”d 0.6IN/X”d
适用范围:35kV以下由发电厂或重要变电站引出 的直配线路上。
2.重合闸后加速保护
ARD 1
QF1
k
ARD 2
QF2
ARD 3
QF3
ARD 4
QF4
优点: 第一次跳闸时有选择性的; 永久性故障能快速切除,有利于系统并联 运行的稳定性; 使用中不受网络结构和负荷条件的限制。
2.重合闸后加速保护
无阻尼回路
0.65IN/X’d
0.84IN/X”d IN/XT
同步调相机 电力变压器
(2)非同期重合闸
不考虑系统是否同步而进行自动重合闸的 方式 使用条件:冲击电流未超过允许值 继电保护要考虑系统振荡对它的影响,并 采取必要的措施
(3)检查双回线另一回线电流的重合闸方式
自动重合闸
可见我们所讨论的“O-0.3s-CO-3min-CO”这种开关操作顺序,也是我们最常见到的一种了,它主要用于具有快速自动重合闸功能的场合。其实若注意到开关的额定短路开断电流时,大家可以注意到这两者之间有一种关系。当额定短路开断电流在40KA以下的时候,一般是31.5KA较多,这时采用的多为“O-0.3s-CO-3min-CO”操作顺序,而额定短路开断电流在40KA以上的时候,便多为“O-3min-CO-3min-CO”这种操作顺序了。因为按照目前系统的短路容量,一般线路的短路电流都达不到40KA,所以一般的线路采用“O-0.3s-CO-3min-CO”这种操作顺序,因为它要具备重合闸功能。而对于大容量的场合比如母线或主设备,其短路电流可能会超过40KA,但这些场合大多又不采用重合闸的,所以选用的多为“O-3min-CO-3min-CO”这种操作顺序。随着系统容量的不断增大,短路电流也在不断增大,如果短路电流大于40KA,有很多开关的选型就不匹配了,所以目前电网也在想尽办法来限制短路电流在40KA以下。前一段河南电网就进行了几个重要的500KV变电站220KV母线分列运行的措施,对开关的方面就有上述考虑。总之这个操作顺序是根据当前系统发展的情况和开关所使用的场合来确定的,也可以认为是市场的需要。
简单的了解了一下这种操作顺序的意义,下面来说说这种具有快速自动重合闸功能的开关的操作顺序的具体情况。一般额定能力都是考虑最坏情况出现的,这个额定操作顺序,也是考虑了最坏情况下的重合闸,什么是最坏情况下的重合闸呢?即发生的是永久性的故障。
我们来假设这个过程吧:开关正常运行中,线路永久性故障,开关跳闸O----考虑到熄弧及故障点绝缘恢复等因素,自动重合闸装置延时---0.3S---发出重合闸指令,开关重合闸于永久性故障,此时开关立刻无延时的跳闸,等于是经历了一个合上闸立刻又跳闸的过程,即----CO----跳闸后,此时考虑到开关需要重新储能以及灭弧室等电强度的恢复还有对系统的冲击等等,要再次快速重合闸已不可能,这次要经过一个长的时间即----180S----才能再次合闸,结果又合到了永久故障上,同样开关立刻无延时的跳闸,等于是再次经历了一个合上闸立刻又跳闸的过程,即-----CO。至此,彻底完成了一次额定操作顺序。这是最坏的情况了,如果要超越这个额定极限,比如说没有到180S就要再次合闸,或者不断的跳闸合闸不遵循额定操作顺序,暂不说对系统冲击的情况,开关本身则有可能已经爆炸了。
第5章 自动重合闸
检同期重合闸 (不检同步、检另一回线有无电流、
三条或三条以上紧密联系的线路
双回线检另一回线有电流的重合闸
原理:两侧断路器被保护跳开后,检无压侧先重合断 路器,接通一侧电源,另一侧检同步后重合。
※ 检无压侧与检同步侧工作方式应定时轮换。
重合不成功时,检无压侧断路器将两次切断短路电流。
4. 优点:
(1)连续供电,提高供电可靠性; (2)提高并列运行的稳定性。 缺点:
潜供电流
(1)需按相操作的断路器; (2)选相元件,接线复杂; (3)非全相运行时, 有些保护误动, 使得整定和调试复杂。
八、综合重合闸
单相重合闸和三相重合闸综合在一起-综合重合闸。
K(1) -> 跳单相 -> 合单相。(单重方式)
Байду номын сангаас
六、自动重合闸与继电保护的配合
1.重合闸前加速保护
任何一段线路发生故障时,第一次都由保护3无时限切除故障。
断路器断开后起动重合闸: 若重合于瞬时故障,迅速恢复供电,重合闸纠正了无选择性。
若重合于永久故障,第二次按 t3 选择性跳闸。
为了使无选择性的动作范围不致 过长, 保护3的起动电流应躲过相 邻变压器低压侧短路。
• • • • •
常用的选相元件有以下几种: 1.相电流选相元件 2.相电压选相元件 3.阻抗选相元件 4.反映二相电流差的突变量选相元件。这种选 相元件是利用短路时,电气量发生突变这一特 点构成的。近年来,在超高压网络中被推荐作 为综合重合闸装置的选相元件。微机型成套线 路保护装置中均采用具有此类原理的选相元件。 这种选相元件要求在线路的三相上各装设一个 反映电流突变量的电流继电器。
自动重合闸
(2)双侧电源均可靠断开,断路器的遮断能力恢复,
故障点绝缘强度恢复。 2、双侧电源送电线路重合闸的主要方式 (1) 快速自动重合闸; 指保护断开两侧断路器后在0.5~.6s内使之再次重合。
(2) 非同期重合闸;
冲击电流不超过规定值。 (3)检同期的重合闸;的结构保证线路两侧系统不会失步; (2)在双回路上检查另一线有电流的重合方式;
规定:(1)检无压在前,检同期在后;
(2)定期交换两侧的功能; (3)检无压一侧必须并接检同期;检同期一侧绝对不允
许投入检同压(防止非同期合闸)。
5.2.4 自动重合闸与继电保护的配合
5.2.4.1 自动重合闸前加速 (1)重合闸前加速保护一般简称为“前加速”,即:保护第 一次切除故障时,瞬时零秒动作。 可能失去选择性 可快速切除瞬时性故障 (2)如遇永久性故障,自动重合闸后,保护按有选择性的时限 动作。 故障切除的时间可能较长。 (3)多用于单电源辐射式网络,仅在线路首端按照一套重合闸 装置。首端断路器工作条件差。
5.2.4.2 自动重合闸后加速 定义:重合闸后加速保护一般简称为“后加速”,即:当线路第 一次故障时,保护有选择性动作,然后进行重合。如果重合于永 久性故障,则在断路器合闸后,再加速保护动作瞬时切除故障。 (1)第一次切除故障时,可能有延迟,可保证选择性,不会扩 大停电范围。 (2)遇永久性故障,自动重合闸后,保护第二次切除故障,零 秒动作,仍可保证选择性。即:重合于永久性故障,第二次切 除故障时间短。 (3)每个断路器均装设一套重合闸装置,投资较大。
15~25s 保证有足够时间合上和再次跳开断路器。
手动跳闸闭锁: 手动跳开断路器,不启动自动重合闸 重合闸后加速保护跳闸回路:
重合闸与保护的配合。对于永久性故障,在保证选择性 的前提下,尽可能地加快故障的再次切除。
继电保护第16讲自动重合闸
在具有双侧电源供电的线路上,采用 自动重合闸可以快速检测并隔离故障 线路,避免影响其他正常线路的运行。
对于具有高可靠性要求的特殊负荷, 如铁路、通信、医院等,可以采用自 动重合闸来提高供电的可靠性。
02 自动重合闸的工作原理
自动重合闸的工作流程
当线路发生故障时,继电保护 装置动作,断路器跳闸,自动 重合闸装置启动。
04 自动重合闸的配置与调试
自动重合闸的配置方法
根据电网结构和设备 参数,选择合适的自 动重合闸装置型号和 规格。
配置自动重合闸的控 制字和压板,确保装 置能够正确响应动作 指令。
根据保护配置要求, 配置相应的保护功能 和参数。
自动重合闸的调试步骤
进行装置通电前的检查,确保装置外观完好、接线正确。
继电保护第16讲自动重合闸
目录
• 自动重合闸的概述 • 自动重合闸的工作原理 • 自动重合闸的优缺点 • 自动重合闸的配置与调试 • 自动重合闸的实际应用案例
01 自动重合闸的概述
定义与作用
定义
自动重合闸是一种自动装置,用于检 测故障线路并自动进行重合,以恢复 电力系统的正常运行。
作用
自动重合闸能够显著提高供电的可靠 性,减少线路停电的次数,同时还可 以纠正由于断路器操作机构不良或继 电保护误动等原因引起的误跳闸。
THANKS FOR WATCHING
感谢您的观看
对自动重合闸装置进行整组测试,模拟各种故障情况下 的动作行为。
按照调试大纲逐步进行功能调试,包括保护功能测试、 动作逻辑验证等。
调试完成后,编写调试报告并归档。
自动重合闸的维护与保养
定期检查装置外观、接线及二 次回路,确保装置正常运行。
定期对装置进行清扫、除尘, 保持装置清洁。
第5章自动重合闸
• 当采用单相重合闸时,如果发生相间短 路,则一般都跳三相断路器,且不进行 三相重合;如果因任何其它原因断开三 相断路器,则也不再进行重合。
• 对选相元件的基本要求为:单相接地时, 选相元件应可靠选出故障相;选相元件 的灵敏度和速动性应比保护的好;选相 元件一般不要求区分内外部故障,不要 求有方向性。
三条或三条以上紧密联系的线路 双回线检另一回线有电流的重合闸
原理:两侧断路器被保护跳开后,检无压侧先重合断 路器,接通一侧电源,另一侧检同步后重合。
※ 检无压侧与检同步侧工作方式应定时轮换。 重合不成功时,检无压侧断路器将两次切断短路电流。
※ 检无压侧应同时投入同步检定(防止QF、保护误跳), 检同步侧不能同时投入无压检定。
M1
2N
k
利:1.瞬时性故障可迅速恢复供电,提高供电的可靠性;
2.提高并列运行稳定性、线路输送容量; 3.纠正断路器偷跳、保护误动、人为误碰引起的误跳闸;
弊:在重合到永久性故障后:
1.使系统再次遭受故障电流的冲击; 2.断路器工作情况更加恶劣(短时间内两次切断)。
应用:≥1KV架空线路或混合线路,只要装断路器。
在双侧电源的送电线路上实现重合闸时,与单电 源线路上的三相自动重合闸相比还必须考虑如 下的特点:
(1)时间的配合。
(2)同期问题。当线路上发生故障跳闸以后, 线路两侧电源之间的电势角会摆开,有可能失 去同步。这时,后合闸一侧的断路器在进行重 合闸时,应考虑两侧电源是否同步,以及是否 允许非同步合闸的问题。
第三节 单相自动重合闸
• 所谓单相重合闸,就是指线路上发生单相 接地故障时,保护动作只断开故障相的 断路器,而未发生故障的其余两项仍可 继续运行,然后进行单相重合。若故障 为暂时性的,则重合闸后,便可恢复三 相供电;如果故障是永久性的,而系统 又不允许长期非全相运行,则重合后, 保护动作,使三相断路器跳闸,不再进 行重合。
自动重合闸的作用及要求
设置自动重合闸装置好处
✓大大提高供电的可靠性,减少线路停电的次数。 ✓在高压输电线路上采用重合闸,可以提高电力系统并列运行的稳 定性。 ✓在架空线路上采用重合闸,可以暂缓架设双回线路,以节约投资。 ✓对断路器本身由于机构不良或继电保护误动作而引起的误跳闸, 也能起纠正的作用。
自动重合闸不利的影响
(1)使电力系统又一次受到故障的冲击; (2)由于断路器在很短的时间内,连续切断两次短路电 流,而使其工作条件变得更加恶劣。
非同步合闸的问题。 二、两侧电源线路上的主要合闸方式: (1)快速自动重合方ห้องสมุดไป่ตู้: (2)非同期重合闸方式:
(3)检查双回线另一回线电流的重合闸方式. (4)自动解列重合闸方式
(5)具有同步检定和无压检定的重合闸。
在两侧的断路器上,除装有单侧电源线路的ZCH自动重合闸装 置外,在一侧装有低电压继电器,用以检查线路上有无电压 (检无压侧),在另一侧装有同步检定继电器,进行同步检 定(检同步侧)。
,若成功,恢复正常供电;若不成功,按选择性动作。 • 主要用于35KV以下的网络。
2 、重合闸后加速保护(简称“后加速”) 每条线路上均装有选择性的保护和ZCH。 第一次故障时,保护按有选择性的方式动作跳闸,若是永久性故
障,重合后则加速保护动作,切除故障。 应用于35KV以上的网络中。
第四节 单相自动 重合闸与综合自动 重合闸
生相间故障时,采用三相重合闸方式。单相重合闸和三相 重合闸综合在一起,成为综合重合闸。
• 下图所示单电源网络,已知:在1QF断路器上采用了重合闸前加 速保护动作的接线,它利用电流速断保护重合闸前的非选择性动 作,此电流速断保护的动作时间为0.1s,A、B、C三变电所保护 的动作时间分别为1.5s、1.0s、0.5s;所有断路器的重合闸时间均 为0.35s,跳闸时间为0.07s;自动重合闸的整定时间为0.8s。请简 单分析当K点瞬时性故障,故障发生后经过多长时间能恢复正常 供电?
9.自动重合闸(共43张)
五、装设重合(chónghé)闸的规定
第11页,共43页。
六、重合 闸的分类 (chónghé)
第12页,共43页。
9.2 单侧电源(diànyuán)线路三相一次自动重合 闸
三相一次自动重合闸就是在输电线路上发生任何故障, 继电保护装置将三相断路器断开时,自动重合闸起
动,经0.5~1s的延时,发出重合脉冲,将三相断路器
第27页,共43页。
9.3 双侧电源线路的三相(sān 一次重合 xiānɡ) 闸
一、 双侧电源线路重合闸的特点
(1)当线路上发生故障时,两侧的保护装置可能以不同的时 限动作于跳闸,例如一侧为第I段动作,而另一侧为第II段动作,
此时为了保证故障点电弧的熄灭和绝缘强度的恢复,以使重合闸有 可能成功,线路两侧的重合闸必须保证在两侧的断路器都跳闸以后, 再进行重合; (2)当线路上发生故障跳闸以后,常常存在着重合闸时两侧电源是否
制。
后加速保护的的缺点:
(1)每个断路器上都需要装设一套重合闸,与前加速 相比较为复杂。
(2)第一次切除故障可能带有延时。
应35用KV:以上的网络(wǎngluò)及对重要负荷供电的送电线
路。
第26页,共43页。
四、重合闸时间的整定原则
M1
2N
(1) 单侧电源(diànyuán)线路重合闸
k
▪故障点电弧熄灭及周围介质绝缘强度的恢复时间t u;
第九章 自动 重合闸 (zìdòng)
9.1 自动重合闸的作用及要求
9.2 单侧电源线路三相一次重合闸 9.3 双侧电源线路三相一次重合闸 9.4 单相自动重合闸与综合自动重合闸
第1页,共43页。
9.1 自动重合闸的作用及要求
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动重合闸
JPJ-AR自动重合闸用电保护器是利用机械自动化原理,结合高压自动重合器控制器技术研制成功的智能化产品。
可以解决因瞬时性故障造成开关跳闸停电后不能自动恢复供电的问题,又可以通过实时监测供电线路的电压、电流、漏电等运行情况对用电设备和线路进行分闸保护。
可为用电设备提供稳定、可靠的电源,从而延长用电设备寿命,提高网络服务质量,减少网络维护成本。
一、产品简介
JPJ-AR系列自动重合闸该产品适用于交流50HZ或60HZ ,额定电流在63A以内的单相市电线路中。
当线路出现漏电、过流、短路、过电压和低电压故障时,自动重合闸用电保护器能快速切断供电线路,故障消除后能自动重合闸送电,无需人工合闸,保证用电设备和线路供电的安全性和持续性。
二、功能特点
防雷保护功能可多级保护设备,降低损坏机率,延长用户设备寿命;
合闸前检测,避免了二次重合供电对故障设备的损害,保障供电环境安全;
补偿式稳压输出,效率90%以上,适合在AC85V-AC300V间恶劣电压变化的场合;
产品采用导轨安装方式、安装维护方便,通过故障干节点输出可随时监控故障信息;
完善的过流、过压、欠压、漏电、短路保护功能,保证用电环境、设备和人身安全。
;
采用机械开关特性与自动重合器控制器技术相结合,保障产品稳定可靠,故障率极低;
准确快速地识别隔离永久性故障,排除瞬时性故障,快速自恢复供电,保障网络运行正常;
三、装置要求
将JPJ-AR保护器安装于墙壁上或主机箱内,避免直接雨淋、日晒。
将保护器输出端朝下安装,避免雨水滴入接线端子内分清市电AC220V 的零线和火线且接入到保护器的电源输入端保护器的电源输出连接到负载设备的电源输入端保护器可代替现有漏电断路器装时,应卸掉已安装漏电保护开关如果合上电源10 秒后,红色指示灯亮,表明线路有相应故障,关断开关10 秒后,再合上,如果仍不能合闸送电,表明线路中漏电电流超过规定值,或线路存在过流短路现象,应关断所有负载,马上查明原因,排除故障,方可送电按产品面板标识接入单相220V 电源,用电设备供电线路及接地线,特别注意输入与输出端不能接反本保护器输出到用电设备的线路必须是专线专用不论是火线还是零线,不论是火线还是零线,都不能与其
它供电线路相连接,避免与其它开关交叉供电
四、自动重合闸的分类
一般的来说自动重合闸装置分为四种状态:单相重合闸、综合重合闸、三相重合闸、停用重合闸
单相重合闸
110kV及以上线路大多采用三相一次重合闸,根据运行经验110kV以上的大接地电流系统的高压架空线路上,短路故障中70%以上是单相接地短路,特别是220kV以上的架空线路,由于线间距离大,单相接地故障甚至高达90%左右。
在这种情况下,如果只把发生故障的一相断开,然后再进行单相重合闸,而未发生故障的两相在重合闸周期内仍然继续,就能大大提高供电的可靠性和系统并列运行的稳定性。
因此,在220kV以上的大接地电流系统中,广泛采用了单相重合闸。
一般在220kV及以下电压单回联络线、两侧电源之间相互联系薄弱的线路(包括经低一级电压线路弱联系的电磁环网),特别是大型汽轮发电机组的高压配出线路。
综合重合闸
当发生单相接地故障时采用单相重合闸方式,而当发生相间短路时采用三相重合闸方式。
一般在允许使用三相重合闸的线路,但使用单相重合闸对系统或恢复供电有较好效果时,可采用综合重合闸方式。
三相重合闸
三相重合闸,是指不论在输、配电线上发生单相短路还是相间短路时,继电保护装置均将线路三相断路器同时跳开,然后启动自动重合闸再同时重新合三相断路器的方式
一般的在线路两侧分别为电源与用电户,相互联系较强的线路采用三相重合闸。
五、应用领域
随着国家综合国力的增强,人民生活水平的不断提高,对通信、安防、交通、数字城市等基础性设施的建设也提出了更高的要求。
也出现了越来越多的室外网络设备,比如:光进铜退设备、基站设备、治安监控设备和智能交通设备等。
同时要求这些设备在高温、低温、供电情况复杂、容易遭受浪涌和雷击干扰的室外环境24小时的不间断工作。
但由于室外工作环境差等不确定因素容易造成设备老化、设备损坏、断路器(漏电断路器)跳闸等故障且故障率相对较高。
室外设备安装点分散,比如:街道、楼顶、山顶、隧道、村屯、电杆等不同地
点,设备出现故障后,给维护工作增加了很大难度。
为了解决无人值守设备故障率高,维护难度大的问题,公司针对性研制出JPJ-AR系列自动重合闸用电保护器产品。
JPJ-AR单相系列产品具有过压、欠压、过流、短路、漏电等断电保护功能和自动重合闸供电功能,使得设备工作更安全可靠。
具有6A、10A、16A、32A、50A、63A等多种规格,适合在63A以内的供电线路中使用。