江苏省苏州市2014年中考数学真题试题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年苏州市初中毕业暨升学考试试卷
数学
本试卷由选择题、填空题和解答题三大题组成.共29小题,满分130分.考试时间120分钟.
注意事项:
1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;
3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相应位置上.
1.(-3)×3的结果是
A.-9 B.0 C.9 D.-6
2.已知∠α和∠β是对顶角,若∠α=30°,则∠β的度数为
A.30°B.60°C.70°D.150°
3.有一组数据:1,3.3,4,5,这组数据的众数为
A.1 B.3 C.4 D.5
4.若式子4
x 可在实数范围内有意义,则x的取值范围是
A.x≤-4 B.x≥-4 C.x≤4 D.x≥4
5.如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是
A.1
4
B.
1
3
C.
1
2
D.
2
3
6.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为 A.30°B.40°C.45°D.60°
7.下列关于x的方程有实数根的是
A.x2-x+1=0 B.x2+x+1=0
C.(x-1)(x+2)=0 D.(x-1)2+l=0
8.一次函数y=ax2+bx-1(a≠0)的图象经过点(1,1).则代数式1-a-b的值为
A.-3 B.-1 C.2 D.5
9.如图,港口A在观测站O的正东方向,OA=4km.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为
A.4km B.23km C.22km D.(3+1)km
10.如图,△AOB为等腰三角形,顶点A的坐标为(25OB在x轴上.将△AOB 绕点B按顺时针方向旋转一定角度后得△A'O'B,点A的对应点A'在x轴上,则点O'的坐标为
A.(20
3

10
3
)B.(
16
3
45
)C.(
20
3
45
)D.(
16
3

43
二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.
11.3
2
的倒数是▲.
12已知地球的表而积约为510000000km2.数510000000用科学记数法可以表示为▲.13.已知正方形ABCD的对角线AC2,则正方形ABCD的周长为▲.
14.某学校计划开设A,B,C,D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门.为了了解各门课程的选修人数,现从全体学牛中随机抽取了部分学牛进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有▲人.
15.如图,在△ABC 中,AB =AC =5,BC =8.若∠BPC =1
2
∠BAC ,则tan ∠BPC = ▲ .
16.某地准备对一段长120m 的河道进行清淤疏通,若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天,设甲工程队平均每天疏通河道xm ,乙工程队平均每天疏通河道ym ,则(x +y )的值为 ▲ . 17.如图,在矩形ABCD 中,3
5
AB BC =,以点B 为圆心,BC 长为半径画弧,交边AD 于点E ,若AE ·ED =
4
3
,则矩形ABCD 的面积为 ▲ .
18.如图,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB ⊥l ,垂足为B ,连接PA .设PA =x ,PB =y ,则(x -y )的最大值是 ▲ . 三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)
计算:2214+--.
20.(本题满分5分)
解不等式组:()12
221x x x ->⎧⎪⎨
+≥-⎪⎩

21.(本题满分5分)
先化简,再求值:21111x x x ⎛
⎫÷+ ⎪--⎝⎭
,其中x =21-.
22.(本题满分6分)
解分式方程:2311x x x
+=--.
23.(本题满分6分)如图,在Rt △ABC 中,∠ACB =90°,点D ,F 分别在AB ,AC 上,CF =CB .连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CE ,连接EF . (1)求证:△BCD ≌△FCE ; (2)若EF ∥CD .求∠BDC 的度数.
24.(本题满分7分)如图,已知函数y =-
1
2
x +b 的图象与x 轴、y 轴分别交于点A ,B ,与函数y =x 的图象交于点M ,点M 的横坐标为2.在x 轴上有一点P (a ,0)(其中a>2),过点P 作x 轴的垂线,分别交函数y =-1
2
x +b 和y =x 的图象于点C ,D . (1)求点A 的坐标; (2)若OB =CD ,求a 的值.
25.(本题满分7分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.
26(本题满分8分)如图,已知函数y=k
x
(x>0)的图象经过点A,B,点A的坐标为
(1,2).过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC,OD.
(1)求△OCD的面积;
(2)当BE=1
2
AC时,求CE的长.
27.(本题满分8分)如图,已知⊙O 上依次有A ,B ,C ,D 四个点,»
»AD BC ,连接AB ,AD ,BD ,弦AB 不经过圆心O .延长AB 到E ,使BE =AB ,连接EC ,F 是EC 的中点,连接BF .
(1)若⊙O 的半径为3,∠DAB =120°,求劣弧»BD
的长; (2)求证:BF =
1
2
BD ; (3)设G 是BD 的中点探索:在⊙O 上是否存在点P (小同于点B ),使得PG =PF?并说明PB 与AE 的位置关系.
28.(本题满分9分)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=43 cm,AD=4cm.若⊙O与矩形ABCD沿l1同.时.向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).
(1)如图①,连接OA,AC,则∠OAC的度数为▲°;
(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);
(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围.(解答时可以利用备用图画出相关示意图)
29.(本题满分10分)如图,一次函数y=a(x2-2mx-3m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A,B(点A位于点B的左侧),与y轴交于点C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.
(1)用含m的代数式表示a;
(2)求证:AD
AE
为定值;
(3)设该二次函数图象的顶点为F.探索:在x轴的负半轴上是否存在点G,连接CF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.。

相关文档
最新文档