六下《鸽巢问题--袜子》练习
(易错题)小学数学六年级下册第五单元数学广角(鸽巢问题)检测卷(答案解析)(3)
色的,最少要摸( )个.
A. 10
B. 11
C. 4
12.45 个球最多放在( )个盒子里,才能保证至少有一个盒子里 7 个球.
A. 8
B. 7
C. 9
D. 10
二、填空题
13.把红、黄、蓝三种颜色的球各 8 个放到一个袋子里.至少要取________个球,才可以 保证取到两个颜色相同的球;至少要取________个球,才能保证取到两个颜色不同的球.
17.一次数学测试,得分都是整数,总分 100 分,其中得分是 95 分以上(含 95 分)的同 学有 7 名.这 7 人中至少有________人的得分是相同的.
18.把黄色、白色乒乓球各 8 个放在一个盒子里,至少摸出________个乒乓球,可以保证 有 2 个乒乓球同色。
19.9 只鸽子飞回 4 个笼子.至少有________只鸽子要飞进同一个笼子。 20.把红、黄、蓝、白四种颜色的球各 8 个放到一个袋子里。至少要取________个球,才
6.B
解析: B 【解析】【解答】5÷2=2(只)……1(只), 至少:2+1=3(只). 故答案为:B. 【分析】抽屉原理的公式:a 个物体放入 n 个抽屉,如果 a÷n=b……c,那么有一个抽屉至少 放(b+1)个物体,据此解答.
7.B
解析: B 【解析】【解答】18÷12=1…6,1+1=2。 答:至少有 2 个小朋友在同一个月出生,最多 18 个。 故选:B。 【分析】本题可根据抽屉原理进行理解:12 个月为 12 个抽屉,18 个小朋友为 18 个乒乓 球.18÷12=1…6,1+1=2.即 18 个小朋友中,至少有 2 个小朋友在同一个月出生。
10.C
六年级下册数学鸽巢问题练习题知识讲解
六年级下册数学鸽巢问题练习题六年级下册数学鸽巢问题练习题第1节鸽巢问题测试题一、填空1.把一些苹果平均放在3个抽屉里,总有一个抽屉至少放入几个呢?请完成下表:2.研究发现,在抽屉原理的问题中,“抽屉”至少放入物体数的求法是用物体数除以数,当除得的商没有余数时,至少放入的物体数就等于;当除得的商有余数时,至少放入的物体数就等于。
3.箱子中有5个红球,4个白球,至少要取出个才能保证两种颜色的球都有,至少要取个才能保证有2个白球。
4.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种水果,那么至少要有个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有个小朋友才能保证两人拿的水果是相同的。
5.将红、黄、蓝三种颜色的帽子各5顶放入一个盒子里,要保证取出的帽子有两种颜色,至少应取出顶帽子;要保证三种颜色都有,则至少应取出顶;要保证取出的帽子中至少有两顶是同色的,则至少应取出顶。
二、选择1.把25枚棋子放入下图的三角形内,那么一定有一个小三角形中至少放入枚。
第 1 页共页A. B.C.D.92.某班有男生25人,女生18人,下面说法正确的是。
A.至少有2名男生是在同一个月出生的B.至少有2名女生是在同一个月出生的C.全班至少有5个人是在同一个月出生的D.以上选项都有误3.某班48名同学投票选一名班长,候选人是小华、小红和小明三人,计票一段时间后的统计结果如下:规定得票最多的人当选,那么后面的计票中小华至少还要得票才能当选?A. B.C. D.94.学校有若干个足球、篮球和排球,体育老师让二班52名同学到体育器材室拿球,每人最多拿2个,那么至少有名同学拿球的情况完全相同。
A.8B.C.D.25.如图,在小方格里最多放入一个“☆”,要想使得同一行、同一列或对角线上的三个小方格都不同时出现三个“☆”,那么在这九个小方格里最多能放入个“☆”。
《易错题》小学数学六年级下册第五单元数学广角(鸽巢问题)检测(有答案解析)(3)
19.【解析】【解答】10001÷500=20(只)……1(只)至少:20+1=21(只)故 答案为:21【分析】抽屉原理的公式:a 个物体放入 n 个抽屉如果 a÷n=b……c 那么有一个抽屉至少放(b+1)个物体
解析:【解析】【解答】4+1=5(个)
故填:5 【分析】应用“抽屉原理”,要保证取到两个颜色相同的球,先想最坏的结果,连续取 4 次 每次取到的球都不同颜色,那么再取第 5 个球时,无论是什么颜色,一定会和前面 4 个球 的颜色有一个相同。
16.【解析】【解答】解:把 5 颗梨放在 4 个盘子里总有 1 个盘子至少要放进 2 颗梨故答案为:1【分析】5÷4=1……11+1=2 所以总有 1 个盘子至少放进 2 颗梨
5.袋中有 60 粒大小相同的弹珠,每 15 粒是同一种颜色,为保证取出的弹珠中一定有 2
粒是同色的,至少要取出( )粒才行。
A. 4
B. 5
C. 6
D. 7
6.把红、黄、蓝三种颜色的球各 5 个放进一个盒子里,至少取( )个球可以保证取到两
个颜色相同的球.
A. 4
B. 5
C. 6
7.某校六年级有 370 人,六年级里面一定有( )个人的生日是同一天.
三、解答题
21.纸箱里杂乱地放着黑、白、红、绿、黄五种颜色的袜子各 50 只,规格都相同。在黑暗 中至少要取出多少只袜子,才能保证有 15 双颜色相同的袜子? 22.17 个小朋友乘 6 条小船游玩,至少要有几个小朋友坐在同一条船上? 23.将 400 本书随意分给若干同学,但是每个人不许超过 11 本,问:至少有多少个同学 分到的书的本数相同? 24.一个口袋中装有 500 粒珠子,共有 5 种颜色,每种颜色各 100 粒。如果你闭上眼睛, 至少取出多少粒珠子才能保证其中有 5 粒颜色相同? 25.把 125 本书分给五⑵班的学生,如果其中至少有一个人分到至少 4 本书,那么,这个 班最多有多少人?
解答题-数学广角-鸽巢问题(专项突破)-小学数学六年级下册期末复习大综合(人教版)
(期末复习)解答题-数学广角-鸽巢问题(专项突破)一、解答题1.有5种颜色的袜子各10只混装在纸箱内,从纸箱中至少取出多少只,能保证有3双袜子?2.高老头让儿子小高去买馒头,分给高家庄上下老小40口人,请问小高至少要买多少个馒头,才能保证总有人至少能够分到5个馒头?3.9个苹果放在4个抽屉里,“抽屉王”里至少有几个苹果呢?4.7个小朋友相约去看电影,共有《哈利·波特》、《驯龙高手》、《功夫熊猫》三部电影可选择,每个小朋友可选一个电影组合(不重复的两部电影)观看,至少有几个小朋友选的电影组合相同?5.在一个直径为2m的圆形花坛周围放上7盆花,那么至少有2盆花之间的距离不超过1米,为什么?(提示:可以通过计算后画图说明)6.不透明的袋子中,有外形完全一样的红黄蓝,三种颜色的球各10个,每个小朋友从中摸出一个球,至少有多少个小朋友摸球才能保证一定有5个小朋友摸的球颜色一样?7.王老师借来了历史、文艺和科普三种书若干本.每个同学从中任意借一本或两本,那么至少要几个同学借阅才能保证一定有两人借的图书一样?8.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?9.把11支圆珠笔发给5名同学,不管怎么发,总有一名同学至少发到3支圆珠笔。
为什么?10.参加数学竞赛的210名学生中,能否保证有18名或18名以上的学生出生的月份相同?为什么?11.把一些桃子放进了3个盘子里,总有一个盘子里至少有3个桃子,这些桃子一定是7个。
这句话对吗?为什么?12.操场上有20名同学在跳绳,这些同学是六年级3个班的,至少有多少名同学是同一个班的?13.六(2)班有48人,每人至少订一份刊物,现有甲、乙、丙三种刊物,每人有几种选择方式?这个班订相同刊物的至少有多少人?14.“六一”儿童节,李老师拿133个小礼物发给班里的所有学生,如果至少有一名学生拿到了4个小礼物,那么,李老师班里最多有多少名学生?15.张叔叔参加打靶比赛,5发子弹打了47环,至少有2发子弹打了10环你知道为什么吗?16.同学们都喜欢玩“剪刀、石头、布”的游戏吧!4个同学一起玩,同时出,出现的手势会有什么必然的规律呢?17.六(1)班有6名同学参加知识竞赛,满分100分。
人教版六年级数学下册第五单元 第1课时 数学广角(鸽巢问题)(同步练习)
人教版六年级数学下册课时作业第五单元第1课时数学广角(鸽巢问题)一、填空题1. 把9本书放入8个抽屉里,总有一个抽屉里至少放入本书。
2. 袋里有形状、大小完全相同的红、黄、白3种颜色的小球各3个,一次最少摸出个小球,才能保证至少有2个小球的颜色相同。
3. “六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择一种不同水果,那么至少要有个小朋友才能保证有两人选的水果是相同的。
4. 六(1)班有学生37人,同一个月份出生的学生至少有人。
5. 黑、白两种颜色的袜子各8只混在一起,闭上眼睛随便拿,至少要拿只,才能保证一定有一双同色袜子;至少要拿只才能保证有4只同色袜子。
6. 英才小学六(2)班有29名男同学,20名女同学,至少有名同学是同一个月过生日。
7. 2022年冬奥会中国体育代表团总人数为387人,其中运动员176人,是史上参赛规模最大的一届。
运动员中至少有人在同一个月生日。
8. 从扑克牌中取出两张王牌,在剩下的52张中至少抽出张,才能保证至少有2张是不同花色的;至少抽出张,才能保证至少有2张是相同花色的。
9. 黄老师给家人买衣服,有红、黄、白三种颜色,但结果总是至少有两个人的颜色一样,她家里至少有人。
10. 贤鲁岛是以“生态花岛+水乡人家”为主题的生态旅游度假区,学校组织50名同学参观贤鲁岛上的“万顷园艺世界”、“鲁岗村”、“贤僚村”三个景点。
行程安排每人至少参观一个景点,那么至少有人游玩的景点相同。
二、判断题11. 六(1)班有52位学生,至少有5个人在同一个月过生日。
()12. 把32个篮球分给6个小组,总有1个小组至少分到6个篮球。
( ) 13. 六个同学在一起练习投篮,共投进了21个球,那么有一人至少投进了4个球。
( ) 14. 龙一鸣玩掷骰子游戏,要保证掷出的骰子的点数至少有两次相同,他最少应掷7次。
() 15. 5只鸽子飞进3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。
(必考题)小学数学六年级下册第五单元数学广角(鸽巢问题)检测题(有答案解析)(3)
15.有红、黄、白三种颜色的小球各 个,混合放在一个布袋中,一次至少摸出________
个,才能保证有 个小球是同色的?
16.将 9 本书放进 5 个抽屉里,总有一个抽屉里至少放了________本书.
17.一次数学测试,得分都是整数,总分 100 分,其中得分是 95 分以上(含 95 分)的同 学有 7ห้องสมุดไป่ตู้名.这 7 人中至少有________人的得分是相同的. 18.幼儿园有 3 种玩具各若干件,每个小朋友任意拿 2 件不同种类的玩具,至少有 ________个小朋友来拿,才能保证有 2 个小朋友拿的玩具相同。 19.在 2 个盒子里放入 11 块橡皮,总有一个盒子里至少放进________块橡皮。 20.把 5 个梨放在 4 个盘子里,总有________个盘子至少要放 2 个梨。
15.【解析】【解答】解:根据最不利原则至少需要摸出 4×3+1=13(个)故答 案为:13【分析】三种颜色看作 3 个抽屉要保证一个抽屉中至少有 5 个苹果最 坏的情况是每个抽屉里有 4 个苹果根据抽屉原理作答即可
解析:【解析】【解答】解:根据最不利原则,至少需要摸出 4×3+1=13(个). 故答案为:13。 【分析】三种颜色看作 3 个抽屉,要保证一个抽屉中至少有 5 个苹果,最“坏”的情况是每 个抽屉里有 4 个“苹果”,根据抽屉原理作答即可。
(必考题)小学数学六年级下册第五单元数学广角(鸽巢问题)检测题(有答 案解析)(3)
一、选择题
1.某小学有 6 个年级,每个年级有 8 个班。一天放学,8 位小朋友一起走出校门。那么,
下列说法中,正确的是( )。
A. 他们中至少有 2 人出生月份相同
B. 他们中至少有 2 人是同一年级的
(好题)小学数学六年级下册第五单元数学广角(鸽巢问题)测试卷(包含答案解析)(3)
(好题)小学数学六年级下册第五单元数学广角(鸽巢问题)测试卷(包含答案解析)(3)一、选择题1.六(1)班有42名学生,男、女生人数比为1:1,至少任意选取()人,才能保证男、女生都有。
A. 3B. 2C. 10D. 222.一个布袋中装有若干只手套,颜色有黑、红、蓝、白4种,至少要摸出( )只手套,才能保证有3只颜色相同。
A. 5B. 8C. 9D. 123.5只小鸡被装进2个鸡笼,总有一个鸡笼至少有( )只小鸡。
A. 2B. 3C. 44.有红、黄、白三种颜色的球各4个,放在一个盒子里。
至少取出( )个球,可以保证取到4个颜色相同的球。
A. 8B. 9C. 10D. 11 5.1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少有( )只鸽子。
A. 20B. 21C. 22D. 236.在任意的37个人中,至少有()人属于同一种属相.A. 3B. 4C. 5D. 27.黑桃和红桃扑克牌各5张,要想抽出3张同类的牌,至少要抽出()张.A. 3B. 5C. 6D. 88.从一幅扑克牌中抽出2张王牌,在剩下的52张中任意抽()张,才能保证有两张是相同花色的.A. 4B. 6C. 5D. 99.一个袋子里装着红、黄、二种颜色球各3个,这些球的大小都相同,问一次摸出3个球,其中至少有()个球的颜色相同.A. 1B. 2C. 310.把()种颜色的球各8个放在一个盒子里,至少取出4个球,可以保证取到两个颜色相同的球.A. 1B. 2C. 3D. 4 11.在一个不透明的袋子中装有红、黄两种颜色的球各4个,至少要摸出()个球才能保证摸到两个同颜色的球.A. 2B. 3C. 4D. 512.有红、黄、蓝、绿四种颜色的球各10个,至少从中取出()个球保证有3个同色。
A. 3B. 5C. 9D. 13二、填空题13.把15个学生分到6个组,总有一个组至少有________人。
14.把红、黄、蓝三种颜色的球各5个放到袋子里。
六年级下册数学试题 - 第五单元《 数学广角—鸽巢问题》单元测试卷 人教版(含答案)
人教新版六年级下学期《5 数学广角——鸽巢问题》单元测试卷一.操作题(共2小题)1.盒子里有同样大小的球,要想摸出的球一定是2个相同的号码,至少要摸出几个球?2.将红、绿、黄三种颜色的筷子各5根混放在一起,如果闭上眼睛,最少拿多少根筷子就一定能保证拿出的筷子里至少有两根是同色的?请说明你的理由.二.解答题(共23小题)3.把9本书放进2个抽屉里,总有一个抽屉至少放进5本书,为什么?4.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本.那么,至少个学生中一定有两人所借的图书属于同一种.5.红、黄、蓝三种颜色的球各6个,混合后放在一个布袋里,一次至少摸出几个,才能保证有两个是同色的?6.有一个布袋里有红色、黄色、蓝色袜子各10只,问最少要拿多少只才能保证其中至少有2双颜色不相同的袜子.7.黄色卡片6张,红色卡片4张,蓝色卡片5张放在袋子里,至少要摸出4张,就可以保证摸出两张颜色相同的卡片..8.有黑色,白色,红色的筷子各8根,混杂放在一起,黑暗中想从中取出两双不同颜色的筷子(每双筷子是同色的两根筷子)那么至少要取多少根?9.在下面的方格中,将每一个方格涂上红色或者黄色,不论如何涂色,至少有几列的颜色是完全相同的?10.抽屉里放着红、绿、黄三种颜色的球各3只.一次至少摸出多少只才能保证每种颜色至少有一只?11.一个袋子中有20只绿袜子、30只蓝袜子,40只白袜子,大小都一样.不用眼睛看,至少摸出只袜子,才能保证摸出的袜子中至少有1双袜子.(颜色相同的两只袜子为一双)12.把7只小猫分别关进3个笼子里,不管怎么放,总有一个笼子里至少有只猫.13.在明年(即2014年)出生的1000个孩子中,请你预测:(1)同月出生的孩子至少有个.(2)至少有个孩子将来不单独过生日.14.口袋里有同样大小的6个红球、8个白球和12个黑球,闭上眼睛从口袋里摸球,至少取出4个球,才能保证摸出的几个球中有黑球..15.把蓝、白、黑三种颜色的袜子各3只混在一起.如果让你闭上眼睛,每次最少摸出几只才能保证一定有2只同色的袜子?如果要保证有2双不同色的袜子呢?(指一双袜子为其中一种颜色,另一双袜子为另一种颜色)16.把4个苹果放在3个盘子里,总有一个盘子里至少有个苹果.17.从1,2,3,…,30这30个自然数中,至少要取出个不同的数,才能保证其中一定有一个数是5的倍数.18.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,最少要摸出只手套才能保证有3副同色的.19.叔叔参加飞镖比赛,投了5镖,成绩是42环.张叔叔至少有一镖不低于9环.为什么?20.将400张卡片分给若干个同学,每人都能分到,但都不超过11张,试证明:至少有7名同学分到的卡片的张数相同.21.8只鸽子飞回3个鸽舍里,至少有几只鸽子要飞进同一个鸽舍里,为什么?22.一批鸽子要飞回8个鸽笼,总有一个鸽笼里至少飞进4只鸽子.这批鸽子至少有多少只?23.一个袋子里有红、黄、蓝袜子各5只,一次至少取出多少只才能保证每种颜色至少有一只?24.箱子里放有红、黄、蓝三种颜色的小球各10只,要求闭着眼睛保证一次摸出不少于四只同色的小球,那么需要摸出的只数至少是多少只?25.老师准备了20道考题,六(3)班有54人,六(3)班至少有几个同学抽到同一道考题?人教新版六年级下学期《5 数学广角——鸽巢问题》单元测试卷参考答案与试题解析一.操作题(共2小题)1.【解答】解:2.【解答】解:从最不利的情况考虑:如果取出的头3根分别是3种颜色中的各1根,那么第4根肯定能与头3根中的一根配成颜色相同的一双,即3+1=4(根)答:最少拿4根筷子就一定能保证拿出的筷子里至少有两根是同色的.二.解答题(共23小题)3.【解答】解:9÷2=4(本)…1(本).4+1=5(本).所以把9本书放进2个抽屉里,总有一个抽屉至少要放5本.4.【解答】解:按(历史,文艺),(文艺,科普),(历史,科普),(历史,历史),(文艺,文艺),(科普,科普)六种情况,构造六个抽屉,6+1=7,所以至少7个学生中一定有两人所借的图书属于同一种.故答案为:7.5.【解答】解:3+1=4(个);答:一次至少摸出4个,才能保证有两个是同色的.6.【解答】解:根据题干分析可得:10+2+1=13(只),答:至少摸出13只才能保证其中至少有2双颜色不相同的袜子.7.【解答】解:3+1=4(张),至少要摸出4张,就可以保证摸出两张颜色相同的卡片;所以原题说法正确;故答案为:√.8.【解答】解:根据题干可得:把黑色,白色和红色看做3个抽屉,考虑最差情况:摸出10根:8根黑色的,1根白色的,1根红色的,那么再任意摸出1根,无论放入白色抽屉,还是放入红色抽屉,都会出现有两双不同颜色的筷子,所以10+1=11(根),答:至少要取11根.9.【解答】解:一共有9个,每一列有4种不同的涂色的方法;9÷4=2(列)…1(列)2+1=3(列)答:不论如何涂色,至少有3列的颜色是完全相同的.10.【解答】解:3+3+1=7(只);答:一次至少摸出7只才能保证每种颜色至少有一只.11.【解答】解:3+1=4(只);答:至少取出4只,才能保证其中必有两只配成颜色相同的一双.故答案为:4.12.【解答】解:7÷3=2(只)…1(只)2+1=3(只);答:总有一个笼子里至少有3只猫.故答案为:3.13.【解答】解:(1)1000÷12=83(人)…4(人)83+1=84(人)答:同月出生的孩子至少有84个.(2)1000﹣(365﹣1)=1000﹣364=636(人)答:至少有636个孩子将来不单独过生日.故答案为:84,636.14.【解答】解:6+8+1=15(个).所以至少从中取出15个球,才能保证其中有黑球.所以原题说法错误.故答案为:×.15.【解答】解:(1)3+1=4(只)答:每次最少摸出4只才能保证一定有2只同色的袜子.(2)3+2+1=6(个)答:每次最少摸6只才能保证有2双不同色的袜子.16.【解答】解:4÷3=1(个)…1(个)1+1=2(个)答:总有一个盘子里至少有2个苹果.故答案为:2.17.【解答】解:1,2…30中共有5、10、15、20、25、30这6个数是5的倍数,取出24个不能保证有一个为5的倍数.24+1=25(个),所以取出25个不同的数字,才能保证其中一定有一个数是5的倍数,故答案为:25.18.【解答】解:根据分析可得:4×5+1=21(只);答:最少要摸出21只手套才能保证有3副同色的.故答案为:21.19.【解答】解:因为42÷5=8…2,8+1=9(环),所以至少有一镖不低于9环.20.【解答】解:假设没有7人以上分到的卡片数相同,那么最多就6人分得的卡片张数相等,根据题意,那么1﹣11每个数字最多有6个人分到那分的卡片数最多为:1×6+2×6+3×6+4×6+5×6+6×6+7×6+8×6+9×6+10×6+11×6=396张,不到400张,说明此假设不成立,所以至少有7名同学分得的卡片张数相等.21.【解答】解:8÷3=2(只)…2(只),2+1=3(只);答:至少有3只鸽子要飞进同一个鸽舍.22.【解答】解:根据分析可得,3×8+1=24+1=25(只)答:这批鸽子至少有25只.23.【解答】解:根据分析可得,5+5+1=11(只);答:一次至少取出11只才能保证每种颜色至少有一只.24.【解答】解:(4﹣1)×3+1,=3×3+1,=9+1,=10(只).答:需要摸出最少10只.25.【解答】解:54÷20=2(人)…14(人),至少:2+1=3(人);答:至少3人抽到同一道考题.。
人教版六年级数学下册第五单元《数学广角(鸽巢问题)》测试卷(含答案)
人教版六年级数学下册第五单元《数学广角——鸽巢问题》测试卷(全卷共4页,满分100分,50分钟完成)一、认真填一填。
(每空2分,共36分)1.把红、黄两种颜色的球各4个装在同一个盒子里。
至少摸出()个球,一定有2个是同色的;如果任意摸出5个,总有一种颜色的球至少有()个。
2.口袋中有5个白球和3个黑球,那么摸到()球的可能性大,一次至少摸出()个球,才能保证至少有1个黑球。
3.袋子中有1个红球、2个黄球和3个白球,至少摸出()个球,才能保证一定能摸到两种颜色的球。
4.六(1)班有45名同学,这个班中至少有()名同学是同一个月出生的。
从中至少任意选出()名同学才能保证一定有两名同一个月出生的同学。
5.盒子里有同样大小的5个红球,4个白球。
任意摸一个球,摸出()球的可能性大。
如果保证至少要摸出一个白球,至少要摸()个球。
6.把红黄蓝绿四种颜色的球各20个放到一个袋子里,至少取出()个球,才能保证取到两个颜色相同的球。
7.把红黄绿三种颜色的筷子各两双混在一起,如果闭上眼睛,最少拿出()根才能保证一定有一双同色筷子。
8.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种不同水果,那么至少要有()个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有()个小朋友才能保证两人拿的水果是相同的。
9.5只小鸟飞进两个笼子,至少有()只小鸟飞进同一个笼子。
10.如果把6本书放到4个抽屉里,至少有()本书要放到同一个抽屉里。
11.有4只鸽子,要飞进3个鸽巢里,至少有()只鸽子飞进同一个鸽巢里;如果有9只鸽子飞进4个鸽巢,至少有()只鸽子飞进同一个鸽巢里。
12.有16名学生要分到6个班,至少有一个班分进()名学生。
二、仔细判一判。
(对的画“√”,错的画“×”,每题2分,共10分)()1.抽屉原理最早是由德国数学家狄利克雷提出并应用于解决数论中的问题。
人教版六年级数学下册第五单元《用鸽巢原理解决生活中的问题》同步练习附答案
人教版六年级数学下册9.用鸽巢原理解决生活中的问题一、仔细审题,填一填。
(每小题4分,共16分)1. 创客社团共有16位同学,至少有()位同学在同一个月过生日。
2.王阿姨给她的微信好友回复表情,她一共回复了15个表情,要保证总有1个微信好友至少收到2个表情,她最多回复了()个微信好友。
3.盒子里有红、黄、蓝三种颜色的袜子各4双,要想摸出的袜子一定有2只是同色,最少要摸出()只袜子。
4.把n本书分别放进6个抽屉,总有一个抽屉至少放3本书,这些书至少有()本。
二、火眼金睛,判对错。
(对的在括号里画“√”,错的画“×”)(每小题4分,共12分)1.三个同学在一起玩游戏,其中一定有两个人性别相同。
() 2.任意给出3个不同的自然数,其中一定有两个数的和是偶数。
() 3.一共有10元钱,要发8个红包(每个红包的钱数为整数),总有1个红包至少是3元钱。
()三、仔细推敲,选一选。
(将正确答案的序号填在括号里)(每小题4分,共16分)1.六(1)班有48名同学,按照1,2,3,4,5循环报数。
报数完毕,老师随意叫出至少()名同学,就可以保证有2名同学报的数相同。
A.6 B.9 C.102.在学校科技比赛中,有31名同学报名参加了航模、海模和创意制作三个项目的比赛,总有一个项目至少有()名同学参加。
A.4 B.10 C.113.41名同学征订3种不同的语文主题丛书,最少的订1种,最多的订3种,至少有()名同学订的书相同。
A.5 B.6 C.7 D.84.有40个标有号码的小球,其中号码为1、2、3、4的各有10个。
至少取出()个,才能保证至少有2个号码相同的小球;至少取出()个,才能保证有4个不同号码的小球。
A.5 B.13 C.31 D.11四、写一写,画一画。
(共20分)1.将下面的格子涂成不同的三种颜色,且每列的3个格子的颜色不同。
至少有几列格子的涂色方法相同?(8分)2.在下面的空格里写上“国”或“家”字,仔细观察每一列。
【数学】人教版数学六年级下册:第5单元《广角鸽巢问题》单元测试卷(含答案解析)
人教版数学六年级下册:第5单元《广角鸽巢问题》单元测试卷(含答案解析)一、单选题(共6题;共18分)1.有红、黄、白三种颜色的球各4个,放在一个盒子里。
至少取出( )个球,可以保证取到4个颜色相同的球。
A.8B.9C.10D.112.把7本书放进2个抽屉,总有一个抽屉至少放( )本书。
A. 3B. 4C. 5D. 63.5只小鸟飞进2只笼子,总有一个笼子至少( )只小鸟。
A. 1B. 2C. 3D. 44.从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出( )个苹果。
A. 1B. 2C. 3D. 45.袋中有60粒大小相同的弹珠,每15粒是同一种颜色,为保证取出的弹珠中一定有2粒是同色的,至少要取出( )粒才行。
A. 4B. 5C. 6D. 76.把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽屉,它里面至少有( )个苹果。
A. 7B. 8C. 9D. 10二、判断题(共8题;共20分)1.六(2)班有学生50人,至少有5人是同一个月出生的。
( )2.把5支铅笔分给2个同学,总有一个同学至少拿到3支铅笔。
( )3.一个盒子里有同样大小的黄球和黑球各4个,只要摸出3个球,就可以保证一定有2个同色的球。
( )4.有10个苹果放在4个盘子里,则至少有一个盘子不少于3个。
( )5.有7本书放入2个抽屉,有一个抽屉至少放4本书。
( )6.在366人当中,一定有2人是同一天出生的。
( )7冬冬的3次数学测试,一共得了280分(成绩都为整数),至少有一次不低于94分。
( ) 8.把红黄两种颜色的小棒各4根捆在一起,每次最少抽出5根小棒就可以保证一定有不同色的小棒。
( )三、填空题(共7题;共23分)1.已知盘子里有2个红球,3个白球,4个蓝球,从中至少摸出( )个球,才能保证每种颜色的球至少有l个。
2.口袋里装着5个黄球和3个黑球,那么摸到( )球的可能性大些,至少摸出( )个球,才能保证其中有一个是黄球。
人教新课标小学六年级数学下册第5单元《数学广角-鸽巢问题》测试题(有答案)
人教新课标小学六年级数学下册第5章数学广角-鸽巢问题单元测试题一.选择题(共8小题)1.学校篮球队的5名队员练习投篮,共投进了48个球,总有一名队员至少投进()个球.A.9B.10C.11D.122.六年级三班有53人,那么这个班级中至少有()人的生日在同一个月.A.1B.3C.5D.73.同时抛出若干枚硬币,确保至少有5枚硬币朝上的面相同,最少要拿()枚硬币去抛.A.5B.7C.9D.114.1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少有()只鸽子.A.20B.21C.22D.235.从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出()个苹果.A.1B.2C.3D.46.一个布袋中装有若干只手套,颜色有黑、红、蓝、白4种,至少要摸出()只手套,才能保证有3只颜色相同.A.5B.8C.9D.127.阳光幼儿园有157名小朋友,至少有()名小朋友同一个月出生.A.12B.13C.14D.158.一个布袋里有黑、白、灰三种颜色的袜各10只,最少要摸()只才能保证其中至少有2只颜色不相同的袜子.A.13B.14C.11二.填空题(共8小题)9.将2016颗黑子,201颗白子排成一条直线,至少会有颗黑子连在一起.10.希望小学六(1)班有学生38人,同一个月份出生的学生至少有人.11.一副扑克牌有四种花色(大、小王除外),每种花色各有13张,现在从中任意抽牌,至少抽张牌,才能保证有5张牌是同一种花色的.12.某班要至少有5人是出生在同一个月里,这个班至少有人.13.9只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了只鸽子.14.在2个盒子里放入11块橡皮,总有一个盒子里至少放进块橡皮.15.10001只鸽子飞进500个鸽笼中,无论怎样飞,总有一个鸽笼里至少飞进只鸽子.16.红旗小学六(5)班有15人,至少有人是同一个月出生的?三.判断题(共5小题)17.36只鸽子飞进5个的笼,总有一个笼子至少飞进了8只鸽子.(判断对错)18.把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书.(判断对错)19.张叔叔参加飞镖比赛,投了4镖,总成绩是33环,且每一镖的成绩都是整数环.张叔叔至少有一镖不低于9环.(判断对错)20.在366人当中,一定有2人是同一天出生的.(判断对错)21.367人中必有2人的生日相同.(判断对错)四.应用题(共5小题)22.某班有个小书架,40名学生可以任意借阅图书,小书架上至少要有多少本书,才保证总有一名同学至少借到两本书?23.有5050张数字卡片,其中1张上面写着数字“1”,2张上面写着数字“2”,3张上面写着数字“3”,…,99张上面写着数字“99”,100张上面写着数字“100”.现在要从中任意取出若干张,为了确保抽出的卡片中至少有10张完全相同的数字,至少要抽出多少张卡片?24.10封信投入3个信箱里,至少有4封信投入同一个信箱里,为什么?25.三年级二班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书?26.希望小学有36人乘车外出春游,最多乘几辆车才能保证至少有一辆车上的人数不少于8?五.解答题(共4小题)27.7只鸽子飞回3个鸽舍,至少有只鸽子飞回同一个鸽舍里.28.把9本书放进2个抽屉里,总有一个抽屉至少放进5本书,为什么?29.国王让阿凡提在8×8的国际象棋棋盘的每个格子里放米粒.结果每个格子里至少放一粒米,无论怎么放都至少有3个格子里的米粒一样多,那么至多有多少个米粒?30.一个盒子里装有黑白两种颜色的跳棋各10枚,从中最少摸出几枚才能保证有2枚颜色相同?从中至少摸出几枚,才能保证有3枚颜色相同?参考答案与试题解析一.选择题(共8小题)1.解:48÷5=9(个)…3(个)9+1=10(个)答:一定有一名队员至少投进了10个球.故选:B.2.解:53÷12=4(人)…5(人)4+1=5(人)答:这个班级中至少有5人的生日在同一个月.故选:C.3.解:2×4+1=8+1=9(枚)答:最少要拿9枚硬币去抛.故选:C.4.解:1000÷50=20(只),答:它里面至少有20只鸽子.故选:A.5.解:17÷8=2(个)…1(个),2+1=3(个)所以最多的抽屉里面有3个苹果.答:拿出苹果最多的抽屉,从它里面至少拿出3个苹果.故选:C.6.解:根据题干分析可得:2×4+1=9(只)答:至少要摸出9只手套,才能保证有3只颜色相同.故选:C.7.解:157÷12=13(名)…1(名)13+1=14(名)答:至少有14名小朋友同一个月出生.故选:C.8.解:考虑最差情况:摸出10袜子,都是同一种颜色,那么再任意摸出1只袜子,一定可以保证有2只袜子的颜色不相同,即,10+1=11(只),答:最少要摸11只才能保证其中至少有2只颜色不相同的袜子.故选:C.二.填空题(共8小题)9.解:2016÷202≈10(个)答:至少会有10颗黑子连在一起.故答案为:10.10.解:38÷12=3(人)…2(人)3+1=4(人)即无论怎么分,至少有4人是同一个月出生的.故答案为:4.11.解:建立抽屉:4种花色看做4个抽屉,考虑最差情况:抽出16张扑克牌,每个抽屉都有4张,那么再任意摸出1张无论放到哪个抽屉都会出现一个抽屉里有4张牌是同一种色花的,所以4×4+1=17(张),答:最少要抽17张牌,才能保证有4张牌是同一花色的.故答案为:17.12.解:4×12+1=48+1=49(人)答:这个班至少有49人.故答案为:49.13.解:9÷4=2(个)…1(只)2+1=3(只)答:至少有一个鸽笼要飞进3只白鸽.故答案为:3.14.解:11÷2=5(块)…1(块)5+1=6(块)所以总有一个盒子里至少放进6块橡皮.故答案为:6.15.解:10001÷500=20(只)…1(只)20+1=21(只)答:总有一个鸽笼至少飞进21只鸽子.故答案为:21.16.解:15÷12=1(人)…3(人)1+1=2(人)答:至少有2人是同一个月出生的.故答案为:2.三.判断题(共5小题)17.解:36÷5=7(只)…1(只),7+1=8(只);总有一个笼子至少飞进了8只鸽子,原题说法正确.故答案为:√.18.解:7÷3=2(本)…1(本)2+1=3(本)答:总有一个抽屉至少会放进3本书.故答案为:√.19.解:因为33÷4=8…1,所以至少有一镖不低于8+1=9环.即李叔叔至少有一镖不低于9环,所以原题说法正确.故答案为:.20.解:366÷366=1(人)即一定有1人是同一天出生的,所以原题说法错误;故答案为:×.21.解:367÷366=1(人)…1(人),1+1=2(人).即至少有2个人的生日是同一天,所以原题说法正确;故答案为:√.四.应用题(共5小题)22.解:根据题干分析可得:40+1=41(本)答:小书架上至少要有41本书,才保证总有一名同学至少借到两本书.23.解:最不利情形是写着1到9的全抽了,写着10到100的各抽了9张,则只要再任抽一张,就能保证抽出的卡片至少有10张的数字完全相同,至少要抽:1+2+…+9+(100﹣10+1)×9+1=45+819+1=865(张)答:至少要从中抽出865张,才能确保在抽出的卡片中至少10张卡片上的数字完全相同.24.解:10÷3=3(封)…1(封)3+1=4(封)答:至少有4封信投入同一个信箱里;因为平均每个邮箱放3封,还余1封,这1封无论怎么放,都至少有4封信投入同一个信箱里.25.解:43+1=44(本)答:至少要准备44本课外书,才能保证有的同学可以同时借两本书.26.解:根据分析可得,(36﹣1)÷(8﹣1)=35÷7=5(辆)答:最多乘5辆车才能保证至少有一辆车上的人数不少于8.五.解答题(共4小题)27.解:根据题干分析可得:7÷3=2(只)…1(只),2+1=3(只),所以至少有3只鸽子要飞进同一个鸽笼里.故答案为:3.28.解:9÷2=4(本)…1(本).4+1=5(本).所以把9本书放进2个抽屉里,总有一个抽屉至少要放5本.29.解:8×8=64(个)64÷2=32(个)1+1+2+2+3+3+……+32+32=(1+32)×32÷2×2=1056(个)1056﹣1=1055(个)答:至多有1055个米粒.30.解:2+1=3(枚),2×2+1=5(枚);答:从中最少摸出3枚才能保证有2枚颜色相同,从中至少摸出5枚,才能保证有3枚颜色相同.。
六年级下册数学试题鸽巢问题含答案人教版
鸽巢问题知识点:鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。
把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。
类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子。
鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。
如:将4支铅笔放入3个笔筒,总有一个笔筒至少有2支铅笔,“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
鸽巢原理(二):如果把多于kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。
如:把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。
我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣,可以得到鸽巣原理最简单的表达形式物体个数÷鸽巣个数=商……余数至少个数=商+1摸同色球计算方法:①要保证摸出同色的球,摸出的球的数量至少要比颜色数多1。
物体数=颜色数×(相同颜色数-1)+1②极端思想(最坏打算):用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。
1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业求证:这5名学生中,至少有两个人在做同一科作业。
2、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。
3、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?4、把红、白、蓝三种颜色的球各10个放到一个袋子里,至少取多少个球,可以保证取到3个颜色相同的球。
(必考题)小学数学六年级下册第五单元数学广角(鸽巢问题)检测题(答案解析)(5)
解析: B 【解析】【解答】解:4﹣1=3(种);
Hale Waihona Puke 故答案应选:B. 【分析】本题可以用抽屉原理的最不利原则;故意在 3 个墙面上涂上甲、乙、丙 3 种颜 色,没有重复,但第 4 面墙只能选甲、乙、丙中的一种,至少有两面的颜色是一致的;所 以得出颜料的种数是 3 种.
7.A
解析: A 【解析】【解答】解:4×2+1=9(个); 答:从中至少取出 9 个球,可以保证取到三个颜色相同的球. 故选:A. 【分析】由于袋子里共有红、黄、蓝、白四种颜色的球各 8 个,考虑最差情况:前 8 个球 摸出的是每种颜色各 2 个,所以只要再多取一个球,就能保证取到 3 个颜色相同的球.
19.【解析】【解答】解:11÷2=5……15+1=6(块)总有一个盒子里至少放进 6 块 橡皮故答案为:6【分析】假如每个盒子里各放入 5 块橡皮那么余下的 1 块无论 放进哪个盒子里都有一个盒子至少放进 6 块橡皮
解析:【解析】【解答】5+1=6(张)。 故答案为:6. 【分析】10 张卡片,5 张奇数 5 张偶数,考虑最不利原则,抽出的 5 张都是奇数,那么只 要在抽一张,就能保证既有偶数又有奇数。
15.2【解析】【解答】解:向东小学六年级共有 367 名学生至少有 2 人的生日 是同一天故答案为:2【分析】闰年一年有 366 天假设每天都有人过生日那么还 有一个人的生日必定会和某一个人是同一天
保证取到三个颜色相同的球.
A. 9
B. 8
C. 5
D. 13
8.王东玩掷骰子游戏,要保证掷出的骰子总数至少有两次相同,他最少应掷( )次.
A. 5
B. 6
C. 7
9.口袋里放有红、黄、白三种颜色的同样的钮扣各 10 枚,至少取出(
六年级数学下册第五单元数学广角—鸽巢问题检测卷(拓展卷)(含答案)人教版
绝密★启用前六年级数学下册第五单元数学广角—鸽巢问题检测卷(拓展卷)考试时间:90分钟;满分:102分班级:姓名:成绩: 注意事项:1.答题前填写好自己的班级、姓名等信息。
2.请将答案正确填写在答题区域,注意书写工整。
卷面(2分)。
我能做到书写端正,格式正确,卷面整洁。
一、认真填一填。
(每空2分,共32分)1.从一副扑克牌中取出两张王牌,在剩下的52张中任意抽出( )张,才能保证至少有2张是同花色的。
2.将红、黄、蓝三种颜色的球各5个放入一个盒子里,要保证取出的球有两种颜色,至少应取出( )个球;要保证取出的球至少有两个是同色的,至少应取出( )个球。
3.盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同颜色的,至少要摸出( )个球。
要想保证摸出的球一定有不同颜色的,至少要摸出( )个球。
4.将9个苹果放到8个抽屉里,总有一个抽屉至少放进了()个苹果,将25个苹果放到8个抽屉里,总有一个抽屉至少放进了()个苹果。
5.妈妈准备了7只信封,在每只信封里都放了钱共100元,要求每一只信封里都放整元数,而且都不相同,那么钱放得最多的一只信封里至少放()元。
6.把18个橘子放进4个果盘里,总有一个果盘里至少放进了()个橘子。
7.11只鸽子飞进4个鸽笼,总有一个鸽笼至少飞进了( )只鸽子。
8.方格中可以写“数”或“学”字。
(1)如果写3行,至少有( )列的写法相同。
(2)如果只写2行,至少有( )列的写法相同。
9.小红参加象棋比赛,胜一盘得3分,平一盘得1分,负一盘不得分,小红已得了7分,她至少下了( )盘。
10.小东玩掷骰子游戏,要保证掷出的骰子点数一定有两次是相同的小东至少应掷( )次。
11.将15名学生分到6个班级,总有一个班级至少分到( )名学生。
12.把若干本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进5本书,这些书至少有( )本。
二、仔细判一判。
(对的画√,错的画X,每题2分,共10分)1.投掷一枚硬币3次,至少有两次出现同一面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄
○ ○ ○
4 × 3 + 1 = 13(个)
答:至少从口袋里任意摸出13个球。
(2)至少从口袋里任意摸出多少个球,才能保证摸到2种不同颜色的球? 假设摸出的前10个全是同一种颜色,再摸1个 一定会出现第2种颜色的球。
10 + 1 = 11(个) 答:至少从口袋里任意摸出11个球。
(3)至少从口袋里任意摸出多少个球,才能保证摸到4种不同颜色的球?
答:把3种数字看作3个抽屉。因为4 ÷ 3=1· · · · · · 1,抛第4 次 无论出现哪一个数字,都会和前3种中的任意一种重复,1+1=2,
(2)有2个上面这个的正方体,一起抛,至少抛多少次会出 现两个数相加的和相等?
两个数相加会出现的结果:
1+1=2 1+2=3 1+3=4 2+1=3 2+2=4 2+3=5 3+1=4 3+2=5 3+3=6
2、把红、蓝、黄三种颜色的筷子各3根混在一起。 (1)如果让你闭上眼睛,每次最少拿出几根才能 保证一定有2根同色的筷子? (2)如果要保证有2双不同色的筷子呢?
红
蓝
黄
(1)3 + 1 = 4(根) (2)4 + 2 = 6(根)
3、王阿姨有规格相同的4种颜色的对对袜(左右不分)各20只放 在箱子里。 (1)如果她闭上眼睛从箱内取袜子,至少取多少只袜子才能保证 有1双袜子?(同色的2只算1双) (2)至少取多少只袜子才能保证有2双袜子? (3)至少取多少只袜子才能保证有4双袜子?
红 蓝 黄 白
(1)4 + 1 = 5(只) (2)5 + 2 = 7(只) (3)7 + 2 + 2 = 11(Hale Waihona Puke )4、小明有 (和
的硬币各3枚,至少取出
7 )枚硬币,才能保证有3枚面值相同的硬币。
1 1
1 1
1 1 1
3 × 2 + 1 = 7(枚)
5、在正方体的6个面分别写上数字1、1、2、2、3、3。 (1)任意抛4次这个正方体,一定至少出现两次相同的数字。 为什么? 1 2 3
所以一定至少出现两次相同的数字。
和的结果有2,3,4,5,6五种。
“种数+1”,5+1=6 答:至少抛6次会出现两个数 相加的和相等
6、口袋里红、黑、白、黄球各10个,这些球除了颜色外其他都一样。 (1)至少从口袋里任意摸出几个球,才能保证摸到4个颜色相同的球?
红
○ ○ ○ ○
黑
○ ○ ○
白
○ ○ ○
假设摸出10个红、10个黑、10个白球,再摸1个 一定会出现第4种颜色的球。
10 × 3 + 1 = 31(个) 答:至少从口袋里任意摸出31个球。
1、任意给出3个不同的自然数,其中一定有两个数的和 是偶数。请说明理由。
因为会出现以下几种情况:
(1)奇数、奇数、奇数。那么任意奇数 + 奇数 = 偶数。 (2)偶数、偶数、偶数。那么任意偶数 + 偶数 = 偶数。 (3)奇数、奇数、偶数。那么其中奇数 + 奇数 = 偶数。 (4)偶数、偶数、奇数。那么其中偶数 + 偶数 = 偶数。 所以其中一定有两个数的和是偶数。