各类传感器介绍
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各类传感器介绍
目前,被人们所关注传感器的类型: 压力传感器、光电传感器、位移传感器、超声波传感器、温度传感器、湿度传感器、光纤传感器。
一、压力传感器
压力传感器、压力变送器的种类及选用
压力传感器及压力变送器分为表压、绝压、差压等种类。
常见0.1、0.2、0.5、1.0等精度等级。
可测量的压力范围很宽,小到几十毫米水柱,大的可达上百兆帕。
不同种类压力传感器及压力变送器的工作温度范围也不同,常分成0~70℃、-25~85℃、-40~125℃、-55~150℃几个等级,某些特种压力传感器的工作温度可达400~500℃。
压力传感器及压力变送器基于不同的材料及结构设计有着不同的防水性能及防爆等级,接液腔体由于材料、形状的差异可测量的流体介质种类也不同,常分为干燥气体、一般液体、酸碱腐蚀溶液、可燃性气液体、粘稠及特殊介质。
压力传感器及压力变送器作为一次仪表需与二次仪表或计算机配合使用,压力传感器及压力变送器常见的供电方式为:DC 5V、12V、24V、±12V等,输出方式有:0~5V、1~5V、0.5~4.5V、0~10mA、0~20mA、4~20mA等及Rs232、Rs485等与计算机的接口。
用户在选择压力传感器及压力变送器时,应充分了解压力测量系统的工况,根据需要合理选择,使系统工作在最佳状态,并可降低工程造价。
压力传感器常见精度参数及试验设备
传感器静态标定设备:活塞压力计:精度优于0.05% 数字压力表: 精度优于
0.05% 直流稳压电源: 精度优于0.05%。
传感器温度检验设备:高温试验箱:温度从0℃~+250℃温度控制精度为±1℃,低温试验箱:温度能从0℃~-60℃温度控制精度为±1℃
传感器静态性能试验项目:零点输出、满量程输出、非线性、迟
滞、重复性、零点漂移、超复荷。
传感器环境试验项目:零点温度漂移、灵敏度漂移、零点迟滞、灵敏度迟滞。
(检查产品在规定的温度范内对温度的适应能力,此项参数对精度影响极为重要)
压力传感器使用注意事项
压力传感器及压力变送器在安装使用前应详细阅读产品样本及使用说明书,安装时压力接口不能泄露,确保量程及接线正确。
压力传感器及压力变送器的外壳一般需接地,信号电缆线不得与动力电缆混合铺设,压力传感器及压力变送器周围应避免有强电磁干扰。
压力传感器及压力变送器在使用中应按行业规定进行周期检定。
压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,简单介绍一些常用传感器原理及其应用:
1、应变片压力传感器原理与应用
力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。
但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。
下面我们主要介绍这类传感器。
在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。
电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。
它是压阻式应变传感器的主要组成部分之一。
电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。
金属电阻应变片又有丝状应变片和金属箔状应变片两种。
通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。
这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行
机构。
金属电阻应变片的内部结构:由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。
根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。
而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。
一般均为几十欧至几十千欧左右。
电阻应变片的工作原理:金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。
我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。
当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。
只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金
2、陶瓷压力传感器原理及应用
抗腐蚀的陶瓷压力传感器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥(闭桥),由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0 / 3.0 / 3.3 mV/V等,可以和应变式传感器相兼容。
通过激光
标定,传感器具有很高的温度稳定性和时间稳定性,传感器自带温度补偿0~70℃,并可以和绝大多数介质直接接触。
陶瓷是一种公认的高弹性、抗腐蚀、抗磨损、抗冲击和振动的材料。
陶瓷的热稳定特性及它的厚膜电阻可以使它的工作温度范围高达
-40~135℃,而且具有测量的高精度、高稳定性。
电气绝缘程度>2kV,输出信号强,长期稳定性好。
高特性,低价格的陶瓷传感器
将是压力传感器的发展方向,在欧美国家有全面替代其它类型传感器的趋势,在中国也越来越多的用户使用陶瓷传感器替代扩散硅压力传感器。
3、扩散硅压力传感器原理及应用
工作原理:被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。
4、蓝宝石压力传感器原理与应用
利用应变电阻式工作原理,采用硅-蓝宝石作为半导体敏感元件,具有无与伦比的计量特性。
蓝宝石系由单晶体绝缘体元素组成,不会发生滞后、疲劳和蠕变现象;蓝宝石比硅要坚固,硬度更高,不怕形变;蓝宝石有着非常好的弹性和绝缘特性(1000 OC以内),因此,利用硅-蓝宝石制造的半导体敏感元件,对温度变化不敏
感,即使在高温条件下,也有着很好的工作特性;蓝宝石的抗辐射特性极强;另外,硅-蓝宝石半导体敏感元件,无p-n漂移,因此,从根本上简化了制造工艺,提高了重复性,确保了高成品率。
用硅-蓝宝石半导体敏感元件制造的压力传感器和变送器,可在最恶劣的工作条件下正常工作,并且可靠性高、精度好、温度误差极小、性价比高。
表压压力传感器和变送器由双膜片构成:钛合金测量膜片和钛合金接收膜片。
印刷有异质外延性应变灵敏电桥电路的蓝宝石薄片,被焊接在钛合金测量膜片上。
被测压力传送到接收膜片上(接收膜片与测量膜片之间用拉杆坚固的连接在一起)。
在压力的作用下,钛合金接收膜片产生形变,该形变被硅-蓝宝石敏感元件感知后,其电桥输出会发生变化,变化的幅度与被测压力成正比。
传感器的电路能够保证应变电桥电路的供电,并将应变电桥的失衡信号转换为统一的电信号输出(0-5,4-20mA或0-5V)。
在绝压压力传感器和变送器中,蓝宝石薄片,与陶瓷基极玻璃焊料连接在一起,起到了弹性元件的作用,将被测压力转换为应变片形变,从而达到压力测量的目的。
5、压电压力传感器原理与应用
压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。
其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。
由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。
而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。
磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。
压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等,压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。
实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。
压电传感器主要应用在加速度、压力和力等的测量中。
压电式加速度传感器是一种常用的加速度计。
它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。
压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。
压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。
也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。
它既可以用来测量大的压力,也可以用来测量微小的压力。
压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛
二、光电传感器
光电传感器的功能主要有:检测物体的有无,检测透明物体,检测色标,检测颜色,检测发光物体,检测位移,激光传感器,CCD 视
像传感器,槽形开关等;检测和测量的光栅及传感器的功能主要有:测量物体的外形,纠偏,检测微小的透明物体,测量位移等;安全光幕的功能主要有:对人的手指,手掌,手臂等身体各部位的2级和4级保护;温度控制器的功能主要有:PID控制和自动演算,自诊断,自动调谐和自适应等功能以及三级软件安全锁。
品牌有:OMRON,SUNX,KEYENCE,SICK,AUTONICS
光电式传感器是以光电器件作为转换元件的传感器。
它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,
以及物体的形状、工作状态的识别等。
光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。
近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。
具体应用:
1、烟尘浊度监测仪:防止工业烟尘污染是环保的重要任务之一。
为了消除工业烟尘污染,首先要知道烟尘排放量,因此必须对烟尘源进行监测、自动显示和超标报警。
烟道里的烟尘浊度是用通过光在烟道里传输过程中的变化大小来检测的。
如果烟道浊度增加,光源发出的光被烟尘颗粒的吸收和折射增加,到达光检测器的光减少,因而光检测器输出信号的强弱便可反映烟道浊度的变化。
2、光电池在光电检测和自动控制方面的应用:光电池作为光电探测使用时,其基本原理与光敏二极管相同,但它们的基本结构和制造工艺不完全相同。
由于光电池工作时不需要外加电压;光电转换效率高,光谱范围宽,频率特性好,噪声低等,它已广泛地用于光电读出、光电耦合、光栅测距、激光准直、电影还音、紫外光监视器和燃气轮机的熄火保护装置等。
光电传感器特长。
①检测距离长:如果在对射型中保留10m以上的检测距离等,便能实现其他检测手段(磁性、超声波等)无法离检测。
②对检测物体的限制少:由于以检测物体引起的遮光和反射为检测原理,所以不象接近传感器等将检测物体限定在金属,
它可对玻璃.塑料.木材.液体等几乎所有物体进行检测。
③响应时间短:光本身为高速,并且传感器的电路都由电子零件构成,所以不包含机械性工作时间,响应时间非常短。
④分辨率高:能通过高级设计技术使投光光束集中在小光点,或通过构成特殊的受光光学系统,来实现高分辨率。
也可进行微小物体的检测和高精度的位置检测。
⑤可实现非接触的检测:可以无须机械性地接触检测物体实现检测,因此不会对检测物体和传感器造成损伤。
因此,传感器能长期使用。
⑥可实现颜色判别:通过检测物体形成的光的反射率和吸收率根据被投光的光线波长和检测物
体的颜色组合而有所差异。
利用这种性质,可对检测物体的颜色进行检测。
⑦便于调整:在投射可视光的类型中,投光光束是眼睛可见的,便于对检测物体的位置进行调整。
三、位移传感器
位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器。
电感式位移传感器是一种属于金属感应的线性器件,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。
电感式位移传感器具有无滑动触点,工
作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。
位移传感器主要应用在自动化装备生产线对模拟量的智能控制。
位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。
小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。
其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用。
原理:计量光栅是利用光栅的莫
尔条纹现象来测量位移的。
“莫尔”原出于法文Moire,意思是水波纹。
几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。
一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。
计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为辐射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。
下面以透射光栅为例加以讨论。
透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b为两刻线之间缝宽,W=a+b称为光栅栅距。
目前国内常用的光栅每毫米刻成10、25、50、100、250条等线条。
光栅的横向莫尔条纹测位移,需
要两块光栅。
一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。
为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。
当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。
由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。
如图1,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移x的函数。
每当x变化一个光栅栅距W,信号就变化一个周期,信号由b点变化到b’点。
由于bb’=W,故b’点的状态与b点状态完全一样,只是在相位上增加了2π。
信号处理:1、辨向原理:在实际应用中,位移具有两个方向,即选定一个方向后,位移有正负之分,因此用一个光电元件测定莫尔条纹信号确定不了位移方向。
为了辨向,需要有π/2相位差的两个莫尔条纹信号。
如图2,在相距1/4条纹间距的位置上安放两个光电元件,得到两个相位差π/2的电信号u01和u02,经过整形后得到两个方波信号u01’和u02’。
光栅正向移动时u01超前u02 90度,反向移动时u02超前u01 90度,故通过电路辨相可确定光栅运动方向。
2、细分技术随着对测量精度要求的提高,以栅距为单位已不能满足要求,需要采取适当的措施对莫尔条纹进行细分。
所谓细分就是在莫尔条纹信号变化一个周期内,发出若干个脉冲,以减少脉冲当量。
如一个周
期内发出n个
脉冲,则可使测量精度提高n备,而每个脉冲相当于原来栅距的1/n。
由于细分后计数脉冲频率提高了 n倍,因此也称n倍频。
通常用的有两种细分方法:其一、直接细分。
在相差1/4莫尔条纹间距的位置上安放两个光电元件,可得到两个相位差90o的电信号,用反相器反相后就得到四个依次相差90o的交流信号。
同样,在两莫尔条纹间放置四个依次相距1/4条纹间距的光电元件,也可获得四个相位差90o的交流信号,实现四倍频细分。
其二、电路细分。
四倍频专用集成电路QA740210同时具有辨相和四倍频细分的功能,可将两路正交的方波进行四倍频后产生两路加、减计数信号,可送双时钟可逆计数器进行加、减计数,也可直接送微型计算机(包括单片机)进行数据处理。
位移传感器特点:1、数字化微分电路:4路微分信号脉宽由主频周期决定,因此,是一致的,而且可在很大范围里方便地选择。
2、临界报警与过速报警两档速度提示:可在光栅运动速度接近极限值时给出临界报警信息,以便操作者及时控制光栅运动快慢。
在速度超过极限值时本电路将给出出错信息.
3、绝对零位控制:绝对零位的设置将给操作者带来许多方便,如故障断电后的重新定位等。
本电路有“到绝对零位开始计数”和“到绝对零位停止计数”,以及“与绝对零位无关”三种工作模式。
4、片选:本电路设有片选端,能构成多标数显系统。
5、COMS工艺:输入输出的电压电流与4000系列CMOS及LSTTL电路兼容。
位移传感器的分类:1、根据运动方式分类:直线位移传感器、角度位移传感器
直线位移传感器原理:直线位移传感器的功能在于把直线机械位移量转换成电信号。
为了达到这一效果,通常将可变电阻滑轨定置在传感器的固定部位,通过滑片在滑轨上的位移来测量不同的阻值。
传感器滑轨连接稳态直流电压,允许流过微安培的小电流,滑片和始端之间的电压,与滑片移动的长度成正比。
将传感器用作分压器可最大
限度降低对滑轨总阻值精确性的要求,因为由温度变化引起的阻值变化不会影响到测量结果。
LT直线位移传感器:广泛应用于注塑、机床及机械加工等行业;无限分辨率;行程:50至900mm;独立线性度:±0.05%;位移速度达到:5m/s、10 m/s可选;工作温度:-30至+100℃;多种电气连接方式;保护等级:IP60(IP65可选)。
角位移传感器原理:采用非接触式专利设计,与同步分析器和电位计等其它传统的角位移测量仪相比,有效地提高了长期可靠性。
它的设计独特,在不使用诸如滑环、叶片、接触式游标、电刷等易磨损的活动部件的前提下仍可保证测量精度。
角位移传感器特点:该传感器采用特殊形状的转子和线绕线圈,模拟线性可变差动传感器(LVDT)的线性位移,有较高的可靠性和性能,转子轴的旋转运动产生线性输出信号,围绕出厂预置的零位移动±60(总共120)度。
此输出信号的相位指示离开零位的位移方向。
转子的非接触式电磁耦合使产品具有无限的分辨率,即绝对测量精度可达到零点几度。
主要技术参数:旋转位移,工作温度范围大,自带信号调节;免接触型传感器,适应不良环境(振动、冲击、潮湿、盐雾等,出色的温度稳定性);线性(100%行程):0.25~0.5;4.多种范围、直流输出;CE认证。
2、根据材质分类:金属膜传感器、导电塑料传感器、光电式传感器、磁敏式传感器、金属玻璃铀传感器、绕线传感器
电位器式位移传感器它通过电位器元件将机械位移转换成与之
成线性或任意函数关系的电阻或电压输出。
普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。
但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。
图1中的电位器式位移传感器的可动电刷与被测物体相连。
物体的位移引起电位器移动端的电阻变化。
阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。
通常在电位器上通以电源电压,以把电阻变化转换为电压输出。
线绕式电位器由于其
电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。
如果这种位移传感器在伺服系统中用作位移反馈元件,则过大的阶跃电压会引起系统振荡。
因此在电位器的制作中应尽量减小每匝的电阻值。
电位器式传感器的另
一个主要缺点是易磨损。
它的优点是:结构简单,输出信号大,使用方便,价格低廉。
霍耳式位移传感器它的测量原理是保持霍耳元件(见半导体磁敏元件)的激励电流不变,并使其在一个梯度均匀的磁场中移动,则所移动的位移正比于输出的霍耳电势。
磁场梯度越大,灵敏度越高;梯度变化越均匀,霍耳电势与位移的关系越接近于线性。
图2中是三种产生梯度磁场的磁系统:a系统的线性范围窄,位移Z=0时,霍耳电势≠0;b系统当Z<2毫米时具有良好的线性,Z=0时,霍耳电势=0;c 系统的灵敏度高,测量范围小于1毫米。
图中N、S分别表示正、负磁极。
霍耳式位移传感器的惯性小、频响高、工作可靠、寿命长,因此常用于将各种非电量转换成位移后再进行测量的场合。
光电式位移传感器它根据被测对象阻挡光通量的多少来测量对
象的位移或几何尺寸。
特点是属于非接触式测量,并可进行连续测量。
光电式位移传感器常用于连续测量线材直径或在带材边缘位置控制系统中用作边缘位置传感器。
主要特性参数:标称阻值:电位器上面所标示的阻值;重复精度:此参数越小越好;分辨率:位移传感器所能反馈的最小位移数值,此参数越小越好,导电塑料位移传感器分辨率为无穷小;允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电位器的精度。
允许误差一般只要在±20%以内就
符合要求,因为一般位移传感器是以分压的方式来使用,具体电阻的大小对传感器的数据采集没有影响;线性精度:直线性误差.此参数越小越好;寿命:导电塑料位移传感器都在200万次以上.常用传感器特性:
导电塑料位移传感器:用特殊工艺将DAP(邻苯二甲酸二稀丙脂)电阻浆料覆在绝缘机体上,加热聚合成电阻膜,或将DAP电阻粉热塑。