2018届高考数学(全国通用)二轮复习中档大题精品讲义 第6讲 概率与统计

合集下载

2018届高三理科数学二轮复习课件:高考解答题专讲6 概率与统计

2018届高三理科数学二轮复习课件:高考解答题专讲6 概率与统计

(2)X 可能的取值是 6,7,8,12,13. -- 1 1 1 P(X=6)=P( A B )= × = , 4 2 8 -- 3 1 2 1 P(X=7)=P(A B C )= × × = , 4 2 3 4 - - 1 1 2 1 P(X=8)=P( A B C )= × × = , 4 2 3 12 3 1 1 1 - P(X=12)=P(A B C)= × × = , 4 2 3 8
[ 解] (1)记“这 3 类节目各被抽到 1 个”为事件 A,
由分步乘法计数原理可得,3 类节目各抽取 1 个的事件数为 12 1 1 3 C1 C C = 12 ,事件总数为 C = 35 ,则 P ( A ) = . 2 3 2 7 35
(2)ξ 的所有可能取值为 0,1,2,3,
3 C4 4 P(ξ=0)= 3= , C7 35 2 1 C4 C3 18 P(ξ=1)= 3 = , C7 35 1 2 C4 C3 12 P(ξ=2)= 3 = , C7 35 3 C3 1 P(ξ=3)= 3= . C7 35
表示“甲同学问题 2 回答正确”,事件 C 表示“甲同学问题 3 回 3 1 1 答正确”,依题意得 P(A)= ,P(B)= ,P(C)= . 4 2 3 记“甲同学能进入下一轮”为事件 D,则 - - P(D)=P(A B C+AB+ A BC) - - =P(A B C)+P(AB)+P( A BC) - - =P(A)P( B )P(C)+P(A)P(B)+P( A )P(B)P(C) 3 1 1 3 1 1 1 1 13 = × × + × + × × = . 4 2 3 4 2 4 2 3 24
线性回归分析与独立性检验的计算 (1)由回归方程分析得出的数据只是预测值不是精确值,此类 ^ 问题的易错点是方程中b的计算,代入公式计算要细心. (2)独立性检验是指利用 2×2 列联表,通过计算随机变量 K2 来确定在多大程度上两个分类变量有关系的方法.

2018版高考数学一轮总温习 高考大题冲关系列6 概率与统计的综合问题讲义 理

2018版高考数学一轮总温习 高考大题冲关系列6 概率与统计的综合问题讲义 理


(
3 4
×23×34
×13+
34×23×
14×23
)
=16404=152
,P(X
=6)=34×
2 3
×34×23=13464=14.
可得随机变量 X 的分布列为
所以数学期望 E(X)=0×1144+1×752+2×12454+3×112 +4×152+6×14=263.
-冲关策略- 解决此类题目的关键是将实际问题转化为数学问题,正确 理解随机变量取每一个值所表示的具体事件,求得该事件 发生的概率.
以频率估计概率得 T 的分布列为
从而 E(T)=25×0.2+30×0.3 +35×0.4 +40×0.1= 32(分钟).
(2)设 T1,T2 分别表示往、返所需时间,T1,T2 的取值 相互独立,且与 T 的分布列相同.设事件 A 表示“刘教授 共用时间不超过 120 分钟”,由于讲座时间为 50 分钟,所 以事件 A 对应于“刘教授在路途中的时间不超过 70 分钟”.
大题冲关系列六
概率与统计的综合问题 命题动向:通过对近五年的高考试题分析,在高考的解 答题中,对概率与随机变量及其分布相结合的综合问题的考 查既是热点又是重点,并且常常与统计相结合,设计成包含 概率计算、概率分布表、随机变量的数学期望与方差、统计 图表的识别等知识为主的综合题.以考生比较熟悉的实际应 用问题为载体,考查学生应用基础知识和基本方法分析问题 和解决问题的能力.
(1)求 N 和[30,35)这组的参加者人数 N1;
(2)已知[30,35)和[35,40)这两组各有 2 名数学教师,现从 这两个组中各选取 2 人担任接待工作,设两组的选择互不影 响,求两组选出的人中都至少有 1 名数学教师的概率?

最新-2018高考数学名师预测 知识点18概率与统计 精品

最新-2018高考数学名师预测 知识点18概率与统计 精品

高考猜题专题02 概率与统计新课程命题省市大多命制一道中档难度的解答题考查离散型随机变量的分布列,期望的计算,考查考生的阅读理解能力和分类整合思想或必然思想以及应用意识,同时将古典概型、互斥和独立事件的概率计算融入其中,有时也有命制一道中档难度的选择题或填空题考查古典概率、几何概型,新课标命题省市有加大概率与统计综合考查的趋势,同时概率与统计在全卷中的分值明显增加.一.选择题(共6小题,每小题5分,共30分)1.某公司甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点。

公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②则完成①、②这两项调查宜采用的抽样方法依次是 ( ) A .分层抽样法,系统抽样法 B .分层抽样法,简单随机抽样法 C .系统抽样法,分层抽样法 D .简单随机抽样法,分层抽样法2.某游戏中,一个珠子从如右图所示的通道(图中的斜线)由上至下滑下,从最大面的六个出口出来,规定猜中出 口者为胜.如果你在该游戏中,猜得珠子从出口3出来, 那么你取胜的概率为( ) A .165 B .325 C .61 D .以上都不对3.随机变量ξ的分布列为P (ξ=k )=)1(+k k c,k =1、2、3、4,c 为常数,则P (2521<<ξ)的值为 ( )A .54B .65 C .32D .434. 甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( ) A.318 B.418 C.518 D.6185.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人,则n的值为()A.90 B.95 C.100 D.1106、从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为(A)184(B)121(C)25(D)35点评:本小题主要考查组合的基本知识及等可能事件的概率。

高考数学第二轮专题复习----概论统计专题

高考数学第二轮专题复习----概论统计专题

《计数原理与概率》高考复习指导一、考试说明:1.考试内容(1)分类计数原理与分步计数原理,排列与组合.(2)等可能性事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率.2.考试要求(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列与组合的意义,掌握排列数与组合数的计算公式,掌握组合数的两个性质,并能用它们解决一些简单的应用问题.(3)了解等可能性事件的概率的意义,会用排列组合公式计算一些等可能性事件的概率.(4)了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.(5)了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率,会计算事件在n次独立重复试验中恰好发生k次的概率.二、高考试题分析排列与组合、概率与统计是高中数学的重要内容.一方面,这部分内容占用教学时数多达36课时,另一方面,这部分内容是进一步学习高等数学的基础知识,因此,它是高考数学命题的重要内容.从近三年全国高考数学(新材)试题来看,主要是考查排列与组合、概率与统计的基本概念、公式及基本技能、方法,以及分析问题和解决问题的能力.试题特点是基础和全面.题目类型有选择题、填空题、解答题,一般是两小(9分~10分)一大(12分),解答题通常是概率问题.试题难度多为低中档.为了支持高中数学课程的改革,高考数学命题对这部分将进一步重视,但题目数量、难度、题型将会保持稳定.例1.(1999年全国)在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄,为有利于作物生长,要求A、B两种作物间的间隔不小于6垄,则不同的选垄方法共有_______种(用数字作答).[解析]A种植在左边第一垄时,B有3种不同的种植方法;A种植在左边第二垄时,B有两种不同的种植方法;A种植在左边第三垄时,B只有一种种植方法.B在左边种植的情形与上述情形相同.故共有2(3+2+1)=12种不同的选垄方法.∴应填12.例2.(2003年新教材)将3种作物种植在如图所示的5块试验田里,每一块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有______种(以数字作答).[解析]将5块试验田从左到右依次看作甲、乙、丙、丁、戊,3种作物依次看作A、B、C,则3种作物都可以种植在甲试验田里,由于相邻的试验田不能种植同一种作物,从而可知在乙试验田里只能有两种作物.同理,在丙、丁、戊试验田里也只能有两种作物可以种植.由分步计数原理,不同的种植方法共有3×2×2×2=48种.∴应填:48例3.(2003年全国高考题)某城市中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,每部分栽种1种且相邻部分不能栽种同样颜色的花,不同的栽法有_______种.[解析]由于第1、2、3块两两相邻,我们先安排这三块,给第1、2、3块种花时分别有4、3、2种种法,所以共有4×3×2=24种不同种法.下面给第4块种花,若第4块与第6块同色,只有一种种植方法,则第5块只有2种种法,若第4块与第2块同色时,共有2×1=2种种法.若第4块与第6块不同色,但第4块与第2块同色,则第6块有2种种植的方案,而第5块只有1种种法,共有2种不同的种植方法.若第4块与第6块不同色,但第4块与第2块不同色,则第6块有1种种法,则第5块也有一种不同种法,所以第4块与第6块不同色时,有1种种法.综上共有24×(2+2+1)=120种不同的种植方法.例4.(2003年春季考试题)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为A 、42B 、30C 、20D 、12[解析]将两个新节目插入5个固定顺序节目单有两种情况:(1)两个新节目相邻的插法种数为226A ;(2)两个节目不相邻的插法种数为26A ;由分类计数原理共有2226642A A +=种方法,选A.例5.(2004重庆)(本小题满分12分)设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5。

高三数学-2018年高考数学全国统一考试概率统计分类解析 精品

高三数学-2018年高考数学全国统一考试概率统计分类解析 精品

2018年普通高等学校招生全国统一考试数学分类解析—概率统计一.选择题:1. (安徽理)(10).设两个正态分布2111()(0)N μσσ>,和2222()(0)N μσσ>,的密度函数图像如图所示。

则有( A ) A .1212,μμσσ<<B .1212,μμσσ<>C .1212,μμσσ><D .1212,μμσσ>>2.(福建理)(5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是 (B )A.16625 B.96625 C.192625D.2566253. (福建文)(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 (C )A.12125 B.16125 C.48125 D.961254. (广东理)(3).某校共有学生2000名,各年级男、女生人数如表1.已知在全校 学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( C ) A .24 B .18 C .16 D .125.(湖南理) 4.设随机变量ζ服从正态分布N (2,9) ,若P (ζ>c+1)=P (ζ<c -)1,则c =(B)A.1B.2C.3D.46. (江西文)(11).电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为 (C )A .1180 B .1288 C .1360D .14807. (辽宁理文)(7).4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C ) A.13 B.12 C.23 D.348.(山东理)(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为(B ) (A )511(B )681 (C )3061(D )40819.(山东理) (8)右图是根据《山东统计年整2018》中的资料作成的1997年至2018年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2018年我省城镇居民百户家庭人口数的平均数为(B )(A )318.6 (B )318.6 (C)318.6 (D)301.6 10.(山东文)9.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( B )AB C .3D .8510.(陕西文)(3).某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C ) A .30 B .25 C .20 D .15 11.(重庆理)(5)已知随机变量ζ服从正态分布N (3,a 2),则P (3)ζ<=(D )(A)15(B)14(C)13(D)1212. (重庆文)(5)某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是(D )(A)简单随机抽样法(B)抽签法7420136203851192(C)随机数表法 (D)分层抽样法13.(重庆文)(9)从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为 (B )(A)184(B)121(C)25(D)35二.填空题:1.(广东文) (11).为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85, [)85,95由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在[)55,75的人数是 13 .2.(海南宁夏理文)(16).从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 318 318 318 318 310 314 319 323 325 325 328 331 334 337 352乙品种:284 292 295 318 318 318 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论: ① ;3 127 7 5 5 0 28 4 5 4 2 29 2 5 8 7 3 3 1 30 4 6 79 4 0 31 2 3 5 5 6 8 8 8 5 5 3 32 0 2 2 4 7 9 7 4 1 33 1 3 6 734 3 2 35 6甲乙② .以下任填两个:(1).乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度). (2).甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大). (3).甲品种棉花的纤维长度的中位数为318mm ,乙品种棉花的纤维长度的中位数为318mm . (4).乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.3. (湖北文)11.一个公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是 10 . 4.(湖北文)14.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 0.98 .5. (湖南理)15.对有n (n ≥4)个元素的总体{1,2,3,…,n }进行抽样,先将总体分成两个子总体{1,2,…,m }和{m +1、m +2,…,n }(m 是给定的正整数,且2≤m ≤n -2),再从每个子总体中各随机抽取2个元素组成样本,用P i j 表示元素i 和f 同时出现在样本中的概率,则P 1m =4()m n m -;所有P if (1≤i <j ≤)n 的和等于 6 .6. (湖南文)(12)从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:则该地区生活不能自理的老人中男性比女性约多____60____人。

2018届高考数学(理)热点题型:概率与统计((有答案))

2018届高考数学(理)热点题型:概率与统计((有答案))

2018届高考数学(理)热点题型:概率与统计((有答案))D23456=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为X 2 3 4 5 P59291081881E (X )=2×59+3×29+4×1081+5×881=22481.【类题通法】求离散型随机变量的均值和方差问题的一般步骤 第一步:确定随机变量的所有可能值; 第二步:求每一个可能值所对应的概率; 第三步:列出离散型随机变量的分布列; 第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【对点训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和507元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由. 解 (1)设顾客所获的奖励额为X .①依题意,得P (X =60)=C 11C 13C 24=12,即顾客所获的奖励额为60元的概率为12.②依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为X 20 60 P1212所以顾客所获的奖励额的数学期望为E (X )=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2. 以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1 20 60 100 P162316X 1的数学期望为E (X 1)=20×16+60×23+100×16=60(元),X1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X240 60 80P162316X2的数学期望为E(X2)=40×16+60×23+80×16=60(元),X2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.热点三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.89解 (1)由频率分布直方图知: 第3组的人数为5×0.06×40=12. 第4组的人数为5×0.04×40=8. 第5组的人数为5×0.02×40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人. ①设“甲或乙进入第二轮面试”为事件A ,则 P (A )=1-C 310C 312=511,所以甲或乙进入第二轮面试的概率为511.②X 的所有可能取值为0,1,2,P (X =0)=C 24C 26=25,P (X =1)=C 12C 14C 26=815,P (X =2)=C 22C 26=115.所以X 的分布列为X 0 1 2 P25815115E (X )=0×25+1×815+2×115=1015=23.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X 服从超几何分布.【对点训练】某公司为了解用户对某产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P(C)=P(C B1C A1∪C B2C A2)10=P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=0.48.热点四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^ x ,其中x ,y 为样本平均值.解 (1)由题意知n =10,x =1n ∑n i =1x i =8010=8, y =1n ∑n i =1y i=2010=2, 又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24, 由此得b ^=l xy l xx =2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y^=0.3×7-0.4=1.7(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r来确定,r的绝对值越接近于1,表明两个变量的线性相关性越强,r的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b^,a^的公式进行准确的计算.【对点训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?非读书迷读书迷总计男15女45总计(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X 的分布列、期望E(X)和方差D(X).解(1)完成2×2列联表如下:非读书迷读书迷总计男401555女202545总计60 40 100K 2=100×(40×2560×40×55×45≈8.249>6.635,故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i (i =0,1,2,3). X 的分布列为X 0 1 2 3 P2712554125361258125均值E (X )=np =3×25=65,方差D (X )=np (1-p )=3×25×⎝⎛⎭⎪⎫1-25=1825.。

2018年高考数学二轮复习第二部分专题六概率与统计第1讲统计与统计案例课件理

2018年高考数学二轮复习第二部分专题六概率与统计第1讲统计与统计案例课件理

(1)从总体的 400 名学生中随机抽取一人,估计其分 数小于 70 的概率; (2)已知样本中分数小于 40 的学生有 5 人,试估计总 体中分数在区间[40,50)内的人数; (3)已知样本中有一半男生的分数不小于 70,且样本 中分数不小于 70 的男女生人数相等.试估计总体中男生 和女生人数的比例. 解:(1)根据频率分布直方图可知,样本中分数不小
解析:根据雷达图可知全年最低气温都在 0 ℃以上, 故 A 正确;一月平均最高气温是 6 ℃左右,平均最低气 温 2 ℃左右,七月平均最高气温 22 ℃左右,平均最低气 温 13 ℃左右, 所以七月的平均温差比一月的平均温差大, B 正确;三月和十一月的平均最高气温都是 10 ℃,三月 和十一月的平均最高气温基本相同,C 正确;
(2)由题意知,将 1~35 号分成 7 组,每组 5 名运动 员,成绩落在区间[139,151]的运动员共有 4 组,故由系 统抽样法知,共抽取 4 名. 答案:(1)18 (2)B
[规律方法] 1.解决此类题目的关键是深刻理解各种抽样方法的 特点和适用范围.但无论哪种抽样方法,每一个个体被抽 到的概率都是相等的,都等于样本容量与总体容量的比 值.
旧养殖法的箱产量低于 50 kg 的频率为(0.012+0.014 +0.024+0.034+0.040)×5=0.62, 故 P(B)的估计值为 0.62.
新养殖法的箱产量不低于 50 kg 的频率为 (0.068+0.046+0.010+0.008)×5=0.66, 故 P(C)的估计值为 0.66. 因此,事件 A 的概率估计值为 0.62×0.66=0.409 2.
平均最高气温高于 20 ℃的有七月和八月,D 项不正 确。 答案:D
2.(2017· 全国卷Ⅰ)为评估一种农作物的种植效果, 选了 n 块地作试验田.这 n 块地的亩产量(单位:kg)分别 为 x1,x2,…,xn,下面给出的指标中可以用来评估这种 农作物亩产量稳定程度的是( )

2018届高考数学二轮复习专题三概率与统计课件(14张)(全国通用)

2018届高考数学二轮复习专题三概率与统计课件(14张)(全国通用)

身高在第三组[165,170)的频率为0.04×5=0.2,
身高在第四组[170,175)的频率为0.04×5=0.2, 由于0.04+0.08+0.2=0.32<0.5,0.04+0.08+0.2+0.2=0.52>0.5 估计这所学校的800名男生的身高的中位数为m,则170<m<175
由0.04+0.08+0.2+(m-170)×0.04=0.5得m=174.5
解:(1)由茎叶图知:分数=0.08,所以全班人数为 =25.
(2)分数在[80,90)之间的频数为25-2-7-10-2=4;即分数在[80,90)之间的人数
为4人. 频率分布直方图中[80,90)间的矩形的高为 ÷10=0.016.
(3)能否有99%的把握认为其亲属的饮食习惯与年龄有关,并写出简要分析. 统计量K
2
=
0.15 2.072 0.10 2.706 0.05 3.841 0.025 5.024 0.010 6.635
P (K 2 ≥ k 0 ) k0
【解析】 (1)该学生30名亲属中,50岁以下人中 的以肉类为主, 的以蔬菜为主;50 岁以上人中,只有 (2) 主食蔬菜 主食肉类 合计 的人以肉类为主, 的人以蔬菜为主.
【近4年新课标卷考点统计】
年份 试卷类型
2014 12 12
2015 12 12
2016 12 12 12
2017 12 12 12
新课标Ⅰ卷 新课标Ⅱ卷 新课标Ⅲ卷
典例解析
【例1】 从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之
间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],下图 是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4 人. (1)求第七组的频率; (2)估计该校的800名男生的身高的众数与中位数以及身高在180cm以上(含180cm)的人数; (3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,求抽出的两名男生是在同一组

2018全国高考数学统计与概率专题(附答案解析)

2018全国高考数学统计与概率专题(附答案解析)

2018全国高考真题数学统计与概率专题(附答案解析)1.(全国卷I,文数、理数第3题.5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案:A2.(全国卷I,文数19题.12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,[)0.60.7,频数 1 3 2 4 9 26 5使用了节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,频数 1 5 13 10 16 5 (1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案解析】解:(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m 3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为11(0.0510.1530.2520.3540.4590.55260.655)0.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为21(0.0510.1550.25130.35100.45160.555)0.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水3(0.480.35)36547.45(m )-⨯=. 3.(全国卷I ,理数20题12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为()01p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()f p 的最大值点0p ; (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案解析】(1)20件产品中恰有2件不合格品的概率为221820()C (1)f p p p =-.因此 2182172172020()C [2(1)18(1)]2C (1)(110)f p p p p p p p p '=---=--.令()0f p '=,得0.1p =.当(0,0.1)p ∈时,()0f p '>;当(0.1,1)p ∈时,()0f p '<. 所以()f p 的最大值点为00.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)YB ,=+.X Y=⨯+,即402520225X Y所以(4025)4025490=+=+=.EX E Y EY(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于400EX>,故应该对余下的产品作检验.4.(全国卷Ⅱ,文数5题.5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6 B.0.5C.0.4D.0.3【答案】D5.(全国卷Ⅱ,文数、理数18题.12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:ˆ30.413.5y t=-+;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)建立模型②:ˆ9917.5=+.y t(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案解析】解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.6.(全国卷Ⅱ,理数5题.5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6 B.0.5 C.0.4 D.0.3【答案】A7.(全国卷Ⅲ,文数5题.5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.7【答案】B8.(全国卷Ⅲ,文数、理数18题.12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m 和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++,2()0.0500.0100.0013.8416.63510.828P K kk≥.【答案解析】解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学科%网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知7981802m +==. 列联表如下:超过m 不超过m第一种生产方式 15 5 第二种生产方式515(3)由于2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.9.(北京卷,文数17题,13分)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;学科*网(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案解析】(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000. 第四类电影中获得好评的电影部数是200×0.25=50, 故所求概率为500.0252000=. (Ⅱ)方法一:由题意知,样本中获得好评的电影部数是 140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51=372.故所求概率估计为37210.8142000-=. 方法二:设“随机选取1部电影,这部电影没有获得好评”为事件B .没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得16280.8142)00(0P B ==. (Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率. 10.(北京卷,理数17题,12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.【答案解析】解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为500.0252000=. (Ⅱ)设事件A 为“从第四类电影中随机选出的电影获得好评”, 事件B 为“从第五类电影中随机选出的电影获得好评”. 故所求概率为P (AB AB +)=P (AB )+P (AB )=P (A )(1–P (B ))+(1–P (A ))P (B ). 由题意知:P (A )估计为0.25,P (B )估计为0.2. 故所求概率估计为0.25×0.8+0.75×0.2=0.35. (Ⅲ)1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ. 11.(天津卷,文数,15题,13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.【答案解析】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.满分13分. (Ⅰ)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i )解:从抽出的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.(ii )解:由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种. 所以,事件M 发生的概率为P (M )=521. 12.(天津卷,理数,16题,13分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.【答案解析】本小题主要考查随机抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.学.科网(Ⅰ)解:由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)解:随机变量X的所有可能取值为0,1,2,3.P(X=k)=34337C CCk k-⋅(k=0,1,2,3).所以,随机变量X的分布列为随机变量X的数学期望11218412 ()0123353535357E X=⨯+⨯+⨯+⨯=.(ii)解:设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥,由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=67.所以,事件A发生的概率为67.13.(江苏卷,3题,5分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为__________.【答案解析】答案:90解析:8989909191905++++=14.(浙江卷,7题,4分)设0<p<1,随机变量ξ的分布列是ξ0 1 2P12p-122p 则当p在(0,1)内增大时,A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小【答案】D第11 页共11 页。

最新-高考数学高考概率与统计2018大考点解析精品

最新-高考数学高考概率与统计2018大考点解析精品

的概率分别是 0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设
该城市时游览的景点数与没有游览的景点数之差的绝对值
.
ξ 表示客人离开
(Ⅰ)求 ξ 的分布及数学期望;
(Ⅱ)记“函数 f(x)=x2-3ξ x+ 1 在区间 [2,+∞ ) 上单调递增”为事件 A ,求事件
A 的概率 .
2、考查随机变量概率分布列与数列结合
高考概率与统计 10 大考点解析
概率与统计试题是高考的必考内容。 它是以实际应用问题为载体, 以排列组合和 概率统计等知识为工具, 以考查对五个概率事件的判断识别及其概率的计算和随机变 量概率分布列性质及其应用为目标的中档师, 预计这也是今后高考概率统计试题的考 查特点和命题趋向。下面对其常见题型和考点进行解析。
(Ⅰ) 在第一次灯泡更换工作中, 求不需要换灯泡的概率和更换 2 只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯 泡的概率;
(Ⅲ)当 p1=0.8, p2=0.3 时,求在第二次灯泡更换工作,至少需要更换 的概率(结果保留两个有效数字) .
4 只灯泡
考点 5 考查随机变量概率分布与期望计算
过的概率依次为 0.6, 0.7, 0.8, 0.9,求在一年内李明参加驾照考试次数
的分布列
和 的期望,并求李明在一年内领到驾照的概率 .
考点 6 考查随机变量概率分布列与其他知识点结合
1 考查随机变量概率分布列与函数结合 例 6.( 2018 湖南卷) 某城市有甲、乙、丙 3 个旅游景点,一位客人游览这三个景点
(Ⅰ)已知甲、乙两种产品每一道工序的加工结果为
规则如下:
求 数 列 an 的 通 项 公 式 ; 求

2018高考数学理二轮复习课件:1-6-4 高考中的概率与统计解答题型 精品

2018高考数学理二轮复习课件:1-6-4 高考中的概率与统计解答题型 精品

所以随机变量 X 的分布列为:
X 678 9
10
P
11 5 1 4 3 18 9
1 36
所以 E(X)=6×41+7×31+8×158+9×19+10×316=232. ③s∈(20,22].
(2)[2015·太原一模]某工厂为了检查一条流水线的生产情况,从该流水线上随机抽取 40 件产品,测量这 些产 品的重量( 单位:克 ),整理后 得到如下的频 率分布直方 图(其中重 量的分组区 间分别为 [490,495] , (495,500],(500,505],(505,510],(510,515]).
求本例(2)中②的期望和方差.
解 期望:E(Y)=5×0.3=1.5. 方差:D(Y)=5×0.3×0.7=1.05.
求相互独立事件和独立重复试验的概率的注意点 (1)求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件能转化为几个彼此互斥的事件的和事 件还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解. (2)一个复杂事件若正面情况比较多,反面情况较少,则一般利用对立事件进行求解.对于“至少”“至 多”等问题往往也用这种方法求解. (3)注意辨别独立重复试验的基本特征:①在每次试验中,试验结果只有发生与不发生两种情况;②在 每次试验中,事件发生的概率相同. (4)牢记公式 Pn(k)=Cknpk(1-p)n-k,k=0,1,2,…,n,并深刻理解其含义.
P(A0B+A1B+A2B)=P(A0B)+P(A1B)+P(A2B)=235+285+115=3785.
超几何分布的特点 超几何分布的特点是:①整体一般由两部分组成,比如“男,女”“黑,白”“正,反”、“正品, 次品”等等.②选取的总个数恒定.③总体一般是有限个。
[2015·石景山统测]国家环境标准制定的空气质量指数(简称 AQI)与空气质量等级对应关系如下表: 下表是由天气网获得的全国东西部各 6 个城市 2015 年 3 月某时刻实时监测到的数据:

2018届高考数学二轮复习专题十概率与统计课件文

2018届高考数学二轮复习专题十概率与统计课件文

[类题通法] 概率与统计综合问题的两个注意点
(1)明确频率与概率的关系,频率可近似替代概率. (2)此类问题中的概率模型多是古典概型,在求解时,要明 确基本事件的构成.
[即学即用·练通] (2017·新疆第二次适应性检测)从 2009 年淘宝创立“双十一”以 来,到 2016 年,“双十一”已经走过了八个年头,随着消费者 消费水平越来越高,低价已经不再是最核心的要素,消费者对于 品质的追求也越来越高.据美国《福布斯》双周刊网站 2016 年 11 月 15 日报道,“双十一”当天中国的线上交易额比巴西 2016 年全年的预估电子商务交易额都要多.某公司对“双十一”当天 在淘宝购物的男、女各 1 000 名消费者的消费金额(单位:千元) 进行统计,得到了消费金额的频率分布直方图如下:
ABCD 内的图形来自中国古代的太极图.正
方形内切圆中的黑色部分和白色部分关于正
方形的中心成中心对称.在正方形内随机取
一点,则此点取自黑色部分的概率是( )
A.14
B.π8
1
π
C.2
D.4
[解析] 不妨设正方形 ABCD 的边长为 2,则正方形的面 积为 4,正方形的内切圆的半径为 1,面积为 π.
(2)当这种酸奶一天的进货量为 450 瓶时,若最高气温不 低于 25,则 Y=6×450-4×450=900;
若最高气温位于区间[20,25), 则 Y=6×300+2(450-300)-4×450=300;
若最高气温低于 20, 则 Y=6×200+2(450-200)-4×450=-100. 所以 Y 的所有可能值为 900,300,-100. Y 大于零当且仅当最高气温不低于 20,由表格数据知, 最高气温不低于 20 的频率为36+295+ 0 7+4=0.8,因此 Y 大 于零的概率的估计值为 0.8.

2018届高考数学二轮复习(文数)概率、统计课件(全国通用)

2018届高考数学二轮复习(文数)概率、统计课件(全国通用)

考 向 调 研
考向一 古典概型 命题方向: 1.直接枚举型概率问题; 2.排列组合型概率问题.
(1)某天下课以后,教室里还剩下2位男同学和2位女同 学.若他们依次走出教室,则第2位走出的是男同学的概率是 ( ) 1 A. 2 1 C.4 1 B. 3 1 D.5
【解析】 已知2位女同学和2位男同学走出的所有可能顺 序有(女,女,男,男),(女,男,女,男),(女,男,男, 女),(男,男,女,女),(男,女,男,女),(男,女,女, 3 1 男),所以第2位走出的是男同学的概率P=6=2. 【答案】 A
第6讲 概率、统计
调研一
概率
一、古典概型 古典概型的两个特点 (1)有限性:试验中所有可能出现的基本事件只有有限个,每 次试验只出现其中一个基本事件; (2)等可能性:每个基本事件发生的可能性是相等的.
古典概型的概率公式 (1)在基本事件总数为n的古典概型中,每个基本事件发生的 1 概率都是相等的,即每个基本事件发生的概率都是 . n (2)如果随机事件A包含的基本事件数为 m,由互斥事件的概 m 率加法公式可得P(A)= n .即对于古典概型,任何事件的概率为 A包含的基本事件的个数 P(A)= . 基本事件的总数
(3)(2017· 合肥二模)从2名男生和2名女生中任意选择两人在 星期六、星期日参加某公益活动,每天一人,则星期六安排一 名男生、星期日安排一名女生的概率为( 1 A. 3 1 C.2 5 B. 12 7 D.12 )
【解析】
设2名男生记为A1, A2,2名女生记为B1,B2,
任意选择两个在星期六、星期日参加某公益活动,共有A1 A2, A1B1,A1B2,A2B1,A2B2,B1B2,A2A1,B1A1,B2A1,B1A2, B2A2,B2B1 12种情况,而星期六安排一名男生、星期日安排一 名女生共有A1B1,A1B2,A2B1,A2B2 4种情况,则发生概率为P 4 1 = = ,故选A. 12 3 【答案】 A

2018届高考数学文二轮复习课件:2.7.2 概率及其与统计的综合应用 精品

2018届高考数学文二轮复习课件:2.7.2 概率及其与统计的综合应用 精品
解析:利用复数的几何意义可知|z|≤1 表示的区域为以(1,0)为圆 心,1 为半径的圆及其内部,此区域内满足 y≥x 的点对应的区域如图 中阴影部分所示,
故求概率 P=14ππ-21=14-21π,故选 C.
答案:C
3.(2016·新课标全国卷Ⅰ)为美化环境,从红、黄、白、紫 4 种颜
色的花中任选 2 种花种在一个花坛中,余下的 2 种花种在另一个花坛
热点追踪
热点考向一 几何概型
[典例 1] (2015·福建卷)如图,矩形 ABCD 中,点 A 在 x 轴上,点 B
x+1,x≥0, 的坐标为(1,0),且点 C 与点 D 在函数 f(x)=-12x+1,x<0 的图象
上.若在矩形 ABCD 内随机取一点,则此点取自阴影部分的概率等于
( A).16
[自主解答] (1)①当 x≤19 时,y=3 800; 当 x>19 时,y=3 800+500(x-19)=500x-5 700,
所以 y 与 x 的函数解析式为 y=530800x0-,5x7≤001,9,x>19 (x∈N). ②由柱状图知,需更换的零件数不大于 18 的频率为 0.46,不大于 19 的频率为 0.7,故 n 的最小值为 19. ③若每台机器在购机同时都购买 19 个易损零件,则这 100 台机器 中有 70 台在购买易损零件上的费用为 3 800 元,20 台的费用为 4 300 元,10 台的费用为 4 800 元,因此这 100 台机器在购买易损零件上所 需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000 元.
记 x 表示 1 台机器在三年使用期内需更换的易损零件数,y 表示 1 台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购 买的易损零件数.

二轮复习高考大题专项(六)概率与统计课件(81张)

二轮复习高考大题专项(六)概率与统计课件(81张)
中等或中等偏上的程度,多放在解答题的第18或19题位置,近两年难度有所
提升,甚至放在后两道解答题位置,综合性较强.但实施新高考后,因为文理
同卷,难度又回到中等.
【典例剖析】
题型一
相关关系的判断及回归分析
【例1】 某基地蔬菜大棚采用无土栽培方式种
植各类蔬菜.根据过去50周的资料显示,该基地
周光照量X(单位:小时)都在30小时以上,其中不
6
=
C 24
P(ξ=0)= 2
C6
=
6
15
=
2
C 12 C 14
,P(ξ=1)= 2
5
C6
1
,
15
故 ξ 的分布列为
ξ
0
1
2
P(ξ)
2
5
8
15
1
15
=
8
,
15
^
^
^
(2)由散点图可知 = bz+更适合于此模型.其中
6
^
∑ -6
= =16
2
∑ 2 -6
=
^
-1.07
参考数据:
α

0.05
3.841
0.01
6.635
2
(
-
)
参考公式:χ2=
.
(+)(+)(+)(+)
0.005
7.879
0.001
10.828
解 (1)由统计表可得,低于45岁人数为70人,不低于45岁人数为30人,
可得列联表如下
是否使用手机支付
年龄低于45岁
使用
60
不使用
X>70时,只有1台光照控制仪运行,此时周总利润

2018届二轮复习 高考第18题(或19题) 概率与统计 课件(全国通用)

2018届二轮复习   高考第18题(或19题)  概率与统计  课件(全国通用)

(3)假设这100台机器在购机的同时每台都购买19个易损零件,或 每台都购买20个易损零件,分别计算这100台机器在购买易损零 件上所需费用的平均数,以此作为决策依据,购买1台机器的同 时应购买19个还是20个易损零件? 解:若每台机器在购机同时都购买 19 个易损零件,则这 100 台机 器中有 70 台在购买易损零件上的费用为 3 800(元),20 台的费用为 4 300(元),10 台的费用为 4 800(元),因此这 100 台机器在购买易损 1 零件上所需费用的平均数为 (3 800×70+4 300×20+4 800×10) 100 =4 000(元). 若每台机器在购机同时都购买 20 个易损零件,则这 100 台机器中 有 90 台在购买易损零件上的费用为 4 000(元),10 台的费用为 4 500(元),因此这 100 台机器在购买易损零件上所需费用的平均数 1 为 (4 000×90+4 500×10)=4 050(元).比较两个平均数可知, 100 购买 1 台机器的同时应购买 19 个易损零件.
i=1 7
yi- y 2=0.55,
7
i=1
(ti- t )(yi- y )= tiyi- t yi
i=1 i=1
=40.17-4×9.32=2.89, 2.89 ∴ r≈ ≈0.99. 0.55×2×2.646 因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当 大,从而可以用线性回归模型拟合y与t的关系.
1.(2017· 全国卷Ⅱ)海水养殖场进行某水产品的新、旧网箱养 殖方法的产量对比,收获时各随机抽取了100个网箱,测量 各箱水产品的产量(单位:kg),其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50 概率;

2018届高考数学二轮复习 大题专攻练6 概率与统计B组 理 新人教A版

2018届高考数学二轮复习 大题专攻练6 概率与统计B组 理 新人教A版

高考大题专攻练 6.概率与统计(B 组) 大题集训练,练就慧眼和规范,占领高考制胜点!1.共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100]分成5组,制成如图所示的频率分布直方图.(1)求图中x 的值.(2)已知满意度评分值在[90,100]内的男生数与女生数的比为2∶1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量X ,求X 的分布列和数学期望.【解题导引】(1)利用频率分布直方图的性质即可得出.(2)利用超几何分布的概率与数学期望计算公式即可得出.【解析】(1)由(0.005+0.021+0.035+0.030+x)×10=1,解得x=0.009.(2)满意度评分值在[90,100]内有100×0.009×10=9人,其中男生6人,女生3人.则X 的值可以为0,1,2,3.P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.则X 分布列如下:所以X的期望E(X)=0×+1×+2×+3×==.2.某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分布直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间[2,4)的有8人.(1)求直方图中a的值及甲班学生每天平均学习时间在区间[10,12]的人数.(2)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为ξ,求ξ的分布列和数学期望.【解题导引】(1)利用频率分布直方图的性质即可得出.(2)乙班学习时间在区间[10,12]的人数为40×0.05×2=4(人).由(1)知甲班学习时间在区间[10,12]的人数为3人.在两班中学习时间大于10小时的同学共7人,ξ的所有可能取值为0,1,2,3,利用超几何分布的计算公式及其数学期望计算公式即可得出.【解析】(1)由直方图知,(0.150+0.125+0.100+0.0875+a)×2=1,解得a=0.0375,因为甲班学习时间在区间[2,4]的有8人,所以甲班的学生人数为=40.所以甲、乙两班人数均为40人,所以甲班学习时间在区间[10,12]的人数为40×0.0375×2=3(人).(2)乙班学习时间在区间[10,12]的人数为40×0.05×2=4(人).由(1)知甲班学习时间在区间[10,12]的人数为3人.在两班中学习时间大于10小时的同学共7人,ξ的所有可能取值为0,1,2,3.P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==.所以随机变量ξ的分布列为:E(ξ)=0×+1×+2×+3×=.本文档仅供文库使用。

2018大二轮高考总复习文数课件:解答题3 概率与统计

2018大二轮高考总复习文数课件:解答题3 概率与统计

3.对立事件及其概率公式
若事件B与事件A互为对立事件,则P(A)+P(B)=1,即P(A)=1-P(B). [提醒] (1)两个事件互斥未必对立,但对立一定互斥. (2)只有事件A,B互斥时,才有公式P(A∪B)=P(A)+P(B),否则公式不成立.
1 .有编号为1,2,3 的三个白球,编号为 4,5,6的三个黑球,这六个球除编号和颜 色外完全相同,现从中任意取出两个球. (1)求取得的两个球颜色相同的概率;
1 .(2016·北京卷 ) 某市民用水拟实行阶梯水价,每人月用水量中不超过 w立方
米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机
调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方 图:
年份 体考查内容及命题位置 散点图、回归方程、函数最值问题·T19 频率分布直方图、数据的平均值和方差、用 频率估计概率·T18 频率分布直方图、用样本的数字特征估计总 体的数字特征·T18 茎叶图、用样本的数字特征估计总体的数字 特征、用频率估计概率·T19 茎叶图、平均数的含义·T18
2.(2016·山东卷)某儿童乐园在“六一”儿童节推出了一项趣味活动,参加活
动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针
所指区域中的数,设两次记录的数分别为x,y.奖励规则如下: ①若xy≤3,则奖励玩具一个; ②若xy≥8,则奖励水杯一个; ③其余情况奖励饮料一瓶. 假设转盘质地均匀,四个区域分布均匀,小亮准备参加此项活动. (1)求小亮获得玩具的概率; (2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
(2)记“xy≥8”为事件 B,“3<xy<8”为事件 C, 则事件 B 包含的基本事件数共 6 个, 即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4), 6 3 所以 P(B)=16=8. 事件 C 包含的基本事件数共 5 个,即(1,4),(2,2),(2,3),(3,2),(4,1). 5 3 5 所以 P(C)=16,因为8>16, 所以小亮获得水杯的概率大于获得饮料的概率.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6讲概率与统计[明考情]概率与统计是高考的必考题,古典概型与统计的结合是命题的热点,难度中档,一般在18题或19题的位置.[知考向]1.随机事件的概率.2.古典概型与几何概型.3.概率与统计的综合问题.考点一随机事件的概率要点重组(1)“互斥事件”与“对立事件”:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件.(2)若事件A,B互斥,则P(A∪B)=P(A)+P(B);,若事件A,B对立,则P(A)+P(B)=1.1.某战士射击一次,问:(1)若中靶的概率为0.95,则不中靶的概率为多少?(2)若命中10环的概率是0.27,命中9环的概率为0.21,命中8环的概率为0.24,则至少命中8环的概率为多少?不够9环的概率为多少?解(1)设中靶为事件A,则不中靶为A,则由对立事件的概率公式,可得P(A)=1-P(A)=1-0.95=0.05.(2)设命中10环为事件B,命中9环为事件C,命中8环为事件D,至少命中8环为事件E,由题意知,P(B)=0.27,P(C)=0.21,P(D)=0.24,则P(E)=P(B+C+D)=P(B)+P(C)+P(D)=0.27+0.21+0.24=0.72.记至少命中9环为事件F,则P(F)=P(B+C)=P(B)+P(C)=0.27+0.21=0.48.故不够9环为F,则P(F)=1-P(F)=1-0.48=0.52.2.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地1位车主甲、乙两种保险都不购买的概率.解 记A 表示事件:该车主购买甲种保险;B 表示事件:该车主购买乙种保险但不购买甲种保险;C 表示事件:该车主至少购买甲、乙两种保险中的1种;D 表示事件:该车主甲、乙两种保险都不购买.(1)由题意得P (A )=0.5,P (B )=0.3,又C =A ∪B ,所以P (C )=P (A ∪B )=P (A )+P (B )=0.5+0.3=0.8.(2)因为D 与C 是对立事件,所以P (D )=1-P (C )=1-0.8=0.2.考点二 古典概型与几何概型 要点重组 (1)古典概型的两个特征:①试验中所有可能出现的基本事件只有有限个;②每个基本事件发生的可能性相等.(2)几何概型将古典概型的有限性推广到无限性,几何概型的测度包括长度、面积、角度、体积等.3.一个盒子中装有四张卡片,每张卡片上写有一个数字,数字分别是1,2,3,4,现从盒子中随机抽取卡片,每张卡片被抽到的概率相等.(1)若一次抽取三张卡片,求抽到的三张卡片上的数字之和大于7的概率;(2)若第一次抽取一张卡片,放回搅匀后再抽取一张卡片,求两次抽取中至少有一次抽到写有数字3的卡片的概率.解 (1)设A 表示事件“抽到的三张卡片上的数字之和大于7”,抽取三张卡片,三张卡片上的数字的所有可能的结果是{1,2,3},{1,2,4},{1,3,4},{2,3,4},其中数字之和大于7的是{1,3,4},{2,3,4},所以事件A 的概率P (A )=24=12. (2)设B 表示事件“两次抽取中至少有一次抽到写有数字3的卡片”,第一次抽一张,放回后再抽取一张卡片的所有可能的情况有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.事件B 包含的基本事件有(1,3),(2,3),(3,1),(3,2),(3,3),(3,4),(4,3),共7个.所以事件B 的概率P (B )=716. 4.已知A ,B 两个盒子中分别装有标记为1,2,3,4的大小相同的四个小球,甲从A 盒中等可能地取出1个球,乙从B 盒中等可能地取出1个球.(1)用有序数对(i ,j )表示事件“甲抽到标号为i 的小球,乙抽到标号为j 的小球”,试写出所有可能的事件;(2)甲、乙两人玩游戏,约定规则:若甲抽到的小球的标号比乙大,则甲胜;反之,则乙胜.你认为此规则是否公平?请说明理由.解 (1)甲、乙两人抽到的小球的所有情况有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16种不同的情况.(2)甲抽到的小球的标号比乙大,有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),共6种情况,故甲胜的概率P 1=616=38,乙获胜的概率为P 2=1-38=58. 因为38≠58,所以此游戏不公平. 5.(2017·山东)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率. 解 (1)由题意知,从6个国家中任选2个国家,其一切可能的结果组成的基本事件有{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{B 1,B 2},{B 1,B 3},{B 2,B 3},共15个.所选2个国家都是亚洲国家的事件所包含的基本事件有{A 1,A 2},{A 1,A 3},{A 2,A 3},共3个,则所求事件的概率为P =315=15. (2)从亚洲国家和欧洲国家中各任选1个,其一切可能的结果组成的基本事件有{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},共9个. 包括A 1但不包括B 1的事件所包含的基本事件有{A 1,B 2},{A 1,B 3},共2个,则所求事件的概率为P =29. 6.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率;(2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于22的概率. 解 (1)集合M 内的点形成的区域面积S =8.因为圆x 2+y 2=1的面积S 1=π,故所求概率为P 1=S 1S =π8. (2)由题意得|x +y |2≤22,即-1≤x +y ≤1,形成的区域如图中阴影部分所示,阴影部分面积S 2=4,所以所求概率为P =S 2S =12. 7.花园小区内有一块三边长分别是5 m ,5 m ,6 m 的三角形绿化地,有一只小花猫在其内部玩耍,若不考虑小花猫的大小,求在任意指定的某时刻,小花猫与三角形三个顶点的距离均超过2 m 的概率.解 如图所示,分别以三角形ABC 的三个顶点为圆心,2为半径作圆,与三角形ABC 的三边分别交于点D ,E ,M ,N ,Q ,P .由题意可知,小花猫在三角形的内部玩耍,该三角形是一个腰长为5 m ,底边长为6 m 的等腰三角形.底边AB 上的高为h =52-32=4(m),故△ABC 的面积S =12×6×4=12(m 2). 而“小花猫与三角形三个顶点的距离均超过 2 m ”对应的区域为图中阴影部分,即三角形ABC 除去三个以顶点为圆心,2为半径的扇形部分.因为∠A +∠B +∠C =π,所以三个扇形的面积之和为12π×22=2π. 故阴影部分的面积S ′=S -2π=(12-2π)(m 2).所以“小花猫与三角形三个顶点的距离均超过2 m ”的概率为P 1=S ′S =12-2π12=1-π6. 8.已知关于x 的一元二次方程9x 2+6ax -b 2+4=0,a ,b ∈R .(1)若a 是从1,2,3三个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求已知方程有两个不相等实根的概率;(2)若a 是从区间[0,3]内任取的一个数,b 是从区间[0,2]内任取的一个数,求已知方程有实数根的概率.解 设事件A 为“方程9x 2+6ax -b 2+4=0有两个不相等的实数根”;事件B 为“方程9x 2+6ax -b 2+4=0有实数根”.(1)由题意知,基本事件共9个,即(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值.由Δ=36a 2-36(-b 2+4)=36a 2+36b 2-36×4>0,得a 2+b 2>4.事件A 要求a ,b 满足条件a 2+b 2>4,包含6个基本事件,即(1,2),(2,1),(2,2),(3,0),(3,1),(3,2),则事件A 发生的概率为P (A )=69=23. (2)a ,b 的取值所构成的区域如图所示,其中0≤a ≤3,0≤b ≤2.构成事件B 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a 2+b 2≥4}(如图中阴影部分),则所求的概率为P (B )=2×3-14×π×222×3=1-π6. 考点三 统计与概率的综合问题 方法技巧 对于将抽样方法、频率分布等统计知识与古典概型相结合的题目,要明确频率和概率的关系,把握基本事件的构成.9.(2017·全国Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2(450-300)-4×450=300;若最高气温低于20,则Y =6×200+2(450-200)-4×450=-100,所以Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8. 因此Y 大于零的概率的估计值为0.8.10.为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如下数据:若用表中数据所得频率代替概率.(1)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?(2)将选取的200人中会闯红灯的市民分为两类:A 类市民在罚金不超过10元时就会改正行为;B 类是其他市民.现对A 类与B 类市民按分层抽样的方法抽取4人依次进行深度调查,则前两位均为B 类市民的概率是多少?解 (1)设“当罚金定为10元时,闯红灯的市民改正行为”为事件A ,则P (A )=40200=15. 所以当罚金定为10元时,比不进行处罚,行人闯红灯的概率会降低15. (2)由题可知,A 类市民和B 类市民各有40人,故分别从A 类市民和B 类市民中各抽出2人,设从A 类市民中抽出的2人分别为A 1,A 2,从B 类市民中抽出的2人分别为B 1,B 2,设“A 类与B 类市民按分层抽样的方法抽取4人依次进行深度调查”为事件M ,则事件M 中首先抽出A 1的事件有(A 1,A 2,B 1,B 2),(A 1,A 2,B 2,B 1),(A 1,B 1,A 2,B 2),(A 1,B 1,B 2,A 2),(A 1,B 2,A 2,B 1),(A 1,B 2,B 1,A 2),共6种.同理首先抽出A 2,B 1,B 2的事件也各有6种,故事件M 共有4×6=24(种).设“抽取的4人中前两位均为B 类市民”为事件N ,则事件N 有(B 1,B 2,A 1,A 2),(B 1,B 2,A 2,A 1),(B 2,B 1,A 1,A 2),(B 2,B 1,A 2,A 1),共4种,所以P (N )=424=16. 所以抽取的4人中前两位均为B 类市民的概率是16. 11.(2017·北京)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…[80,90],并整理得到如下频率分布直方图.(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.解 (1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6, 所以样本中分数小于70的频率为1-0.6=0.4,所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9, 分数在区间[40,50)内的人数为100-100×0.9-5=5,所以总体中分数在区间[40,50)内的人数估计为400×5100=20. (3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×12=30, 所以样本中的男生人数为30×2=60,女生人数为100-60=40,所以样本中男生和女生人数的比例为60∶40=3∶2,所以根据分层抽样原理,估计总体中男生和女生人数的比例为3∶2.12.某烹饪学院为了弘扬中国传统的饮食文化,举办了一场由在校学生参加的厨艺大赛,组委会为了解本次大赛参赛学生的成绩情况,从参赛学生中随机抽取了n 名学生的成绩(满分100分)作为样本,将所得分数经过分析整理后画出了频率分布直方图和茎叶图,其中茎叶图受到污染,请据此解答下列问题:(1)求频率分布直方图中a ,b 的值,并估计此次参加厨艺大赛学生的平均成绩;(2)规定大赛成绩在[80,90)的学生为厨霸,在[90,100]的学生为厨神,现从被称为厨霸、厨神的学生中随机抽取2人去参加校际之间举办的厨艺大赛,求所抽取2人中至少有1人是厨神的概率.解 (1)由题意可知,样本容量n =50.012 5×10=40, 所以a =340×10=0.007 5. 所以10b =1-(0.125+0.150+0.450+0.075)=0.200,所以b =0.020 0,平均成绩为0.125×55+0.2×65+0.45×75+0.15×85+0.075×95=73.5.(2)由题意可知,厨霸有0.015 0×10×40=6(人),分别记为a 1,a 2,a 3,a 4,a 5,a 6,厨神有0.007 5×10×40=3(人),分别记为b 1,b 2,b 3,共9人,从中任意抽取2人共有36种情况:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 1,a 5),(a 1,a 6),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,a 3),(a 2,a 4),(a 2,a 5),(a 2,a 6),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 3,a 4),(a 3,a 5),(a 3,a 6),(a 3,b 1),(a 3,b 2),(a 3,b 3),(a 4,a 5),(a 4,a 6),(a 4,b 1),(a 4,b 2),(a 4,b 3),(a 5,a 6),(a 5,b 1),(a 5,b 2),(a 5,b 3),(a 6,b 1),(a 6,b 2),(a 6,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 3),其中至少有1人是厨神的情况有21种,所以至少有1人是厨神的概率为2136=712.例 (12分)广场舞在全国各地都非常地流行,但是人们对广场舞也有不同的看法,有些人认为广场舞“很好”,能促进人们锻炼身体,有些人认为广场舞“不好”,影响其他人的休息,实践课上老师选派几位同学组成研究性小组,从某社区[25,55]岁的人群中随机抽取n 人进行了一次调查,得到如下统计表:(1)求a ,b 的值,并估计本社区[25,55]岁的人群中“很好”所占的比例;(2)从年龄段在[35,45)的“很好”中采用分层抽样方法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队,求选取的2名领队分别来自[35,40)与[40,45)两个年龄段的概率.审题路线图(1)审统计表―――→抽样中的比例确定n 和a ,b ―→样本中认为“很好”的比例――→估计本社区人群中“很好”的比例(2)确定两个年龄段的人数――――――→分层抽样原则两年龄段抽取人数―→标记抽取的8人―→列举所有选领队的方法―→统计所有选法种数和符合条件方法种数―→求出概率 规范解答·评分标准解 (1)n =500.05=1 000.……………………………………………………………………1分 b =1-(0.20+0.20+0.15+0.10+0.05)=0.30.…………………………………………2分 所以a =1 000×0.30=300.3分因为样本中的“很好”人数为50×0.30+100×0.30+150×0.40+200×0.50+300×0.65+200×0.60=520,…………………………………………………………………………5分所以样本中的“很好”所占的比例为5201 000=52%. ………………………………………………………………………………………………6分(2)年龄段在[35,40)的“很好”的人数为150×0.40=60,年龄段在[40,45)的“很好”的人数为200×0.50=100,采用分层抽样方法抽取8人,年龄段在[35,40)的“很好”有3人,在[40,45)的有5人,记[35,40)中的3人为A 1,A 2,A 3,[40,45)的5人记为B 1,B 2,B 3,B 4,B 5,则选取2人做领队有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4),(A 1,B 5),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4),(A 2,B 5),(A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4),(A 3,B 5),(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 1,B 5),(B 2,B 3),(B 2,B 4),(B 2,B 5),(B 3,B 4),(B 3,B 5),(B 4,B 5),共28种.…………………………………………………………………10分 其中分别来自[35,40)与[40,45)两个年龄段的有(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4),(A 1,B 5),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4),(A 2,B 5),(A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4),(A 3,B 5),共15种.…………………………………………………………………11分所以分别来自[35,40)与[40,45)两个年龄段的概率P =1528.…………………………12分 构建答题模板 [第一步] 定模型:根据统计知识确定元素(总体、个体)以及要解决的概率模型. [第二步] 列事件:将所有基本事件列举出来(可用树状图). [第三步] 算概率:计算基本事件总数n ,事件A 包含的基本事件数m ,代入公式P (A )=m n. [第四步] 规范答:要回到所求问题,规范作答.1.某市举行职工技能大比武活动,甲厂派出2男1女共3名职工,乙厂派出2男2女共4名职工.(1)若从甲厂和乙厂派出的职工中各任选1名进行比赛,求选出的2名职工性别相同的概率;(2)若从甲厂和乙厂派出的这7名职工中任选2名进行比赛,求选出的2名职工来自同一工厂的概率.解 记甲厂派出的2名男职工为A 1,A 2,1名女职工为a ;乙厂派出的2名男职工为B 1,B 2,2名女职工为b 1,b 2.(1)从甲厂和乙厂派出的职工中各任选1名进行比赛,不同的结果有{A 1,B 1},{A 1,B 2},{A 1,b 1},{A 1,b 2},{A 2,B 1},{A 2,B 2},{A 2,b 1},{A 2,b 2},{a ,B 1},{a ,B 2},{a ,b 1},{a ,b 2},共12种不同的选法.其中选出的2名职工性别相同的选法有{A 1,B 1},{A 1,B 2},{A 2,B 1},{A 2,B 2},{a ,b 1},{a ,b 2},共6种不同的选法.故选出的2名职工性别相同的概率为P 1=612=12. (2)若从甲厂和乙厂派出的这7名职工中任选2名进行比赛,不同的结果有{A 1,A 2},{A 1,a },{A 1,B 1},{A 1,B 2},{A 1,b 1},{A 1,b 2},{A 2,a },{A 2,B 1},{A 2,B 2},{A 2,b 1},{A 2,b 2},{a ,B 1},{a ,B 2},{a ,b 1},{a ,b 2},{B 1,B 2},{B 1,b 1},{B 1,b 2},{B 2,b 1},{B 2,b 2},{b 1,b 2},共21种不同的选法.其中选出的2名职工来自同一工厂的选法有{A 1,A 2},{A 1,a },{A 2,a },{B 1,B 2},{B 1,b 1},{B 1,b 2},{B 2,b 1},{B 2,b 2},{b 1,b 2},共9种不同的选法.所以选出的2名职工来自同一工厂的概率为P 2=921=37. 2.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36. 由a ·b =-1,得-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个.故满足a ·b =-1的概率为336=112. (2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6}, 满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0}.画出平面区域如图,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.3.某厂商调查甲、乙两种不同型号的电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图:为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a >b 的概率;(3)若a =1,记乙型号电视机销售量的方差为s 2,根据茎叶图推断b 为何值时,s 2达到最小值.(只需写出结论)解 (1)根据茎叶图,得甲组数据的平均数为10+10+14+18+22+25+27+30+41+4310=24,由茎叶图知,甲型号电视机的“星级卖场”的个数为5. (2)记事件A 为“a >b ”,因为乙组数据的平均数为26.7,所以10+18+20+22+23+31+32+(30+a )+(30+b )+4310=26.7,解得a +b =8.所以a 和b 的取值共有9种情况,它们是(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0),其中a >b 有4种情况,它们是(5,3),(6,2),(7,1),(8,0),所以a >b 的概率P (A )=49.(3)当b =0时,s 2达到最小值.4.(2017·全国Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较. 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解 (1)旧养殖法的箱产量低于50 kg 的频率为 (0.012+0.014+0.024+0.034+0.040)×5=0.62. 因此,事件A 的概率估计值为0.62.(2)根据箱产量的频率分布直方图得列联表如下:K 2的观测值k =200×(62×66-34×38)2100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.5.某中学为了解某次竞赛的成绩状况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本进行统计,请根据尚未完成并有局部污损的频率分布表和频率分布直方图(如图)解决下列问题:(1)写出a ,b ,x ,y 的值;(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的同学中随机抽取2名同学参加座谈,求所抽取的2名同学来自同一组的概率. 解 (1)由题意可知,样本总数n =90.18=50,b =250=0.04,y =0.0410=0.004, x =1-0.18-0.40-0.08-0.0410=0.03,a =(1-0.18-0.40-0.08-0.04)×50=15.(2)由题意可知,第4组有4名同学,分别记为A 1,A 2,A 3,A 4,第5组有2名同学,分别记为B 1,B 2,共6名同学.从竞赛成绩在80分以上(含80分)的同学中随机抽取2名同学, 基本事件空间Ω={(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,A 4),(A 2,B 1),(A 2,B 2),(A 3,A 4),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2)},共15个. 设事件A 为“随机抽取的2名同学来自同一组”,则事件A 包含的基本事件A ={(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 2,A 3),(A 2,A 4),(A 3,A 4),(B 1,B 2)},共7个,7所以随机抽取的2名同学来自同一组的概率是15.。

相关文档
最新文档