小学一年级数学上册应用题100道(全) 附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学一年级数学上册应用题100道(全) 附答案
一、六年级数学上册应用题解答题
1.工程队挖一条水渠,第一天挖了全长的20%,第二天比第一天多挖72米,这时已挖的部分与未挖部分的比是4∶3,这条水渠长多少米?
2.小红读一本故事书,第一天读了全书的1
6
,第二天读了36页。

这时已读页数与剩下页
数的比是5∶7,小红再读多少页就能读完这本书?
3.三个小朋友跳绳,一共跳了252下。

小青跳了总数的3
7
,小明跳的比小光跳的少
2
5。

三个小朋友分别跳了多少下?
4.一辆快车与一辆慢车分别从甲、乙两站同时相对开出,在距中点5千米处相遇.已知快、慢车的速度比是3:2,甲、乙两站相距多少千米?(用方程解)
5.一张桌子可以坐6人,两张桌子拼起来可以坐10人,三张桌子拼起来可以坐14人.像这样共几张桌子拼起来可以坐50人?
6.甲车间有男工45人,女工36人;乙车间女工人数是男工人数的120%.如果把两个车间的工人合在一起,那么男工和女工的人数正好相等.乙车间共有工人多少人?
7.果园里有桃树、梨树、苹果树共700棵,桃树与梨树的比是2:3,梨树与苹果树的比是4:5.果园里有桃树、梨树、苹果树各多少棵?
8.下图中,涂色部分甲比乙的面积大2
11.25cm。

求BC的长。

9.我们已经学习了“外方内圆”(如下图1)的问题,现在让你继续研究,你会有新的发现。

2
8846450.2413.76
S S Sπ
=-=⨯-⨯=-=

阴影圆
(1)图2的阴影部分面积是多少?(列式计算)
(2)通过上面两个图形的计算,你是否有所发现,按你的发现,那么如图3这样正方形中有16个小圆,阴影部分的面积是( )。

10.加工一批零件,已完成个数与零件总个数的比是1∶5,如果再加工15个,那么完成个数与剩下的个数同样多,这批零件共有多少个? 11.列出综合算式,不计算。

一根电线先截去它的40%,还剩下12米,再截去多少米后,这时正好剩下这根电线全长的14
? 12.甲、乙二人同时从A 地走向B 地,当甲走了全程的57时,乙走了全程的3
5
;当甲离B 地还有
1
7
时,乙离B 地还有50米,A 、B 两地相距多少米? 13.某车间为了能高质量准时完成一批齿轮订单,对车间工人提前进行了加工齿轮效率的测试,经过统计测算,平均每个工人加工齿轮效率情况如图。

(1)加工小齿轮的效率比大齿轮高百分之几?
(2)已知这个车间有工人68人,1个大齿轮和3个小齿轮配为一套,为了使大小齿轮能成套出厂,如果你是车间主任,怎样安排这68名工人最合理?(请计算说明) 14.学校举行庆“六一”男女生大合唱,原计划合唱队中女生人数占合唱队总人数的40%,后来考虑到合唱效果,将其中5名女生换成了5名男生,这时女生与男生人数的比是3∶7。

合唱队共有男女生多少名?
15.小明和小丽原来存款数量的比是4:3,现在小明取出自己存款的40%还多100元,小丽存进500元,现在小丽的存款比小明多900元,小明取出存款多少元? 16.学校要买 48 支钢笔,每支 10 元。

三个商店有不同的出售方案。

甲商店:买 5 支送 1 支; 乙商店:一律九折; 丙商店:满 500 元 八 折优惠。

学校去哪个商店买合算?
17.观察算式的规律:221212-=+,223232-=+,224343-=+,225354-=+,……。

用含字母()1,2,3,
n n =的式子表示规律:(________)。

用规律计算:2222222220191817161521-+-+-+
-=(________)。

18.如图4×4方格纸片内,两面都写着1,2,3,4,…,16(同一位置的格子正反面数字相同),现依下列顺序逐步折叠:(1)上半部往下折叠盖在下半部上;(2)右半部往左折叠盖在左半部上;(3)左半部往右折叠盖在右半部上;(4)下半部往上折叠盖在上半部上。

经过上述操作,纸片在最上面的数字是(________)。

1234
5678
9101112
13141516
19.海安某步行街要铺设一条人行道,人行道长400米,宽1.6米。

现在用边长都是0.4米的红、黄两种正方形地砖铺设(如图是铺设的局部图示)。

(1)请帮忙算一算,铺设这条人行道一共需多少块地砖?(不计损耗)
(2)铺设这条人行道一共需要多少块红色地砖?(不计损耗)
20.二进制时钟是一种“特殊的时钟”,它用4行6列24盏灯来表示时间(图1)竖着看,从左到右每两列为一组,每列依次表示时、分、秒的十位数字和个位数字;每列从下往上的灯依次表示1、2、4、8(表示灯亮,○表示灯熄灭,灯灭代表0),同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数。

例如,图1中最右侧一列,从下往上第一、二、三盏灯是,分别表示数字1、2、4,1+2+4=7,此时这列灯表示数字7,按照这样的表示方法,请在图2的括号里写出此时时钟表示的时刻。

图3是雯雯同学上午进入校门的时刻,请涂出二进制时钟上的显示。

21.仔细观察下面的点子图,看看有什么规律.
(1)根据上面图形与数的规律接着画一画,填一填.
(2)探索填空:按照上面的规律,第6个点子图中的点子数是;第10个点子图中的点子数是.
22.下图中的阴影部分是由两个大小不同的正方形重叠而成的,图中阴影部分的面积是40平方米,若以O点为圆心,分别以两个正方形的边长作半径,画出一个圆环,这个圆环的面积是多少平方米?
23.妈妈买来一些水果糖,小华吃掉一半后又多吃了两粒,第二天也是这样吃了剩下的一半再多吃两粒,第三天又吃了剩下的一半再多吃两粒,第四天打开糖盒时,里面只有4粒了,妈妈究竟买了多少粒水果糖?
24.修一段公路,甲队独修要用20天,乙队独修要用24天,现在两队同时从两端开工,结果在距中点750m处相遇。

求这段公路长多少米?
25.小红和小明从甲、乙两地同时相向而行,已知相遇时,小红比小明多走16千米,小红每小时比小明快四分之一,甲、乙两地相距多少千米?
26.一只猴子摘了一堆桃子,第一天它吃了这堆桃子的七分之一,第二天它吃了余下桃子的六分之一,第三天它吃了余下桃子的五分之一,第四天它吃了余下桃子的四分之一,第五天它吃了余下桃子的三分之一,第六天它吃了余下桃子的二分之一,这时还剩12个桃子。

那么第一天和第二天所吃桃子的总数是多少个?
27.甲乙两仓库共存粮54吨,甲仓用了4
5
,乙仓用了
3
4
后,剩下的两仓一样多,原来两
仓各存粮多少吨?
28.水果店运进一批桂园,第一天售出1
2
,第二天售出余下的3
5
,还剩36千克没有卖,这
批桂园有多少千克?
29.张明和李丽进行口算比赛,两人在10分钟的时间里一共完成了230道题,张明比李
丽多做了1
11
.他们两人各做了多少道题?
30.一个书架,原来上层和下层中书的本数比是8:7,如果从上层取出8本书放放下层,这时上层和下层的比为4:5,原来上层和下层各有图书多少本?
31.一个水池早晨放满了水,上午用去这池水的,下午又用去25升,这时水池的水比半池水还多2升,这个水池早晨用去了多少水?
32.一辆卡车和一辆客车分别从甲、乙两城同时出发,相向而行,卡车到达乙城后立即返回,客车到达甲城后也立即返回,已知卡车和客车的速度比为4:3,两车第一次相遇地点距离第二次相遇地点24千米,求甲、乙两城相距多少千米?
33.一份稿件,甲5小时先打了1
5
,乙6小时又打了剩下稿件的1
2
,最后剩下的一些由
甲、乙两人合打,还需多少小时完成?
34.如图所示为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多少米?(保留小数点后一位)
35.根据大数据显示,荔波2016年旅游接待迅速升温,各旅游景区(点)游人如织.全县全年接待游客超700万人,其中大、小七孔景区共接待了游客人数的,小七孔景区比大七孔景区多接待游客,大、小七孔景区各全年接待了游客多少万人?
36.如图所示,三角形ABC的面积是36cm2,圆的直径AC=6cm,BD∶DC=2∶1.求阴影部分的面积。

37.三角形ABC的三条边都是6厘米,高AH为5.2厘米,分别以A、B、C三点为圆心,6厘米长为半径画弧,求这三段弧所围成的图形的面积。

( 取3.14)
38.如图,长方形的长AD与宽AB的比为5∶3,E、F为 AB边上的三等分点,某时刻,甲
从A点出发沿长方形逆时针运动,与此同时,乙、丙分别从E、F出发沿长方形顺时针运动。

甲、乙、丙三人的速度比为4∶3∶5,他们出发后12分钟,三人所在位置的点的连线第一次构成长方形中最大的三角形,那么再过多少分钟,三人所在位置的点的连线第二次构成最大三角形?
39.甲、乙两车分别从A、B两地同时出发,相向而行,4小时后在距离中点80千米处相遇,甲乙两车的速度比是9∶5,甲每小时行多少千米?
40.用一根240厘米的铁丝制作成一个长方体框架,长、宽、高的比是5∶3∶4,求这个长方体框架的体积是多少立方厘米?
41.分别以直角三角形ABC的三条边为直径画了三个半圆,得到下图。

求阴影部分的周长和面积。

(单位:cm)
42.一个周长为12.56厘米的圆在长方形内滚动一周后回到初始位置(如下图所示),圆心所经过的路程是40厘米,已知图中长方形的长和宽之比是5:2,这个长方形的面积是多少平方厘米?
43.甲、乙两车同时从A、B两地相向而行,两车在离中点20千米处相遇,已知甲车每小时行50千米,乙车每小时比甲车多行20%,求A、B两地间的路程。

44.商场有两台冰箱,标价都是4950元,其中一台比进价贵10%,另一台比进价便宜10%,如果两台冰箱全部卖出,那么总体来讲是赚了还是赔了?如果赚了,赚了多少元?如果赔了,赔了多少元?
45.探索规律.
用小棒按照如图方式摆图形.
(1)摆1个八边形需要根小棒,摆2个需要根小棒,摆3个需要根小棒.
(2)照这样摆下去:
①摆n个八边形需要多少根小棒?n=1000呢?
②64根小棒可以摆多少个八边形?
46.淘气和奇思都是集邮爱好者,淘气收集了各种邮票63张,奇思收集的邮票数比淘气少
2
7。

(1)画图表示淘气和奇思的邮票张数之间的关系。

(2)奇思比淘气少多少张邮票?
47.某通信公司有两种不同的通话费计费方式,第一种:每月付20元月租费,然后每分钟收通话费0.18元;第二种:不收月租费,每分钟收通话费0.28元。

①如果每月通话300分钟,哪一种计费方式更便宜?
②每月通话多少分钟,两种计费方式的通话费正好相等?
48.如图为某学校花坛,它由一个圆心角∠AOB=30°,半径AO=6米的扇形以及分别以
AO、BO的1
3
为直径的6个相等的半圆组成,求此花坛的面积。

49.一批零件平均分给甲、乙两人来做.两人同时加工,当甲完成时乙还有18个没有做.已知甲、乙两人每小时生产零件个数的比是5:4.这批零件一共多少个?
50.
为了绿化校园,某校购买了一批树苗,由四、五、六三个年级共同种植,五年级种植了这批树苗的多2棵,六年级种植了这批树苗的少1棵,四年级种植了剩下的10棵.五、六年级分别种植了多少棵?
【参考答案】***试卷处理标记,请不要删除
一、六年级数学上册应用题解答题
1.420米
【分析】
第一天挖了全长的20%,第二天比第一天多挖72米,此时两天挖好两个全长的20%多72
米,已挖的部分与未挖部分的比是4∶3,已经挖好的部分占全长的4
43
+,则72米对应的分率是全长的4
43
+去掉两个20%,用分量÷分率即可求出全长。

【详解】 72÷(4
43
+-20%-20%) =72÷635
=72×
356
=420(米)
答:这条水渠长420米。

【点睛】
要分析找准单位“1”的量及72米所对应的分率。

2.84页 【分析】
设这本书有x 页,通过已读页数与剩下页数的比可知,已读页数占总页数的5
57
+,未读页数占总页数的
7
57
+,根据总页数×第一天读的对应分率+第二天读的页数=总页数×已读页数的对应分率,列出方程求出全书总页数,用全书总页数×未读页数的对应分率即可。

【详解】
解:设这本书有x 页。

15366571536612
51
361261
364
x x x x x x x +=++=-==
144x =
77
144144845712

=⨯=+(页) 答:小红再读84页就能读完这本书。

【点睛】
关键是找到等量关系,理解分数乘法和比的意义。

3.小青108下,小光90下,小明54下 【详解】 略 4.50千米
【详解】
5×2=10(千米)
设慢车行了x千米,则快车行了(x+10)千米,则有:(x+10):x=3:2
3x=(x+10)×2
3x=2x+20
x=20
20+10=30(千米)
20+30=50(千米)
答:甲、乙两站相距50千米
5.12张
【分析】
第一张桌子可以坐6人;
拼2张桌子可以坐6+4×1=10人;
拼3张桌子可以坐6+4×2=14人;
故n张桌子拼在一起可以坐6+4(n-1)=4n+2.【详解】
解:设第n张桌子可以坐50人.
4n+2=50
n=12
答:像这样12张桌子拼起来可以坐50人.
6.99人
【解析】
【详解】
45﹣36=9(人)
120%:1=6:5
9÷(6﹣5)×(6+5)
=9×11
=99(人)
答:乙车间共有工人99人.
7.桃树160棵,梨树240棵,苹果树300棵
【解析】
【详解】
解:因为桃树与梨树的比是(2×4):(3×4)=8:12 梨树与苹果树的比是(4×3):(5×3)=12:15
所以桃树、梨树、苹果树的比是:8:12:15
所以700÷(8+12+15)
=700÷35
=20(棵)
桃树:20×8=160(棵) 梨树:20×12=240(棵) 苹果树:20×15=300(棵),
答:果园里有桃树160棵,梨树240棵,苹果树300棵 8.6厘米 【分析】
因为涂色部分甲比乙的面积大211.25cm ,也就是(甲+空白扇形)-(乙+空白扇形)=11.25cm 2,即半圆面积-三角形面积=11.25cm 2,所以三角形面积=半圆面积-11.25,通过圆形面积公式和三角形面积公式进而可计算出BC 的长。

【详解】
根据分析,列式如下: [3.14×(10÷2)2÷2-11.25]×2÷10 =[39.25-11.25]×2÷10 =28×2÷10 =5.6(厘米)
答:BC 的长是5.6厘米。

【点睛】
本题考查与圆形和三角形相关的计算,找到半圆面积-三角形面积=11.25cm 2是解答本题的关键。

9.(1)13.76(2)13.76。

【分析】
(1)图2的阴影部分面积是用正方形的面积减去4个小圆的面积。

(2)把图2的计算结果和图1的结果进行对比,会有所发现。

用正方形的面积减16个小圆的面积进行图3的阴影部分的面积的验证。

【详解】
(1)2
88(42)4S π=⨯-⨯÷⨯阴影
26424π=-⨯⨯
6416π=- 6450.24=-
=13.76
(2)两个图形的阴影部分的面积相等,都是13.76。

图3的阴影面积
288(22)16S π=⨯-⨯÷⨯阴影
6416π=- 6450.24=-
=13.76 【点睛】
本题是计算组合图形的面积,能知道用正方形的面积减去里面一个或多个圆的面积就是阴
影部分的面积是解答本题的关键。

10.50个
【分析】
设这批零件共有x 个,根据已完成个数与零件总个数的比是1∶5,可知完成的占总个数的15,没完成的占1-15,完成了15x 个,没完成(1-15
)x 个,根据完成的个数+15=没完成的个数-15,列出方程解答即可。

【详解】
解:设这批零件共有x 个。

15x +15=(1-15
)x -15 15
x +15=45x -15 35
x =30 x =50
答:这批零件共有50个。

【点睛】
关键是通过比确定完成和没完成的对应分率,找到等量关系,从而列出方程进行解答。

11.()112140%140%4

⎫÷-⨯-- ⎪⎝⎭ 【分析】
根据题意可得,12米占这根电线总长度的()140%-,据此求出这根电线总长度。

因为第二次截取的长度占这根电线长度的1140%4⎛⎫-- ⎪⎝
⎭,最后求出第二次截取的长度即可。

【详解】
()112140%140%4⎛⎫÷-⨯-- ⎪⎝
⎭ =20×0.35
=7.5(米)
答:需再截去7.5米,这时正好剩下这根电线全长的四分之一。

【点睛】
本题考查百分数,解答本题的关键是找准单位“1”。

12.12507
米 【详解】 相同时间内:甲乙的速度比就是
57:35=25:21; 乙的速度就是甲的2125,相同时间内,已走的路程就是甲的2125
1﹣1
7

6
7
6 7×
21
25

18
25
50÷(1﹣18 25

=50÷7 25
=1250
7
(米)
答:A、B两地相距1250
7
米.
13.(1)25%
(2)20名工人生产大齿轮,48名工人生产小齿轮,理由见详解
【分析】
(1)工作总量比=工作效率比,用工作总量差÷大齿轮工作总量即可;
(2)先求出每人每天加工小齿轮和大齿轮的个数,设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x),根据每人每天加工大齿轮的个数×人数=每人每天加工小齿轮的个数×人数÷3,列出方程求出加工小齿轮人数,总人数-加工小齿轮人数=加工大齿轮人数。

【详解】
(1)(50-40)÷40
=10÷40
=25%
答:加工小齿轮的效率比大齿轮高25%。

(2)每人每天加工小齿轮的个数:50÷5=10(个)
每人每天加工大齿轮的个数:40÷5=8(个)
解:设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x)。

8×(68-x)=10×x÷3
1632-24x=10x
34x=1632
x=48
加工大齿轮的人数是:68-x=68-48=20(人);
答: 20名工人生产大齿轮,48名工人生产小齿轮。

【点睛】
求比一个数多/少百分之几用表示单位“1”的量作除数,用方程解决问题关键是找到等量关系。

14.50名
【分析】
通过女生与男生人数的比是3∶7,求出女生占总人数的分率,单位“1”是总人数,用少了的5名女生÷对应分率=总人数。

女生与男生人数的比是3∶7,那么女生占总人数的
3
37

3
10
5÷(40%-
3 10

=5÷
1 10
=50(名)
答:合唱队共有男女生50名。

【点睛】
本题考查了比的意义,百分数和分数复合应用题,关键是确定单位“1”,找到部分和对应分率。

15.900元
【详解】
解:设小明和小丽原来存款各是4x元、3x元,
3x+500=4x×(1﹣40%)﹣100+900
3x+500=2.4x+800
3x=2.4x+300
0.6x=300
x=500
4x=4×500=2000
2000×40%+100
=800+100
=900(元)
答:小明取出存款900元。

16.丙店
【解析】
【详解】
甲商店:48÷(5+1)=8(支)
(48-8)×10
=40×10
=400(元)
乙商店:
10×90%×48=432(元)
丙商店:
可买50支以达到优惠要求.
50×10×80%=400(元)
432>400由此可以发现,乙店花钱最多,甲乙两店虽然各花了400元,但是丙店多买了两支,所以到丙店最合算.
17.n2−(n−1)2=n+n+1 210
观察题目给出的算式,发现前一个数都比后一个数大1,而且前一个数的平方减去后一个数的平方最终等于前数加后数,由此可得到规律。

【详解】
(1)n2−(n−1)2=n+n+1
(2)22222222
20191817161521
-+-+-+-
=20+19+18+17+……+2+1
=20×10+10
=200+10
=210
【点睛】
本题考查学生的观察能力,找到规律然后利用规律是解题的关键。

18.14
【分析】
(1)上半部往下折叠盖在下半部上,这时上面的数字是1、2、3、4、5、6、7、8;(2)右半部往左折叠盖在左半部上,这时上面的数字是11、12、15、16;(3)左半部往右折叠盖在右半部上,这时上面的数字是9、13;(4)下半部往上折叠盖在上半部上,这时上面的数字是14,据此解答即可。

【详解】
纸片在最上面的数字是14;
【点睛】
解答本题时可以进行实践,得出结果。

19.(1)4000块;(2)1000块
【分析】
(1)利用长方形面积公式:S=ab,计算人行道的面积,然后用人行道的面积除以每块地砖的面积,就是所需块数。

(2)根据图形的排列规律,每4×4=16(块)方砖中,有4块是红色的,求所需地砖块数包含几个16,再乘4,计算所需红色地砖的块数即可。

【详解】
(1)400×1.6÷(0.4×0.4)
=640÷0.16
=4000(块)
答:铺设这条人行道一共需4000块地砖。

(2)4000÷16×4
=250×4
=1000(块)
答:铺设这条人行道一共需要1000块红色地砖。

【点睛】
本题主要考查数与形结合的规律,关键是根据图示发现地砖排列的规律。

20.图2(19:47:26);
图3
【分析】
(1)同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数,注意灯灭表示0,那么图2左侧第1列代表1,第2列代表1+8=9,也就是19时;第3列表示4,第4列表示1+2+4=7,也就是47分;第5列表示2,第6列表示2+4=6,也就是26秒;(2)图3是左侧第1列是0,所以不涂;第2列是7,从下往上涂代表数字1、2、4的灯亮;第3列代表数字4的灯亮,其它灯灭;第4列代表数字1、8的灯亮;第5列代表数字1、4的灯亮,其它灯灭;第6列代表数字2、4的灯亮,其它灯灭。

【详解】
据分析可得,图2代表(19:47:26);
图3是:
故答案为:图2(19:47:26);
图3是。

【点睛】
本题考查数与形,解答本题的关键就是理解同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数的概念。

21.(1)
(2)27;65
【详解】
(2)第6个点子图中的点子数是:
2+3+4+5+6+7
=2+5+(3+7+4+6)
=27(个)
第10个点子图中的点子数是:
2+3+4+5+6+7+8+9+10+11
=13×5
=65(个)
答:第6个点子图中的点子数是27个,第10个点子图中的点子数是65个.
22.6平方米
【分析】
阴影部分的面积=大正方形的面积-小正方形的面积,而圆环的面积=π(大圆半径2-小圆半径2),大圆半径=大正方形的边长,小圆半径=小正方形的边长,所以大圆半径2=大正方形的面积,小圆半径2=小正方形的面积,所以圆环的面积=π×阴影部分的面积,据此作答即可。

【详解】
解:设大正方形边长为R,小正方形边长为r,则S阴=R2-r2=40(m2)
S圆环=π(R2-r2)=125.6(m2)
答:这个圆环面积是125.6平方米。

23.60粒
【解析】
【详解】
(4+2)÷(1-1
2
)=12(粒)
(12+2)÷(1-1
2
)=28(粒)
(28+2)÷(1-1
2
)=60(粒)
24.16500米
【分析】
先求出两队合作需要的时间,再求出甲队比乙队多修总路程的几分之几,然后求甲队比乙队多修多少米,在距中点750米处相遇,说明甲队比乙队多修750×2=1500(米),用除法求出这段公路的距离即可。

【详解】
1÷(11 2024
+)
=1÷
11 120
=120
11
(天)
750×2÷(11201120 20112411
⨯-⨯)
=1500÷(65 1111
-)
=1500×11
=16500(米)
答:这段公路长16500米。

【点睛】
本题考查工程问题和路程问题中的相遇问题,画线段图可以帮助快速理清题意。

25.144千米
【分析】
首先根据题意,把两地之间的距离看作单位“1”,再根据速度×时间=路程,可得时间一定
时,路程和速度成正比,所以相遇时,小红走的路程是小明的5
4
(1+
1
4

5
4
),所以相
遇时,小红走了全程的
5
45
+
,小明走了全程的
4
45
+
;然后根据分数除法的意义,用相遇
时小红比小明多走的路程除以它占全程的分率,求出甲、乙两地相距多少千米即可。

【详解】
因为小红每小时比小明快1
4
,所以相遇时,小红走的路程是小明的:1+
1
4

5
4。

16÷(
5
45
+

4
45
+

=16÷(5
9

4
9

=16÷1 9
=144(千米)
答:甲、乙两地相距144千米。

【点睛】
此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握,解答此题的关键是求出两人相遇时,小红比小明多走了全程的几分之几。

26.24个
【分析】
根据部分数量÷部分对应分率=整体数量,从剩下的12个桃子开始,依次÷对应分率,求出总数量,总数量×第一天吃的对应分率=第一天吃的个数,(总数量-第一天吃的个数)×第二天吃的对应分率=第二天吃的个数,第一天吃的个数+第二天吃的个数即可。

【详解】
12÷(1-1
2)÷(1-
1
3
)÷(1-
1
4
)÷(1-
1
5
)÷(1-
1
6
)÷(1-
1
7

=12÷1

2
3
÷
3
4
÷
4
5
÷
5
6
÷
6
7
=84(个)
84×1
7
=12(个)
(84-12)×1 6
=72×1 6
=12(个)
12+12=24(个)
答:第一天和第二天所吃桃子的总数是24个。

【点睛】
关键是理解分数乘除法的意义,求整体用除法,求部分用乘法。

27.甲:30吨,乙:24吨
【分析】
设甲仓库原有粮食x吨,则乙仓库原有粮为(54-x)吨;甲用了4
5
之后,剩余粮食为(1
-4
5
)x;乙仓用了
3
4
之后,剩余粮食为(1-
3
4
)×(54-x);此时剩下的两仓一样多,
据此列出方程解答。

【详解】
解:设甲仓库原有粮食x吨,则乙仓库原有粮为(54-x)吨。

(1-4
5
)x=(1-
3
4
)×(54-x)
1 5x=
1
4
×(54-x)
1 5x=
1
4
×54-
1
4
x
1 5x+
1
4
x=
1
4
×54
9 20x=
54
4
x=54
4
÷
9
20
x=30
54-30=24(吨)
答:原甲仓存粮30吨,乙仓存粮24吨。

【点睛】
用方程解答关键是找出等量关系式:甲仓库原存粮吨数×剩余存粮所占分率=乙仓库原存粮吨数×剩余存粮所占分率,并根据等式的性质解方程。

28.180千克
【详解】
36÷(1-1
2
-
1
2
×
3
5
)=180(千克)
29.李丽做了110道,张明做了120道【详解】
解法一
李丽:230÷(1+1
11
+1)=110(道)张明:230−110=120(道)
解法二
解:设李丽做了x道题.
x+x(1+1
11
)=230
x=110
张明:110×(1+1
11
)=120(道)
答:李丽做了110道,张明做了120道.30.上层48本;下层42本
【详解】
8÷(
8
87
+

4
45
+

=8÷(
8
15

4
9

=8÷ 4 45
=90(本)
则原来上层有书:90×
8
87
+
=48(本)
下层有书:90×
7
87
+
=42(本)
答:原来上层有书48本,下层有书42本。

31.18升
【解析】
【分析】
把这池水的体积看作单位“1”,若下午用去25+2=27升,那么此时剩余的水的体积与用去水的体积相等,也就是用去水的体积占这池水体积的,先求出这池水体积的比上午用去水的体积多的分率,也就是27升水占这池水体积的分率,再依据分数除法意义,求出这池水的体积,最后依据分数乘法意义即可解答.
【详解】
(25+2)÷(﹣)×
=27×
=90×
=18(升)
答:这个水池早晨用去了18升水.
32.84千米
【分析】
两车第一次相遇后到第二次相遇,这之间一共行驶了两倍的两城市之间的距离长度,已知
卡车与客车的速度比是4∶3,即路程比是4∶3,则两车的路程差是
43
4343
-
++
,用24除
以路程差,就是两倍的城市距离,再除以2即可。

【详解】
24÷(
434343-++)÷2 =24÷17
÷2 =84(千米)
答:甲、乙两城相距84千米。

【点睛】
此题考查了学生对多次相遇问题的理解能力及其比的应用,关键是找出数量对应的分率。

33.334
小时 【分析】
将整份稿件看作整体“1”,甲5小时打了15,所以甲的工作效率是:115525÷=;乙6小时打了剩下稿件的12,即1(1)5-的12,所以乙的工作效率是:111(1)65215
-⨯÷=。

最后甲乙两人合打的工作量也是1(1)5
-的12,工作效率是两人的工作效率之和,然后再根据“工作时间=工作总量÷工作效率”来计算他们所需要的时间。

【详解】
11111(1)5(1)652552⎡⎤-⨯÷÷+-⨯÷⎢⎥⎣⎦ 411416522552⎡⎤=⨯÷+⨯÷⎢⎥⎣⎦ 21152515⎡⎤=
÷+⎢⎥⎣⎦ 28575
=÷ 334
=(小时) 答:还需334
小时完成。

【点睛】
本题考查工程问题,找到甲乙两人的工作效率非常关键。

34.4米
【详解】
20÷2=10(厘米)
6÷2=3(厘米)
0.4毫米=0.04厘米
3.14×(102﹣32)÷0.04
=3.14×(100﹣9)÷0.04 =3.14×91÷0.04 =7143.5(厘米) 7143.5厘米≈71.4米
答:这卷纸展开后大约有71.4米.
35.大七孔景区全年接待了游客250万人,小七孔景区全年接待了游客350万人 【解析】 【详解】 700× =600(万人) 600÷(1+
+1)
=600÷
=250(万人) 600﹣250=350(万人)
答:大七孔景区全年接待了游客250万人,小七孔景区全年接待了游客350万人 36.13cm 2 【分析】
阴影部分的面积可以用半圆的面积减去三角形ACD 的面积。

【详解】 1
3CD BC =,13
ACD
ABC
S
S =⨯
21
36123
cm ⨯=
2
163.1422⎛⎫⨯⨯ ⎪⎝⎭ 1
3.1492=⨯⨯ 21
4.13cm = 214.1312 2.13cm -=
答:阴影部分的面积是2.13cm 2。

【点睛】
在求解与圆相关的不规则图形面积时,可以考虑割补法、整体减空白、平移、旋转等方法。

37.32平方厘米 【分析】
根据题干三角形ABC 是等边三角形,所以每个角的度数都是60°,那么图中就出现了3个半径为6厘米,圆心角为60°的扇形;这三段弧所围成的图形的面积=三个扇形的面积之和﹣2个等边三角形的面积,由此利用扇形的面积公式和三角形的面积公式即可解决问题。

【详解】。

相关文档
最新文档