【毕业设计】基于单片机的信号发生器设计01

合集下载

毕业设计基于单片机的函数信号发生器

毕业设计基于单片机的函数信号发生器

目录1 绪论 (5)1.1 选题背景及意义 (5)1.1.1 本课题的研究现状 (5)1.1.2 选题目的及意义 (6)1.2 设计任务及要求 (6)1.2.1 设计的基本要求 (7)1.2.2 本文结构安排 (7)2 函数发生器系统设计 (8)2.1 设计方案的比较 (8)2.2 系统模块设计 (9)2.2.1 控制模块: (9)2.2.2 按键及其显示模块: (9)2.2.3 波形产生模块 (9)2.2.4 D/A转换 (10)2.3 系统总体框图 (12)2.4 理论分析 (12)2.4.1 电路的理论计算 (12)2.4.2 波形产生相关理论 (15)2.5 单片机软件开发系统 (15)3 系统硬件电路的设计 (17)3.1 单片机最小系统 (17)3.2 单片机的接口电路 (18)3.3 幅度控制模块 (23)3.3.1 单片机与DAC0832的接口 (23)3.3. 2DAC0832与运放的连接 (23)4 系统软件设计 (26)4.1 系统软件设计方案 (26)4.2 系统软件流程图 (26)4.3 信号产生程序 (27)4.3.1 正弦波产生 (28)4.3.2 三角波产生 (28)4.3.2 方波产生 (29)4.3.4 锯齿波的产生 (30)5 系统调试与测试 (32)5.1 调试 (32)5.2 测试 (35)6 结论与展望 (38)6.1 结论 (38)6.2 展望 (38)致谢 (39)参考文献 (51)附录 (40)附录一系统软件部分源程序 (40)附录二系统原理图 (49)附录三系统PCB图 (50)基于单片机的波形发生器的设计学生:李利刚指导老师:李敏(黄冈职业技术学院)摘要:函数发生器是一种用于产生标准信号的电子仪器,它广泛用于工业生产、科研和国防等各个领域中,所以论文选题具有一定的实用意义。

本文介在绍了函数发生器的基本概念及原理的基础上,采用AT89C51单片机为核心,完成了简易的DDS函数发生器的硬件设计和软件编程,并通过调试实现了其功能和主要技术指标。

基于单片机的低频信号发生器的设计毕业设计论文

基于单片机的低频信号发生器的设计毕业设计论文

基于单片机的低频信号发生器的设计任务书一设计题目;低频信号发生器二设计任务与要求设计制作低频信号发生器,要求利用单片机产生正弦波,方波及三角波等波形(1)正弦波用单片机实现正弦波的输出输出的波形有1HZ` 10HZ 100HZ 1KHZ 10KHZ 5种可选频率输出电压范围有0~5V可调(峰峰值)用六位数码管显示频率频率误差<1%(2)方波频率范围:0.01HZ—100KHZ频率误差:<0.1%电压范围:0~10 V(3)三角波频率范围:0.01HZ~10KHZ频率误差:<0.1%电压范围:0~20V(峰峰值)失真率:r≤3%目录一绪论 (1)二信号发生器方案设计与选择 (3)三主要电路原件介绍 (6)四单元电路硬件设计 (15)五系统软件设计 (20)六软件程序 (26)七结论 (34)八致谢 (35)九参考文献 (36)第1章绪论1.1 选题背景及其意义波形发生器也称函数信号发生器,作为实验信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。

目前,市场上常见的波形发生器多为纯硬件的搭接而成,且波形种类有限,多为锯齿波,正弦波,方波,三角波等波形。

信号发生器作为一种常见的应用电子仪器设备,传统的可以完全由硬件电路搭接而成,不用依靠单片机。

但是这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大等缺点。

在科学研究和生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。

而由硬件电路构成的低频信号其性能难以令人满意,而且由于低频信号源所需的RC很大;大电阻,大电容在制作上有困难,参数的精度亦难以保证;体积大,漏电,损耗显著更是致命的弱点。

一旦工作需求功能有增加,则电路复杂程度会大大增加。

因此需要选择其它的方法来解决此类问题,我们想到了通过单片机来实现所要求的功能,即采用单片机AT89C51还有数模转换DAC0832、运算放大器,此种方法硬件要求简单,编程容易,同时能够实现所要求的功能。

基于单片机的多功能信号发生器毕业论文

基于单片机的多功能信号发生器毕业论文

单位代码: 005分类号: TN 本科毕业论文(设计)题目:基于单片机的多功能信号发生器设计专业:电子信息工程姓名:学号:指导教师:职称:毕业时间:基于单片机的多功能信号发生器设计摘要:信号发生器常被用来当作信号发生源,它可以产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波,并且各波形的幅度和频率可调,正是因为信号发生器可以产生各种波形的信号,因此在在电路实验和设备检测生产实践和科技领域中都有着广泛的应用。

本系统主要包括四个部分,电源供电,单片机最小系统,DA转换,显示。

本系统主要用89C52 单片机与DA转换器TLC5615构成的函数信号发生器,可产生方波、三角波、正弦波,可以由程序控制改波形的周期,并可以通过按钮实现不同波形切换。

DA输出信号的幅值为0-2.5V,频率步进1KHz可调,实际信号频率通过4位数码管显示。

关键字:TLC5615;89C52;DA转换;信号发生器Multi-function signal generator based on single chipmicrocomputerAbstract:Placing signage at signal generator is often used as a signal, it can produce various waveform, such as triangle wave, sawtooth wave, rectangle wave (including square wave), sine wave, and the wave amplitude and frequency adjustable, it is because the signal generator can produce various waveform signal, therefore in circuit experiment and test equipment in the field of production practice and science and technology has a wide range of applications.System mainly includes four parts, power supply, single chip microcomputer minimum system, DA conversion, display. This system mainly USES the 89 c51 and constitute of the DA converter TLC5615 function signal generator, can produce square wave, triangle wave, sine wave, can be controlled by the program to change the cycle of the waveform, and can implement different waveform by pressing the button switch. Output signal amplitude of 0-2.5 V, step 1 KHZ frequency is adjustable, the actual signal frequency through the four digital tube display.Keywords: TLC5615;89C52;DA converter;signal generator目录1引言 (1)2 方案论证 (1)2.1单片机选择与论证 (1)2.2 DA选择与论证 (1)2.3 显示模块选择与论证 (2)2.4 输入按键选择与论证 (3)3硬件电路设计 (4)3.1硬件设计总体框图 (4)3.2 系统原理框图简介 (4)3.3 单片机最小系统设计 (4)3.3.1 单片机主控电路 (5)3.3.2单片机最小系统组成 (5)3.4 DA输出设计 (6)3.4.1芯片简介 (7)3.4.2 TL431简介 (7)3.4.3 D/A转换器的组成 (8)3.4.4 D/A转换器的主要技术指标 (8)3.6 按键电路 (10)4 软件设计 (11)4.1软件设计总流程图 (11)4.2 波形输出软件设计 (11)4.2.1 DA转换器软件设计 (12)4.2.2 方波产生软件设计 (13)4.2.3 三角波产生软件设计 (13)4.2.4 正弦波产生软件设计 (14)4.3 显示程序设计 (15)4.4 波形频率设定 (16)5 系统调试与仿真 (17)5.1 方波仿真图 (17)5.2 正弦波仿真图 (18)5.3三角波仿真图 (18)6 结语 (18)致谢 (20)参考文献 (21)附录1电路原理图 (22)附录2电路PCB图 (23)附录3程序 (24)1引言便携式和智能化越来越成为仪器的基本要求,对传统仪器的数字化,智能化,集成化也就明显得尤为重要。

基于单片机的函数信号发生器设计设计

基于单片机的函数信号发生器设计设计

基于单片机的函数信号发生器设计设计基于单片机的函数信号发生器是一种能够产生各种波形信号的电子设备。

它利用单片机控制并产生不同频率、幅度和相位的信号,可以应用于实验室教学、科研实验、电子设备测试等领域。

本文将详细介绍基于单片机的函数信号发生器的设计原理、硬件实现、软件设计和功能实现等方面。

设计原理函数信号发生器的基本原理是使用振荡电路产生基准信号,再通过放大和滤波电路得到所需频率和幅度的信号。

传统的信号发生器采用模拟电路实现,如RC振荡器和多谐振荡器等。

而基于单片机的信号发生器则利用单片机高度集成的特点,通过软件控制实现信号的产生。

硬件实现振荡电路可以采用单片机内部的定时器/计数器模块来实现。

通过合理设置定时器的工作模式、时钟频率和计数值,可以产生所需的频率信号。

放大和滤波电路用于将振荡电路产生的小幅度信号放大到所需的幅度,并进行滤波处理,消除杂散和谐波。

AD转换电路用于将模拟信号转换为数字信号,以供单片机进行处理和输出。

可以采用单片机内部的ADC模块或外部的ADC芯片来实现。

软件设计单片机的驱动程序用于初始化相关外设,如定时器、IO口和ADC等,并提供相应的读写函数接口。

信号发生器的控制程序通过设置定时器的工作模式和时序控制,生成不同频率和波形的信号。

通过ADC转换获得外部设置的幅度参数,并通过PWM输出产生所需的幅度信号。

功能实现波形选择功能通过软件控制输出不同类型的波形信号,如正弦波、方波、三角波、锯齿波等。

频率调节功能通过改变定时器的工作模式和时钟频率,实现信号频率的调节。

可以设置不同的频率范围和分辨率,满足不同应用的需求。

幅度调节功能通过ADC转换获取外部设置的幅度参数,并通过PWM输出产生所需的幅度信号。

可以设置不同的幅度范围和分辨率,实现信号幅度的调节。

相位调节功能通过改变定时器的时序控制,实现信号相位的调节。

可以设置不同的相位范围和分辨率,满足不同实验或测试的需求。

总结基于单片机的函数信号发生器是一种功能强大、灵活性高的电子设备。

基于单片机的信号发生器设计

基于单片机的信号发生器设计

基于单片机的信号发生器设计
基于单片机的信号发生器是一种能够产生不同频率、幅度和波形的信号的设备。

它在电子实验、通信系统测试和音频设备调试中起到重要作用。

本文将介绍信号发生器的工作原理、设计要点以及一些应用案例。

信号发生器的核心部分是单片机,它是一种集成了处理器、存储器和输入输出接口的微型计算机。

单片机通过程序控制产生不同频率的脉冲信号,并通过数模转换器将数字信号转换为模拟信号输出。

为了保证信号的准确性和稳定性,还需要使用精密的时钟电路和滤波电路。

在设计信号发生器时,需要考虑以下几个要点。

首先是频率范围和分辨率的选择。

不同的应用场景需要不同的频率范围,而分辨率则决定了信号的精度。

其次是波形的选择和产生方式。

常见的波形有正弦波、方波、三角波等,可以通过查表、数学模拟或直接输出等方式产生。

此外,还需要考虑信号的幅度调节和输出阻抗匹配等问题。

信号发生器在实际应用中有着广泛的用途。

在电子实验中,它可以用来测试电路的频率响应、相位特性和失真情况。

在通信系统测试中,它可以模拟各种信号场景,用来验证系统的性能和稳定性。

在音频设备调试中,它可以生成各种音频信号,用来测试音响设备的音质和效果。

基于单片机的信号发生器是一种功能强大的设备,它能够产生多种频率、幅度和波形的信号,用于电子实验、通信系统测试和音频设备调试等领域。

通过合理的设计和实现,可以满足不同应用场景的需求,并提高工作效率和准确性。

希望本文对读者理解信号发生器的工作原理和设计要点有所帮助。

基于单片机的函数信号发生器毕业设计完整版

基于单片机的函数信号发生器毕业设计完整版

源程序:ORG 0000HAJM MAINORG 000BHLJMP TC0ORG 0030HMAIN:MOV DPTR,#9FFFH 指向DAC0832(1)MOV A,70HMOVX @DPTR,A DAC0832(1)输出MOV DPTR,#7F00H 指向8155命令字端口地址MOV A,#06H 设置A口为输入,B口、C口为输出MOVX @DPTR,A 送命令字MOV DPTR,#7F01H 指向A口地址MOVX A,@DPTR 读入A口的开关数据JNB ACC.4,K10H 判断是否“4”号键,若是则转输出10Hz信号JNB ACC.5,K100H 判断是否“5”号键,若是则转输出100Hz信号JNB ACC.6,K500H 判断是否“6”号键,若是则转输出500Hz信号JNB ACC.7,K1K 判断是否“7”号键,若是则转输出1KHz信号AJMP MAINLED1:MOV R3,#06H 设置6个LED显示MOV R2,#01H 选通第一位LED数据MOV R1,#30H 送显示缓冲区首址GN1:MOV DPTR,#7F03H 指向C口地址MOV A,R2 位选通数据送AMOVX @DPTR,A 位选通数据送C口RL A 选通下一位MOV R2,A 位选通数据送R2中保存MOV A,@R1 取键值MOV DPTR,#TAB 送LED显示软件译码表首址MOVC A,@A+DPTR 查表求出键值显示的段码MOV DPTR,#7F02H 指向B口地址MOV @DPTR,A 段码送显示LCALL LOOP1 调延时子程序INC R1 指向下一位显示缓冲区地址DJNZ R3,GN1 循环显示6个LEDRETLOOP1:MOV R4,#08H 延时子程序LOOP:MOV R5,#0A0HDJNZ R5,$DJNZ R4,LOOPRETK10H:MOV 30H,#00H 显示10HzMOV 31H,#00HMOV 32H,#00HMOV 33H,#00HMOV 34H,#01HMOV 35H,#00HLCALL LED1 调显示子程序MOV TMOD,#00HMOV TL0,#15HMOV TH0,#9EHAJMP PDK100H:MOV 30H,#00H 显示100HzMOV 31H,#00HMOV 32H,#00HMOV 33H,#01HMOV 34H,#00HMOV 35H,#00HLCALL LED1 调显示子程序MOV TMOD,#00HMOV TL0,#08HMOV TH0,#0F6HAJMP PDK500H:MOV 30H,#00H 显示500HzMOV 31H,#00HMOV 32H,#00HMOV 33H,#05HMOV 34H,#00HMOV 35H,#00HLCALL LED1 调显示子程序MOV TMOD,#00HMOV TL0,#01HMOV TH0,#0FEHAJMP PDK1K:MOV 30H,#00H 显示1KHzMOV 31H,#00HMOV 32H,#01HMOV 33H,#00HMOV 34H,#00HMOV 35H,#00HLCALL LED1 调显示子程序MOV TMOD,#00HMOV TL0,#01HMOV TH0,#0FFHPD:JNB ACC.0,KE0 判断是否“0”号键按下,若是则转方波输出JNB ACC.1,KE1 判断是否“1”号键按下,若是则转正弦方波输出JNB ACC.2,KE2 判断是否“2”号键按下,若是则转三角波输出JNB ACC.3,KE3 判断是否“3”号键按下,若是则转锯齿波输出LJMP PDKE0:MOV R7,#00HLCALL LED1 调显示子程序MOV R6,#00HAJMP GNKE1:MOV R7,#02HLCALL LED1 调显示子程序MOV R6,#00HAJMP GNKE2:MOV R7,#02HLCALL LED1 调显示子程序MOV R6,#00HAJMP GNKE3:MOV R7,#02HLCALL LED1 调显示子程序MOV R6,#00HGN:SETB TR0SETB ET0SETB EALOP1:JNB ACC.4,K10H 判断是否“4”号键,若是则转输出10Hz信号JNB ACC.5,K100H 判断是否“5”号键,若是则转输出100Hz信号JNB ACC.6,K500H 判断是否“6”号键,若是则转输出500Hz信号JNB ACC.7,K1K 判断是否“7”号键,若是则转输出1KHz信号AJMP LOP1TC0:CJNE R7,#00H,TC1 发送方波程序MOV DPTR,#TAB1 送方波数据表首址MOV A,R6 发送数据寄存器MOVC A,@A+DPTRMOV DPTR,#0AFFFH 指向DAC0832(2)MOVX @DPTR,A DAC0832(2)输出MOV A,R6INC ACJNE A,#32,QL1MOV R6,#00HAJMP QL1TC1:CJNE R7,#01H,TC2 发送正弦波程序MOV DPTR,#TAB2 送正弦波数据表首址MOV A,R6MOVC A,@A+DPTRMOV DPTR,#0AFFFH 指向DAC0832(2)MOVX @DPTR,A DAC0832(2)输出MOV A,R6INC AMOV R6,ACJNE A,#32,QL1MOV R6,#00HAJMP QL1TC2:CJNE R7,#02H,QL1 发送三角波程序MOV DPTR,#TAB3 送三角波数据表首址MOV A,R6MOVC A,@A+DPTRMOV DPTR,#0AFFFH 指向DAC0832(2)MOVX @DPTR,A DAC0832(2)输出MOV A,R6INC AMOV R6,ACJNE A,#32,QL1MOV R6,#00HAJMP QL1TC3::CJNE R7,#03H,QL1 发送锯齿波程序MOV DPTR,#TAB4 送锯齿波数据表首址MOVC A,@A+DPTRMOV DPTR,#0AFFFH 指向DAC0832(2)MOVX @DPTR,A DAC0832(2)输出MOV A,R6INC AMOV R6,ACJNE A,#32,QL1MOV R6,#00HQL1:RETITAB:DB 0C0H,0F9H,0A4H,0B0H,99H,82H,0F8H,80HTAB1:DB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH DB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFHDB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFHDB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFHDB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFHDB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFHDB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFHDB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFHDB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFHDB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFHDB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFHDB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFHDB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFHDB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFHDB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFHDB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFHDB 00H,00H,00H,00H,00H,00H,00H,00HDB 00H,00H,00H,00H,00H,00H,00H,00HDB 00H,00H,00H,00H,00H,00H,00H,00HDB 00H,00H,00H,00H,00H,00H,00H,00HDB 00H,00H,00H,00H,00H,00H,00H,00HDB 00H,00H,00H,00H,00H,00H,00H,00HDB 00H,00H,00H,00H,00H,00H,00H,00HDB 00H,00H,00H,00H,00H,00H,00H,00HDB 00H,00H,00H,00H,00H,00H,00H,00HDB 00H,00H,00H,00H,00H,00H,00H,00HDB 00H,00H,00H,00H,00H,00H,00H,00HDB 00H,00H,00H,00H,00H,00H,00H,00HDB 00H,00H,00H,00H,00H,00H,00H,00HDB 00H,00H,00H,00H,00H,00H,00H,00HDB 00H,00H,00H,00H,00H,00H,00H,00HDB 00H,00H,00H,00H,00H,00H,00H,00HTAB2:DB 80H,83H,86H,89H,8DH,90H,93H,96HDB 99H,9CH,9FH,0A2H,0A5H,0A8H,0ABH,0AEHDB 0B1H,0B4H,0B7H,0BAH,0BCH,0BFH,0C2H,0C5HDB 0C7H,0CAH,0CCH,0CFH,0D1H,0D4H,0D6H,0D8HDB 0DAH,0DDH,0DFH,0E1H,0E3H,0E5H,0E7H,0E9HDB 0EAH,0ECH,0EEH,0EFH,0F1H,0F2H,0F4H,0F5HDB 0F6H,0F7H,0F8H,0F9H,0FAH,0FBH,0FCH,0FDHDB 0FDH,0FEH,0FFH,0FFH,0FFH,0FFH,0FFH,0FFHDB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH,0FEH,0FDHDB 0FDH,0FCH,0FBH,0FAH,0F9H,0F8H,0F7H,0F6HDB 0F5H,0F4H,0F2H,0F1H,0EFH,0EEH,0ECH,0EAHDB 0E9H,0E7H,0E5H,0E3H,0E1H,0DEH,0DDH,0DAHDB 0D8H,0D6H,0D4H,0D1H,0CFH,0CCH,0CAH,0C7HDB 0C5H,0C2H,0BFH,0BCH,0BAH,0B7H,0B4H,0B1HDB 0AEH,0ABH,0A8H,0A5H,0A2H,9FH,9CH,99HDB 96H,93H,90H,8DH,89H,86H,83H,80HDB 80H,7CH,79H,78H,72H,6FH,6CH,69HDB 66H,63H,60H,5DH,5AH,57H,55H,51HDB 4EH,4CH,48H,45H,43H,40H,3DH,3AHDB 38H,35H,33H,30H,2EH,2BH,29H,27HDB 25H,22H,20H,1EH,1CH,1AH,18H,16HDB 15H,13H,11H,10H,0EH,0DH,0BH,0AHDB 09H,08H,07H,06H,05H,04H,03H,02HDB 02H,01H,00H,00H,00H,00H,00H,00HDB 00H,00H,00H,00H,00H,00H,01H,02HDB 02H,03H,04H,05H,06H,07H,08H,09HDB 0AH,0BH,0DH,0EH,10H,11H,13H,15HDB 16H,18H,1AH,1CH,1EH,20H,22H,25HDB 27H,29H,2BH,2EH,30H,33H,35H,38HDB 3AH,3DH,40H,43H,45H,48H,4CH,4EHDB 51H,55H,57H,5AH,5DH,60H,63H,66HDB 69H,6CH,6FH,72H,76H,79H,7CH,80H TAB3:DB 00H,02H,04H,06H,08H,0AH,0CH,0EHDB 10H,12H,14H,16H,18H,1AH,1CH,1EHDB 20H,22H,24H,26H,28H,2AH,2CH,2EHDB 30H,32H,34H,36H,38H,3AH,3CH,3EHDB 40H,42H,44H,46H,48H,4AH,4CH,4EHDB 50H,52H,54H,56H,58H,5AH,5CH,5EHDB 60H,62H,64H,66H,68H,6AH,6CH,6EHDB 70H,72H,74H,76H,78H,7AH,7CH,7EHDB 80H,82H,84H,86H,88H,8AH,8CH,8EHDB 0A0H,0A2H,0A4H,0A6H,0A8H,0AAH,0ACH,0AEHDB 0B0H,0B2H,0B4H,0B6H,0B8H,0BAH,0BCH,0BEHDB 0C0H,0C2H,0C4H,0C6H,0C8H,0CAH,0CCH,0CEHDB 0D0H,0D2H,0D4H,0D6H,0D8H,0DAH,0DCH,0DEHDB 0E0H,0E2H,0E4H,0E6H,0E8H,0EAH,0ECH,0EEHDB 0F0H,0F2H,0F4H,0F6H,0F8H,0FAH,0FCH,0FEHDB 0FFH,0FEH,0FCH,0FAH,0F8H,0F6H,0F4H,0F2HDB 0F0H,0EEH,0ECH,0EAH,0E8H,0E6H,0E4H,0E2HDB 0E0H,0DEH,0DCH,0DAH,0D8H,0D6H,0D4H,0D2HDB 0D0H,0CEH,0CCH,0CAH,0C8H,0C6H,0C4H,0C2HDB 0C0H,0BEH,0BCH,0BAH,0B8H,0B6H,0B4H,0B2HDB 0B0H,0AEH,0ACH,0AAH,0A8H,0A6H,0A4H,0A2HDB 0A0H,09EH,9CH,9AH,98H,96H,94H,92HDB 90H,8EH,8CH,8AH,88H,86H,84H,82HDB 80H,7EH,7CH,7AH,78H,76H,74H,72HDB 70H,6EH,6CH,6AH,68H,66H,64H,62HDB 60H,5EH,5CH,5AH,58H,56H,54H,52HDB 50H,4EH,4CH,4AH,48H,46H,44H,42HDB 40H,3EH,3CH,3AH,38H,36H,34H,32HDB 30H,2EH,2CH,2AH,28H,26H,24H,22HDB 20H,1EH,1CH,1AH,18H,16H,14H,12HDB 10H,0EH,0CH,0AH,08H,06H,04H,02HTAB4:DB 00H,01H,02H,03H,04H,05H,06H,07HDB 08H,09H,0AH,0BH,0CH,0DH,0EH,0FHDB 10H,11H,12H,13H,14H,15H,16H,17HDB 18H,19H,1AH,1BH,1CH,1DH,1EH,1FHDB 20H,21H,22H,23H,24H,25H,26H,27HDB 28H,29H,2AH,2BH,2CH,2DH,2EH,2FHDB 30H,31H,32H,33H,34H,35H,36H,37HDB 38H,39H,3AH,3BH,3CH,3DH,3EH,3FHDB 40H,41H,42H,43H,44H,45H,46H,47HDB 48H,49H,4AH,4BH,4CH,4DH,4EH,4FHDB 50H,51H,52H,53H,54H,55H,56H,57HDB 58H,59H,5AH,5BH,5CH,5DH,5EH,5FHDB 60H,61H,62H,63H,64H,65H,66H,67HDB 68H,69H,6AH,6BH,6CH,6DH,6EH,6FHDB 70H,71H,72H,73H,74H,75H,76H,77HDB 78H,79H,7AH,7BH,7CH,7DH,7EH,7FHDB 80H,81H,82H,83H,84H,85H,86H,87HDB 88H,89H,8AH,8BH,8CH,8DH,8EH,8FHDB 90H,91H,92H,93H,94H,95H,96H,97HDB 98H,99H,9AH,9BH,9CH,9DH,9EH,9FHDB 0A0H,0A1H,0A2H,0A3H,0A4H,0A5H,0A6H,0A7HDB 0A8H,0A9H,0AAH,0ABH,0ACH,0ADH,0AEH,0AFHDB 0B0H,0B1H,0B2H,0B3H,0B4H,0B5H,0B6H,0B7HDB 0B8H,0B9H,0BAH,0BBH,0BCH,0BDH,0BEH,0BFHDB 0C0H,0C1H,0C2H,0C3H,0C4H,0C5H,0C6H,0C7HDB 0C8H,0C9H,0CAH,0CBH,0CCH,0CDH,0CEH,0CFHDB 0D0H,0D1H,0D2H,0D3H,0D4H,0D5H,0D6H,0D7HDB 0D8H,0D9H,0DAH,0DBH,0DCH,0DDH,0DEH,0DFHDB 0E0H,0E1H,0E2H,0E3H,0E4H,0E5H,0E6H,0E7HDB 0E8H,0E9H,0EAH,0EBH,0ECH,0EDH,0EEH,0EFHDB 0F0H,0F1H,0F2H,0F3H,0F4H,0F5H,0F6H,0F7HDB 0F8H,0F9H,0FAH,0FBH,0FCH,0FDH,0FEH,0FFH END。

毕业设计--基于单片机的正弦波信号发生器设计[管理资料]

毕业设计--基于单片机的正弦波信号发生器设计[管理资料]

目录绪论 (1)第1章系统概述和方案 (2)引言 (2) (2)DDS的理论分析与参数计算 (2)DDS的基本原理 (2)参数计算 (3)信号发生芯片选择 (4)第2章系统硬件设计 (5) (5)(DDS)连接电路 (5)单片机AT89S51介绍 (5)AD9835芯片介绍 (7) (8) (10)D∕A转换及幅度控制电路 (11)信号放大电路 (13)显示电路 (14)键盘电路 (16)电源电路 (17)第3章系统软件流程图 (19)主程序流程图 (19)键盘处理子程序流程图 (20)D/A转换子程序流程图 (21)展望 (22)致谢 (23)参考文献 (24)附录一 (25)附录二 (26)绪论基于单片机的正弦波信号发生器设计,该课题的设计目的是充分运用大学期间所学的专业知识,考察信号发生器的基本功能,完成一个基本的实际系统的设计全过程。

通过单片机控制一个有特殊功能的信号发生芯片,可以产生一系列有规律的幅度和频率可调的波形。

这样一个信号发生装置在控制领域有相当广泛的应用范围。

直接数字频率合成(DDS)是近年来发展起来的一种新的频率合成技术。

其主要优点是相对带宽很宽、频率转换时间极短(可小于20ns)、频率分辨率很高、全数字化结构便于集成、输出相位连续、频率、相位和幅度均可实现程控。

因此,能够与计算机紧密结合在一起,充分发挥软件的作用。

作为应用,现在已有DDS 产品用于接收机本振、信号发生器、通信系统、雷达系统、跳频通信系统等。

本文介绍一种由直接数字频率合成(DDS)芯片AD9835设计的正弦信号发生器,该芯片支持高达50MHz的时钟频率,可以产生最高可达25MHz的正弦波形。

通过单片机控制完全可以满足设计所要求的正弦波信号的生成。

本文主要分六大部分:绪论、系统概述和方案、硬件部分、软件部分,展望和致谢。

绪论,首先对课题研究背景和所涉及的相关技术领域进行了介绍;第一章对系统所要完成的功能和可扩展的功能进行描述,确定系统的设计方案主要元器件的选择。

基于单片机的函数信号发生器毕业设计完整版

基于单片机的函数信号发生器毕业设计完整版

基于单片机的函数信号发生器毕业设计完整版本毕业设计旨在设计一个基于单片机的函数信号发生器,以满足工程实践需求。

设计的信号发生器将具有以下特点:能够输出多种波形、具备可调频率和幅度的功能、具备稳定性和高精度等。

首先,信号发生器的硬件设计包括信号源、滤波电路、放大电路和输出电路。

信号源负责产生基本的信号波形,可以通过设置单片机的IO口电平高低来控制信号的波形。

滤波电路和放大电路主要负责对信号进行滤波和放大处理,以确保输出的波形质量和幅度稳定性。

输出电路则是将放大后的信号输出到外部设备上。

其次,信号发生器的软件设计主要是通过编程控制单片机的IO口来实现波形的生成和调节。

编程方面,可以使用C语言或者汇编语言来编写程序,实现波形的输出、频率和幅度的调节等功能。

在程序的运行过程中,需要通过控制IO口电平的高低来控制信号的形状。

同时,可以使用按键或旋钮等外部输入设备来实现对频率和幅度的调节,以满足用户的实际需求。

最后,在设计的过程中需要注意信号发生器的稳定性和精度。

稳定性主要包括信号的频率稳定性和幅度稳定性。

频率稳定性可以通过使用高精度的时钟源和精确的频率分频电路来实现。

幅度稳定性可以通过使用高精度的放大电路和自动增益控制电路来实现。

精度方面,则可以通过使用高精度的模拟数字转换芯片和时钟源来实现。

总的来说,基于单片机的函数信号发生器在工程实践中具有重要意义。

本设计旨在结合硬件和软件技术,实现一个功能完善、稳定性好、精度高的信号发生器。

通过合理的设计和优化,该信号发生器能够满足工程实践的需求,为相关领域的研究提供信号源支持。

基于单片机的函数信号发生器—毕业设计

基于单片机的函数信号发生器—毕业设计

基于单片机的函数信号发生器—毕业设计本科毕业设计题目基于单片机的函数信号发生器学院工学院专业农业电气化及自动化毕业届别二〇一一届姓名指导老师杨职称讲师北京农业大学教务处制基于单片机的函数信号发生器二〇一一年六月目录第一章绪论 (4)1.1设计背景及意义 ........................................................4 第二章整体设计 (6)2.1设计思路 .............................................................6 2.2系统硬件设计 .........................................................7 第三章单片机AT89S51介绍 (8)3.1 单片机的选择 ........................................................8 3.2AT89S51主要性能 .....................................................8 3.3AT89S51主要特点 ....................................................9 第四章硬件设计 (10)4.1信号发生部分 .........................................................10 4.2频率计数器部分 (12)4.2.1利用AT89S51计数 ...............................................12 4.3放大电路 ............................................................13 4.4 LED显示器 (14)4.4.1 数码管的选择 ..................................................14 4.4.2数码管段驱动芯片74LS573 .......................................14 4.4.3 键盘电路设计 (15)第五章程序设计 (17)5.1信号频率数据采集程序 (17)5.1.1程序设计的语言 .................................................17 5.2 程序设计 ......................................................18 5.3 正弦波的产生 (18)5.4 方波的产生 (19)5.4.1 方波流程图 ....................................................19 5.4.2 程序设计 .....................................................19 5.5 锯齿波的产生 .. (20)5.5.1 锯齿波产生的流程图 ...........................................21 5.5.2 锯齿波程序设计 ...............................................21 5.6 键盘程序设计 .. (22)5.6.1 键盘扫描程序 .................................................22 5.6.2 键盘处理程序设计 .............................................23 5.7 数码管程序设计 ......................................................25 设计总结 .................................................................. ..25 参考文献 .................................................................. ..26 致谢 ........................................................ 错误!未定义书签。

基于单片机的信号发生器的设计

基于单片机的信号发生器的设计

基于单片机的信号发生器的设计设计一个基于单片机的信号发生器,需要考虑以下几个方面:硬件电路设计、软件设计、功能实现等。

1.硬件电路设计在硬件电路设计方面,我们可以使用一个单片机作为控制核心,外接一块DAC芯片来实现信号输出。

DAC芯片可以将数字信号转换为模拟信号,并输出到外部设备。

我们还需要考虑信号发生器的输入和输出接口,这些接口可以用来接收外部信号或者将信号输出到其他设备上。

2.软件设计在软件设计方面,我们需要编写固件程序来控制单片机的工作。

首先,我们需要编写一个初始化程序,在该程序中,我们可以初始化单片机和外接设备。

然后,我们需要编写一个主程序来控制信号生成的方式和参数。

在该程序中,我们可以通过键盘或者触摸屏等方式来输入信号的频率、幅度和波形等参数。

最后,我们需要编写一个输出程序,该程序将信号输出到DAC芯片,并通过其他接口输出到外部设备。

3.功能实现信号发生器可以实现多种功能,如正弦波、方波、三角波、齿轮波等各种波形信号的生成。

根据输入的参数,单片机可以根据对应的算法生成相应的波形信号,并将信号输出到DAC芯片上。

此外,信号发生器可以支持多个输入通道,用户可以选择不同的通道来生成不同的信号。

还可以设置信号的扫描频率和扫描范围等功能。

在设计完成后,我们需要对信号发生器进行测试和优化。

测试可以输出一系列标准信号,比较输出信号与标准信号的差异,以检测发生器的准确性和稳定性。

在优化方面,我们可以考虑改进信号发生器的性能,增强其功能。

例如,可以添加自动扫描功能,支持外部控制信号输入等功能。

总结:基于单片机的信号发生器的设计需要考虑硬件电路设计、软件设计、功能实现等方面。

通过合理的设计和编程,可以实现信号发生器的各种功能,以满足用户的需求。

同时,我们还可以通过测试和优化来提高信号发生器的性能和稳定性。

基于单片机的信号发生器设计

基于单片机的信号发生器设计

基于单片机的信号发生器设计一、本文概述随着现代电子技术的飞速发展,单片机因其高集成度、低成本和易于编程等特点,在信号处理和控制领域得到了广泛应用。

本文旨在探讨基于单片机的信号发生器设计,该设计在电子工程、自动化控制、信号处理等领域具有重要的应用价值。

本文将首先介绍单片机的基本概念、特点及其在信号发生器设计中的应用优势。

随后,将详细阐述信号发生器的设计原理、系统架构以及关键模块的设计方法,包括信号生成模块、放大模块、滤波模块等。

本文还将探讨单片机编程技术在信号发生器中的应用,包括程序设计、调试与优化等方面。

通过实验验证所设计信号发生器的性能,并对其在实际应用中的可行性进行评估。

本文的研究成果将为相关领域的研究人员和技术人员提供一定的理论指导和实践参考。

二、单片机概述单片机(Microcontroller Unit,MCU)是一种集成电路芯片,是将中央处理器(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、输入输出(IO)端口、定时计数器以及中断系统等主要计算机功能部件集成在一块芯片上的微型计算机。

单片机以其体积小、功能强、性价比高、可靠性高、控制灵活、易于扩展等优点,被广泛应用于各种控制系统和智能化产品中。

单片机通常按照数据总线宽度、内部程序存储器容量、IO端口数量等参数进行分类。

其内部逻辑电路主要包括CPU、存储器、IO接口电路、定时计数器、中断控制逻辑等模块。

CPU是单片机的核心,负责执行指令、处理数据和进行逻辑运算存储器用于存储程序和数据IO接口电路负责单片机与外部设备的连接和通信定时计数器用于实现定时和计数功能中断控制逻辑则用于响应和处理外部中断事件。

在信号发生器设计中,单片机作为核心控制单元,负责产生和控制各种信号波形,如正弦波、方波、三角波等。

通过编程控制单片机的IO端口,可以产生不同频率、不同幅度的信号,从而实现信号发生器的功能。

同时,单片机还可以通过与其他电路模块的配合,实现信号调理、功率放大、显示输出等功能,使信号发生器具有更高的性能和更广泛的应用范围。

毕业设计(论文)-基于单片机的信号发生器设计

毕业设计(论文)-基于单片机的信号发生器设计

毕业设计(论文)中文摘要(题目):基于单片机的信号发生器设计摘要:此函数信号发生器是基于单片机AT89C51设计而成的,能够产生频率范围在0Hz—535Hz的锯齿波、正弦波、三角波、矩形波四种波形,并且能够通过液晶屏1602显示各自的波形类型以及频率数值。

首先,单片机AT89C51经过程序设计的方法生成各种数字信号,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大。

接着,通过按键来控制四种波形的类型选择、和频率数值选择,并由液晶屏1602显示其频率数值和波形类型。

总的系统包括信号发生部分、数/模转换部分以及液晶显示部分三大部分,其中尤其对数/模转换部分和波形产生和变化部分进行详细论述。

关键词:AT89C51DAC0832 液晶屏1602Title :Abstract:This function signal generator is based on the AT89C51 microcontroller design, capable of generating frequency range 0Hz-535Hz sawtooth, sine, triangle wave, square wave, four types of waveforms, and each type of waveform and frequency can be displayed by the LCD screen 1602value. First, AT89C51 microcontroller programming method to generate a variety of digital signal through the D / A converter DAC0832 converts the digital signal into an analog signal, filtered and amplified. Then, the key to control the four waveform type selection, and frequency selection of values, the value of its frequency and waveform type is displayed by the LCD screen 1602. The total system including a signal generating part of the digital / analog converting section and a liquid crystal display section of three parts, wherein in particular for the digital / analog conversion part and the waveform generating and changing part discusses in detail.keywords: AT89C51 DAC0832 LCD in screen 1602目录1 引言 (1)1.1研究背景 (1)1.2 国内外的研究现状和发展趋势 (2)2 设计要求 (2)3 设计总体方案 (2)4 硬件电路实现 (4)4.1 单片机最小系统的设计 (4)4.1.1 时钟电路 (5)4.1.2 复位电路 (5)4.2 D/A转换电路 (6)4.3 放大滤波电路 (9)4.4 键盘模块的设计 (10)4.5 显示模块的设计 (11)5 软件程序设计 (12)6 测试仪器及测试说明 (14)结论 (14)致谢 (14)参考文献 (15)附录A (16)附录B (17)1 引言信号发生器是一种常用信号源。

基于单片机的函数信号发生器设计

基于单片机的函数信号发生器设计

基于单片机的函数信号发生器设计
近年来,随着科学技术的飞速发展,计算机的硬件设备和软件程序的逐步完善,信号发生器具有许多优点,如低成本、可靠性高、灵活性强等优点,已经被广泛应用于计算机技术和各种测量仪器中。

而基于单片机的函数信号发生器,则更具有可编程性能和更低的成本优势,深受广大科学家的青睐。

本文的目的是设计一种基于单片机的函数信号发生器,该发生器由一个单片机、一个发射机、一个接收机和一个调制解调组成,以及一个显示器来显示接收的信号。

首先,运用单片机作为控制器,将其与发射机连接,再将各种函数信号(如正弦波、方波、余弦波等)调制到发射机输出端,让发射机发射出各种函数信号。

接着,在接收机方面,我们使用一个调制解调器,接收机接收到发射机发出的函数信号后,将信号解调,重新调制成我们想要的函数信号,然后使用显示器来显示函数信号的波形,以便观察。

最后,在硬件的设计上,我们使用单片机作为控制器,发射机和接收机可以分别使用多种射频技术(如射频调制、无线电调制、数字调制等),发射机的输出功率可以通过改变电容电阻和其它技术来微调,以符合接收机所能处理的范围。

此外,显示器可以采用液晶显示屏,以显示函数信号的波形。

经过上述一系列设计,我们就可以构建一个可用于测量和发射函数信号的发生器,它具有低成本、可编程性高的优点,为科学研究提供了一种有效的发射和测量工具。

因此,我们可以简单总结:本文研究了一种基于单片机的函数信号发生器,它利用发射机发射不同函数信号,使用接收机接收并解调,然后将函数信号显示出来,最终利用发射机和接收机实现了函数信号的发射和接收,实现了低成本、可编程性高、灵活性强、可靠性高的性能。

基于单片机信号发生器的设计毕业设计答辩

基于单片机信号发生器的设计毕业设计答辩

基于单片机信号发生器的设计毕业设计答辩毕业设计答辩稿:基于单片机信号发生器的设计尊敬的评委、老师们,大家好!我是XXX,今天我非常荣幸能够在这里向大家介绍我的毕业设计课题,基于单片机信号发生器的设计,并希望能够得到大家的批评和指正。

一、设计背景和目的在现代电子技术领域,信号发生器是一种非常常见的电子测试仪器。

它广泛应用于电子产品的测试和信号调制等领域。

传统的信号发生器一般由复杂的电路和大量的元器件构成,成本较高且结构复杂。

此外,传统的信号发生器功能较单一,无法根据用户需求进行灵活的适配。

因此,本课题旨在设计一种基于单片机的信号发生器,既能够满足信号发生器的基本功能,同时又能够降低成本和简化结构。

此外,本设计还力求增加其灵活性和可编程性,以便用户可以根据需求自由调整和生成各种类型的信号。

二、设计原理和流程本设计的核心部分是单片机,通过单片机的GPIO(通用输入输出)引脚和定时器等功能实现信号的生成和输出。

具体设计流程如下:1.选择合适的单片机:根据设计需求,选择一款具备足够的GPIO引脚和定时器功能的单片机。

2.编写程序:在单片机上编写程序,实现信号类型的选择和生成。

可以通过键盘或者触摸屏等外部设备对信号类型进行选择,然后通过程序控制单片机GPIO引脚输出相应的信号。

可以根据需要设置不同的参数,如频率、幅度和相位等。

3.信号输出:将单片机的GPIO输出与信号放大器连接,以便放大信号幅度并进行输出。

通过设计合适的电路,能够实现不同类型信号的输出,如正弦波、方波、三角波等。

4.信号显示:为了更直观地观察信号的波形和特征,可以在设计中加入液晶显示器等外部设备,实现信号的实时显示。

三、设计特色和创新点本设计相比传统的信号发生器,具有以下几个特色和创新点:1.成本低廉:传统的信号发生器由于电路复杂,成本较高。

而本设计通过单片机的灵活性和GPIO引脚的输出功能,可以实现类似的信号发生器功能,成本较低。

2.结构简单:本设计的结构相对简单,仅需单片机、信号放大器和触摸屏等外设,不需要太多的元器件和复杂的电路。

基于单片机的函数信号发生器毕业设计完整版

基于单片机的函数信号发生器毕业设计完整版

摘要本文介绍一种用AT89C51单片机构成的波形发生器,可产生方波、三角波、正弦波、锯齿波等多种波形,波形的周期可用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑、性能优越等特点。

文章给出了源代码,通过仿真测试,其性能指标达到了设计要求。

关键词:单片机;DAC;信号发生器目录摘要............................................................... 目录............................................................... 第一章绪论..........................................................1.1单片机概述......................................................1.2信号发生器的分类................................................1.3研究内容........................................................ 第二章方案的设计与选择..............................................2.1方案的比较......................................................2.2设计原理........................................................2.3设计思想........................................................2.4设计功能........................................................ 第三章硬件设计......................................................3.1硬件原理框图....................................................3.2主控电路........................................................3.3数、模转换电路..................................................3.4按键接口电路....................................................3.5时钟电路........................................................3.6显示电路........................................................ 第四章软件设计......................................................4.1程序流程图...................................................... 第五章总结与展望.................................................... 致谢............................................................... 参考文献............................................................. 附录1电路原理图..................................................... 附录2 源程序......................................................... 附录 3 器件清单......................................................第一章绪论1.1单片机概述随着大规模集成电路技术的发展,中央处理器(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、(I/O)接口、定时器/计数器和串行通信接口,以及其他一些计算机外围电路等均可集成在一块芯片上构成单片微型计算机,简称为单片机。

基于单片机的信号发生器设计毕业论文

基于单片机的信号发生器设计毕业论文

编号:____________审定成绩:____________毕业设计(论文)设计(论文)题目:___基于单片机的信号发生器设计____单位(系别):______________________学生姓名:______________________专业:______________________班级:______________________学号:______________________指导教师:______________________答辩组负责人:______________________摘要随着现代电子技术的飞速发展,电子测量技术不断完善,信号发生器作为电子测量技术的关键设备也不断更新,信号发生器的频率精度和频率稳定性已成为关注的焦点,国内信号发生器频率精度不高,频率稳定性差,成为约束信号发生器技术发展的瓶颈。

本文从提高信号发生器的频率精度和稳定性的角度出发,利用单片机和频率控制实现信号幅度数字存储和转换的方案和实现。

在本文中,对信号发生器硬件系统的设计过程进行了研究,并进行了电路设计,充分发挥了高精度,高稳定性的特点。

然后,软件系统的设计从整体软件流程图计划。

整个软件系统分为程序初始化模块,键盘显示模块,频率控制字计算模块,频率控制字传输模块等,频率输出控制更准确。

在本文中,分析了数字信号发生器组装和调试的硬件系统,组装和调试过程,故障现象的组装和调试过程进行了分析和解决;在完成硬件系统的基础上,然后软件逐步调试,获得准确的测试数据,通过最终的测试数据验证数字信号发生器具有高精度和高稳定性的优异性能。

最后,本文总结和展望了整个设计和验证过程,提出了进一步提高信号发生器精度和稳定性的思想。

它还提出了如何提高输出频率范围的想法。

如何进一步提高数字信号发生器的性能和未来的研究工作。

【关键词】信号发生器髙性能高精度高稳定度单片机ABSTRACTWith the rapid development of modern electronic technology, electronic measurement technology continues to improve, the signal generator as the key equipment of electronic measurement technology is also constantly updated, the signal generator frequency accuracy and frequency stability has become the focus of attention, the domestic signal generator frequency Accuracy is not high, the frequency stability is poor, become a constraint signal generator technology development bottleneck. In this paper, the frequency and stability of the signal generator to improve the accuracy and stability of the use of single-chip and frequency control to achieve signal amplitude digital storage and conversion program and implementation.In this paper, the signal generator hardware system design process was studied, and the circuit design, give full play to the high precision, high stability characteristics. Then, the software system is designed from the overall software flow chart. The whole software system is divided into program initialization module, keyboard display module, frequency control word calculation module, frequency control word transmission module, focusing on frequency control word calculation method improvement, frequency output control more accurate.In this paper, the hardware system, the assembly and debugging process of the digital signal generator assembly and debugging are analyzed and the process of assembling and debugging the fault phenomena is analyzed and solved. On the basis of the hardware system, the software is gradually debugged and obtained accurately Of the test data, through the final test data to verify that the digital signal generator with high accuracy and high stability of the excellent performance.Finally, this paper summarizes and prospects the whole design and verification process, and puts forward the idea of further improving the accuracy and stability of the signal generator. It also raises the idea of how to increase the output frequencyrange. How to further improve the performance of digital signal generator and future research work.【Keywords】signal generator high performance high precision high stability single chip目录摘要 (I)ABSTRACT (II)引言 (1)第一章绪论 (2)第一节研究背景 (2)第二节研究现状 (2)第三节研究目的及意义 (4)第二章方案设计 (6)第一节方案比较 (6)一、方案一 (6)二、方案二 (6)三、方案三 (7)四、选出方案 (7)第二节芯片选择 (7)一、方案一 (7)二、方案二 (8)三、选出方案 (9)第三章电路设计 (10)第一节基本原理 (10)第二节单片机资源分配 (10)一、单片机基本原理介绍 (10)二、AT89S51工作原理 (14)第三节资源分配 (14)第四节电路原理 (15)一、DAC0832芯片原理 (15)二、DAC0832工作原理 (16)第五节 MC1403 (18)第六节 LM324 电压放大器 (19)第四章软件设计 (20)第一节主程序框架 (20)第二节子程序框架 (21)一、锯齿波形 (21)二、三角波形 (22)三、正弦波形 (22)四、方波波形 (23)五、延时程序 (24)第五章测试结果展示 (25)第一节仿真波形 (25)一、锯齿波 (26)二、三角波 (26)三、正弦波 (27)四、方波 (27)第二节产生各波形的数据 (28)第三节波形结果分析 (28)总结 (29)参考文献 (30)致谢 (31)引言如今是科技和仪器仪表高度智能化的信息社会快速发展的时代,电子技术进步,带来根本性的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的信号发生器设计代劲(吉首大学物理科学与信息工程学院,湖南吉首 416000)摘要本文介绍一种用AT89C51单片机构成的波形发生器,可产生方波、三角波、正弦波、锯齿波等多种波形,波形的周期可用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑、性能优越等特点。

文章给出了源代码,通过仿真测试,其性能指标达到了设计要求。

关键词:单片机;DAC;信号发生器Design of Signal Generator Based on MCUDai Jing(College of Physics Science and Information Engineering,Jishou University,Jishou,Hunan 416000)AbstractThis paper introduces a signal generator with MCU AT89C51,which is used to generate electro-wave-forms such as squares、triangles、sines and teeth-saw. The periods of these signals can be changed by programs of MCU AT89C51 and their outputs can be selected to be monopolar or bipolar. This paper provides the original code. And the technical parameter of the signal generator meets the request of the design after the simulation test.Key words:MCU;DAC;signal generator硬件设计硬件原理框图硬件原理方框图如图4.1所示。

图4.1 硬件原理框图主控电路AT89C51单处机内部设置两个16位可编程的定时器/计数器T0和T1,它们具有计数器方式和定时器方式两种工作方式及4种工作模式。

在波形发生器中,将其作定时器使用,用它来精确地确定波形的两个采样点输出之间的延迟时间。

模式1采用的是16位计数器,当T0或T1被允许计数后,从初值开始加计数,最高位产生溢出时向CPU 请求中断。

中断系统是使处理器具有对外界异步事件的处理能力而设置的。

当中央处理器CPU 正在处理某件事的时候外界发生了紧急事件,要求CPU 暂停当前的工作,转而去处理这个紧急事件。

在波形发生器中,只用到片内定时器/计数器溢出时产生的中断请求,即是在AT89C51输出一个波形采样点信号后,接着启动定时器,在定时器未产生中断之前,AT89C51等待,直到定时器计时结束,产生中断请求,AT89C51响应中断,接着输出下一个采样点信号,如此循环产生所需要的信号波形[6]。

如图4.2所示,AT89C51从P0口接收来自键盘的信号,并通过P2口输出一些控制信号,将其输入到8155的信号控制端,用于控制其信号的输入、输出。

如果有键按下,则在读控制端会产生一个读信号,使单片机读入信号。

如果有信号输出,则在写控制端产生一个写信号,并将所要输出的信号通过8155的PB 口输出,并在数码管上显示出来。

单 片 机键盘 电路显示 电路复位 电路 数/模转 换电路 放大 电路波形 输出图4.2 主控电路图数/模转换电路由于单片机产生的是数字信号,要想得到所需要的波形,就要把数字信号转换成模拟信号,所以该文选用价格低廉、接口简单、转换控制容易并具有8位分辨率的数模转换器DAC0832。

DAC0832主要由8位输入寄存器、8位DAC 寄存器、8位D/A 转换器以及输入控制电路四部分组成。

但实际上,DAC0832输出的电量也不是真正能连续可调,而是以其绝对分辨率为单位增减,是准模拟量的输出。

DAC0832是电流型输出,在应用时外接运放使之成为电压型输出。

由图4.3可知,DAC0832的片选地址为7FFFH ,当P25有效时,若P0口向其送的数据为00H , 则U1 的输出电压为0V ;若P0口向其送的数据为0FFH 时, 则U1的输出电压为-5V . 故当U1 输出电压为0V 时,由公式得:V out = - 5V .当输出电压为- 5V 时,可得:V out = +5V ,所以输出波形的电压变化范围为- 5V ~+ 5V . 故可推得,当P0所送数据为80H 时,V out 为0V [4]。

1230123U U U R R R ++=图4.3数模转换电路按键接口电路图4.4为键盘接口电路的原理图,图中键盘和8155的PA口相连,AT89C51的P0口和8155的D0口相连,AT89C51不断的扫描键盘,看是否有键按下,如有,则根据相应按键作出反应。

其中“S0”号键代表方波输出,“S1”号键代表正弦波输出,“S2”号键代表三角波输出。

“S3”号键代表锯齿波输出,“S4”号键为10Hz的频率信号,“S5”号键为100Hz的频率信号,“S6”号键为500Hz的频率信号,“S7”号键为1KHz的频率信号[3]。

时钟电路8051单片机有两个引脚(XTAL1,XTAL2)用于外接石英晶体和微调电容,从而构成时钟电路,其电路图如图4.5所示。

电容C1、C2对振荡频率有稳定作用,其容量的选择为30pf,振荡器选择频率为12MHz的石英晶体。

由于频率较大时,三角波、正弦波、锯齿波中每一点的延时时间为几微秒,故延时时间还要加上指令时间才能获得较大的频率波形[9]。

图4.5时钟电路显示电路显示电路是用来显示波形信号的频率,使得整个系统更加合理,从经济的角度出发,所以显示器件采用LED数码管显示器。

而且LED数码管是采用共阳极接法,当主控端口输出一个低电平后,与其相对应的数码管即变亮,显示所需数据。

其器件模型如图4.6所示。

图4.6LED显示电路软件设计程序流程图本文中子程序的调用是通过按键的选择来实现,在取得按键相应的键值后,启动计时器和相应的中断服务程序,再直接查询程序中预先设置的数据值,通过转换输出相应的电压,从而形成所需的各种波形。

主程序的流程图如图5.1所示,在程序开始运行之后,首先是对8155进行初始化,之后判断信号频率值,如符合所需的频率,则重置时间常数,并通过显示器显示出来,不符则返回。

在中断结束后,还要来判断波形是否符合,如符合,则显示其频率,不符则返回,重新判断。

图5.1主程序流程图图5.2为各波形子程序的流程图。

如图所示,在中断服务子程序开始后,通过判断来确定各种波形的输出,当判断选择的不是方波后,则转向对正弦波的判断,如此反复。

如果选择的是方波,则用查表的方法求出相应的数据,并通过D/A转换器将数据转换成模拟信号,形成所需波形信号。

图5.2子程序流程图波形仿真通过前面的软、硬件设计,整个电路的设计已基本完成,下面将进行正弦波、方波、三角波、锯齿波等波形的仿真与测试。

本文中波形信号的仿真是以Proteus 6.5这一款软件为平台,装入波形发生程序,验证硬件电路和程序的正确性。

正弦波的仿真如图5.3所示,此波形为幅度为5V,频率为500HZ的正弦波,是通过查表转换的方法来实现的。

而要实现其他如10HZ、100HZ、1KHZ等频率的波形,则需要调用延时子程序,改变波形发生的时间常数。

图5.3正弦波仿真图三角波的仿真如图5.4所示,此波形为幅度为5V,频率为500HZ的正弦波,是通过查表转换的方法来实现的。

通过调用延时子程序,改变波形发生的时间常数,实现10HZ、100HZ、1KHZ等频率的波形。

图5.4 三角波仿真图锯齿波的仿真如图5.5所示,此波形为幅度为5V,频率为500HZ的锯齿波,是通过查表转换的方法来实现的。

而要实现其他如10HZ、100HZ、1KHZ等频率的波形,则需要调用延时子程序,改变波形发生的时间常数。

方波的仿真如图5.6所示,此波形为幅度为5V,频率为500HZ的方波,是通过查表转换的方法来实现的。

通过调用延时子程序,改变波形发生的时间常数,实现10HZ、100HZ、1KHZ等频率的波形。

图5.6 方波仿真图结束语这种基于单片机的信号发生器已经展示出很好的性能,而且有着很高的性价比。

此外,它产生的波形与模拟电路的波形相比,波形有着更好的平滑性,其周期性也更加稳定。

已经越来越多的应用到各种电子设备当中,给人们的日常生活带来了方便。

在论文中简单介绍了它的用途和发展趋势,根据它的一些基本知识,按照自己的想法设计了一类低频信号发生器,具体包括了设计方案以及相关参数的选取和计算,根据工作基本原理加入了一些相关的辅助电路,并编写了相关的应用程序。

有些指标还有待于进一步提高。

例如,在精度及其它功能的扩展上还有较大的潜力可以挖掘,这些都有待于我们通过对电路的改进和对元器件的最佳选择来进一步完善。

而且由于本人所学知识有限,很多知识点的学习不够深刻,我会在以后的学习中更加踏实、认真的学好各个知识点。

参考文献[1] 程全.基于AT89C52实现的多种波形发生器的设计[J].周口师范学院学报,2005.22(5):57~58.[2] 周明德.微型计算机系统原理及应用[M].北京:清华大学出版社,2002.341~364.[3] 刘乐善.微型计算机接口技术及应用[M].北京:北京航空航天大学出版社,2001.258~264.[4] 童诗白.模拟电路技术基础[M].北京:高等教育出版社,2000.171~202.[5] 杜华.任意波形发生器及应用[J].国外电子测量技术,2005.1:38~40.[6] 张友德.单片微型机原理、应用与实践[M].上海:复旦大学出版社,2004.40~44.[7] 程朗.基于8051单片机的双通道波形发生器的设计与实现[J].计算机工程与应用,2004.8:100~103.[8] 张永瑞.电子测量技术基础[M].西安:西安电子科技大学出版社,2006.61~101.[9] 李叶紫. MCS-51单片机应用教程[M].北京:清华大学出版社,2004.232~238.[10] 蔡美琴.MCS-51系列单片机系统及其应用[M].北京:高等教育出版社,1988.56~289.本文的研究工作是在杨永东老师指导、帮助和督促下完成的。

杨永东老师在该领域有敏锐的感知力以及对其应用价值的洞察力给我留下了深刻的印象。

在攻读学士学位四年的学习期间,导师勇于探索、敢于创新的科研精神激励我不断努力进取,在今后的人生旅途上取得成功的宝贵的精神财富。

同时,在学习期间导师为我提供了良好的研究环境和实践条件,并对一些创新性的工作给予了大量的指导与支持。

相关文档
最新文档