机械设计、齿轮与轴综合的介绍

合集下载

新能源汽车机械齿轮,驱动轴介绍

新能源汽车机械齿轮,驱动轴介绍

新能源汽车机械齿轮,驱动轴介绍下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!新能源汽车的机械齿轮与驱动轴:动力传输的核心部件随着环保理念的提升和科技的进步,新能源汽车已成为全球汽车产业的重要发展方向。

齿轮与轴配合标准-概述说明以及解释

齿轮与轴配合标准-概述说明以及解释

齿轮与轴配合标准-概述说明以及解释1.引言1.1 概述齿轮与轴是机械传动系统中常见的零部件,它们通过配合来传递动力和扭矩。

齿轮和轴的配合质量直接影响传动系统的性能和可靠性。

为了确保齿轮与轴之间的配合达到预期的效果,制定了一系列的配合标准,以规范齿轮和轴的制造、加工和装配过程。

本文将重点介绍齿轮与轴配合标准,探讨其基本原理、分类和重要性。

通过深入了解齿轮与轴的配合标准,可以帮助工程师和制造商更好地设计和生产出高质量的机械传动系统,提高其工作效率和运行稳定性。

1.2 文章结构本文主要分为三个部分,包括引言、正文和结论。

在引言部分,将对齿轮与轴配合标准的概念进行概述,介绍文章的结构和目的。

在正文部分,将分别探讨齿轮配合标准和轴配合标准的基本原理及分类,以便读者更好地理解这两者在机械设计中的重要性。

最后,在结论部分将强调齿轮与轴配合标准对于机械设计与生产的重要性,并对全文进行总结。

通过这样的结构安排,读者能够全面了解齿轮与轴配合标准的相关知识,并能够更好地应用于实际工作中。

文章1.3 目的部分的内容是介绍本文的目的和意义。

通过深入探讨齿轮与轴配合标准,旨在帮助读者更好地了解齿轮和轴之间的配合关系,提高工程设计和制造的准确性和效率。

同时,通过对齿轮与轴配合标准的分类和基本原理的介绍,希望读者能够在实际应用中准确选择和使用适合的配合标准,提高产品的质量和性能表现。

本文还将探讨齿轮与轴配合标准对于机械传动系统的重要性,为读者提供更全面的知识理解和实际操作指导。

通过本文的阐述,读者可以更好地了解齿轮与轴配合标准的重要性,加深对机械传动系统的认识,促进机械工程技术的发展和创新。

2.正文2.1 齿轮配合标准2.1.1 齿轮配合基本原理齿轮是机械传动中常用的零件,通过齿和齿相互啮合,传递动力和运动。

齿轮的配合质量直接影响传动的效率和稳定性。

齿轮的配合基本原理包括啮合面的几何形状、啮合角、齿隙等参数的设计和控制。

2.1.2 齿轮配合标准的分类齿轮配合标准根据传动方式、齿轮形式和工作条件等因素进行分类。

齿轮简介介绍

齿轮简介介绍

05
齿轮的发展趋势和前景
齿轮技术的发展趋势
01
精细化
随着现代工业的发展,齿轮的制造精度要求越来越高,齿轮技术的精细
化成为发展趋势。通过精细化技术,可以提高齿轮传动的效率和可靠性

02
高速化
高速齿轮传动技术是现代机械传动领域的一个重要发展方向。随着动力
传动装置向小型化、轻量化、高速化的方向发展,高速齿轮的设计和制
齿轮的传动特点
01
02
03
传动比准确
齿轮传动的传动比非常准 确,能够满足各种精密传 动的要求。
传动效率高
齿轮传动的传动效率很高 ,一般可达95%以上,因 此在实际应用中非常广泛 。
载荷能力强
齿轮传动具有较高的载荷 能力,能够承受较大的扭 矩和冲击载荷。
齿轮的制造材料和热处理
制造材料
齿轮常用的制造材料有碳钢、合金钢、铸铁等。其中,碳钢 和合金钢具有较高的强度和韧性,适用于高速、重载的齿轮 传动;铸铁则具有较好的耐磨性和减震性能,适用于低速、 轻载的齿轮传动。
齿形检测:采Biblioteka 齿形测量仪对齿轮的齿形精度进 行测量,确保齿轮的啮合性能。
无损检测:采用超声波、磁粉、涡流等无损检测 技术,对齿轮内部缺陷进行检测,确保齿轮的安 全使用。
表面质量检测:通过显微镜、硬度计等设备对齿 轮表面质量进行检测,保证齿轮的耐磨性和抗疲 劳性能。
通过以上制造技术和加工工艺的应用,以及严格 的检测技术和质量控制,可以确保齿轮的高精度 、高强度、高可靠性,从而满足各种机械设备对 齿轮传动的需求。
硬质合金
硬质合金具有高硬度、高强度和良好的耐磨性,是一种优质的齿轮材料。随着硬质合金制 造技术的不断提高,其应用领域也越来越广泛。

机械基础 教学最好的机械设计手册》之直齿轮

机械基础 教学最好的机械设计手册》之直齿轮

机械基础教学最好的机械设计手册》之直齿轮标题:机械基础教学最好的机械设计手册》之直齿轮在机械工程的学习中,一本好的参考书对于提高学生的理论知识和实践技能都至关重要。

今天,我想向大家介绍一本在我求学过程中对我影响深远的参考书——《机械设计手册》。

这本书以其独特的视角和详尽的内容,成为了我在机械设计领域的重要指南。

《机械设计手册》是一本综合性的机械设计工具书,涵盖了广泛的主题,包括强度、材料、摩擦学、传动、联接、轴和轴承等。

这本书以其深度和广度,为我们在机械设计过程中提供了全面的理论和实践指导。

尽管市面上有许多类似的参考书,但我认为这一本以其严谨的内容和清晰易懂的解释,成为了我心目中的首选。

在这本书中,有一个章节专门讲解了直齿轮的设计。

这一部分深入浅出地讲解了直齿轮的基本原理、设计要素、制造过程以及应用实例。

通过阅读这一部分,我了解到直齿轮作为一种基本的传动元件,在许多机械系统中都有着广泛的应用。

掌握直齿轮的设计原理和制造过程,对于理解机械传动的本质和进行有效的机械设计至关重要。

直齿轮的设计原理主要包括齿廓啮合基本定律、齿宽、压力角、模数等基本参数的选择。

这些理论知识是我们在进行齿轮设计和制造过程中的基础。

通过这本书,我得以深入理解这些原理,并在实践中加以应用。

《机械设计手册》还提供了大量的实例和习题,这些内容帮助我将理论知识应用到实际问题的解决中。

通过解决各种实际工程问题,我逐渐掌握了直齿轮设计的精髓,并培养了自己的问题解决能力。

《机械设计手册》以其全面而深入的内容,以及理论与实践的结合,成为了我在机械基础学习和实践中的重要帮手。

通过学习这本书,我不仅掌握了直齿轮的设计原理和制造过程,还培养了自己的问题解决能力和创新思维。

我相信这本书也会对大家在机械基础学习和实践中有所帮助。

让我们一起领略《机械设计手册》的魅力,共同迈向机械设计的高峰!齿轮传动是机械设计中不可或缺的重要环节,它广泛应用于各种机械设备中,如汽车、飞机、机床等。

2024年机械设计基础课件齿轮传动

2024年机械设计基础课件齿轮传动

机械设计基础课件齿轮传动机械设计基础课件:齿轮传动1.引言齿轮传动是机械设计中的一种基本传动方式,广泛应用于各种机械设备的运动和动力传递。

齿轮传动具有结构简单、传动效率高、可靠性好、寿命长等优点,因此在工业生产和日常生活中得到广泛应用。

本课件将介绍齿轮传动的基本原理、分类、设计方法和应用。

2.齿轮传动的基本原理齿轮传动是利用齿轮副的啮合来传递动力和运动的一种传动方式。

齿轮副由两个或多个齿轮组成,其中主动齿轮通过旋转驱动从动齿轮,从而实现动力和运动的传递。

齿轮副的啮合是通过齿轮齿廓的接触来实现的,齿廓的形状和尺寸决定了齿轮传动的性能和精度。

3.齿轮传动的分类齿轮传动根据齿轮的形状和布置方式可分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动、直齿圆锥齿轮传动和蜗轮蜗杆传动等。

直齿圆柱齿轮传动是应用最广泛的一种齿轮传动方式,具有结构简单、制造容易、精度高等优点。

斜齿圆柱齿轮传动具有传动平稳、噪声低、承载能力强等优点,适用于高速和重载的传动场合。

直齿圆锥齿轮传动适用于空间狭小和角度传动的场合。

蜗轮蜗杆传动具有大传动比、自锁性和精度高等特点,适用于低速、大扭矩的传动场合。

4.齿轮传动的设计方法齿轮传动的设计主要包括齿轮的几何设计、强度设计和精度设计。

齿轮的几何设计是根据传动比、工作条件、材料等因素确定齿轮的齿数、模数、压力角等参数。

强度设计是保证齿轮传动在规定的工作条件下具有足够的承载能力和寿命,主要包括齿面接触强度和齿根弯曲强度的计算。

精度设计是保证齿轮传动的精度和运动平稳性,主要包括齿轮的加工精度和装配精度的控制。

5.齿轮传动的应用齿轮传动在工业生产和日常生活中得到广泛应用。

在机床、汽车、船舶、飞机等机械设备中,齿轮传动用于传递动力和运动,实现各种复杂的运动轨迹和速度变化。

在风力发电、水力发电等能源领域,齿轮传动用于传递高速旋转的动力,实现能源的转换和利用。

在、自动化设备等高科技领域,齿轮传动用于实现精确的运动控制和动力传递,提高设备的性能和效率。

机械原理作业 齿轮

机械原理作业 齿轮

机械原理作业齿轮1. 齿轮的基本原理齿轮是一种常用的机械传动装置,通过不同大小的齿轮间的啮合来实现动力的传递和转换。

齿轮传动具有传递能量高效、传递力矩稳定等优点,广泛应用于机械设备、车辆和工业生产中。

2. 齿轮的分类根据直径方向上的相对位置,齿轮可以分为平行轴齿轮和交叉轴齿轮。

平行轴齿轮是指两个齿轮的轴线平行,常用于平行轴传动;而交叉轴齿轮是指两个齿轮的轴线相交,常用于垂直轴传动。

3. 齿轮的主要参数齿轮的主要参数包括模数、齿数、齿宽和齿廓等。

模数决定了齿轮的尺寸和齿数,齿宽则决定了齿轮的强度和传动能力。

齿廓则根据不同的齿轮传动要求选择不同的曲线。

4. 齿轮的工作原理在齿轮传动中,驱动轮的转动将通过齿轮啮合将动力传递到被驱动轮上。

由于齿轮齿面的接触,驱动轮的转动会引起被驱动轮的转动,从而实现动力的传递。

这种传递过程中,驱动轮和被驱动轮的转速和转矩之间存在特定的关系,可以通过齿轮的齿数比来计算。

5. 齿轮的应用齿轮传动广泛应用于各种机械设备中,如汽车、机床、船舶、工程机械等。

它可以实现不同转速和转矩的转换,提高机械设备的工作效率和性能。

6. 齿轮传动的优缺点齿轮传动具有传动效率高、传动特性稳定、传动精度高等优点。

同时,齿轮传动也存在噪音大、啮合间隙、需润滑等缺点。

因此,在实际应用中需要根据需求综合考虑其优缺点。

7. 齿轮的维护保养为了保证齿轮传动的正常工作,需要进行定期的检查和保养。

主要包括清洁齿轮表面、检查齿轮齿面是否磨损、检查齿轮的润滑情况等。

定期的维护保养可以延长齿轮的使用寿命并保证其传动效果。

8. 齿轮传动的改进为了进一步提高齿轮传动的性能,研究人员在齿轮设计和制造方面进行了许多改进。

如采用先进的材料、精密制造工艺和优化的齿轮结构等,以提高齿轮传动的效率和可靠性。

9. 高精度齿轮的应用高精度齿轮具有传动精度高、传动效率高等优点,被广泛应用于精密机床、航天器械等领域。

高精度齿轮的制造要求更高,需要采用先进的加工技术和测量手段来确保其质量。

齿轮受力综合分析

齿轮受力综合分析

齿轮受力综合分析齿轮是一种常用的机械传动元件,主要用于将一个轴上的动力或运动传递给另一个轴。

齿轮的工作原理是利用两个齿轮之间的啮合来传递动力和转矩,因此齿轮的强度和刚度是十分重要的。

齿轮传动在使用的过程中,由于外界的作用,会受到不同方向的力和力矩的作用,因此齿轮在设计时需要考虑各种力和力矩的综合作用。

齿轮的受力综合分析就是针对齿轮在使用过程中受到的各种力和力矩进行分析和计算,以确保齿轮能够安全、稳定地工作。

下面将介绍齿轮受力综合分析中需要考虑的各种因素。

1. 齿轮轴向力对于两个相啮合的齿轮,轴向力是沿着齿轮轴线方向上的力。

轴向力的大小和方向取决于齿轮在传递动力时所受的载荷和加速度,以及齿轮位置和啮合角度等因素。

一般情况下,齿轮所受的轴向力都会导致轴承的不必要负荷,因此在设计和制造齿轮时需要考虑这一因素。

齿轮切向力是指沿齿轮齿向方向的力,它与齿轮的强度和刚度密切相关。

齿轮工作时,由于啮合处的弯曲应力和拉伸应力的作用,会产生齿面接触处的切向力,这对齿轮的耐磨性和稳定性都有很大的影响。

因此,在设计齿轮时需要根据切向力的大小和方向制定相应的强度和刚度要求。

3. 齿轮弯曲应力齿轮在工作时会产生弯曲应力,主要集中在齿根和齿尖处。

由于齿轮的齿根处和齿谷处是应力集中部位,因此设计时需要特别注意这些位置的强度和刚度。

4. 齿轮振动齿轮振动是指齿轮在工作时由于啮合错位或不平衡造成的振动。

振动会导致齿面磨损加剧,甚至引起齿面的破坏。

因此在设计齿轮时需要考虑振动的影响,采取相应的措施进行消除或控制。

综合以上因素,在设计齿轮时需要根据所要传递的动力和转矩大小、啮合角度、齿数等因素,结合材料强度和制造工艺等因素进行综合分析和计算,以确保齿轮能够在安全、稳定的工作状态下工作。

齿轮传动机械设计知识点

齿轮传动机械设计知识点

齿轮传动机械设计知识点齿轮传动机械是一种常见的传动机构,广泛应用于各行各业。

它通过齿轮之间的啮合传递动力和扭矩,实现机械设备的运转。

在齿轮传动机械的设计过程中,需要掌握一些重要的知识点,以确保设计的可靠性、高效性和经济性。

本文将介绍齿轮传动机械设计的一些关键知识点。

一、齿轮基本参数的确定在进行齿轮传动机械设计时,首先需要确定齿轮的基本参数,包括模数、齿数、压力角等。

模数是齿轮齿数与齿轮直径之比,决定了齿轮的尺寸。

齿数反映了齿轮齿数的多少,不同齿数的齿轮可以满足不同的传动比要求。

压力角决定了齿轮的强度和接触性能,常用的压力角有20度和14.5度。

二、齿轮啮合角的计算齿轮的啮合角是指两个相邻齿轮啮合时,齿轮齿廓的压力线与接触线之间的夹角。

啮合角的大小与齿轮的模数、齿数、压力角等参数相关。

在设计中,需要根据啮合角的计算公式来确定合适的齿轮啮合。

三、齿轮传动的传动比计算齿轮传动的传动比是指输入轴和输出轴转速之比,它决定了齿轮传动机构的输出扭矩和速度。

在设计齿轮传动时,需要根据需要的传动比来选择合适的齿轮组合,并根据齿轮齿数和模数的关系来计算传动比。

四、齿轮齿形的设计齿轮齿形的设计是齿轮传动机械设计的重要环节。

合理的齿轮齿形能够提高传动效率和耐用性。

常见的齿轮齿形有直齿、斜齿、渐开线齿等。

在齿轮齿形的设计过程中,需要考虑齿轮齿宽、齿顶间隙、齿根间隙等参数,以保证齿轮传动的质量和可靠性。

五、齿轮传动的强度计算齿轮传动的强度计算是判断齿轮传动机械设计是否合理的重要指标。

在设计过程中,需要考虑齿轮的承载能力、齿面接触应力和齿根弯曲应力,以确保齿轮传动机械在使用过程中不会出现损坏或断裂的情况。

六、齿轮传动的噪声和振动控制齿轮传动机械在工作过程中可能会产生噪声和振动,影响使用效果和使用寿命。

在设计过程中,需要考虑降低齿轮传动的噪声和振动,采取一些措施,如选择合适的齿轮啮合方式、精确的加工工艺等。

总结齿轮传动机械设计知识点涉及齿轮基本参数的确定、齿轮啮合角的计算、齿轮传动的传动比计算、齿轮齿形的设计、齿轮传动的强度计算、齿轮传动的噪声和振动控制等方面。

机械设计基础 齿轮传动

机械设计基础 齿轮传动
P= z d
径节的单位为1/英寸,分度圆直径的单位为英寸。 模数与径节的换算关系为:
m= 25.4 P
显然径节与模数正好相反,径节越大,周节越小,即模数小,英制齿轮常 用径节有以下几种: 2、2.5、3、4、6、8、10、12、16、20。
6.4.1
保持恒定的瞬时传动比
下图为一对啮合的齿轮。rb1、rb2为两齿轮的基圆半径,N1N2为两基圆的内公切 线,设在某一瞬时,两齿廓在K点接触,过K点作两齿廓的公法线nn,根据渐开线性 质2,过K和K’点作两圆的法线,必与N1N2重合。当经过Δt时间后,主动齿轮O1转过 角ψ1,从动齿轮转过角ψ2,两齿轮齿廓在K’点接触。渐开线齿廓的啮合点始终是 沿着两个基圆内公切线N1N2移动。所以N1N2就是啮合点K的移动轨迹,叫做啮合线。 根据渐开线性质1可知,弧长
(2)应用特点 在机械传动中,齿轮传动应用最广泛。在工程机械、矿山机械、冶金机械以及各 类机床中都应用着齿轮传动。齿轮传动所传递的功率从几w至几万kW;它的直径从不 到1mm的仪表齿轮,到10 m以上的重型齿轮;它的圆周速度从很低到100m/s以上。 大部分齿轮是用来传递旋转运动的,但也可以把旋转运动变为直线往复运动,如齿 轮齿条传动。 与其他传动相比齿轮传动有如下特点: ①瞬时传动比恒定,平稳性较高,传递运动准确可靠; ②适用范围广;可实现平行轴、相交轴、交错轴之间的传动;传递的功率和速度 范围较大; ③结构紧凑、工作可靠,可实现较大的传动比; ④传动效率高、使用寿命长; ⑤齿轮的制造、安装要求较高; ⑥不适宜远距离两轴之间的传动。 (3)对齿轮传动的基本要求 采用齿轮传动时,因啮合传动是个比较复杂的运动过程,对其要求是: ①传动要平稳 要求齿轮在传动过程中,任何瞬时的传动比保持恒定不变。以保 持传动的平稳性,避免或减少传动中的噪声、冲击和振动。 ②承载能力强 要求齿轮的尺寸小,重量轻,而承受载荷的能力大。即要求强度 高,耐磨性好,寿命长。

《机械设计基础》第8章 齿轮系

《机械设计基础》第8章 齿轮系
z 2 z3 1H 1 H H i13 H 3 3 H z1 z2
48 24 4 48 18 3
250 H 4 100 H 3
H 2
2
1
2‘ H
3
3H
3
1

H 1
H 50
周转轮系传动比计算方法小结:
定轴齿轮系
平面定轴齿轮系 空间定轴齿轮系
二.行星齿轮系
1. 定义
在齿轮系运转时,若至少有一个齿轮的几何轴线 绕另一齿轮固定几何轴线转动,则该齿轮系称为行星 齿轮系(如图8-3)。它主要由行星齿轮、行星架(系 杆)、和中心轮所组成。
2. 基本构件
行星齿轮系中由于一般都以中心轮和行星架作 为运动的输入或输出构件,故称它们为行星齿轮系 的基本构件
上角标 H
周转轮系
-w
H
正负号问题
转化机构:假想的定轴轮系
i1H n 1 n H i1n
计算转化机构的传动比 计算周转轮系传动比
1H z 2 z n i H z1 z n1 n
H 1n
i1 n 1
n
例题8-2 :
一差动齿轮系如图 所示,已知个轮齿数为: z1 16, z 2 24, z3 64, 当轮1和轮3的转速为:
式中:G为主动轮,K为从动轮,中间各轮的主 从地位也应按此假定判定。m为齿轮G至K间外啮合 的次数。
求行星齿轮系传动比时,必须注意以下几点:
(1) nG , K ,nH 必须是轴线平行或重合的相应齿轮的 n 转速。 (2)将nG,nK,nH 的已知值代入公式时必须带正 号或负号。
H (3) i GK i GK。 i GK为转化机构中轮G与K的转速之 比,其大小与正负号应按定轴齿轮系传动比的计算 方法确定。

机械设计课程设计--设计带式输送机的传动系统

机械设计课程设计--设计带式输送机的传动系统

机械设计课程设计--设计带式输送机的传动系统目录前言........................................................ - 1 - 1 设计任务................................................... - 2 -1.1 设计题目 .......................................... - 2 -1.2 传动系统参考方案................................... - 2 -1.3 原始数据 .......................................... - 3 -1.4 工作条件 .......................................... - 3 -2 传动系统的总体设计......................................... -3 -2.1 电动机的选择 ...................................... - 3 -2.1.1 选择电动机的类型.......................... - 3 -2.1.2 选择电动机的容量.......................... - 3 -2.1.3 计算传动装置总传动比和分配各级传动比 ...... - 5 -2.1.4 计算传动装置的运动和动力参数.............. - 5 -3 皮带轮传动的设计计算....................................... - 7 -4 齿轮传动的设计计算........................................ - 10 -4.1 选择齿轮材料及精度等级............................ - 10 -4.2 按齿面接触疲劳强度设计............................ - 10 -4.3 主要尺寸计算 ..................................... - 12 -4.4 按齿根弯曲疲劳强度校核............................ - 12 -4.5 齿轮的圆周速度v.................................. - 12 -5 轴及键的设计计算.......................................... - 13 -5.1 选择轴的材料,确定许用应力........................ - 13 -5.2 按扭转强度估算轴径................................ - 13 -5.2 轴承的选择及校核.................................. - 18 -5.3 键的选择计算及校核................................ - 18 -6 联轴器的选择.............................................. - 18 -6.1 计算转矩 ......................................... - 19 -6.2 选择型号及尺寸.................................... - 19 -7 润滑、密封装置的选择...................................... - 19 -7.1 润滑油的选择 ..................................... - 19 -7.2 密封形式 ......................................... - 20 -7.3 箱体主要结构尺寸计算.............................. - 22 - 设计小结..................................................... - 23 - 参考资料..................................................... - 24 -前言机械设计课程设计是课程教学的一重要内容,也是一重要环节,目的有三:1)使学生运用所学,进行一次较为全面综合的设计训练,培养学生的机械设计技能,加深所学知识的理解;2)通过该环节,使学生掌握一般传动装置的设计方法,设计步骤,为后续课程及毕业设计打好基础,做好准备;3)通过该环节教学使学生具有运用标准、规范、手册、图册和查阅相关技术资料的能力,学会编写设计计算说明书,培养学生独立分析问题和解决问题的能力。

机械原理齿轮

机械原理齿轮

机械原理齿轮机械原理中的齿轮是一种常见且重要的机械传动元件,它通过齿轮的啮合来实现传动功能,广泛应用于各种机械设备中。

齿轮传动具有传递动力平稳、传动比恒定、传动效率高等特点,因此在工程领域中得到了广泛的应用。

本文将从齿轮的基本原理、结构特点、工作原理和应用领域等方面对齿轮进行深入探讨。

首先,我们来了解一下齿轮的基本原理。

齿轮是利用啮合齿轮的圆周上的齿来传递运动和动力的一种机械传动装置。

齿轮通常由两个或多个啮合的齿轮组成,其中一个为主动齿轮,另一个为从动齿轮。

当主动齿轮转动时,从动齿轮也随之转动,从而实现了动力的传递。

齿轮的传动比取决于齿轮的齿数和模数,通过不同齿轮的组合可以实现不同的传动比。

其次,我们来看一下齿轮的结构特点。

齿轮通常由齿轮轮毂、齿轮齿、齿顶圆、齿根圆等部分组成。

齿轮的齿数、模数、压力角等参数决定了齿轮的传动性能,不同的参数组合可以实现不同的传动效果。

齿轮的制造工艺一般包括铸造、锻造、车削、磨削等,以确保齿轮的精度和耐用性。

接下来,我们将探讨一下齿轮的工作原理。

齿轮传动是利用齿轮的啮合来传递运动和动力的一种机械传动方式。

当主动齿轮转动时,齿轮的齿与从动齿轮的齿进行啮合,从而使从动齿轮也跟随转动。

齿轮传动具有传递动力平稳、传动比恒定、传动效率高等特点,适用于各种机械设备的传动装置。

最后,我们来谈一下齿轮在实际应用中的领域。

齿轮广泛应用于各种机械设备中,如汽车、船舶、飞机、工程机械、农业机械等。

在这些设备中,齿轮传动起着至关重要的作用,它们可以实现不同转速、不同转矩的传动,满足机械设备的不同工作要求。

总之,齿轮作为一种重要的机械传动元件,在机械原理中具有重要的地位和作用。

通过对齿轮的基本原理、结构特点、工作原理和应用领域的深入了解,我们可以更好地应用齿轮传动技术,提高机械设备的传动效率和可靠性,推动机械工程技术的发展和进步。

毕业设计-“齿轮轴”零件的机械制造工艺与夹具设计

毕业设计-“齿轮轴”零件的机械制造工艺与夹具设计
“齿轮轴”零件的机械制造工艺与夹具设计
“齿轮轴”零件的机械制造工艺与夹具设计
摘要
齿轮轴零件的主要作用是支撑回转零件、实现回转运动并传递转矩和动力。齿轮轴 具备传动效率高、结构紧凑和使用寿命长等一系列优点,是通用机械特别是工程机械传 动中的重要零件之一。齿轮轴加工材料、热处理方式、机械加工工艺过程的优化,将对 提高齿轮轴的加工质量及寿命有着重要借鉴意义。本文对某企业提供的“齿轮轴”零件 进行了机械制造工艺规程设计和铣键槽专用夹具设计。对于工艺规程设计和夹具设计制 订了两套不同的方案,从中甄选出最佳方案。本设计首先分析了齿轮轴零件的作用和加 工工艺性,然后进行工艺规程设计,最后是铣键槽专用夹具设计。齿轮轴零件的机械综 合性能要求较高,一般选择锻件作为毛坯。合理安排工艺路线,划分加工阶段对保证零 件加工质量至关重要。使用夹具可以缩短辅助时间,提高劳动生产率,保证加工精度, 稳定加工质量,降低对工人的技术要求,扩大机床工艺范围。本文对所设计的专用夹具 进行了精度校核和定位误差分析,对夹具的设计质量也进行了评估。
关键词:齿轮轴;工艺分析;工艺规程设计;夹具设计
Hale Waihona Puke “齿轮轴”零件的机械制造工艺与夹具设计
The machining process planning and fixture design of the Gear Shaft
Abstract
The main function of the gear shaft is to support rotating parts, achieve rotary m -otion and transfer torque and power. Gear shaft has a series of advantages, such as h -igh transmission efficiency, compact structure, long service life and so on. It is one of the important parts in the general machinery, particularly the engineering machinery transmission. The optimization of the gear shaft’s machining materials, thermal treatm -ent method and machining process will have great significance on the machining qual -ity of the gear shaft and the service life. This paper discussed the machinery manufacturing process planning and fixture design of milling key of a "gear shaft" provided by a enterprise. As for process planning and fixture design, there were two different p -lans for selecting the better one. The paper firstly analyzed the function of the gear s -haft and its mechanical properties, and then planned the machining process, finally, th -e fixture design. As gear shaft requires the higher machinery comprehensive properties, we usually select the forgings as the forging blank. It is very important for ensurin -g the processing quality of the gear shaft to arrange the process route reasonably and divide the processing stage. Using Fixture can reduce the auxiliary time, increase prod -uctivity, ensure machining accuracy, stabilize the processing quality, reduce the technical requirements for workers and expand the technology range of machine tool. In this paper, special fixture was checked for precision and was analyzed for the positioning error. The quality of fixture design was evaluated too.

齿轮和轴的介绍

齿轮和轴的介绍

齿轮和轴的介绍齿轮和轴的介绍摘要:在传统机械和现代机械中齿轮和轴的重要地位是不可动摇的。

齿轮和轴主要安装在主轴箱来传递力的方向。

通过加工制造它们可以分为许多的型号,分别用于许多的场合。

所以我们对齿轮和轴的了解和认识必须是多层次多方位的。

关键词:齿轮;轴在直齿圆柱齿轮的受力分析中,是假定各力作用在单一平面的。

我们将研究作用力具有三维坐标的齿轮。

因此,在斜齿轮的情况下,其齿向是不平行于回转轴线的。

而在锥齿轮的情况中各回转轴线互相不平行。

像我们要讨论的那样,尚有其他道理需要学习,掌握。

斜齿轮用于传递平行轴之间的运动。

倾斜角度每个齿轮都一样,但一个必须右旋斜齿,而另一个必须是左旋斜齿。

齿的形状是一溅开线螺旋面。

如果一张被剪成平行四边形(矩形)的纸张包围在齿轮圆柱体上,纸上印出齿的角刃边就变成斜线。

如果我展开这张纸,在血角刃边上的每一个点就发生一渐开线曲线。

直齿圆柱齿轮轮齿的初始接触处是跨过整个齿面而伸展开来的线。

斜齿轮轮齿的初始接触是一点,当齿进入更多的啮合时,它就变成线。

在直齿圆柱齿轮中,接触是平行于回转轴线的。

在斜齿轮中,该先是跨过齿面的对角线。

它是齿轮逐渐进行啮合并平稳的从一个齿到另一个齿传递运动,那样就使斜齿轮具有高速重载下平稳传递运动的能力。

斜齿轮使轴的轴承承受径向和轴向力。

当轴向推力变的大了或由于别的原因而产生某些影响时,那就可以使用人字齿轮。

双斜齿轮(人字齿轮)是与反向的并排地装在同一轴上的两个斜齿轮等效。

他们产生相反的轴向推力作用,这样就消除了轴向推力。

当两个或更多个单向齿斜齿轮被在同一轴上时,齿轮的齿向应作选择,以便产生最小的轴向推力。

交错轴斜齿轮或螺旋齿轮,他们是轴中心线既不相交也不平行。

交错轴斜齿轮的齿彼此之间发生点接触,它随着齿轮的磨合而变成线接触。

因此他们只能传递小的载荷和主要用于仪器设备中,而且肯定不能推荐在动力传动中使用。

交错轴斜齿轮与斜齿轮之间在被安装后互相捏合之前是没有任何区别的。

机械设计基础课件齿轮机构H

机械设计基础课件齿轮机构H

垂直轴传动
蜗杆蜗轮机构主要用于垂直轴之间的传动,具有 较大的传动比和自锁功能。
螺旋齿形
蜗杆和蜗轮的齿形为螺旋形,可实现连续、平稳 的传动。
高效率与低噪音
蜗杆蜗轮机构传动效率高,噪音低,适用于各种 高精度、低噪音要求的场合。
2024/1/26
18
其他特殊类型齿轮机构
2024/1/26
非圆齿轮机构
非圆齿轮机构可实现变传动比传动,满足某些特殊机械装置的需 求。
2024/1/26
工业革命时期
随着工业革命的兴起,金属加工技 术的进步促进了齿轮机构的快速发 展,出现了各种高精度、高效率的 齿轮传动装置。
现代时期
随着计算机技术和先进制造技术的 不断发展,现代齿轮机构设计更加 精确、制造更加精细,应用领域也 更加广泛。
6
02
齿轮机构基本原理
2024/1/26
7
齿轮传动比计算
10
03
齿轮机构设计方法与步骤
2024/1/26
11
设计目标确定与参数选择
确定设计目标
明确齿轮机构的使用场合、传递 功率、转速等要求。
选择齿轮参数
根据设计目标,选择合适的齿轮 模数、齿数、压力角等参数。
确定齿轮精度等级
根据使用要求和制造成本,选择 合适的齿轮精度等级。
2024/1/26
12
齿轮类型选择及优缺点比较
啮合特点
齿轮传动具有恒定的传动 比,且传动平稳、噪音小 、效率高。
9
齿轮受力分析及强度计算
受力分析
根据齿轮的啮合原理,分 析齿轮受到的径向力、圆 周力和轴向力。
2024/1/26
强度计算
根据齿轮的受力情况,进 行齿面接触强度和齿根弯 曲强度计算。

传动机构齿轮介绍

传动机构齿轮介绍

传动机构齿轮介绍齿轮是一种常见的传动机构,它由两个或多个互相啮合的齿轮组成。

齿轮传动广泛应用于机械设备中,是一种可靠的力量传递和转速变换机构。

本文将详细介绍齿轮的定义、分类、工作原理以及应用领域。

一、定义齿轮是一种带有不均匀加工齿形的圆盘,齿轮上的齿数相等,而且这些齿在相接触处彼此啮合。

两个齿轮相互啮合时,通过齿间的相对运动,实现力量的传递与转速的变换。

二、分类根据齿轮的结构形式可以将其分为以下几类:1.平行轴齿轮:两个齿轮的轴线平行,常见有直齿轮、斜齿轮、锥齿轮等。

2.交轴齿轮:两个齿轮的轴线相交于一点,常见有锥面齿轮、蜗杆齿轮等。

3.平面齿轮:两个齿轮的齿面是平面,一般用于变速器中。

4.曲面齿轮:齿面是曲面,常见有螺旋齿轮、圆弧齿轮等。

5.外啮合齿轮:齿轮的齿位在齿圈的外部,常见有外齿直齿轮。

6.内啮合齿轮:齿轮的齿位在齿圈的内部,常见有内齿轮。

三、工作原理齿轮传动的工作原理基于齿轮的啮合。

当齿轮1以一定的转速旋转时,其齿与齿轮2的齿相互接触,齿间的力矩传递到齿轮2上,使其旋转。

根据齿轮的参数,如齿数和模数等,可以计算出齿轮1与齿轮2之间的转速比。

同时,齿轮的啮合还能实现力矩的变换和转速的变化。

齿轮传动的优点包括高效率、传递力矩大、转速稳定等,但也存在一些缺点,如噪音较大、精度要求高等。

四、应用领域齿轮传动广泛应用于机械设备中,下面列举几个常见的应用领域:1.汽车行业:齿轮传动被广泛用于汽车发动机、变速器、差速器等部件上,实现驱动力传递、转速变换等功能。

2.机械制造:在各种机械设备中,齿轮传动被用于传动系统中,如机床、起重机、输送机等。

3.能源行业:齿轮传动被应用于风力发电机、水力发电机、火力发电机组等,实现能源转化和传递。

4.航空航天:航空航天领域对齿轮传动的要求更高,齿轮传动被应用于飞机起落架、飞轮、涡轮机等部件上。

总之,齿轮传动作为一种重要的传动机构,已经广泛应用于各个领域。

随着科技的不断进步,齿轮传动的性能也在不断提高,使得机械设备更加高效、稳定和可靠。

机械设计手册机械传动

机械设计手册机械传动

机械设计手册机械传动
机械设计手册中的机械传动部分主要涵盖了各种机械传动系统的原理、设计方法和计算公式。

其中常见的机械传动类型包括:
1. 齿轮传动:利用齿轮之间的啮合传递动力和运动。

包括圆柱齿轮、锥齿轮、蜗轮蜗杆等。

2. 链传动:通过链条将动力从一个轴传递到另一个轴。

适用于较远距离的传动。

3. 带传动:通过传动带将动力从一个轴传递到另一个轴。

适用于较短距离的传动。

4. 离合器传动:在机械传动系统中,用于连接和切断动力传递的部件。

如摩擦离合器、液力离合器等。

5. 联轴器:用于连接两个轴,传递转矩和运动。

如膜片联轴器、挠性联轴器等。

6. 减速器:用于降低输入轴的转速,提高输出轴的扭矩。

如齿轮减速器、蜗轮减速器等。

7. 变速器:用于在运行过程中改变输入轴和输出轴的转速比。

如齿轮变速器、液力变速器等。

8. 传动轴:用于连接不同轴之间的传动装置,传递转矩和运动。

9. 万向节:用于连接传动轴和驱动部件,允许在一定角度范围内摆动。

10. 导向部件:用于引导和定位运动部件,如导轨、丝杠等。

在实际应用中,可以根据需求选择合适的机械传动系统进行设计。

设计时需考虑传动比、扭矩、功率、材料、尺寸等因素。

机械传动手册提供了丰
富的设计资料、计算方法和实例,有助于工程师更好地进行机械传动系统的设计与优化。

机械设计基础 第十一章

机械设计基础 第十一章

11.2.3 惰轮
如图11-7所示的定轴齿轮系中,运动由齿轮1经齿 轮2传给齿轮3。总的传动比为:
i13
n1 n3
z2 z3 z1z2
z3 z1
图11-7 惰轮的应用
【例11-1】如图11-2所示空间定轴轮系,蜗杆的头数 z1 2, 右旋;蜗轮的齿数z2 60,z2 20,z3 24,z3 20,z4 24, z4 30,z5 35,z5 28,z6 135 。若蜗杆为主动轮,其转速 n1 900 r / min ,试求齿轮 6 的转速n6 的大小和转向(用画箭头
14.8
r
/
min
负号表示末轮5的转向与首轮1相反,顺时针转动。
11.3 行星齿轮系的传动比计算
行星齿轮系传动比的计算方法有许多种,最常用的是转化 机构法,即设想将周转轮系转化为假想的定轴轮系,借用定 轴轮系传动比计算公式来求解周转轮系中有关构件的转速及 传动比。
如图11-8所示,现假想给行星齿轮系加一个与行星架
相同。
iH1
nH n1
600 120
5
11.4 混合齿轮系的传动比计算
既包含定轴齿轮系又包含行星齿轮系的齿轮系,称为混 合齿轮系,如图11-10所示。
图11-10 混合齿轮系
计算混合齿轮系传动比的一般步骤如下:
① 区分轮系中的定轴齿轮系部分和行星齿轮系部分。 ② 分别列出定轴齿轮系部分和行星齿轮系部分的传动比公式, 并代入已知数据。 ③ 找出定轴齿轮系部分与行星齿轮系部分之间的运动关系,并 联立求解即可求出混合轮系中两轮之间的传动比。
传动比 iGHK 也不等于绝对传动比 iGK 。
【例11-3】在图11-8(a) 所示的差动齿轮系中,已知n1 100 r / min n3 60 r / min,n1与 n3 转向相同;齿数z1 17,z2 29,z3 75
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械设计、齿轮与轴综合介绍-----------------------作者:-----------------------日期:机械设计和齿轮与轴的介绍摘要:机器是由机械装置和其它组件组成的。

它是一种用来转换或传递能量的装置,例如:发动机、涡轮机、车辆、起重机、印刷机、洗衣机、照相机和摄影机等。

许多原则和设计方法不但适用于机器的设计,也适用于非机器的设计。

术语中的“机械装置设计”的含义要比“机械设计”的含义更为广泛一些,机械装置设计包括机械设计。

在分析运动及设计结构时,要把产品外型以及以后的保养也要考虑在机械设计中。

在机械工程领域中,以及其它工程领域中,所有这些都需要机械设备,比如:开关、凸轮、阀门、船舶以及搅拌机等。

在传统机械和现代机械中齿轮和轴的重要地位是不可动摇的。

齿轮和轴主要安装在主轴箱来传递力的方向。

通过加工制造它们可以分为许多的型号,分别用于许多的场合。

所以我们对齿轮和轴的了解和认识必须是多层次多方位的。

关键词:设计流程设计规则机械设计齿轮轴设计流程设计开始之前就要想到机器的实际性,现存的机器需要在耐用性、效率、重量、速度,或者成本上得到改善。

新的机器必需具有以前机器所能执行的功能。

在设计的初始阶段,应该允许设计人员充分发挥创造性,不要受到任何约束。

即使产生了许多不切实际的想法,也会在设计的早期,即在绘制图纸之前被改正掉。

只有这样,才不致于阻断创新的思路。

通常,还要提出几套设计方案,然后加以比较。

很有可能在这个计划最后决定中,使用了某些不在计划之内的一些设想。

一般的当外型特点和组件部分的尺寸特点分析得透彻时,就可以全面的设计和分析。

接着还要客观的分析机器性能的优越性,以及它的安全、重量、耐用性,并且竞争力的成本也要考虑在分析结果之内。

每一个至关重要的部分要优化它的比例和尺寸,同时也要保持与其它组成部分相协调。

也要选择原材料和处理原材料的方法。

通过力学原理来分析和实现这些重要的特性,如那些静态反应的能量和摩擦力的最佳利用,像动力惯性、加速动力和能量;包括弹性材料的强度、应力和刚度等材料的物理特性,以及流体润滑和驱动器的流体力学。

设计的过程是重复和合作的过程,无论是正式或非正式的进行,对设计者来说每个阶段都很重要。

最后,以图样为设计的标准,并建立将来的模型。

如果它的测试是符合事先要求的,则再将对初步设计进行某些修改,使它能够在制造成本上有所降低。

产品的设计需要不断探索和发展。

许多方案必须被研究、试验、完善,然后决定使用还是放弃。

虽然每个工程学问题的内容是独特的,但是设计师可以按照类似的步骤来解决问题。

产品的责任诉讼迫使设计人员和公司在选择材料时,采用最好的程序。

在材料过程中,五个最常见的问题为:(a)不了解或者不会使用关于材料应用方面的最新最好的信息资料;(b)未能预见和考虑材料的合理用途(如有可能,设计人员还应进一步预测和考虑由于产品使用方法不当造成的后果。

在近年来的许多产品责任诉讼案件中,由于错误地使用产品而受到伤害的原告控告生产厂家,并且赢得判决);(c)所使用的材料的数据不全或是有些数据不确定,尤其是当其性能数据长期不更新;(d)质量控制方法不适当和未经验证;(e)由一些完全不称职的人员选择材料。

通过对上述五个问题的分析,可以得出这些问题是没有充分理由而存在的结论。

对这些问题的研究分析可以为避免这些问题的出现而指明方向。

尽管采用最好的材料选择方法也不能避免发生产品责任诉讼,设计人员和工业界按照适当的程序进行材料选择,可以大大减少诉讼的数量。

从以上的讨论可以看出,选择材料的人们应该对材料的性质,特点和加工方法有一个全面而基本的了解。

在随后生产和售后服务的几年中,要接受新观念的变化,或者由试验和经验为基础,进一步分析并改进。

一些设计规则在本节中,建议要运用创造性的态度来替代和改进。

也许会创造出更实用、更经济、更耐用的产品。

为了激发创造性思维,下列是设计和分析的建议规则。

前六个规则对设计者来说特别适用。

1.要有创造性的利用所需要的物理性质和控制过程。

2.认识负载产生的影响及其意义。

3.预测没有想到的负载。

4.创造出对载荷更为有利的条件。

5.提供良好的应力分布和最小的刚度条件。

6.运用最简单的方程来优化体积和面积。

7.选择组合材料。

8.仔细选择所备的原料和不可缺少的组件。

9.调整有效的设计方案,以适应生产过程和降低成本。

10.规定好准确的位置条件为了使组件安装时不干涉。

机械设计包括一下内容:1.对设计过程、设计所需要公式以及安全系数进行介绍。

2.回顾材料特性、静态和动态载荷分析,包括梁、振动和冲击载荷。

3.回顾应力的基本规律和失效分析。

4.介绍静态失效理论和静态载荷下机械断裂分析。

5.介绍疲劳失效理论并强调在压力条件下接近高循环的疲劳设计,这通常用在旋转机械的设计中。

6.深入探讨机械磨损机理、表面接触应力和表面疲劳现象。

7.使用疲劳分析技术校核轴的设计。

8.讨论润滑油膜与滚动轴承的理论和应用。

9.深入介绍直齿圆柱齿轮的动力学、设计和应力分析,并简单介绍斜齿轮、锥齿轮和涡轮有关方面的问题。

10.讨论弹簧设计、螺杆等紧固件的设计,包括传动螺杆和预紧固件。

11.介绍盘式和鼓式离合器以及制动器的设计和技术说明。

机械设计一台完整机器的设计是一个复杂的过程。

机械设计是一项创造性的工作。

设计工程师不仅在工作上要有创造性,还必须在机械制图、运动学、工程材料、材料力学和机械制造工艺学等方面具有深厚的基础知识。

任何产品在设计时第一步就是选择产品每个部分的构成材料。

许多的材料被今天的设计师所使用。

对产品的功能,它的外观、材料的成本、制造的成本作出必要的选择是十分重要的。

对材料的特性必须事先作出仔细的评估。

仔细精确的计算是必要的,以确保设计的有效性。

在任何失败的情况下,最好知道在最初设计中有有缺陷的部件。

计算(图纸尺寸)检查是非常重要的。

一个小数点的位置放错,就可以导致一个本可以完成的项目失败。

设计工作的各个方面都应该检查和复查。

计算机是一种工具,它能够帮助机械设计师减轻繁琐的计算,并对现有数据提供进一步的分析。

互动系统基于计算机的能力,已经使计算机辅助设计(CAD)和计算机辅助制造(CAM)成为了可能。

心理学家经常谈论如何使人们适应他们所操作的机器。

设计人员的基本职责是努力使机器来适应人们。

这并不是一项容易的工作,因为实际上并不存在着一个对所有人来说都是最优的操作范围和操作过程。

另一个重要问题,设计工程师必须能够同其他有关人员进行交流和磋商。

在开始阶段,设计人员必须就初步设计同管理人员进行交流和磋商,并得到批准。

这一般是通过口头讨论,草图和文字材料进行的。

如前所诉,机械设计的目的是生产能够满足人类需求的产品。

发明、发现和科技知识本身并不一定能给人类带来好处,只有当它们被应用在产品上才能产生效益。

因而,应该认识到在一个特定的产品进行设计之前,必须先确定人们是否需要这种产品。

应当把机械设计看成是机械设计人员运用创造性的才能进行产品设计、系统分析和制定产品的制造工艺学的一个良机。

掌握工程基础知识要比熟记一些数据和公式更为重要。

仅仅使用数据和公式是不足以在一个好的设计中做出所需的全部决定的。

另一方面,应该认真精确的进行所有运算。

例如,即使将一个小数点的位置放错,也会使正确的设计变成错误的。

一个好的设计人员应该勇于提出新的想法,而且愿意承担一定的风险,当新的方法不适用时,就使用原来的方法。

因此,设计人员必须要有耐心,因为所花费的时间和努力并不能保证带来成功。

一个全新的设计,要求屏弃许多陈旧的,为人们所熟知的方法。

由于许多人墨守成规,这样做并不是一件容易的事。

一位机械设计师应该不断地探索改进现有的产品的方法,在此过程中应该认真选择原有的、经过验证的设计原理,将其与未经过验证的新观念结合起来。

新设计本身会有许多缺陷和未能预料的问题发生,只有当这些缺陷和问题被解决之后,才能体现出新产品的优越性。

因此,一个性能优越的产品诞生的同时,也伴随着较高的风险。

应该强调的是,如果设计本身不要求采用全新的方法,就没有必要仅仅为了变革的目的而采用新方法。

在直齿圆柱齿轮的受力分析中,是假定各力作用在单一平面的。

我们将研究作用力具有三维坐标的齿轮。

因此,在斜齿轮的情况下,其齿向是不平行于回转轴线的。

而在锥齿轮的情况中各回转轴线互相不平行。

像我们要讨论的那样,尚有其他道理需要学习,掌握。

斜齿轮用于传递平行轴之间的运动。

倾斜角度每个齿轮都一样,但一个必须右旋斜齿,而另一个必须是左旋斜齿。

齿的形状是一溅开线螺旋面。

如果一张被剪成平行四边形(矩形)的纸张包围在齿轮圆柱体上,纸上印出齿的角刃边就变成斜线。

如果我展开这张纸,在血角刃边上的每一个点就发生一渐开线曲线。

直齿圆柱齿轮轮齿的初始接触处是跨过整个齿面而伸展开来的线。

斜齿轮轮齿的初始接触是一点,当齿进入更多的啮合时,它就变成线。

在直齿圆柱齿轮中,接触是平行于回转轴线的。

在斜齿轮中,该先是跨过齿面的对角线。

它是齿轮逐渐进行啮合并平稳的从一个齿到另一个齿传递运动,那样就使斜齿轮具有高速重载下平稳传递运动的能力。

斜齿轮使轴的轴承承受径向和轴向力。

当轴向推力变的大了或由于别的原因而产生某些影响时,那就可以使用人字齿轮。

双斜齿轮(人字齿轮)是与反向的并排地装在同一轴上的两个斜齿轮等效。

他们产生相反的轴向推力作用,这样就消除了轴向推力。

当两个或更多个单向齿斜齿轮被在同一轴上时,齿轮的齿向应作选择,以便产生最小的轴向推力。

交错轴斜齿轮或螺旋齿轮,他们是轴中心线既不相交也不平行。

交错轴斜齿轮的齿彼此之间发生点接触,它随着齿轮的磨合而变成线接触。

因此他们只能传递小的载荷和主要用于仪器设备中,而且肯定不能推荐在动力传动中使用。

交错轴斜齿轮与斜齿轮之间在被安装后互相捏合之前是没有任何区别的。

它们是以同样的方法进行制造。

一对相啮合的交错轴斜齿轮通常具有同样的齿向,即左旋主动齿轮跟右旋从动齿轮相啮合。

在交错轴斜齿设计中,当该齿的斜角相等时所产生滑移速度最小。

然而当该齿的斜角不相等时,如果两个齿轮具有相同齿向的话,大斜角齿轮应用作主动齿轮。

蜗轮与交错轴斜齿轮相似。

小齿轮即蜗杆具有较小的齿数,通常是一到四齿,由于它们完全缠绕在节圆柱上,因此它们被称为螺纹齿。

与其相配的齿轮叫做蜗轮,蜗轮不是真正的斜齿轮。

蜗杆和蜗轮通常是用于向垂直相交轴之间的传动提供大的角速度减速比。

蜗轮不是斜齿轮,因为其齿顶面做成中凹形状以适配蜗杆曲率,目的是要形成线接触而不是点接触。

然而蜗杆蜗轮传动机构中存在齿间有较大滑移速度的缺点,正像交错轴斜齿轮那样。

蜗杆蜗轮机构有单包围和双包围机构。

单包围机构就是蜗轮包裹着蜗杆的一种机构。

当然,如果每个构件各自局部地包围着对方的蜗轮机构就是双包围蜗轮蜗杆机构。

相关文档
最新文档