SL431XM_1中文资料
tl431中文资料_数据手册_参数
电子元器件采购网-万联芯城 提供中小批量 电子元器件一站式配套采购业务,保证所售产品均为优质原装现 货,万联芯城主打的优势授权代理品牌产品,包括长电科技,顺 络电子,先科 ST 等,价格优势明显。万联芯城已与全国各大终 端工厂企业形成战略合作伙伴关系,欢迎广大采购客户咨询相关 业务。点击进入万联芯城
40°C to125°C德州仪器公司及其附属公司(TI)保留在任何时间对其产品和服务进行纠 正、修改、改进、改进和TL431其他变更的权利,并在不通知的情况下停止任何产品或服 务。客户在下单前应获取最新的相关信息,并应确认该信息是最新的、完整的。所有产品 在订单确认的时间内,以TI的termsand条件出售。TI保证其硬件产品的性能按照TI的标准保 证在销售时适用。测试和其他TL431质量控制技术被用于保证质量所必需的程度。除了政府 规定的要求外,不需要对每个产品的所有参数进行测试。TI不承担申请协助或客户产品设 计的责任。客户对使用TI组件的产品和应用程序TL431负责。为了最小化与客户产品和应用 相关的风险,客户应该提供足够的设计和操作保障。TI不保证或TL431表示任何许可,无论 是明示的或默示的,在任何TTL431I专利权、版权、面具工作权或其他与TI产品或服务使用 的任何组合、机器或过程相关的TI知TL431识产权中都是授予的。由TI发布的关于第三方产 品或服务的信息不构成使用该等产品或服务的许可,也不构成对该产品或服务的保证或认 可。使用此类信息可TL431能需要第三方根据第TL431三方的专利或其他知识产权授权,或 TI根据TI的专利或其他知识产权授权。只有在没有更改的情况下,并伴随着所有相关的保 证、条件、限制和通知时,才允许复制TI数据簿或数据表中的信息。对这些信息进行改 TL431造是一种不公平且具有欺骗性的商业行为。TL431TI不对此类变更文件负责或承担责 任。转售TI产品或服务的声明与TI所述产品或服务的参数不同或超出TITL431所述TL431的 参数,所有明示和相关TI产品或服务的任何默示保证都是不公平和欺骗性TL431的商业行 为。透明国际对任何此类TL431声明不负责任。以下是一些url,您可以在其中获得关于其 他德州°C到125°CD参考电压公差在25°C 0.5%…B级 1%……一个年级 2%。。。分 级标准的典型温度漂移(TL431B) 6 mV(C Temp) 14 mV(我临时,问临时)D低噪声输出0.2 -Ω 的典型输出阻抗反向电流能力……1 mA到100 mAD可调输出电压…Vref到36 v12348765deanodencrefanodeanodentl431, TL431A, TL431B…D (SOIC) PACKAGE(TOP VIEW) 12348765cathodencentncncrefncancanodenctl431, TL431A, TL431B…P(PDIP)、PS(SOP),或 PW(TSSOP)包(俯视图)数控 没有内部connectionTL431 TL431A,TL431B。DBV (SOT-23-5)包 (顶视图)12354NCNC阴极射线tl431, TL431A, TL431B…PK (SOT-89)封装(顶部视 图)REFANODECATHODE引脚2内部连接到阳极(模基板),并且应该浮动或连接到阳极。 数控 没有内部connectionTL432、TL432A TL432B。TL431伏特分贝(SOT-23-5)包(俯视 图)12354 ncanodencrefcathodenc 没有内部connectionTL431 TL431A,TL431B。DBZ (SOT-23-3) 包(上视图)TL432, TL432A, TL432B…DBZ(SOT-23-3)包(俯视图)数控 没有内部 connection123REFCATHODEANODE123CATHODEREFANODETL432 TL432A,TL432B。PK(说- 89)包(前视图)REFANODECATHODECopyright IncorporatedPlease意识到一个重要的通知关于可用性标准保修,在关键应用程序使用ofTexas 仪器半导体产品和免责声明出现在这个数据表TL431和TL432是三端可调分流调节器,具有 特别的热稳定性,适用于汽车、TL431商用和军用温度范围。输出电压可以设置为Vref(约 2.5 V)和36v之间的任意值,外加两个电阻(参见图17)。这些设备有0.2Ω的典型输出阻抗。有 源输出电路提供了非常尖锐的开关特性,使这些设备在许多应用中成为齐纳二极管的优秀 替代品,例如板载调节、可调电源和开关电源。TL432具有与TL431完全相同的功能和电气 规范,但是对于DBV、DBZ和PK包有不同的pinouts。TL431和TL432设备提供三个等级,与最 初的公差(25°C)为0.5%,1%,和2%,B,A,分别和标准等级TL431。此外,低输出漂移和温度保 证了良好的稳定性,在整个温度范围。TL43xxC设备具有操作从0°C到70° C,characterizedfor TL43xxI设TL431备操作从 40°C到85°C,和TL43xxQ设备具有操作从
SiC431, SiC437, SiC438 Reference Board User’s Manu
Reference Board User’s ManualHigh Voltage Synchronous Buck Regulators: 3 V to 24 VSiC431 (24 A), SiC437 (12 A), SiC438 (8 A)DESCRIPTIONThe SiC431/437/438 is family of synchronous buck regulators with integrated high side and low side power MOSFETs. Its power stage is capable of supplying up to 24 A continuous current at 1 MHz switching frequency. This regulator produces an adjustable output voltage down to 0.6 V from 3 V to 24 V input rail to accommodate a variety of applications, including computing, consumer electronics,telecom, and industrial. SiC43x series employs a constant ON time control architecture that supports ultrafast transient response with minimum output capacitance and tight ripple regulation at very light load. The device is internally compensated and no external ESR network is required for loop stability purposes. The device also incorporates a power saving scheme that significantly increases light load efficiency. The regulator integrates a full protection feature set, including output over voltage protection (OVP), cycle by cycle over current protection (OCP) short circuit protection (SCP) and thermal shutdown (OTP). It also has UVLO and a user programmable soft start. The SiC43x series is available in lead (Pb)-free power enhanced MLP44-24L package in 4 mm x 4 mm dimension.FEATURES•Versatile- Single supply operation from 3 V to 24 V input voltage -Adjustable output voltage down to 0.6 V - Scalable solution8 A (SiC438), 12 A (SiC437), 24 A (SiC431)- Output voltage tracking and sequencing with pre-bias start up- ± 1 % output voltage accuracy at -40 °C to +125 °C •Highly efficient - 97 % peak efficiency- 1 μA supply current at shutdown - 50 μA operating current not switching •Highly configurable-Four programmable switching frequencies available:300 kHz, 500 kHz, 750 kHz, and 1 MHz - Adjustable soft start and adjustable current limit - 3 modes of operation: forced continuous conduction,power save, or ultrasonic •Robust and reliable- Cycle-by-cycle current limit - Output overvoltage protection- Output undervoltage / short circuit protection with auto retry - Power good flag and over temperature protection •Design tools- Supported by Vishay PowerCAD Online Design Simulation (/power-ics/powercad-list/)- Design support kit (/ppg?74589)•Material categorization: for definitions of compliance please see /doc?99912APPLICATIONS•Industrial and automation •Home automation•Industrial and server computing•Networking, telecom, and base station power supplies •Wall transformer regulation •Robotics•High end hobby electronics: remote control cars, planes,and drones•Battery management systems •Power tools•Vending, ATM, and slot machinesORDERING TABLEPART NUMBER MODEOUTPUT CURRENTSiC431AEVB-A Ultrasonic24 A SiC431BEVB-APower safe 24 ASiC437AEVB-BUltrasonic 12 A SiC437BEVB-BPower safe12 A SiC438AEVB-B Ultrasonic 8 A SiC438BEVB-BPower safe8 ASPECIFICATIONSThis reference board allows the end user to evaluate the SiC43x series microBUCK® regulators for their features and functionalities. The user may also change the operating range may be modified by making changes to the jumper connections. See section “Selection Jumpers” below in the document.CONNECTION AND SIGNAL / TEST POINTS Power Terminals (J10)- +V IN (pin 1), V IN GND (pin 2)Connect to a voltage source to this pin. The minimum input voltage will be 3 V. For input voltages (V IN) below 4.5 V an external V DD and V DRD is required.- +V OUT (pins 5 and 6), V OUT GND (pins 3 and 4)Fig. 1 - SiC43x EVBSELECTION JUMPERSMode SelectJ1, to J8 and J15: there are 4 jumpers which allow the user to select one of four modes of operation.J1 to J4 to select switching frequency: 300 kHz to 1 MHz. Short pins 1 and 2 for PSM mode, short pins 2 and 3 for FCCM modeJ5 to J8 to select over current trip (I LIM). Short pins 1 and 3 to select 6 mS soft start, short pins 2 and 3 to select 6 mS soft startJ15 to select output voltage: 1 V, 3.3 V, 5 V and 12 V EnableJ9: this is the jumper that enables/disables the part.With J9 left open, the device is enabled, via R9 to V IN+. To disable the part, short J9.SIGNALS AND TEST LEADSInput Voltage SenseV IN_SENSE (TP11), GND IN_SENSE (TP12): this allows the user to measure the voltage directly at the input of the regulator bypassing any losses generated by connections to the board. These test points can also be as a remote sense port of a power source with remote sense capability.Output Voltage SenseV OUT_SENSE (TP13), GND OUT_SENSE (TP14): this allows the user to measure the output voltage directly at the sense point of the regulator bypassing any losses generated by connections to the board. These test points can also be as a remote sense port of an external load with remote sense capability.Power Good IndicatorPGD (J17): is an open drain output and is pulled up with a 100 kΩ resistor, R12, to V DD1 (≈ 5 V). When FB or V OUT are within -10 % to +20 % of the set voltage this pin will go HI to indicate the output is okay. To prevent false triggering during transient events, the P GOOD has a 25 μS blanking time.Power Up ProcedureBefore turning on the reference board, the user needs to select one of the three modes by shorting one jumper (see section on mode selection). It is recommend to disable theSiC431 before making any changes to the jumpers.SCHEMATIC FOR SiC431SCHEMATIC FOR SiC437, SiC438SCHEMATIC, DESIGN, BILL OF MATERIALS, AND GERBER FILES FOR PCB FABRICATIONThese files are as follows:•“*.DSN” for schematic design file•“*.DBK” for data backup file for Orcad•“.opj” Orcad project file. Any schematic work should always be opened with the opj file. Use of a DSN file for this purpose is not advised•“*.xlsx” is the bill of materials (BOM) derived from the schematic•“*.PDF” is the PDF version of the schematic from the “*.DSN” fileThe Fab files for the high power and low power are located in a separate sub directory and contain gerbers,.brd files (Allegro), etc. for PCB fabrication.PCB LAYOUT FOR SiC431Fig. 2 - Top LayerFig. 3 - Inner Layer 2Fig. 4 - Inner Layer 3Fig. 5 - Inner Layer 4 Fig. 6 - Inner Layer 5Fig. 7 - Bottom LayerPCB LAYOUT FOR SiC437, SiC438Fig. 8 - Top LayerFig. 9 - Inner Layer 2Fig. 10 - Inner Layer 3Fig. 11 - Inner Layer 4 Fig. 12 - Inner Layer 5Fig. 13 - Bottom LayerBILL OF MATERIAL REPORT, SiC431SYM_NAME COMP_VALUE REFDES PART NUMBER 04020.1 μF C1, C5, C6GRM155R71H104ME14D 121022 μF C2, C3, C4CL32B226KAJNFNE 0603 1 μF C7GCM188R71E105KA64D POSCAP100 μF C8, C920TQC100MYF0603DNP C10121022 μF C11, C12, C13, C14CL32B226KAJNFNEDNP C15, C16, C1706030.1 μF C18GCM188R71E104KA57D CAP10P2x5220 μF C20UBT1E221M SiC431SiC431IC1MINIJUMPER3CON3J1, J2, J3, J4, J5, J6, J7, J8, J9M50-3530342 CON6CON6J10277-1581-NDTP30VIN+s J1136-5000-NDTP30VIN-S J1236-5001-NDTP30VO+S J1336-5000-NDTP30VO-S J1436-5001-ND MINIJUMPER2x4CON8A J15S9015E-04-ND TP30AGND J1636-5001-NDTP30PGOOD J1736-5002-NDDNP L1IHLP 1 μH L2ZPWM-101014MA-1R0K 040251k R1, R5CRCW040251K0FKED 0402100k R2, R6, R9, R12CRCW0402100KFKED 0402200k R3, R7CRCW0402200KFKED 0402510k R4, R8CRCW0402510KFKED 04020R10CRCW04020000Z0ED 060310k R11TNPW060310K0BXEN 0603 6.65k R14TNPW06036K65BEEA 060345.3k R15TNPW060345K3BEEA 060373.2k R16TNPW060373K2BEEA 0603191k R17TNPW0603191KBEEA 1206DNP R18JUMPER OFF BOARD x3NPB02SVFN-RCBILL OF MATERIAL REPORT, SiC437, SiC438SYM_NAME COMP_VALUE REFDES PART NUMBER 04020.1 μF C1, C5, C6GRM155R71H104ME14D121022 μF C2, C3, C4CL32B226KAJNFNE0603 1 μF C7GCM188R71E105KA64DPOSCAP100 μF C8, C920TQC100MYF0603DNP C10121022 μF C13, C14CL32B226KAJNFNEDNP C11, C12, C15, C16, C1706030.1 μF C18GCM188R71E104KA57DSiC437/8SiC437/8IC1MINIJUMPER3CON3J1, J2, J3, J4, J5, J6, J7, J8,J 9M50-3530342 CON6CON6J10277-1581-NDTP30VIN+s J1136-5000-NDTP30VIN-S J1236-5001-NDTP30VO+S J1336-5000-NDTP30VO-S J1436-5001-ND MINIJUMPER2x4CON8A J15S9015E-04-ND TP30AGND J1636-5001-NDTP30PGOOD J1736-5002-NDDNP L1DNP L1IHLP 2.2 μH L2 (for SiC437x)IHLP4040DZER2R2M01IHLP 3.3 μH L2 (for SiC438x)IHLP4040DZER3R3M5A040251k R1, R5CRCW040251K0FKED0402100k R2, R6, R9, R12CRCW0402100KFKED0402200k R3, R7CRCW0402200KFKED0402510k R4, R8CRCW0402510KFKED04020R10CRCW04020000Z0ED060310k R11TNPW060310K0BXEN0603 6.65k R14TNPW06036K65BEEA060345.3k R15TNPW060345K3BEEA060373.2k R16TNPW060373K2BEEA0603191k R17TNPW0603191KBEEA1206DNP R18JUMPER OFF BOARD x3NPB02SVFN-RCVishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several q ualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see /ppg?76801.。
LM431中文手册
LM431Adjustable Precision Zener Shunt RegulatorGeneral DescriptionThe LM431is a 3-terminal adjustable shunt regulator with guaranteed temperature stability over the entire temperature range of operation.It is now available in a chip sized pack-age (4-Bump micro SMD)using National’s micro SMD pack-age technology.The output voltage may be set at any level greater than 2.5V (V REF )up to 36V merely by selecting two external resistors that act as a voltage divided network.Due to the sharp turn-on characteristics this device is an excel-lent replacement for many zener diode applications.Featuresn Average temperature coefficient 50ppm/˚Cn Temperature compensated for operation over the full temperature rangen Programmable output voltage n Fast turn-on response n Low output noisen LM431in micro SMD packagen See AN-1112for micro SMD considerationsConnection DiagramsTO-92:Plastic Package01005501Top ViewSO-8:8-Pin Surface Mount01005502Top viewSOT-23:3-Lead Small Outline01005528Top View 4-Bump micro SMD01005554Top View(bump side down)Note:*NC =Not internally connected.Must be electrically isolated from the rest of the circuit for the microSMD package.March 2005LM431Adjustable Precision Zener Shunt Regulator©2005National Semiconductor Corporation Ordering InformationPackageTypical Accuracy Order Number/PackageMarking TemperatureRangeTransport MediaNSC Drawing0.5%1%2%TO-92LM431CCZ/LM431CCZ LM431BCZ/LM431BCZ LM431ACZ/LM431ACZ 0˚C to +70˚CRailsZ03ALM431CIZ/LM431CIZLM431BIZ/LM431BIZ LM431AIZ/LM431AIZ −40˚C to +85˚CSO-8LM431CCM/431CCM LM431BCM/431BCMLM431ACM/LM431ACM0˚C to +70˚CRailsM08ALM431CCMX/431CCM LM431BCMX/431BCM LM431ACMX/LM431ACM Tape &ReelLM431CIM/431CIM LM431BIM/431BIM LM431AIM/LM431AIM −40˚C to +85˚CRailsLM431CIMX/431CIMLM431BIMX/431BIMLM431AIMX/LM431AIMTape &ReelSOT-23LM431CCM3/N1BLM431BCM3/N1D LM431ACM3/N1F0˚C to +70˚CRailsMF03ALM431CCM3X/N1B LM431BCM3X/N1D LM431ACM3X/N1F Tape &ReelLM431CIM3N1ALM431BIM3N1CLM431AIM3N1E−40˚C to +85˚CRailsLM431CIM3XN1ALM431BIM3X N1C LM431AIM3XN1ETape &Reel micro SMD––LM431AIBPLM431AIBPX (Note 1)−40˚C to +85˚C 250Units Tape andReel3k Units Tape andReelBPA04AFBNote 1:The micro SMD package marking is a 1digit manufacturing Date Code onlymicro SMD Top View Marking Example01005556L M 431 2Symbol and Functional Diagrams0100559901005555DC Test Circuits01005506Test Circuit for Off-State Current01005504FIGURE 1.Test Circuit for V Z =V REF01005505Note:V Z =V REF (1+R1/R2)+I REF •R1FIGURE 2.Test Circuit for V Z >V REFLM4313Absolute Maximum Ratings (Note 2)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.Storage Temperature Range −65˚C to +150˚COperating Temperature Range Industrial (LM431xI)−40˚C to +85˚C Commercial (LM431xC)0˚C to +70˚C Soldering InformationInfrared or Convection (20sec.)235˚CWave Soldering (10sec.)260˚C (lead temp.)Cathode Voltage37VContinuous Cathode Current−10mA to +150mA Reference Voltage −0.5V Reference Input Current10mAInternal Power Dissipation (Notes 3,4)TO-92Package SO-8Package SOT-23Package 0.78W 0.81W 0.28W micro SMD Package0.30WOperating ConditionsMinMax Cathode Voltage V REF 37V Cathode Current1.0mA100mALM431Electrical CharacteristicsT A =25˚C unless otherwise specified Symbol ParameterConditionsMin Typ Max Units V REFReference VoltageV Z =V REF ,I I =10mA 2.4402.4952.550VLM431A (Figure 1)V Z =V REF ,I I =10mA 2.4702.4952.520VLM431B (Figure 1)V Z =V REF ,I I =10mA 2.4852.5002.510VLM431C (Figure 1)V DEVDeviation of Reference Input Voltage Over V Z =V REF ,I I =10mA,8.017mVTemperature (Note 5)T A =Full Range (Figure 1)Ratio of the Change in Reference Voltage I Z =10mA V Z from V REF to 10V −1.4−2.7mV/Vto the Change in Cathode Voltage(Figure 2)V Z from 10V to 36V−1.0−2.0I REF Reference Input CurrentR 1=10k Ω,R 2=∞, 2.04.0µA I I =10mA (Figure 2)∝I REFDeviation of Reference Input Current over R 1=10k Ω,R 2=∞,TemperatureI I =10mA,0.4 1.2µA T A =Full Range (Figure 2)I Z(MIN)Minimum Cathode Current for Regulation V Z =V REF (Figure 1)0.4 1.0mA I Z(OFF)Off-State CurrentV Z =36V,V REF =0V (Figure *NO TARGET FOR fi*)0.31.0µA r ZDynamic Output Impedance (Note 6)V Z =V REF ,LM431A,0.75ΩFrequency =0Hz (Figure 1)V Z =V REF ,LM431B,LM431C 0.50ΩFrequency =0Hz (Figure 1)Note 2:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Electrical specifications do not apply when operating the device beyond its rated operating conditions.Note 3:T J Max =150˚C.Note 4:Ratings apply to ambient temperature at 25˚C.Above this temperature,derate the TO-92at 6.2mW/˚C,the SO-8at 6.5mW/˚C,the SOT-23at 2.2mW/˚C and the micro SMD at 3mW/˚C.Note 5:Deviation of reference input voltage,V DEV ,is defined as the maximum variation of the reference input voltage over the full temperature range.L M 431 4LM431Electrical Characteristics(Continued)01005507The average temperature coefficient of the reference input voltage,∝V REF ,is defined as:Where:T 2−T 1=full temperature change (0-70˚C).∝V REF can be positive or negative depending on whether the slope is positive or negative.Example:V DEV =8.0mV,V REF =2495mV,T 2−T 1=70˚C,slope is positive.Note 6:The dynamic output impedance,r Z ,is defined as:When the device is programmed with two external resistors,R1and R2,(see Figure 2),the dynamic output impedance of the overall circuit,r Z ,is defined as:LM4315Equivalent Circuit01005503Typical Performance CharacteristicsInput Current vs V ZThermal Information0100552901005530Input Current vs V ZDynamic Impedance vs Frequency0100553101005509L M 431 6Typical Performance Characteristics(Continued)Stability Boundary Conditions01005511Note:The areas under the curves represent conditions that may cause thedevice to oscillate.For curves B,C,and D,R2and V+were adjusted toestablish the initial V Z and I Z conditions with C L=0.V+and C L were thenadjusted to determine the ranges of stability.01005510Test Circuit for Curve A Above Test Circuit for Curves B,C and D Above0100551201005513Typical ApplicationsShunt Regulator01005514Single Supply Comparator withTemperature Compensated Threshold01005515LM4317Typical Applications(Continued)Series Regulator01005516Output Control of a ThreeTerminal Fixed Regulator01005517Higher Current Shunt Regulator01005518Crow Bar01005519 LM4318Typical Applications(Continued)Over Voltage/Under VoltageProtection Circuit01005520Voltage Monitor01005521LM4319Typical Applications(Continued)Delay Timer01005522Current Limiter or Current Source01005523Constant Current Sink01005524Application Info1.0MountingTo ensure that the geometry of the micro SMD packagemaintains good physical contact with the printed circuitboard,pin A1(NC)must be soldered to the pcb.Please seeAN-1112for more detailed information regarding boardmounting techniques for the micro SMD package.2.0LM431micro SMD Light SensitivityWhen the LM431micro SMD package is exposed to brightsunlight,normal office fluorescent light,and other LED’s andlasers,it operates within the guaranteed limits specified inthe electrical characteristics table.LM43110Physical Dimensionsinches (millimeters)unless otherwise noted8-Pin SOICNS Package Number M08ASOT-23Molded Small Outline Transistor Package (M3)NS Package Number MF03ALM43111Physical Dimensionsinches (millimeters)unless otherwise noted (Continued)NS Package Number Z03AL M 431 12Physical Dimensionsinches (millimeters)unless otherwise noted (Continued)NOTES:UNLESS OTHERWISE SPECIFIED 1.EPOXY COATING2.63Sn/37Pb EUTECTIC BUMP3.RECOMMEND NON-SOLDER MASK DEFINED LANDING PAD.4.PIN A1IS ESTABLISHED BY LOWER LEFT CORNER WITH RESPECT TO TEXT ORIENTATION.REMAINING PINS ARE NUMBERED.5.XXX IN DRAWING NUMBER REPRESENTS PACKAGE SIZE VARIATION WHERE X1IS PACKAGE WIDTH,X2IS PACKAGE LENGTH AND X3IS PACKAGE HEIGHT.6.REFERENCE JEDEC REGISTRATION MO-211,VARIATION BA.4-Bump micro SMDX1=0.777X2=0.904X3=0.850NS Package Number BPA04AFBNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.For the most current product information visit us at .LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.BANNED SUBSTANCE COMPLIANCENational Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2)and the Banned Substances and Materials of Interest Specification (CSP-9-111S2)and contain no ‘‘Banned Substances’’as defined in CSP-9-111S2.National Semiconductor Americas Customer Support CenterEmail:new.feedback@ Tel:1-800-272-9959National SemiconductorEurope Customer Support CenterFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National Semiconductor Asia Pacific Customer Support CenterEmail:ap.support@National SemiconductorJapan Customer Support Center Fax:81-3-5639-7507Email:jpn.feedback@ Tel:81-3-5639-7560LM431Adjustable Precision Zener Shunt Regulator。
蓝星COD说明书
1.1 接线端子说明LXWA-O安装固定完成后,即可进行电源线和信号输出线的接线。
LXWA-O 接线端子在控制器的接线盒内,打开接线盒盖板,对照接线端子说明,按照需要进行电源和信号输出线的接线。
接线端子说明见表4.3.1。
注意: * 通讯端口通过接口上方的跳线配置为RS232或RS485模式: RS232模式: 1-4 OFF, 5-8 ON;RS485模式: 1-4 ON, 5-8 OFF;** 这些端口带有可以对人体造成危险或伤害的高电压,为了您的生命安全,请断电操作。
*** LXWA-O接地线必须按照有关标准可靠接地。
如果没有接地或接地不可靠,有可能造成LXWA-O不稳定或意外危险。
2水样取样和排放蠕动泵对水样的最大自由提升高度为1.5米,样水软管可直接插入污水池中,或者连接到外部取样管路上。
水样排放求自由排放,排放口不带压力,无阻力排放。
图6.1为取样和排放示意图。
(a) 水池取样(b) 管路取样图6.1取样和排放示意图3系统运行在LXWA-O完成安装和外部接线工作,并且检查完水样取样和排放等外围连接,正确无误以后,LXWA-O即可以投入正常使用。
本章主要讲述LXWA-O投运的步骤。
3.1 生物反应器中初始水样的加入生物反应器中初始水样的加入,可以通过直接加入的的方式,即先拔出搅拌电机部分,用容器盛被测量水样400mL,直接倒入生物反应中。
图8.1.1 初始水样的加入初始水样加入后,插入搅拌电机部分,注意,搅拌桨插入时,桨叶应稍微向溶解氧探头相反的方向倾斜。
然后,再按照第5章所述的安装过程将生物反应器安装到LXWA-O上并完成LXWA-O内部的联接。
3.2 LXWA-O通电运行8.1节所述过程完成后,首先要确认供电电源是否正确,如果符合3.1节所述的要求,LXWA-O就可以通电运行。
LXWA-O通电后,有两分钟的初始化过程,然后,LXWA-O进正常的测量过程。
如果初始水样温度较低,LXWA-O有一个加温过程(到30℃约10~30分钟),在此过程中,LXWA-O读数错误或没有读数,如果初始水样是首次加入,还需要经过4~24小时的驯化过程,才能得到正确的读数。
SL431ASF中文资料
SL431xSF S e m i c o n d u c t o rProgrammable Voltage ReferenceSL431xSF Absolute maximum ratings(Operating ambient temperature range applies unless other specified)Parameter SymbolRatingsUnit Cathode to Anode voltage V KA 37 V Cathode current range I KA -100~+150 mAReference input current range I ref -0.05~+10 mAPower dissipation P D* 300 mW Operating temperature range T opr -40~+85 °CStorage temperature range T stg -65~+150 °C* With PCB(8×8mm copper area) at glass epoxy board(t=1.7mm, area : 20×20mm)Recommended operating conditionsRatingsParameter SymbolMin. Max.UnitCathode to Anode voltage V KA V ref 36 V Cathode current range I KA 1.0100mA Electrical Characteristics=Fig. 1<Note 1> : T LOW=-40°C, T HIGH=+85°C , <Note 2> : ∆V ref= V ref Max. - V ref Min. , <Note 3> : Z KA= ∆V KA/ ∆I KASL431xSF Characteristic diagramsFig. 6 ∆V ref vs. T aFig. 8 Gv vs. frequencyFig. 5 I MIN vs. V KAFig. 4 I KA vs. V KAFig. 7 ∆V ref vs.V KASL431xSFThese AUK products are intended for usage in general electronic equipments(Office and communication equipment, measuring equipment, domestic electrification, etc.).Please make sure that you consult with us before you use these AUK products in equipm-ents which require high quality and/or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, traffic signal, combustion central, all types of safety device, etc.).AUK cannot accept liability to any damage which may occur in case these AUK products were used in the mentioned equipments without prior consultation with AUK.。
STML中文介绍
STM8L152介绍8位超低功耗单片机,高达64 + 2字节数据的闪存EE PROM,EEPROM (Electrically Erasable Programmable Read-Only Memory),实时时钟,液晶显示器,定时器,USART,C,SPI,模数转换器,数模转换器,比较器特点:操作条件:工作电源:1.65v~ 3.6v温度范围:40 to 85, 105 or 125低功耗的特点:5个低功耗模式:等,低功率运行(5.9¦Ì一),低功耗等(3¦Ì一),active-halt全实时时钟(1.4¦Ì一),停止(400)动态功率消耗:200UA/兆赫+ 330UA,快速唤醒从停止模式(4.7us)超低漏I/ O:50nA先进的stm8核心:哈佛结构和三级流水线最大频率:16条16mhz,相关峰最多40个外部中断源复位和供应管理:低功率,超安全欠压复位5可编程阈值超低功率POR /PDR(通电复位/Protection(保护)、Detection(检测)、Response(响应))可编程电压检测器(Programmable voltage detector (PVD))时钟管理32kHz和1-16MHz晶体振荡器工厂校准的内部16MHz RC和38kHz的低功耗RC时钟安全系统低功耗RTCBCD日历,闹钟中断,数字校准+ / - 0.5ppm的准确度先进的防篡改检测DMA4个通道。
ADC,DAC的,SPIS,我2C,USART接口,定时器,1路。
存储器到存储器的LCD:8x40或4x44瓦特/升压转换器12位ADC1 Msps/28渠道温度。
传感器和内部参考。
电压记忆高达64 KB的快闪记忆体高达2KB的数据EEPROM,ECC和RWW灵活的读/写保护模式高达4 KB的RAM2x12位DAC(双模式)与输出缓冲器2个超低功耗比较器1个固定阈值和1个轨到轨唤醒功能定时器3个16位定时器,2个通道(IC,OC,PWM),正交编码器一个16位高级控制定时器,3个信道,支持电机控制1个7位预分频器的8位定时器1个窗口和1个独立的看门狗蜂鸣器定时器1,2或4kHz的频率通讯接口两个同步串行接口(SPI)快速I2C 400千赫SMBus和PMBus三个USART(ISO7816接口+红外线)最多67个I /o中断向量,所有可映射多达16个电容检测通道,免费固件快速片上编程和非侵入性调试与游泳,Bootloader的使用USART 独特的96位ID描述:1、stm8l超低功耗的8位家庭福利2、设备概述3、超低功率连续简介:本文描述的特点,因此,机械数据和订购信息:高密度stm8l15xxx装置:stm8l151x8和stm8l152x8微控制器与闪速存储器密度64字节。
PT4311A;PT4313A;PT4314A;PT4311C;PT4313C;中文规格书,Datasheet资料
Min — 0.2 0.05 0.02 0.4 0.1 0.04 38 4.95 11.85 23.28 — — — — — — — — — — — — — — — —Байду номын сангаас— — — — — — — — — — — — 400 — 5 –0.1 — — — 0 0 0 1500 — 10
(2) (2) (2)
SLTS146B - MARCH 2001 - REVISED MAY 2004
Specifications
Characteristic Ouput Power Output Current
(Unless otherwise stated, Ta =25°C, V in =53 V, Cout =0 µF, and Io 1 = Io2 =Io typ) Symbol Po(tot) Io1, Io2
Package Top View
Vo 1 (+) COM Vo 2 (–)
1 2 3
18 17
+Vin –Vin
PT4310
N/C N/C 8 9 12 11 ±Vo Adjust # Remote On/Off #
# For more information on the Remote On/Off control and output voltage adustment, refer to the application notes.
PT4310 Series Typ
— 0.6 0.25 0.125 — — — — 5.05 12 24 ±0.5 ±1 ±1 ±25 100 250 275 ±5 ±4 5.4 12.7 24.8 82 85 82 50 90 250 ±75 ±200 ±500 5 2.5 0.4 1 0.25 0.5 1 — 36 — — –0.2 10 1 — — — — 1100 —
高精密高性能模拟开关ISL4311x中文资料
注:1. 所示开关为逻辑“0”输入
引脚描述
2
武汉力源信息技术股份有限公司
免费电话:800-880-8051
数据手册 DS-107-00017CN
真值表
注:逻辑“0” ≤ 0.8V,逻辑“1” ≥ 2.4V 订购信息
注:Intersil无铅产品采用特殊的无铅材料制成,模塑料/晶片的附属材料和100%无光泽锡盘引脚符合 RoHS标准,兼容SnPb和无铅低温焊接操作。Intersil无铅产品在无铅峰值回流温度中属于MSL级别分类, 完全满足和超过IPC/GEDEC JSTD-020的无铅要求。
免费电话:800-880-8051
数据手册 DS-107-00017CN
应用
电池供电,手提和便携式设备 ——蜂窝式/移动式电话,寻呼机 ——膝上型,笔记本,掌上型 PDAs 通信系统 ——无线电收音机 ——用户交换机,自动用户交换机 测试设备 ——逻辑和光谱分析器 ——便携式仪表,数字式电压表,数字万用表 医学设备 ——超声波,MRI,CAT 扫描 ——心电图仪,血液分析器 平视显示器 音频和视频转换 通用目的电路 ——+3V/+5V 数模转换器和模数转换器 ——抽样和保持电路 ——数字滤波器 ——运算放大器增益转换电路 ——高频模拟转换 ——高速多路复用 ——积分复位电路
最大引线温度(10s,低温焊接)…………………………………… 260℃
最大储存温度范围 ………………………………………… -65℃到 150℃
最大引脚温度范围(低温焊接 10s) ……………………… 300℃
注意:强度超出所列的极限参数可能导致器件的永久性损坏。这些仅仅是极限参数,并不意味着在极限条
典型性能曲线图
LMV431
LMV431/LMV431A/LMV431BLow-Voltage (1.24V)Adjustable Precision Shunt RegulatorsGeneralDescriptionThe LMV431,LMV431A and LMV431B are precision 1.24V shunt regulators capable of adjustment to 30V.Negative feedback from the cathode to the adjust pin controls the cathode voltage,much like a non-inverting op amp configu-ration (Refer to Symbol and Functional diagrams).A two resistor voltage divider terminated at the adjust pin controls the gain of a 1.24V band-gap reference.Shorting the cath-ode to the adjust pin (voltage follower)provides a cathode voltage of a 1.24V.The LMV431,LMV431A and LMV431B have respective ini-tial tolerances of 1.5%,1%and 0.5%,and functionally lends themselves to several applications that require zener diode type performance at low voltages.Applications include a 3V to 2.7V low drop-out regulator,an error amplifier in a 3V off-line switching regulator and even as a voltage detector.These parts are typically stable with capacitive loads greater than 10nF and less than 50pF.The LMV431,LMV431A and LMV431B provide performance at a competitive price.Featuresn Low Voltage Operation/Wide Adjust Range (1.24V/30V)n 0.5%Initial Tolerance (LMV431B)n Temperature Compensated for Industrial Temperature Range (39PPM/˚C for the LMV431AI)n Low Operation Current (55µA)n Low Output Impedance (0.25Ω)n Fast Turn-On Response n Low CostApplicationsn Shunt Regulator n Series Regulatorn Current Source or Sink n Voltage Monitor n Error Amplifiern 3V Off-Line Switching RegulatornLow Dropout N-Channel Series RegulatorConnection DiagramsTO92:Plastic Package10095801Top ViewSOT23-510095844*Pin 1is not internally connected.*Pin 2is internally connected to Anode pin.Pin 2should be either floating or connected to Anode pin.Top ViewSOT23-310095867Top ViewAugust 2003LMV431/LMV431A/LMV431B Low-Voltage (1.24V)Adjustable Precision Shunt Regulators©2003National Semiconductor Corporation Symbol and FunctionalDiagrams1009585910095860Simplified Schematic10095803L M V 431/L M V 431A /L M V 431B 2Ordering InformationPackageTemperatureRange Voltage TolerancePart Number Package Marking NSC DrawingTO92Industrial Range −40˚C to +85˚C1%LMV431AIZ LMV431AIZ Z03A 1.5%LMV431IZ LMV431IZ Commerial Range 0˚C to +70˚C0.5%LMV431BCZ LMV431BCZ 1%LMV431ACZ LMV431ACZ 1.5%LMV431CZ LMV431CZ SOT23-5Industrial Range −40˚C to +85˚C1%LMV431AIM5N08A MF05A 1%LMV431AIM5X N08A 1.5%LMV431IM5N08B 1.5%LMV431IM5X N08B Commercial Range 0˚C to +70˚C0.5%LMV431BCM5N09C 0.5%LMV431BCM5X N09C 1%LMV431ACM5N09A 1%LMV431ACM5X N09A 1.5%LMV431CM5N09B 1.5%LMV431CM5X N09B SOT23-3Industrial Range −40˚to +85˚C0.5%LMV431BIMF RLBMF03A0.5%LMV431BIMFX 1%LMV431AIMF RLA1%LMV431AIMFXDC/AC Test Circuits for Table and Curves10095804FIGURE 1.Test Circuit for V Z =V REF10095805Note:V Z =V REF (1+R1/R2)+I REF •R1FIGURE 2.Test Circuit for V Z >V REF10095806FIGURE 3.Test Circuit for Off-State CurrentLMV431/LMV431A/LMV431B3Absolute MaximumRatings(Note 1)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.Storage Temperature Range −65˚C to +150˚COperating Temperature Range Industrial (LMV431AI,LMV431I)−40˚C to +85˚C Commercial (LMV431AC,LMV431C,LMV431BC)0˚C to +70˚C Lead TemperatureTO92Package/SOT23-5,-3Package (Soldering,10sec.)265˚C Internal Power Dissipation (Note 2)TO920.78W SOT23-5,-3Package 0.28W Cathode Voltage35VContinuous Cathode Current −30mA to +30mA Reference Input Current range−.05mA to 3mA Operating ConditionsCathode VoltageV REF to 30VCathode Current 0.1mA to 15mA Temperature range LMV431AI−40˚C ≤T A ≤85˚C Thermal Resistance (θJA )(Note 3)SOT23-5,-3Package 455˚C/W TO-92Package161˚C/WDerating Curve (Slope =−1/θJA )10095830LMV431C Electrical CharacteristicsT A =25˚C unless otherwise specified Symbol ParameterConditionsMin Typ Max UnitsV REF Reference VoltageV Z =V REF ,I Z =10mA (See Figure 1)T A =25˚C 1.222 1.241.258T A =Full Range1.211.27V V DEVDeviation of Reference Input Voltage Over Temperature (Note 4)V Z =V REF ,I Z =10mA,T A =Full Range (See Figure 1)412mV Ratio of the Change in Reference Voltage to the Change in Cathode VoltageI Z =10mA (see Figure 2)V Z from V REF to 6VR 1=10k,R 2=∞and 2.6k −1.5−2.7mV/V I REF Reference Input CurrentR 1=10k Ω,R 2=∞I I =10mA (see Figure 2)0.150.5µA∝I REF Deviation of Reference Input Current over TemperatureR 1=10k Ω,R 2=∞,I I =10mA,T A =Full Range (see Figure 2)0.050.3µA I Z(MIN)Minimum Cathode Current for Regulation V Z =V REF (see Figure 1)5580µA I Z(OFF)Off-State CurrentV Z =6V,V REF =0V (see Figure 3)0.0010.1µA r ZDynamic Output Impedance (Note 5)V Z =V REF ,I Z =0.1mA to 15mA Frequency =0Hz (see Figure 1)0.250.4ΩL M V 431/L M V 431A /L M V 431B 4LMV431I ElectricalCharacteristicsT A =25˚C unless otherwise specified Symbol ParameterConditionsMin Typ Max Units V REF Reference VoltageV Z =V REF ,I Z =10mA (See Figure 1)T A =25˚C 1.222 1.241.258V T A =Full Range1.2021.278V DEVDeviation of Reference Input Voltage Over Temperature (Note 4)V Z =V REF ,I Z =10mA,T A =Full Range (See Figure 1)620mV Ratio of the Change in Reference Voltage to the Change in Cathode VoltageI Z =10mA (see Figure 2)V Z from V REF to 6VR 1=10k,R 2=∞and 2.6k −1.5−2.7mV/VI REF Reference Input CurrentR 1=10k Ω,R 2=∞I I =10mA (see Figure 2)0.150.5µA∝I REF Deviation of Reference Input Current over TemperatureR 1=10k Ω,R 2=∞,I I =10mA,T A =Full Range (see Figure 2)0.10.4µA I Z(MIN)Minimum Cathode Current for Regulation V Z =V REF (see Figure 1)5580µA I Z(OFF)Off-State CurrentV Z =6V,V REF =0V (see Figure 3)0.0010.1µA r ZDynamic Output Impedance (Note 5)V Z =V REF ,I Z =0.1mA to 15mA Frequency =0Hz (see Figure 1)0.250.4ΩLMV431AC Electrical CharacteristicsT A =25˚C unless otherwise specified Symbol ParameterConditionsMin Typ Max Units V REF Reference VoltageV Z =V REF ,I Z =10mA (See Figure 1)T A =25˚C 1.228 1.241.252V T A =Full Range1.2211.259V DEVDeviation of Reference Input Voltage Over Temperature (Note 4)V Z =V REF ,I Z =10mA,T A =Full Range (See Figure 1)412mV Ratio of the Change in Reference Voltage to the Change in Cathode VoltageI Z =10mA (see Figure 2)V Z from V REF to 6VR 1=10k,R 2=∞and 2.6k −1.5−2.7mV/VI REF Reference Input CurrentR 1=1k Ω,R 2=∞I I =10mA (see Figure 2)0.150.50µA∝I REF Deviation of Reference Input Current over TemperatureR 1=10k Ω,R 2=∞,I I =10mA,T A =Full Range (see Figure 2)0.050.3µA I Z(MIN)Minimum Cathode Current for Regulation V Z =V REF (see Figure 1)5580µA I Z(OFF)Off-State CurrentV Z =6V,V REF =0V (see Figure 3)0.0010.1µA r ZDynamic Output Impedance (Note 5)V Z =V REF ,I Z =0.1mA to 15mA Frequency =0Hz (see Figure 1)0.250.4ΩLMV431/LMV431A/LMV431B5LMV431AI ElectricalCharacteristicsT A =25˚C unless otherwise specified Symbol ParameterConditionsMin Typ Max UnitsV REF Reference VoltageV Z =V REF ,I Z =10mA (See Figure 1)T A =25˚C 1.228 1.241.252T A =Full Range1.2151.265V V DEVDeviation of Reference Input Voltage Over Temperature (Note 4)V Z =V REF ,I Z =10mA,T A =Full Range (See Figure 1)620mV Ratio of the Change in Reference Voltage to the Change in Cathode VoltageI Z =10mA (see Figure 2)V Z from V REF to 6VR 1=10k,R 2=∞and 2.6k −1.5−2.7mV/V I REF Reference Input CurrentR 1=10k Ω,R 2=∞I I =10mA (see Figure 2)0.150.5µA∝I REF Deviation of Reference Input Current over TemperatureR 1=10k Ω,R 2=∞,I I =10mA,T A =Full Range (see Figure 2)0.10.4µA I Z(MIN)Minimum Cathode Current for Regulation V Z =V REF (see Figure 1)5580µA I Z(OFF)Off-State CurrentV Z =6V,V REF =0V (see Figure 3)0.0010.1µA r ZDynamic Output Impedance (Note 5)V Z =V REF ,I Z =0.1mA to 15mA Frequency =0Hz (see Figure 1)0.250.4ΩLMV431BC Electrical CharacteristicsT A =25˚C unless otherwise specified Symbol ParameterConditionsMin Typ Max UnitsV REF Reference VoltageV Z =V REF ,I Z =10mA (See Figure 1)T A =25˚C 1.234 1.241.246T A =Full Range1.2271.253V V DEVDeviation of Reference Input Voltage Over Temperature (Note 4)V Z =V REF ,I Z =10mA,T A =Full Range (See Figure 1)412mV Ratio of the Change in Reference Voltage to the Change in Cathode VoltageI Z =10mA (see Figure 2)V Z from V REF to 6VR 1=10k,R 2=∞and 2.6k −1.5−2.7mV/V I REF Reference Input CurrentR 1=10k Ω,R 2=∞I I =10mA (see Figure 2)0.150.50µA∝I REF Deviation of Reference Input Current over TemperatureR 1=10k Ω,R 2=∞,I I =10mA,T A =Full Range (see Figure 2)0.050.3µA I Z(MIN)Minimum Cathode Current for Regulation V Z =V REF (see Figure 1)5580µA I Z(OFF)Off-State CurrentV Z =6V,V REF =0V (see Figure 3)0.0010.1µA r ZDynamic Output Impedance (Note 5)V Z =V REF ,I Z =0.1mA to 15mA Frequency =0Hz (see Figure 1)0.250.4ΩLMV431BI Electrical CharacteristicsT A =25˚C unless otherwise specified Symbol ParameterConditionsMin Typ Max UnitsV REF Reference VoltageV Z =V REF ,I Z =10mA (See Figure 1)T A =25˚C 1.234 1.241.246T A =Full Range1.2241.259V V DEVDeviation of Reference Input Voltage Over Temperature (Note 4)V Z =V REF ,I Z =10mA,T A =Full Range (See Figure 1)620mV Ratio of the Change in Reference Voltage to the Change in Cathode VoltageI Z =10mA (see Figure 2)V Z from V REF to 6VR 1=10k,R 2=∞and 2.6k −1.5−2.7mV/V I REFReference Input CurrentR 1=10k Ω,R 2=∞I I =10mA (see Figure 2)0.150.50µAL M V 431/L M V 431A /L M V 431B 6LMV431BI ElectricalCharacteristics(Continued)T A=25˚C unless otherwise specifiedSymbol Parameter Conditions Min Typ Max Units∝IREFDeviation of Reference Input Currentover Temperature R1=10kΩ,R2=∞,I I=10mA,T A=Full Range(see Figure2)0.10.4µAI Z(MIN)Minimum Cathode Current forRegulation V Z=V REF(see Figure1)5580µAI Z(OFF)Off-State Current V Z=6V,V REF=0V(see Figure3)0.0010.1µAr Z Dynamic Output Impedance(Note5)V Z=V REF,I Z=0.1mA to15mAFrequency=0Hz(see Figure1)0.250.4ΩNote1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Electrical specifications do not apply when operating the device beyond its rated operating conditions.Note2:Ratings apply to ambient temperature at25˚C.Above this temperature,derate the TO92at6.2mW/˚C,and the SOT23-5at2.2mW/˚C.See derating curve in Operating Condition section..Note3:T J Max=150˚C,T J=T A+(θJA P D),where P D is the operating power of the device.Note4:Deviation of reference input voltage,V DEV,is defined as the maximum variation of the reference input voltage over the full temperature range.See following:LMV431/LMV431A/LMV431B7LMV431BI ElectricalCharacteristics(Continued)10095807The average temperature coefficient of the reference input voltage,∝V REF ,is defined as:Where:T 2−T 1=full temperature change.∝V REF can be positive or negative depending on whether the slope is positive or negative.Example:V DEV =6.0mV,REF =1240mV,T 2−T 1=125˚C.Note 5:The dynamic output impedance,r Z ,is defined as:When the device is programmed with two external resistors,R1and R2,(see Figure 2),the dynamic output impedance of the overall circuit,r Z ,is defined as:L M V 431/L M V 431A /L M V 431B 8Typical PerformanceCharacteristicsReference Voltage vs.Junction TemperatureReference Input Current vs.Junction Temperature1009585010095862Cathode Current vs.Cathode Voltage 1Cathode Current vs.Cathode Voltage 21009585110095852Off-State Cathode Current vs.Junction Temperature Delta Reference Voltage PerDelta Cathode Voltage vs.Junction Temperature1009586310095861LMV431/LMV431A/LMV431B9Typical PerformanceCharacteristics(Continued)Input Voltage Noise vs.Frequency1009585310095845Test Circuit for Input Voltage Noise vs.FrequencyLow Frequency Peak to Peak Noise1009585410095864Test Circuit for Peak to Peak Noise (BW=0.1Hz to 10Hz)Small Signal Voltage Gain and Phase Shift vs.Frequency1009585510095846Test Circuit For Voltage Gain and Phase Shift vs.FrequencyL M V 431/L M V 431A /L M V 431B 10Typical Performance Characteristics(Continued)Reference Impedance vs.Frequency1009585610095847Test Circuit for Reference Impedance vs.FrequencyPulse Response 11009585710095848Test Circuit for Pulse Response 1Pulse Response 21009585810095849Test Circuit for Pulse Response 2LMV431/LMV431A/LMV431B11Typical PerformanceCharacteristics(Continued)LMV431Stability Boundary Condition1009586810095869Test circuit for V Z =V REF 10095870Test Circuit for V Z =2V,3VPercentage Change in V REF vs.Operating Life at 55˚C10095866Extrapolated from life-test data taken at 125˚C;the activation energy assumed is 0.7eV.L M V 431/L M V 431A /L M V 431B 12Typical ApplicationsSeries Regulator Output Control of a Three Terminal Fixed Regulator1009581610095817Higher Current Shunt Regulator Crow Bar1009581810095819 Over Voltage/Under VoltageProtection Circuit Voltage Monitor1009582010095821LMV431/LMV431A/LMV431B13Typical Applications(Continued)Delay Timer Current Limiter or Current Source1009582210095823Constant Current Sink10095824LMV431/LMV431A/LMV431B14Physical Dimensionsinches(millimeters)unless otherwise notedSOT23-5Molded Small Outline Transistor Package (M5)NS Package Number MF05ASOT23-3Molded Small Outline Transistor Package (M3)NS Package Number MF03ALMV431/LMV431A/LMV431B15Physical Dimensionsinches (millimeters)unless otherwise noted (Continued)TO-92Plastic Package NS Package Number Z03ALIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES ORSYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.National Semiconductor Americas Customer Support CenterEmail:new.feedback@ Tel:1-800-272-9959National SemiconductorEurope Customer Support CenterFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National Semiconductor Asia Pacific Customer Support CenterEmail:ap.support@National SemiconductorJapan Customer Support Center Fax:81-3-5639-7507Email:jpn.feedback@ Tel:81-3-5639-7560L M V 431/L M V 431A /L M V 431B L o w -V o l t a g e (1.24V )A d j u s t a b l e P r e c i s i o n S h u n t R e g u l a t o r sNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.。
LM431SCCMLX中文资料
Description
The LM431SA/LM431SB/LM431SC are three terminal output adjustable regulators with thermal stability over operating temperature range. The output voltage can be set any value between VREF (approximately 2.5 volts) and 36 volts with two external resistors. These devices have a typical dynamic output impedance of 0.2Ω Active output circuit provides a sharp turn-on characteristic, making these devices excellent replacement for Zener Diodes in many applications.
IK, CATHODE CURRENT(mA)
140 120 100
80 60 40 20
0 100p
A stable
A VKA = Vref B VKA = 5.0 V @ IK = 10mA TA = 25oC
stable
B
1n
10n
100n
1ٛ
10ٛ
CL, LOAD CAPACITANCE
Figure 10. Stability Boundary Conditions
0.100
Ioff, Off-State Cathode Current (uA)
0.075
SL431A中文资料
Ζ KA
= ∆VKA ∆I K
When the device is operating with two external resistors, R1 and R2, (refer to Fig.2) the total dynamic impedance of the circuit
is given by:
SL431x
Fig.5 IK vs VKA (2)
4.0
VKA=Vref, Ta=25˚C
3.0
2.0
1.0
0.0
-0.2
-1
0
1
2
3
Cathode Voltage VKA [V]
Fig.7 ΔVref/ΔVKA vs Ta
0.0
-0.1
-0.2
-0.3
-0.4 -0.5
-50
-25
0
Vref ≤ VKA ≤ 36V IK=10mA
元器件交易网
Absolute maximum ratings
Characteristic
Cathode to Anode voltage Cathode current Reference input current Power Dissipation Junction Temperature Operating temperature range Storage temperature range
Fig. 8
Example : △Vref = 30mV and the slope is positive,
△Vref @ 25℃ = 2.495V
△Ta = 125℃
ppm αVref ( ℃ ) =
( 0.03 ) ×106 2.495
TS431中文资料
1/9s LOW VOLTAGE OPERATION : 1.24 TO 6V s 2%, 1% AND 0.5% VOLTAGE PRECISION s WIDE OPERATING RANGE CATHODE CURRENT : 60µA TO 30mAs LOW OUTPUT IMPEDANCE : 0.2Ωs TYPICALLY STABLE FOR ANY CAPACI-TIVE LOADSs ESD PROTECTION :2kV (Human Body Model)200V (Machine Model)s100ppm/°C TEMPERATURE COEFFICIENTDESCRIPTIONThe TS431 is a low voltage three terminals pro-grammable shunt Voltage Reference. The output voltage can be set to any value between Vref (1.24V) and 6V with two external resistors. The TS431 is able to operate at a lower voltage (1.24V) and lower cathode current than the wide-spread TL431 and TL1431 shunt voltage refer-ence.When driving an optocoupler, the TS431 is partic-ularly interesting to regulate 3.3V switching power supplies.ORDER CODEZ = TO92 Plastic package - also available in Bulk (Z), Tape & Reel (ZT)and Ammo Pack (AP)LT = Tiny Package (SOT23-5) - only available in Tape & Reel (LT)PIN CONNECTIONS (top view)Part Number Temperature RangePackage SOT-23Marking Z L TS431I -40°C, +125°C••L272TS431AI ••L271TS431BI••L270TO92(Top view)SOT23-5(Top view)TS431LOW VOLTAGE ADJUSTABLE SHUNT REFERENCEApril 2002TS4312/9ABSOLUTE MAXIMUM RATINGSOPERATING CONDITIONSELECTRICAL CHARACTERISTICS T amb = 25°C (unless otherwise specified)Symbol ParameterValue Unit V KA Cathode to Anode Voltage10V I k Continuous Cathode Current Range -20 to +40mA I ref Reference Input Current Range-0.05 to +3mA P d Power Dissipation 1) TO92 packageSOT23-5 package 625500mW T stdStorage Temperature Range-65 to +150°C1.T junction =150°C, T amb =25°C with R THj-a =200°C/W for TO92 package and R THj-a =250°C/W for SOT23-5L packageSymbol ParameterValue Unit V KA Cathode to Anode Voltage 1.24 to 6V I k Cathode Current0.06 to 30mA T operOperating Free Air Temperature Range-40 to +125°CSymbol ParameterTest Condition Min.Typ.Max.Unit VrefOutput VoltageV KA = V ref @ I k = 100µA TS431TS431A TS431B1.2151.2281.2341.2401.2651.2521.246V∆V refOutput Voltage Change 1) 2)I k = 100µA, V KA = V re f1.Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation and by design.2.∆V ref is defined as the difference between the maximum and minimum values obtained over the full temperature range.∆V ref = V ref max. - V ref min.0 < T amb < +70°C -40 < T amb < +85°C -40 < T amb < +105°C -40 < T amb < +125°C 9161821mVRatio of Change in Reference InputVoltage to Change in Cathode to Anode VoltageI K = 10mAV KA = 6V to V ref 1.8 2.7mV/V I ref Reference Input CurrentI K = 10mA70160nA ∆I ref Reference Input Current Deviation Over Temperature RangeI K =10mA R 1=10k Ω R 2=∝-40 < T amb < +85°C -40 < T amb < +125°C 7090160240nA I min Minimum Cathode Current for Regulation V KA = V ref 4060µA I off Off-State Cathode Current V KA = 6V , V ref = 00.0010.1µA R KAStatic ImpedanceV KA = V ref ,I K = 0.1 to 15mA0.20.4Ω∆Vref ∆Vka ----------------TS4313/9Reference voltage vs temperatureCathode voltage vs cathode currentReference input current vs temperatureTest circuit for Vka = VrefCathode voltage vs cathode currentStatic impedance vs temperatureTS4314/9Off-State current vs temperatureRatio of change in reference input voltage to change in Vka voltage vs temperaturePhase and Gain vs frequencyTest c ircuit f or O ff-State c urrent m easurementTest circuit for Vka > VrefTest circuit for phase and gain measurementTS4315/9Pulse response at Ik=100µAPulse response at Ik = 1mAEquivalent input noise vs frequencyTest circuit for pulse response at Ik = 100µATest circuit for pulse response at Ik = 1mATS4316/9PACKAGE MECHANICAL DATA3 PINS - PLASTIC PACKAGE TO92 (TAPE & REEL)limetersInches MinTyp.Max.Min.Typ.Max.AL 5.00.197A 5.00.197T 4.00.157d 0.450.018I1 2.50.098P 11.712.713.70.4610.5000.539PO 12.412.7130.4880.5000.512P2 5.95 6.35 6.750.2340.2500.266F1/F2 2.4 2.5 2.80.0940.0980.110∆h -101-0.03900.039∆P -101-0.03900.039W 17.518.019.00.6890.7090.748W0 5.76 6.30.2240.2360.248W18.599.750.3350.3540.384W20.50.020H 200.787H015.51616.50.6100.6300.650H1250.984DO 3.84.04.20.1500.1570.165L1110.433TS4317/9PACKAGE MECHANICAL DATA3 PINS - PLASTIC PACKAGE TO92 (TAPE AMMO PACK)limetersInches MinTyp.Max.Min.Typ.Max.AL 5.00.197A 5.00.197T 4.00.157d 0.450.018I1 2.50.098P 11.712.713.70.4610.5000.539PO 12.412.7130.4880.5000.512P2 5.95 6.35 6.750.2340.2500.266F1/F2 2.4 2.5 2.80.0940.0980.110∆h -101-0.03900.039∆P -101-0.03900.039W 17.518.019.00.6890.7090.748W0 5.76 6.30.2240.2360.248W18.599.750.3350.3540.384W20.50.020H 200.787H015.51616.50.6100.6300.650H1250.984DO 3.84.04.20.1500.1570.165L1110.433TS4318/9PACKAGE MECHANICAL DATA3 PINS - PLASTIC PACKAGE TO92 (BULK)limetersInches Min Typ.Max.Min.Typ.Max.L 1.270.05B 3.2 3.7 4.20.1260.14570.1654O1 4.45 5.00 5.20.17520.19690.2047C 4.58 5.03 5.330.18030.1980.2098K 12.70.5O20.4070.50.5080.0160.01970.02a0.350.0138TS4319/9PACKAGE MECHANICAL DATA5 PINS - TINY PACKAGE (SOT23-5)DimensionsMillimetersInches Min.Typ.Max.Min.Typ.Max.A 0.90 1.20 1.450.0350.0470.057A100.150.006A20.90 1.05 1.300.0350.0410.051B 0.350.400.500.0140.0160.020C 0.090.150.200.0040.0060.008D 2.802.903.000.1100.1140.118D1 1.900.075e 0.950.037E 2.60 2.80 3.000.1020.1100.118F 1.50 1.60 1.750.0590.0630.069L 0.30.50.600.0120.0140.024K0d 10d 0d10dInformation furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.© The ST logo is a registered trademark of STMicroelectronics© 2002 STMicroelectronics - Printed in Italy - All Rights ReservedSTMicroelectronics GROUP OF COMPANIESAustralia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - MalaysiaMalta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States© 。
TL431器件手册
TL431,TL431A,TL431B,TL432,TL432A,TL432B SLVS543N–AUGUST2004–REVISED JANUARY2014TL431Precision Programmable ReferenceCheck for Samples:TL431,TL431A,TL431B,TL432,TL432A,TL432BFEATURES DESCRIPTIONThe TL431and TL432are three-terminal adjustable •Operation From−40°C to125°Cshunt regulators,with specified thermal stability over •Reference Voltage Tolerance at25°C applicable automotive,commercial,and military–0.5%...B Grade temperature ranges.The output voltage can be set toany value between Vref(approximately2.5V)and36–1%...A GradeV,with two external resistors(see Figure17).These –2%...Standard Gradedevices have a typical output impedance of0.2Ω.•Typical Temperature Drift(TL431B)Active output circuitry provides a very sharp turn-oncharacteristic,making these devices excellent –6mV(C Temp)replacements for Zener diodes in many applications,–14mV(I Temp,Q Temp)such as onboard regulation,adjustable power •Low Output Noise supplies,and switching power supplies.The TL432has exactly the same functionality and electrical •0.2-ΩTypical Output Impedancespecifications as the TL431,but has different pinouts •Sink-Current Capability...1mA to100mAfor the DBV,DBZ,and PK packages.•Adjustable Output Voltage...Vref to36VBoth the TL431and TL432devices are offered inthree grades,with initial tolerances(at25°C)of0.5%,1%,and2%,for the B,A,and standard grade,respectively.In addition,low output drift vstemperature ensures good stability over the entiretemperature range.The TL43xxC devices are characterized for operationfrom0°C to70°C,the TL43xxI devices arecharacterized for operation from–40°C to85°C,andthe TL43xxQ devices are characterized for operationfrom–40°C to125°C.Please be aware that an important notice concerning availability,standard warranty,and use in critical applications ofTexas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PRODUCTION DATA information is current as of publication date.Copyright©2004–2014,Texas Instruments Incorporated Products conform to specifications per the terms of the TexasCATHODE ANODE REFTL431...KTP (PowerFLEX /TO-252) P ACKAGE(TOP VIEW)A N O D ETL431A,TL431B ...DCK (SC-70) PACKAGE(TOP VIEW)123654CATHODENC REFANODE NC NCNC −No internal connectionTL431,TL431A,TL431B ...LP (TO-92/TO-226) P ACKAGE(TOP VIEW)CATHODE ANODE REF12348765CATHODE ANODE ANODENCREF ANODE ANODE NCTL431,TL431A,TL431B ...D (SOIC) PACKAGE(TOP VIEW)12348765CATHODENC NC NCREF NCANODE NCTL431,TL431A,TL431B ...P (PDIP), PS (SOP),OR PW (TSSOP) P ACKAGE(TOP VIEW)NC −No internal connectionTL431,TL431A,TL431B ...DBV (SOT-23-5) P ACKAGE(TOP VIEW)12354NC†CATHODEANODE REFTL431,TL431A,TL431B ...PK (SOT-89) PACKAGE(TOP VIEW)REFANODE CATHODE†Pin 2 is attached to Substrate and must be connected to ANODE or left open.NC −No internal connectionTL432,TL432A,TL432B ...DBV (SOT-23-5) P ACKAGE(TOP VIEW)12354NC ANODENCREF CATHODENC −No internal connectionTL431,TL431A,TL431B ...DBZ (SOT-23-3) P ACKAGE(TOP VIEW)TL432,TL432A,TL432B ...DBZ (SOT-23-3) P ACKAGE(TOP VIEW)NC −No internal connection123REFCATHODEANODE123CATHODEREFANODEA N O D ETL432,TL432A,TL432B ...PK (SOT-89) PACKAGE(TOP VIEW)REF ANODE CATHODEA N O D ETL431,TL431A,TL431B,TL432,TL432A,TL432BSLVS543N –AUGUST 2004–REVISED JANUARY 20142Submit Documentation Feedback Copyright ©2004–2014,Texas Instruments IncorporatedANODEREFCATHODEANODEREFCATHODEANODETL431,TL431A,TL431B,TL432,TL432A,TL432BSLVS543N –AUGUST 2004–REVISED JANUARY 2014SymbolFunctional Block DiagramEquivalent SchematicNOTE:All component values are nominal.Copyright ©2004–2014,Texas Instruments Incorporated Submit Documentation Feedback 3TL431,TL431A,TL431B,TL432,TL432A,TL432BSLVS543N–AUGUST2004–REVISED Absolute Maximum Ratings(1)over operating free-air temperature range(unless otherwise noted)MIN MAX UNITV KA Cathode voltage(2)37VI KA Continuous cathode current range–100150mAI I(ref)Reference input current range–0.0510mAT J Operating virtual junction temperature150°CT stg Storage temperature range–65150°C (1)Stresses beyond those listed under"absolute maximum ratings"may cause permanent damage to the device.These are stress ratingsonly,and functional operation of the device at these or any other conditions beyond those indicated under"recommended operating conditions"is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.(2)All voltage values are with respect to ANODE,unless otherwise noted.Package Thermal Data(1)PACKAGE BOARDθJCθJAPDIP(P)High K,JESD51-757°C/W85°C/WSC-70(DCK)High K,JESD51-7259°C/W87°C/WSOIC(D)High K,JESD51-739°C/W97°C/WSOP(PS)High K,JESD51-746°C/W95°C/WSOT-89(PK)High K,JESD51-79°C/W52°C/WSOT-23-5(DBV)High K,JESD51-7131°C/W206°C/WSOT-23-3(DBZ)High K,JESD51-776°C/W206°C/W TO-92(LP)High K,JESD51-755°C/W140°C/WTSSOP(PW)High K,JESD51-765°C/W149°C/W(1)Maximum power dissipation is a function of T J(max),θJA,and T A.The maximum allowable power dissipation at any allowable ambienttemperature is P D=(T J(max)–T A)/θJA.Operating at the absolute maximum T J of150°C can affect reliability.Recommended Operating ConditionsMIN MAX UNITV KA Cathode voltage V ref36VI KA Cathode current1100mATL43xxC070T A Operating free-air temperature TL43xxI–4085°CTL43xxQ–401254Submit Documentation Feedback Copyright©2004–2014,Texas Instruments IncorporatedR2R1|z |KA (1 +(∆I ∆V|z'| =∆I KA∆V KA|z | =KA (2)The dynamic impedance is defined as:When the device is operating with two external resistors (see Figure 2),the total dynamic impedance of the circuit is given by:which is approximately equal to.TL431,TL431A,TL431B,TL432,TL432A,TL432BSLVS543N –AUGUST 2004–REVISED JANUARY 2014Electrical Characteristicsover recommended operating conditions,T A =25°C (unless otherwise noted)TL431C,TL432C PARAMETERTEST CIRCUITTEST CONDITIONSUNIT MIN TYP MAX V ref Reference voltageFigure 1V KA =V ref ,I KA =10mA 244024952550mV SOT23-3and TL432Deviation of reference input 616V KA =V ref ,devices V I(dev)voltage over full temperature Figure 1mVI KA =10mA,range (1)All other devices 425Ratio of change in reference ΔV KA =10V −V ref -1.4-2.7ΔV ref /voltage to the change in Figure 2I KA =10mAmV/V ΔV KA ΔV KA =36V −10V-1-2cathode voltage I ref Reference input current Figure 2I KA =10mA,R1=10k Ω,R2=∞24µA Deviation of reference input I I(dev)current over full temperature Figure 2I KA =10mA,R1=10k Ω,R2=∞0.4 1.2µA range (1)Minimum cathode current for I min Figure 1V KA =V ref0.41mA regulationI off Off-state cathode current Figure 3V KA =36V,V ref =00.11µA |z KA |Dynamic impedance (2)Figure 1V KA =V ref ,f ≤1kHz,I KA =1mA to 100mA0.20.5Ω(1)The deviation parameters V ref(dev)and I ref(dev)are defined as the differences between the maximum and minimum values obtained over the rated average full-range αVref is positive or negative,depending on whether minimum V ref or maximum V ref ,respectively,occurs at the lower temperature.Copyright ©2004–2014,Texas Instruments Incorporated Submit Documentation Feedback 5R2R1|z |KA (1 +(∆I ∆V|z'| =∆I KA∆V KA|z | =KA (2)The dynamic impedance is defined as:When the device is operating with two external resistors (see Figure 2),the total dynamic impedance of the circuit is given by:which is approximately equal to.TL431,TL431A,TL431B,TL432,TL432A,TL432BSLVS543N –AUGUST 2004–REVISED JANUARY 2014Electrical Characteristicsover recommended operating conditions,T A =25°C (unless otherwise noted)TL431I,TL432I PARAMETERTEST CIRCUITTEST CONDITIONSUNIT MIN TYP MAX V ref Reference voltageFigure 1V KA =V ref ,I KA =10mA 244024952550mV SOT23-3and TL432Deviation of reference input 1434V KA =V ref ,devices V I(dev)voltage over full temperature Figure 1mVI KA =10mA range (1)All other devices 550Ratio of change in reference ΔV KA =10V −V ref -1.4-2.7ΔV ref /voltage to the change in Figure 2I KA =10mAmV/V ΔV KA ΔV KA =36V −10V-1-2cathode voltage I ref Reference input current Figure 2I KA =10mA,R1=10k Ω,R2=∞24µA Deviation of reference input I I(dev)current over full temperature Figure 2I KA =10mA,R1=10k Ω,R2=∞0.8 2.5µA range (1)Minimum cathode current for I min Figure 1V KA =V ref0.41mA regulationI off Off-state cathode current Figure 3V KA =36V,V ref =00.11µA |z KA |Dynamic impedance (2)Figure 1V KA =V ref ,f ≤1kHz,I KA =1mA to 100mA0.20.5Ω(1)The deviation parameters V ref(dev)and I ref(dev)are defined as the differences between the maximum and minimum values obtained over the rated average full-range αVref is positive or negative,depending on whether minimum V ref or maximum V ref ,respectively,occurs at the lower temperature.6Submit Documentation Feedback Copyright ©2004–2014,Texas Instruments IncorporatedR2R1|z |KA (1 +(∆I ∆V|z'| =∆I KA∆V KA|z | =KA (2)The dynamic impedance is defined as:When the device is operating with two external resistors (see Figure 2),the total dynamic impedance of the circuit is given by:which is approximately equal to.TL431,TL431A,TL431B,TL432,TL432A,TL432BSLVS543N –AUGUST 2004–REVISED JANUARY 2014Electrical Characteristicsover recommended operating conditions,T A =25°C (unless otherwise noted)TL431Q,TL432Q PARAMETERTEST CIRCUITTEST CONDITIONSUNIT MIN TYP MAX V ref Reference voltageFigure 1V KA =V ref ,I KA =10mA 244024952550mV Deviation of reference input V I(dev)voltage over full temperature Figure 1V KA =V ref ,I KA =10mA1434mVrange (1)Ratio of change in reference ΔV KA =10V −V ref -1.4-2.7ΔV ref /voltage to the change in Figure 2I KA =10mAmV/V ΔV KA ΔV KA =36V −10V-1-2cathode voltage I ref Reference input current Figure 2I KA =10mA,R1=10k Ω,R2=∞24µA Deviation of reference input I I(dev)current over full temperature Figure 2I KA =10mA,R1=10k Ω,R2=∞0.8 2.5µA range (1)Minimum cathode current for I min Figure 1V KA =V ref0.41mA regulationI off Off-state cathode current Figure 3V KA =36V,V ref =00.11µA |z KA |Dynamic impedance (2)Figure 1V KA =V ref ,f ≤1kHz,I KA =1mA to 100mA0.20.5Ω(1)The deviation parameters V ref(dev)and I ref(dev)are defined as the differences between the maximum and minimum values obtained over the rated full-range αVref is positive or negative,depending on whether minimum V ref or maximum V ref ,respectively,occurs at the lower temperature.Copyright ©2004–2014,Texas Instruments Incorporated Submit Documentation Feedback 7R2R1|z |KA (1 +(∆I ∆V|z'| =∆I KA∆V KA|z | =KA (2)The dynamic impedance is defined as:When the device is operating with two external resistors (see Figure 2),the total dynamic impedance of the circuit is given by:which is approximately equal to.TL431,TL431A,TL431B,TL432,TL432A,TL432BSLVS543N –AUGUST 2004–REVISED JANUARY 2014Electrical Characteristicsover recommended operating conditions,T A =25°C (unless otherwise noted)TL431AC,TL432AC PARAMETERTEST CIRCUITTEST CONDITIONSUNIT MIN TYP MAX V ref Reference voltageFigure 1V KA =V ref ,I KA =10mA 247024952520mV SOT23-3and TL432Deviation of reference input 616V KA =V ref ,devices V I(dev)voltage over full temperature Figure 1mVI KA =10mA range (1)All other devices 425Ratio of change in reference ΔV KA =10V −V ref -1.4-2.7ΔV ref /voltage to the change in Figure 2I KA =10mAmV/V ΔV KA ΔV KA =36V −10V-1-2cathode voltage I ref Reference input current Figure 2I KA =10mA,R1=10k Ω,R2=∞24µA Deviation of reference input I I(dev)current over full temperature Figure 2I KA =10mA,R1=10k Ω,R2=∞0.8 1.2µA range (1)Minimum cathode current for I min Figure 1V KA =V ref0.40.6mA regulationI off Off-state cathode current Figure 3V KA =36V,V ref =00.10.5µA |z KA |Dynamic impedance (2)Figure 1V KA =V ref ,f ≤1kHz,I KA =1mA to 100mA0.20.5Ω(1)The deviation parameters V ref(dev)and I ref(dev)are defined as the differences between the maximum and minimum values obtained over the rated average full-range αVref is positive or negative,depending on whether minimum V ref or maximum V ref ,respectively,occurs at the lower temperature.8Submit Documentation Feedback Copyright ©2004–2014,Texas Instruments IncorporatedR2R1|z |KA (1 +(∆I ∆V|z'| =∆I KA∆V KA|z | =KA (2)The dynamic impedance is defined as:When the device is operating with two external resistors (see Figure 2),the total dynamic impedance of the circuit is given by:which is approximately equal to.TL431,TL431A,TL431B,TL432,TL432A,TL432BSLVS543N –AUGUST 2004–REVISED JANUARY 2014Electrical Characteristicsover recommended operating conditions,T A =25°C (unless otherwise noted)TL431AI,TL432AI PARAMETERTEST CIRCUITTEST CONDITIONSUNIT MIN TYP MAX V ref Reference voltageFigure 1V KA =V ref ,I KA =10mA 247024952520mV SOT23-3and TL432Deviation of reference input 1434V KA =V ref ,devices V I(dev)voltage over full temperature Figure 1mVI KA =10mA range (1)All other devices 550Ratio of change in reference ΔV KA =10V −V ref -1.4-2.7ΔV ref /voltage to the change in Figure 2I KA =10mAmV/V ΔV KA ΔV KA =36V −10V-1-2cathode voltage I ref Reference input current Figure 2I KA =10mA,R1=10k Ω,R2=∞24µA Deviation of reference input I I(dev)current over full temperature Figure 2I KA =10mA,R1=10k Ω,R2=∞0.8 2.5µA range (1)Minimum cathode current for I min Figure 1V KA =V ref0.40.7mA regulationI off Off-state cathode current Figure 3V KA =36V,V ref =00.10.5µA |z KA |Dynamic impedance (2)Figure 1V KA =V ref ,f ≤1kHz,I KA =1mA to 100mA0.20.5Ω(1)The deviation parameters V ref(dev)and I ref(dev)are defined as the differences between the maximum and minimum values obtained over the rated average full-range αVref is positive or negative,depending on whether minimum V ref or maximum V ref ,respectively,occurs at the lower temperature.Copyright ©2004–2014,Texas Instruments Incorporated Submit Documentation Feedback 9R2R1|z |KA (1 +(∆I ∆V|z'| =∆I KA∆V KA|z | =KA (2)The dynamic impedance is defined as:When the device is operating with two external resistors (see Figure 2),the total dynamic impedance of the circuit is given by:which is approximately equal to.TL431,TL431A,TL431B,TL432,TL432A,TL432BSLVS543N –AUGUST 2004–REVISED JANUARY 2014Electrical Characteristicsover recommended operating conditions,T A =25°C (unless otherwise noted)TL431AQ,TL432AQ PARAMETERTEST CIRCUITTEST CONDITIONSUNIT MIN TYP MAX V ref Reference voltageFigure 1V KA =V ref ,I KA =10mA 247024952520mV Deviation of reference input V I(dev)voltage over full temperature Figure 1V KA =V ref ,I KA =10mA1434mVrange (1)Ratio of change in reference ΔV KA =10V −V ref -1.4-2.7ΔV ref /voltage to the change in Figure 2I KA =10mAmV/V ΔV KA ΔV KA =36V −10V-1-2cathode voltage I ref Reference input current Figure 2I KA =10mA,R1=10k Ω,R2=∞24µA Deviation of reference input I I(dev)current over full temperature Figure 2I KA =10mA,R1=10k Ω,R2=∞0.8 2.5µA range (1)Minimum cathode current for I min Figure 1V KA =V ref0.40.7mA regulationI off Off-state cathode current Figure 3V KA =36V,V ref =00.10.5µA |z KA |Dynamic impedance (2)Figure 1V KA =V ref ,f ≤1kHz,I KA =1mA to 100mA0.20.5Ω(1)The deviation parameters V ref(dev)and I ref(dev)are defined as the differences between the maximum and minimum values obtained over the rated full-range αVref is positive or negative,depending on whether minimum V ref or maximum V ref ,respectively,occurs at the lower temperature.10Submit Documentation Feedback Copyright ©2004–2014,Texas Instruments IncorporatedR2R1|z |KA (1 +(∆I ∆V|z'| =∆I KA∆V KA|z | =KA (2)The dynamic impedance is defined as:When the device is operating with two external resistors (see Figure 2),the total dynamic impedance of the circuit is given by:which is approximately equal to.over recommended operating conditions,T A =25°C (unless otherwise noted)TL431BC,TL432BC PARAMETERTEST CIRCUITTEST CONDITIONSUNIT MIN TYP MAX V ref Reference voltageFigure 1V KA =V ref ,I KA =10mA 248324952507mV Deviation of reference input V I(dev)voltage over full temperature Figure 1V KA =V ref ,I KA =10mA616mVrange (1)Ratio of change in reference ΔV KA =10V −V ref -1.4-2.7ΔV ref /voltage to the change in Figure 2I KA =10mAmV/V ΔV KA ΔV KA =36V −10V-1-2cathode voltage I ref Reference input current Figure 2I KA =10mA,R1=10k Ω,R2=∞24µA Deviation of reference input I I(dev)current over full temperature Figure 2I KA =10mA,R1=10k Ω,R2=∞0.8 1.2µA range (1)Minimum cathode current for I min Figure 1V KA =V ref0.40.6mA regulationI off Off-state cathode current Figure 3V KA =36V,V ref =00.10.5µA |z KA |Dynamic impedance (2)Figure 1V KA =V ref ,f ≤1kHz,I KA =1mA to 100mA0.20.5Ω(1)The deviation parameters V ref(dev)and I ref(dev)are defined as the differences between the maximum and minimum values obtained over the rated full-range αVref is positive or negative,depending on whether minimum V ref or maximum V ref ,respectively,occurs at the lower temperature.R2R1|z |KA (1 +(∆I ∆V|z'| =∆I KA∆V KA|z | =KA (2)The dynamic impedance is defined as:When the device is operating with two external resistors (see Figure 2),the total dynamic impedance of the circuit is given by:which is approximately equal to.over recommended operating conditions,T A =25°C (unless otherwise noted)TL431BI,TL432BI PARAMETERTEST CIRCUITTEST CONDITIONSUNIT MIN TYP MAX V ref Reference voltageFigure 1V KA =V ref ,I KA =10mA 248324952507mV Deviation of reference input V I(dev)voltage over full temperature Figure 1V KA =V ref ,I KA =10mA1434mVrange (1)Ratio of change in reference ΔV KA =10V −V ref -1.4-2.7ΔV ref /voltage to the change in Figure 2I KA =10mAmV/V ΔV KA ΔV KA =36V −10V-1-2cathode voltage I ref Reference input current Figure 2I KA =10mA,R1=10k Ω,R2=∞24µA Deviation of reference input I I(dev)current over full temperature Figure 2I KA =10mA,R1=10k Ω,R2=∞0.8 2.5µA range (1)Minimum cathode current for I min Figure 1V KA =V ref0.40.7mA regulationI off Off-state cathode current Figure 3V KA =36V,V ref =00.10.5µA |z KA |Dynamic impedance (2)Figure 1V KA =V ref ,f ≤1kHz,I KA =1mA to 100mA0.20.5Ω(1)The deviation parameters V ref(dev)and I ref(dev)are defined as the differences between the maximum and minimum values obtained over the rated full-range αVref is positive or negative,depending on whether minimum V ref or maximum V ref ,respectively,occurs at the lower temperature.R2R1|z |KA (1 +(∆I ∆V|z'| =∆I KA∆V KA|z | =KA (2)The dynamic impedance is defined as:When the device is operating with two external resistors (see Figure 2),the total dynamic impedance of the circuit is given by:which is approximately equal to.over recommended operating conditions,T A =25°C (unless otherwise noted)TL431BQ,TL432BQ PARAMETERTEST CIRCUITTEST CONDITIONSUNIT MIN TYP MAX V ref Reference voltageFigure 1V KA =V ref ,I KA =10mA 248324952507mV Deviation of reference input V I(dev)voltage over full temperature Figure 1V KA =V ref ,I KA =10mA1434mVrange (1)Ratio of change in reference ΔV KA =10V −V ref -1.4-2.7ΔV ref /voltage to the change in Figure 2I KA =10mAmV/V ΔV KA ΔV KA =36V −10V-1-2cathode voltage I ref Reference input current Figure 2I KA =10mA,R1=10k Ω,R2=∞24µA Deviation of reference input I I(dev)current over full temperature Figure 2I KA =10mA,R1=10k Ω,R2=∞0.8 2.5µA range (1)Minimum cathode current for I min Figure 1V KA =V ref0.40.7mA regulationI off Off-state cathode current Figure 3V KA =36V,V ref =00.10.5µA |z KA |Dynamic impedance (2)Figure 1V KA =V ref ,f ≤1kHz,I KA =1mA to 100mA0.20.5Ω(1)The deviation parameters V ref(dev)and I ref(dev)are defined as the differences between the maximum and minimum values obtained over the rated full-range αVref is positive or negative,depending on whether minimum V ref or maximum V ref ,respectively,occurs at the lower temperature.V KAInputV KAref ref R1=V 1++I ×R1R2æöç÷èøInputV KAParameter Measurement InformationFigure 1.Test Circuit for V KA =V refFigure 2.Test Circuit for V KA >V refFigure 3.Test Circuit for I offCATHODE CURRENTvsV KA −Cathode Voltage −V−C a t h o d e C u r r e n t −m AI K ACATHODE CURRENTvsV KA −Cathode Voltage −V−C a t h o d e C u r r e n t −I K A AµREFERENCE VOLTAGEvsT A −Free-Air Temperature −°C−R e f e r e nc e V o l t a g e −m VV r e f REFERENCE CURRENTvsT A −Free-Air Temperature −°C−R e f e r e n c e C u r r e n t −r e f I µATypical CharacteristicsData at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.Figure 4.Figure 5.Figure 6.Figure 7.f −Frequency −HzEQUIVALENT INPUT NOISE VOLTAGEvs−E q u i v a l e n t I n p u t N o i s e V o l t a g e −n V /H zV n −RATIO OF DELTA REFERENCE VOLTAGE TODELTA CATHODE VOLTAGEvs−T A −Free-Air Temperature −°C−m V /V∆V r e f ∆V K A /−O f f -S t a t e C a t h o d e C u r r e n t −OFF-STATE CATHODE CURRENTvsI o f f µAT A −Free-Air Temperature −°CFigure 8.Figure 9.Figure 10.ToOscilloscopeEQUIVALENT INPUT NOISE VOLTAGEt −Time −s−E q u i v a l e n t I n p u t N o i s e V o l t a g e −µVV n Figure 11.GND Output f −Frequency −HzREFERENCE IMPEDANCEvsTEST CIRCUIT FOR REFERENCE IMPEDANCE−R e f e r e n c e I m p e d a n c e −K A |z |ΩSMALL-SIGNAL VOLTAGE AMPLIFICATIONvsGNDOutput Ωf −Frequency −HzTEST CIRCUIT FOR VOLTAGE AMPLIFICATION−S m a l l -S i g n a l V o l t a g e A m p l i f i c a t i o n −d BA V I KA = 10 mA T A = 25°CFigure 12.Figure 13.ΩBATTBATTTEST CIRCUIT FOR CURVE ATEST CIRCUIT FOR CURVES B, C,AND DSTABILITY BOUNDARY CONDITIONS FOR ALL TL431AND TL431A DEVICESC L −Load Capacitance −µF−C a t h o d e C u r r e n t −m AI K A I n p u t a n d O u t p u t V o l t a g e −VGNDOutputTEST CIRCUIT FOR PULSE RESPONSEt −Time −µsFigure 14.A.The areas under the curves represent conditions that may cause the device to oscillate.For curves B,C,and D,R2and V+are adjusted to establish the initial V KA and I KA conditions,with C L =0.V BATT and C L then are adjusted to determine the ranges of stability.Figure 15.STABILITY BOUNDARY CONDITIONSFOR ALL C L −Load Capacitance −µFΩBATTBATTTEST CIRCUIT FOR CURVE A TEST CIRCUIT FOR CURVES B, C,AND D−C a t h o d e C u r r e n t −m AI K A A.The areas under the curves represent conditions that may cause the device to oscillate.For curves B,C,and D,R2and V+are adjusted to establish the initial V KA and I KA conditions,with C L =0.V BATT and C L then are adjusted to determine the ranges of stability.Figure 16.V OV I(BATT)O refR1V =1+V R2æöç÷èøVOV I(BATT)GNDInput≈2 V≈V I(BATT)RV OV I(BATT)RETURNO refR1V =1+V R2æöç÷èøTL431,TL431A,TL431B,TL432,TL432A,TL432BSLVS543N –AUGUST 2004–REVISED JANUARY 2014APPLICATION INFORMATIONAs this device has many applications and setups,there are many situations that this datasheet can not characterize in detail.The linked application notes will help the designer make the best choices when using this part.Application note SLVA482will provide a deeper understanding of this devices stability characteristics and aid the user in making the right choices when choosing a load capacitor.Application note SLVA445assists designers in setting the shunt voltage to achieve optimum accuracy for this device.A.R should provide cathode current ≥1mA to the TL431at minimum V (BATT).Figure 17.Shunt RegulatorFigure 18.Single-Supply Comparator With Temperature-Compensated ThresholdA.R should provide cathode current ≥1mA to the TL431at minimum V (BATT).Figure 19.Precision High-Current Series RegulatorCopyright ©2004–2014,Texas Instruments Incorporated Submit Documentation Feedback 21V O ≈5 V , 1.5AV I(BATT)V OV I(BATT)OV I(BATT)V O 1R1R2V ref=+((V OV I(BATT)V O 1R1R2V refMinimum VO V ref5V =+=+((TL431,TL431A,TL431B,TL432,TL432A,TL432BSLVS543N –AUGUST 2004–REVISED JANUARY 2014Figure 20.Output Control of a Three-Terminal Fixed RegulatorFigure 21.High-Current Shunt RegulatorA.Refer to the stability boundary conditions in Figure 15and Figure 16to determine allowable values for C.Figure 22.Crowbar CircuitFigure 23.Precision 5-V,1.5-A Regulator22Submit Documentation Feedback Copyright ©2004–2014,Texas Instruments IncorporatedVI(BATT)R3(see Note A)Low Limit = 1 +refHigh Limit = 1 +refLED on When Low Limit < V I(BATT)< High LimitV O ≈5 V V I(BATT)(see Note TL431,TL431A,TL431B,TL432,TL432A,TL432BSLVS543N –AUGUST 2004–REVISED JANUARY 2014A.R b should provide cathode current ≥1mA to the TL431.Figure 24.Efficient 5-V Precision RegulatorFigure 25.PWM Converter With ReferenceA.Select R3and R4to provide the desired LED intensity and cathode current ≥1mA to the TL431at the available V I(BATT).Figure 26.Voltage MonitorCopyright ©2004–2014,Texas Instruments Incorporated Submit Documentation Feedback 23S I OI O V ref R S=R V I(BATT)I out V refR CL I KA R1V I (BATT )IO h FE I KA++==12 Vn ref 12VDelay =R ×C ×I 12V –Væöç÷ç÷èøTL431,TL431A,TL431B,TL432,TL432A,TL432BSLVS543N –AUGUST 2004–REVISED JANUARY 2014Figure 27.Delay TimerLimiterFigure 29.Precision Constant-Current Sink24Submit Documentation Feedback Copyright ©2004–2014,Texas Instruments IncorporatedTL431,TL431A,TL431B,TL432,TL432A,TL432B SLVS543N–AUGUST2004–REVISED JANUARY2014REVISION HISTORYChanges from Revision K(June2010)to Revision L Page•Deleted T A values under TEST CONDITIONS for V I(dev)and I I(dev)PARAMTERS in the ELECTRICAL CHRACTERISTICS table (5)Changes from Revision L(Feb2011)to Revision M Page•Updated orderable part number in ordering information table (3)Changes from Revision M(July2012)to Revision N Page•Updated document formatting (1)•Removed ordering information table (3)•Added Application Note Links (21)Copyright©2004–2014,Texas Instruments Incorporated Submit Documentation Feedback25。
tl431用法
tl431用法TL431(也称KA431、KIA431、UA431、LM431)是一种可编程精密电压参考器,可以用于各种电源和测量电路中。
这篇文章将详细介绍TL431的使用方法。
一、TL431的基本特点1.可编程电压:TL431的输出电压可以通过不同的参考电压进行编程。
一般情况下,我们可以通过改变其引脚1和2之间的电压来改变输出电压。
2.稳定性好:TL431的内部电路采用了电压逐渐上升的反馈结构,可以保证其输出电压对输入电压、温度和负载的稳定性。
3.负载能力强:TL431的输出负载能力强,可以在大范围内保持稳定的输出电压。
4.应用广泛:TL431适用于各种电源、测量电路和反馈控制电路中,可以用于稳压电源、电压比较器、电流源等。
二、TL431的引脚说明如图所示,TL431有三个引脚,分别为引脚1、引脚2和引脚3。
引脚1:为调整引脚,用于调整输出电压。
引脚2:为负载引脚,接到电源正极或负载上。
三、TL431的工作原理TL431的内部原理如图所示。
通过调整电阻器(R1)的阻值,可以改变引脚1和2之间的电压。
当引脚2的电压高于引脚1时,TL431输出的电压将下降,当引脚2的电压低于引脚1时,TL431输出的电压将上升。
在正常工作状态下,引脚2的电压等于输出电压。
当负载电流改变时,引脚2的电压也会随之改变,从而使得输出电压保持稳定。
四、TL431的使用方法1.稳压电源使用TL431可以构建非常精确的稳压电源。
如图所示,使用引脚1和2之间的电压作为参考电压,并通过电阻器和稳流二极管来保证稳定电流和恒定输出电压。
2.电压比较器TL431还可以用作电压比较器。
如图所示,当V1>V2时,TL431的输出电压将逐渐下降,当V1<V2时,TL431的输出电压将逐渐上升。
3.电流源1.输出电压范围:根据具体的需求选择TL431的输出电压范围。
不同的TL431型号输出电压范围不同,常见的有2.5V、5V、12V等。
技能培训常用模拟器件介绍
技能培训常用模拟器件介绍
MOS管全桥驱动电路
技能培训常用模拟器件介绍
光耦
光耦合器一般由三部分组成:光的发射、光的接 收及信号放大。输入的电信号驱动发光二极管 (LED),使之发出一定波长的光,被光探测器 接收而产生光电流,再经过进一步放大后输出。 这就完成了电—光—电的转换,从而起到输入、 输出、隔离的作用。由于光耦合器输入输出间互 相隔离,电信号传输具有单向性等特点,因而具 有良好的电绝缘能力和抗干扰能力。又由于光耦 合器的输入端属于电流型工作的低阻元件,因而 具有很强的共模抑制能力。所以,它在长线传输 信息中作为终端隔离元件可以大技能大培训常提用模高拟器件信介绍噪比。
• 可以用于升压、降压,小功率场合。包括电路里 的高转低等
• 基准为1.25V • 设计输出电压时, • 5脚按1.25V计算 • DIP8封装
技能培训常用模拟器件介绍
MC34063应用
技能培训常用模拟器件介绍
运放类
• 1、NE5534(双好) • 2、NE5532(双好) • 3、LM358(双) • 4、LM353(双) • 5、UA741(普通单) • 6、TL082(TL084)(双、四高阻) • 7、LM324(最常用四运放) • 8、仪表放大器
技能培训常用模拟器件介绍
常用三极管
• S9012 通用三极管 PNP,0.5A,25V,0.625W,150MHz,β=64~300 S9013 通用三极管 NPN,0.5A,25V,0.625W,150MHz,β=64~300 S9014 通用三极管 NPN,0.1A,45V,0.4W,150MHz,β=60~1000 S9015 通用三极管 PNP,0.1A,45V,0.4W,150MHz,β=60~1000 C1815 通用三极管 NPN,0.15A,50V,0.4W,80MHz,β=70~700 C945 通用三极管 NPN,0.15A,50V,0.4W,200MHz,β=70~700 S8550 通用三极管 PNP,0.5A,25V,0.625W,150MHz,β=85~300 S8050 通用三极管 NPN,0.5A,25V,0.625W,150MHz,β=85~300 2N5401 通用三极管 PNP,0.6A,150V,100MHz,β=80~250 2N5551 通用三极管 NPN,0.3A,160V,300MHz,β=80~250 D882 通用三极管 NPN,3A,30V,90MHz,β=60~400 IRF840 通用场效应管 N沟道增强型,8A,550V,125W,0.85Ω,TO-220封装 IRFP440 通用场效应管 N沟道增强型,8A,550V,125W,0.85Ω,TO-3P封装 37 IRF9642 通用场效应管 P沟道增强型,9A,200V,125W,0.7Ω,TO-220封装 IRFP9242 通用场效应管 P沟道增强型,9A,200V,125W,0.7Ω,,TO-3P封装
晓风电子AS431可调精密漏电调节器说明书
DescriptionThe AS431 is a three-terminal adjustable shunt regulator with guaranteed thermal stability over a full operation range. It features sharp turn-on characteristics, low temperature coefficient and low output impedance, which make it ideal substitute for Zener diode in applications such as switching power supply, charger and other adjustable regulators.The output voltage of AS431 can be set to any value between VREF (2.5V) and the corresponding maximum cathode voltage (36V).The AS431 precision reference is offered in two voltage tolerance: 0.5% and 1.0%.This IC is available in 4 packages: TO92 (Ammo Packing), SOT23, SOT25 and SOT89.Features∙ Programmable Precise Output Voltage from 2.5V to 36V ∙ High Stability under Capacitive Load ∙ Low Temperature Deviation: 4.5mV Typical∙ Low Equivalent Full-range Temperature Coefficient with 20PPM/°C Typical ∙ Sink Current Capacity from 1mA to 100mA ∙ Low Output Noise∙ Wide Operating Range of -40 to +125°C∙Lead-Free Packages: SOT23, SOT25, TO92 (Ammo Packing), SOT89 ▪ Totally Lead-Free; RoHS Compliant (Notes 1 & 2) ∙Lead-Free Packages, Available in “Green” Molding Compound: SOT23, SOT25, TO92 (Ammo Packing), SOT89 ▪ Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2) ▪ Halogen and Antimony Free. “Green” Device (Note 3)Applications∙ Charger ∙ Voltage Adapter ∙ Switching Power Supply ∙ Graphic Card∙Precision Voltage ReferencePin Assignments(Top View) (Top View)SOT23 SOT25Note 4: * Pin 2 is attached to substrate and must be connected to ANODE or open.(Top View) (Top View)SOT89 (Option 1) SOT89 (Option 2)(Top View)TO92 (Ammo Packing)Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.2. See https:///quality/lead-free/ for more inf ormation about Diodes Incorporated’s definitions of Halogen - and Antimony-free, "Green" and Lead-free.3. Halogen- and Antimony-free "Green” products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm tot al Br + Cl) and<1000ppm antimony compounds.ANODECATHODEREF321123REFCATHODEANODE 123REFCATHODEANODE REFCATHODE ANODE12345NC (Note 4)*REF CATHODEANODE 123Typical Applications CircuitShunt RegulatorHigh Current Shunt RegulatorCurrent Source or Current LimitTypical Applications Circuit (Cont.)Precision 5V 1A RegulatorPWM Converter with ReferenceFunctional Block DiagramAbsolute Maximum Ratings (Note 5)Symbol Parameter Rating Unit V KA Cathode Voltage 40 VI KA Cathode Current Range (Continuous) -100 to 150 mAI REF Reference Input Current Range 10 mAP D Power Dissipation Z, R Package 770mW N, K Package 370T J Junction Temperature +150 °CT STG Storage Temperature Range -65 to +150 °CESD ESD (Human Body Model) 2000 V functional operation of the device at these or any other conditions beyond those indicated under “Recommended Operating Conditions” is not implied.Exposure to “Absolute Maximum Ratings” fo r extended periods may affect device reliability.Recommended Operating ConditionsSymbol Parameter Min Max Unit V KA Cathode Voltage V REF36 VI KA Cathode Current 1.0 100 mAT A Operating Ambient Temperature Range -40 +125 °CElectrical Characteristics (Operating Conditions: T A = +25°C, unless otherwise specified.)Electrical Characteristics (Cont.)Test Circuit 4 for V KA = V REFTest Circuit 5 for V KA > V REFTest Circuit 6 for I OFFPerformance CharacteristicsReference Voltage vs. Ambient Temperature Reference Current vs. Ambient TemperatureCathode Current vs. Cathode Voltage Cathode Current vs. Cathode VoltageOff-State Cathode Current Ratio of Delta Reference Voltage to thevs. Ambient Temperature Ratio of Delta Cathode VoltageR e f e r e n c e V o l t a g e (V )Ambient Temperature (o C)R e f e r e n c e C u r r e n t (μA )Ambient Temperature (0C)C a t h o d e C ur r e n t (m A )Cathode Voltage (V)C a t h o d e C u r r e n t (μA )Cathode Voltage (V)O f f -S t a t e C a t h o d e C u r r e n t (μA )Ambient Temperature (oC)∆V R E F / ∆V K A (m V /V )Ambient Temperature (oC)Performance Characteristics (Cont.)Small Signal Voltage Gain vs. FrequencyReference Impedance vs. FrequencyStability Boundary Conditions vs. Load CapacitanceV o l t a g e G a i n (d B )Small Signal Frequency (Hz)R e f e r e n c e I m p e d a n c e (Ω)Frequency (Hz)C a t h o d e C u r r e n t (m A )Load Capacitance (μF)Performance Characteristics (Cont.)Pulse Response of Input and Output VoltageInputandOutputVoltage(V)Time ( S)Ordering InformationA : 0.5% Z : TO92(Ammo Packing)N : SOT23TR : Tape & Reel orAmmoG1 : RoHS Compliantand GreenB : 1.0%K : SOT25R : SOT89E1 : RoHS CompliantPbLead-Free PbLead-FreePbLead-FreePbLead-FreePbLead-FreePbLead-FreePbLead-FreePbLead-FreeOrdering Information (Cont.)Notes: 6. All variants with TO92 package in Bulk packing (AS431AZ-E1, AS431BZ-E1,AS431AZ-G1 and AS431BZ-G1) are End of Life, recommendedalternatives are the variants with the same package in Ammo packing.NRND: Not Recommended for New Design.7. For packaging details, go to our website at: https:///design/support/packaging/diodes-packaging/.Marking Information(1) TO92 (Ammo Packing)(Front View)First and Second Lines: Logo and Marking ID (See Ordering Information) Third Line: Date Code Y: YearWW: Work Week of Molding A: Assembly House Code XX: Internal CodeAS431 XZ-XX YWWAXX PbLead-FreePbLead-FreeMarking Information (Cont.)(2) SOT23(Top View)(3) SOT89 (Top View)(4) SOT25(Top View)321XXX: LogoXXX: Marking ID (See Ordering Information)First Line: Logo and Marking ID (See Ordering Information) Second Line: Date Code Y: YearWW: Work Week of Molding A: Assembly House Code XX: Internal Code: LogoXXX: Marking ID (See Ordering Information)XXX23XXXX YWWAXX 1 XXXXYWWAXX231Package Outline Dimensions (All dimensions in mm(inch).)(1) Package Type: TO92 (Ammo Packing)Ty pPackage Outline Dimensions (Cont. All dimensions in mm(inch).)(2) Package Type: SOT23(3) Package Type: SOT251.300(0.051)(4) Package Type: SOT89Option 1Option 2Suggested Pad Layout(1) Package Type: SOT23Grid placement courtyardSuggested Pad Layout (Cont.)(2) Package Type: SOT25Suggested Pad Layout (Cont.)(3) Package Type: SOT89Z。
tlv431[1]
DTypical Temperature Drift − 4 mV (05C to 705C)− 6 mV (–405C to 855C)− 11 mV (–405C to 1255C)See TLVH431 and TLVH432 for− Wider V KA (1.24 V to 18 V) and I K (80 mA)− Additional SOT-89 Package− Multiple Pinouts for SOT-23-3 and SOT-89PackagesREFANODE CATHODE LP (TO-92/TO-226) PACKAGE(TOP VIEW)NC − No internal connection* For TLV431, TLV431A: NC − No internal connection * For TLV431B: Pin 2 is attached to Substrate andmust be connected to ANODE or left open.DBV (SOT-23-5) PACKAGE(TOP VIEW)12354NC *CATHODEANODE REFDBZ (SOT-23-3) PACKAGE(TOP VIEW)123REF CATHODEANODED (SOIC) PACKAGE(TOP VIEW)12348765REF ANODE ANODE NCCATHODE ANODE ANODENC DCK (SC-70) PACKAGE(TOP VIEW)123654CATHODENC REFANODE NC NCNC − No internal connectionPK (SOT-89) PACKAGE(TOP VIEW)132REFCATHODE ANODE ANODE description/ordering informationThe TLV431 is a low-voltage 3-terminal adjustable voltage reference with specified thermal stability over applicable industrial and commercial temperature ranges. Output voltage can be set to any value between V REF (1.24V) and 6 V with two external resistors (see Figure 2). These devices operate from a lower voltage (1.24 V) than the widely used TL431 and TL1431 shunt-regulator references.When used with an optocoupler, the TLV431 is an ideal voltage reference in isolated feedback circuits for 3-V to 3.3-V switching-mode power supplies. These devices have a typical output impedance of 0.25Ω. Active output circuitry provides a very sharp turn-on characteristic, making them excellent replacements for low-voltage Zener diodes in many applications, including on-board regulation and adjustable power supplies.Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.PRODUCTION DATA in ormation is current as o publication date.Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.ORDERING INFORMATIONT J255C V REFTOLERANCEPACKAGE†ORDERABLEPART NUMBERTOP-SIDEMARKING‡SC70(DCK)Reel of 3000TLV431BCDCKRYESC-70 (DCK)Reel of 250TLV431BCDCKTYE_SOT235(DBV)Reel of 3000TLV431BCDBVRY3GSOT-23-5 (DBV)Reel of 250TLV431BCDBVTY3G_0.5%SOT233(DBZ)Reel of 3000TLV431BCDBZRY3GSOT-23-3 (DBZ)Reel of 250TLV431BCDBZTY3G_SOT-89 (PK)Reel of 1000TLV431BCPK VETO92(LP)Bulk of 1000TLV431BCLPTO-92 (LP)Reel of 2000TLV431BCLPRTV431B0°C to 70°CSOT235(DBV)Reel of 3000TLV431ACDBVRYACSOT-23-5 (DBV)Reel of 250TLV431ACDBVTYAC_ SOT-23-3 (DBZ)Reel of 3000TLV431ACDBZR YAC_ 1%TO92(LP)Bulk of 1000TLV431ACLPTO-92 (LP)Reel of 2000TLV431ACLPRV431ACSOT235(DBV)Reel of 3000TLV431CDBVRY3CSOT-23-5 (DBV)Reel of 250TLV431CDBVTY3C_ SOT-23-3 (DBZ)Reel of 3000TLV431CDBZR Y3C_ 1.5%TO92(LP)Bulk of 1000TLV431CLPTO-92 (LP)Reel of 2000TLV431CLPRV431C†Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at /sc/package.‡DBV/DBZ/DCK: The actual top-side marking has one additional character that designates the wafer fab/assembly site.ORDERING INFORMATION (continued)T J255C V REFTOLERANCEPACKAGE†ORDERABLEPART NUMBERTOP-SIDEMARKING‡SC70(DCK)Reel of 3000TLV431BIDCKRYFSC-70 (DCK)Reel of 250TLV431BIDCKTYF_SOT235(DBV)Reel of 3000TLV431BIDBVRY3F 05%SOT-23-5 (DBV)Reel of 250TLV431BIDBVTY3F_0.5%SOT233(DBZ)Reel of 3000TLV431BIDBZRY3FSOT-23-3 (DBZ)Reel of 250TLV431BIDBZTY3F_TO92(LP)Bulk of 1000TLV431BILPTO-92 (LP)Reel of 2000TLV431BILPRTY431BSOIC(D)Tube of 75TLV431AIDSOIC (D)Reel of 2500TLV431AIDRTY431ASOT235(DBV)Reel of 3000TLV431AIDBVRYAI−40°C to 85°C SOT-23-5 (DBV)Reel of 250TLV431AIDBVT YAI_SOT-23-3 (DBZ)Reel of 3000TLV431AIDBZR YAI_1%SOT-89 (PK)Reel of 1000TLV431BIPK VFBulk of 1000TLV431AILPTO-92 (LP)Ammo of 2000TLV431AILPMTO92 (LP)Reel of 2000TLV431AILPRV431AISOT235(DBV)Reel of 3000TLV431IDBVRY3ISOT-23-5 (DBV)Reel of 250TLV431IDBVTY3I_ SOT-23-3 (DBZ)Reel of 3000TLV431IDBZR Y3I_ 1.5%TO92(LP)Bulk of 1000TLV431ILPTO-92 (LP)Reel of 2000TLV431ILPRV431ISC70(DCK)Reel of 3000TLV431BQDCKRYGSC-70 (DCK)Reel of 250TLV431BQDCKTYG_SOT235(DBV)Reel of 3000TLV431BQDBVRY3HSOT-23-5 (DBV)Reel of 250TLV431BQDBVTY3H_SOT233(DBZ)Reel of 3000TLV431BQDBZRY3H−40°C to 125°0.5%SOT-23-3 (DBZ)Reel of 250TLV431BQDBZTY3H_40CSOT-89 (PK)Reel of 1000TLV431BQPK V6TO92(LP)Bulk of 1000TLV431BQLPTO-92 (LP)Reel of 2000TLV431BQLPRTQ431B1%SOT-89 (PK)Reel of 1000TLV431AQPK VA1.5%SOT-89 (PK)Reel of 1000TLV431QPK VB†Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at /sc/package.‡DBV/DBZ/DCK: The actual top-side marking has one additional character that designates the assembly/test site.logic block diagramANODEequivalent schematicREFabsolute maximum ratings over operating free-air temperature range (unless otherwise noted)†. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Cathode voltage, V KA (see Note 1) 7 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Continuous cathode current range, I K−20 mA to 20 mA Reference current range, I ref−0.05 mA to 3 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .Package thermal impedance, θJA (see Notes 2 and 3):D package 97°C/W. . . . . . . . . . . . . . . . . . . . . . . .DBV package 206°C/W. . . . . . . . . . . . . . . . . . . . . . . . .DBZ package 206°C/W. . . . . . . . . . . . . . . . . . . . . . . .DCK package 252°C/W. . . . . . . . . . . . . . . . . . . . . . . . . .LP package 140°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . .PK package 52°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Operating virtual junction temperature 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Storage temperature range, T stg −65°C to 150°C †Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.NOTES: 1.Voltage values are with respect to the anode terminal, unless otherwise noted.2.Maximum power dissipation is a function of T J(max), θJA, and T A. The maximum allowable power dissipation at any allowableambient temperature is P D = (T J(max) − T A)/θJA. Operating at the absolute maximum T J of 150°C can affect reliability.3.The package thermal impedance is calculated in accordance with JESD 51-7.recommended operating conditionsMIN MAX UNITV KA Cathode voltage V REF6VI K Cathode current0.115mATLV431_C070T Operating free-air temperature range TLV431_I−4085°CA p g p gTLV431_Q−40125TLV431 electrical characteristics at 25°C free-air temperature (unless otherwise noted)TEST CONDITIONS TLV431PARAMETERTEST CONDITIONS MIN TYP MAX UNITT A = 25°C1.222 1.241.258Reference voltage V T =full range TLV431C 1.21 1.27V REFReference voltageKA = V REF ,I K = 10 mAA = full range TLV431I 1.202 1.278V (see Note 4 and Figure 1)TLV431Q 1.1941.286d i ti f ll V I 10A TLV431C412V REF deviation over fulltemperature range (see Note 4)V KA = VREF , I K = 10 mA (see Note 4and Figure 1)TLV431I 620V REF(dev)temperature range (see Note 4)(see Note 4 and Figure 1)TLV431Q1131mV ∆V REF ∆V KA Ratio of V REF change in cathode voltage changeV KA = V REF to 6 V, I K = 10 mA (see Figure 2)−1.5−2.7mV/V I ref Reference terminal current I K = 10 mA, R1 = 10 k Ω, R2 = open (see Figure 2)0.150.5µA 00503d i ti f ll 10A R110k ΩR2TLV431C 0.050.3I ref deviation over fulltemperature range (see Note 4)I K = 10 mA, R1 = 10 k , R2 = open (see Note 4and Figure 2)TLV431I 0.10.4I ref(dev)temperature range (see Note 4)(see Note 4 and Figure 2)TLV431Q 0.150.5µA V (see Figure 1)TLV431C/I 5580I K(min)Minimum cathode current for regulationV KA = VREF (see Figure 1)TLV431Q55100µA I K(off)Off-state cathode current V REF = 0, V KA = 6 V (see Figure 3)0.0010.1µA |z KA |Dynamic impedance (see Note 5)V KA = V REF , f ≤ 1 kHz,I K = 0.1 mA to 15 mA (see Figure 1)0.250.4ΩNOTES: 4.Full temperature ranges are −40°C to 125°C for TLV431Q, −40°C to 85°C for TLV431I, and 0°C to 70°C for TLV431C.5.The deviation parameters V REF(dev) and I ref(dev) are defined as the differences between the maximum and minimum valuesobtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV REF ,is defined as:ŤαV REF Ťǒppm °C Ǔ+ǒVREF(dev)V REF (T A +25°C)Ǔ106∆T Awhere ∆T A is the rated operating free-air temperature range of the device.αVREF can be positive or negative, depending on whether minimum V REF or maximum V REF , respectively, occurs at thelower temperature.6.The dynamic impedance is defined as Ťz ka Ť+∆V KA ∆IKWhen the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is defined as:Ťz ka ŤȀ+∆V ∆I [Ťz ka Ťǒ1)R1R2ǓTLV431A electrical characteristics at 25°C free-air temperature (unless otherwise noted)TEST CONDITIONS TLV431APARAMETER TEST CONDITIONSMIN TYP MAXUNITT A= 25°C 1.228 1.24 1.252Reference voltage V T=full range TLV431AC 1.221 1.259V REF Reference voltage KA = V REF,I K = 10 mAA= full rangeTLV431AI 1.215 1.265V (see Note 3 andFigure 1)TLV431AQ 1.209 1.271d i ti f ll V I10A TLV431AC412V REF deviation over full temperature range(see Note4)V KA = V REF, I K = 10 mA(see Note3and Figure1)TLV431AI620V REF(dev)temperature range (see Note 4)(see Note 3 and Figure 1)TLV431AQ1131mV∆V REF ∆V KA Ratio of V REF change in cathodevoltage changeV KA= V REF to 6 V, I K = 10 mA (see Figure 2)−1.5−2.7mV/VI ref Reference terminal current I K = 10 mA, R1 = 10 kΩ, R2 = open (see Figure 2)0.150.5µAI d i ti f ll I10A R110kΩR2TLV431AC0.050.3ref deviation over full temperature range(see Note4)K = 10 mA, R1 = 10 k, R2 = open(see Note3and Figure2)TLV431AI0.10.4I ref(dev)temperature range (see Note 4)(see Note 3 and Figure 2)TLV431AQ0.150.5µAV(see Figure1)TLV431AC/AI5580I K(min)Minimum cathode current forregulation V KA= V REF(see Figure 1)TLV431AQ55100µAI K(off)Off-state cathode current V REF= 0, V KA= 6 V (see Figure 3)0.0010.1µA|z KA|Dynamic impedance(see Note 5)V KA= V REF, f ≤ 1 kHz,I K = 0.1 mA to 15 mA (see Figure 1)0.250.4ΩNOTES: 3.Full temperature ranges are −40°C to 125°C for TLV431AQ, −40°C to 85°C for TLV431AI, and 0°C to 70°C for TLV431AC.4.The deviation parameters V REF(dev) and I ref(dev) are defined as the differences between the maximum and minimum valuesobtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV REF, is defined as:ŤαVREF Ťǒppm°CǓ+ǒV REF(dev)VREF(TA+25°C)Ǔ106∆T Awhere ∆T A is the rated operating free-air temperature range of the device.αVREF can be positive or negative, depending on whether minimum V REF or maximum V REF, respectively, occurs at the lower temperature.5.The dynamic impedance is defined asŤz kaŤ+∆V KA∆I KWhen the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is definedas:Ťz kaŤȀ+∆V∆I[Ťz kaŤǒ1)R1R2ǓTLV431B electrical characteristics at 25°C free-air temperature (unless otherwise noted)TEST CONDITIONS TLV431BPARAMETER TEST CONDITIONSMIN TYP MAXUNITT A= 25°C 1.234 1.24 1.246Reference voltage V T=full range TLV431BC 1.227 1.253V REF Reference voltage KA = V REF,I K = 10 mAA= full rangeTLV431BI 1.224 1.259V (see Note 3 andFigure 1)TLV431BQ 1.221 1.265d i ti f ll V I10A TLV431BC412V REF deviation over full temperature range(see Note4)V KA = V REF, I K = 10 mA(see Note3and Figure1)TLV431BI620V REF(dev)temperature range (see Note 4)(see Note 3 and Figure 1)TLV431BQ1131mV∆V REF ∆V KA Ratio of V REF change in cathodevoltage changeV KA= V REF to 6 V, I K = 10 mA (see Figure 2)−1.5−2.7mV/VI ref Reference terminal current I K = 10 mA, R1 = 10 kΩ, R2 = open (see Figure 2)0.10.5µAI d i ti f ll I10A R110kΩR2TLV431BC0.050.3ref deviation over full temperature range(see Note4)K = 10 mA, R1 = 10 k, R2 = open(see Note3and Figure2)TLV431BI0.10.4I ref(dev)temperature range (see Note 4)(see Note 3 and Figure 2)TLV431BQ0.150.5µAI K(min)Minimum cathode current forregulationV KA= V REF(see Figure 1)55100µAI K(off)Off-state cathode current V REF= 0, V KA= 6 V (see Figure 3)0.0010.1µA|z KA|Dynamic impedance(see Note 5)V KA= V REF, f ≤ 1 kHz,I K = 0.1 mA to 15 mA (see Figure 1)0.250.4ΩNOTES: 3.Full temperature ranges are −40°C to 125°C for TLV431BQ, −40°C to 85°C for TLV431BI, and 0°C to 70°C for TLV431BC.4.The deviation parameters V REF(dev) and I ref(dev) are defined as the differences between the maximum and minimum valuesobtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV REF, is defined as:ŤαVREF Ťǒppm°CǓ+ǒV REF(dev)VREF(TA+25°C)Ǔ106∆T Awhere ∆T A is the rated operating free-air temperature range of the device.αVREF can be positive or negative, depending on whether minimum V REF or maximum V REF, respectively, occurs at thelower temperature.5.The dynamic impedance is defined asŤz kaŤ+∆V KA ∆I KWhen the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is definedas:Ťz kaŤȀ+∆V∆I[Ťz kaŤǒ1)R1R2ǓPARAMETER MEASUREMENT INFORMATIONV OFigure 1. Test Circuit for V KA= V REF,V O= V KA= V REFV OFigure 2. Test Circuit for V KA> V REF,V O= V KA= V REF×(1 + R1/R2) + I ref×R1V OInputFigure 3. Test Circuit for I K(off)PARAMETER MEASUREMENT INFORMATION †Figure 41.2461.2421.2401.238− R e f e r e n c e V o l t a g e − V1.2501.252REFERENCE VOLTAGEvsJUNCTION TEMPERATURE1.2541.2481.244−50−250255075100125150V r e f T J − Junction Temperature − °C507090110130150170190210230250−50−25255075100125150− R e f e r e n c e I n p u t C u r r e n t − n AI r e f T J − Junction Temperature − °C15010050− R e f e r e n ce I n p u t C u r r e n t − n A200REFERENCE INPUT CURRENTvsJUNCTION TEMPERATURE (for TLV431 and TLV431A)250−50−250255075100125150I r e f T J − Junction Temperature − °CREFERENCE INPUT CURRENTvsJUNCTION TEMPERATURE(for TLV431B)Figure 5AFigure 5B†Operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied.TLV431, TLV431A, TLV431BLOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORSLVS139T − JULY 1996 − REVISED JUNE 200711POST OFFICE BOX 655303 •DALLAS, TEXAS 75265PARAMETER MEASUREMENT INFORMATION †Figure 6− Ca t h o d e C u r r e n t − m ACATHODE CURRENTvsCATHODE VOLTAGE15105−1−0.500.511.5I K V KA − Cathode Voltage − VFigure 7− C a t h o d e Cu r r e n t − CATHODE CURRENTvsCATHODE VOLTAGE250200150100500−1−0.500.511.5I K AµV KA − Cathode Voltage − V20100− O f f -S t a t e C a t h o d e Cu r r e n t − n A30OFF-STATE CATHODE CURRENTvsJUNCTION TEMPERATURE (for TLV431 and TLV431A)40−50−250255075100125I K (o f f )T J − Junction Temperature − °C150OFF-STATE CATHODE CURRENTvsJUNCTION TEMPERATURE(for TLV431B)050010001500200025003000−50−250255075100125150Figure 8BFigure 8AT J − Junction Temperature − °C− O f f -S t a t e C a t h o d e C u r r e n t − n AI K (o f f )†Operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied.TLV431, TLV431A, TLV431BLOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORSLVS139T − JULY 1996 − REVISED JUNE 200712POST OFFICE BOX 655303 •DALLAS, TEXAS 75265PARAMETER MEASUREMENT INFORMATION †− R a t i o o f D e l t a R e f e r e n c e V o l t a g eRATIO OF DELTA REFERENCE VOLTAGETO DELTA CATHODE VOLTAGEvsJUNCTION TEMPERATURE (for TLV431 and TLV431A)−0.1−0.2−0.3−0.4−0.5−0.6−0.7−0.8t o D e l t a C a t h o d e V o l t a g e − m V /VV r e f /∆V K A ∆−50−25255075100125150T J − Junction Temperature − °CRATIO OF DELTA REFERENCE VOLTAGETO DELTA CATHODE VOLTAGEvsJUNCTION TEMPERATUREFigure 9BFigure 9AT J − Junction Temperature − °C− R a t i o o f D e l t a R e f e r e n c e V o l t a g eV r e f /∆V K A ∆−0.025−0.075−0.1−0.125P e r c e n t a g e C h a n g e i n r e f − %0.025PERCENTAGE CHANGE IN V REFvsOPERATING LIFE AT 55°C−0.05102030405060V r e f Operating Life at 55°C − kh ‡‡Extrapolated from life-test data taken at 125°C; the activation energy assumed is 0.7 eV.Figure 10†Operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied.TLV431, TLV431A, TLV431BLOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORSLVS139T − JULY 1996 − REVISED JUNE 200713POST OFFICE BOX 655303 •DALLAS, TEXAS 75265PARAMETER MEASUREMENT INFORMATION200150101001k− E q u i v a l e n t I n p u t N o i s e V o l t a g e − f − Frequency − HzEQUIVALENT INPUT NOISE VOLTAGEvsFREQUENCY35010k100k300250V n n V /Hz470 µFTPTEST CIRCUIT FOR EQUIVALENT INPUT NOISE VOLTAGEFigure 11TLV431, TLV431A, TLV431BLOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORSLVS139T − JULY 1996 − REVISED JUNE 200714POST OFFICE BOX 655303 •DALLAS, TEXAS 75265PARAMETER MEASUREMENT INFORMATION246t − Time − sEQUIVALENT INPUT NOISE VOLTAGEOVER A 10-s PERIOD8101086420− E q u i v a l e n t I n p u t N o i s e V o l t a g e −V n Vµ470 µFTEST CIRCUIT FOR 0.1-Hz TO 10-Hz EQUIVALENT NOISE VOLTAGE1 M ΩFigure 12TLV431, TLV431A, TLV431BLOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORSLVS139T − JULY 1996 − REVISED JUNE 200715POST OFFICE BOX 655303 •DALLAS, TEXAS 75265PARAMETER MEASUREMENT INFORMATIONSMALL-SIGNAL VOLTAGE GAIN/PHASE MARGINvsFREQUENCYGNDOutputΩ1k10k100k1M100− S m a l l -S i g n a l V o l t a g e G a i n /P h a s e M a r g i n − d Bf − Frequency − HzA V TEST CIRCUIT FOR VOLTAGE GAINAND PHASE MARGIN80706050403020100−100°36°72°108°144°180°P h a s e S h i ft −20Figure 13GND Output0.11k10k100k1M10M− R e f e r e n c e I m p e d a n c e −1f − Frequency − HzREFERENCE IMPEDANCEvsFREQUENCY10100k a |z |Ω0.01Figure 14TLV431, TLV431A, TLV431BLOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORSLVS139T − JULY 1996 − REVISED JUNE 200716POST OFFICE BOX 655303 •DALLAS, TEXAS 75265PARAMETER MEASUREMENT INFORMATIONI n p u t a n d O u t p u t V o l t a g e − VGND OutputTEST CIRCUIT FOR PULSE RESPONSE 11234PULSE RESPONSE 156783.532.521.510.50−0.5t − Time − µsFigure 15I n p u t a n d O u t p u t V o l ta g e − V1.8 kΩGND OutputTEST CIRCUIT FOR PULSE RESPONSE 21234PULSE RESPONSE 256783.532.521.510.50−0.5t − Time − µsFigure 16TLV431, TLV431A, TLV431BLOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORSLVS139T − JULY 1996 − REVISED JUNE 200717POST OFFICE BOX 655303 •DALLAS, TEXAS 75265PARAMETER MEASUREMENT INFORMATION †96015− C a t h o d e C u r r e n t − m A12STABILITY BOUNDARY CONDITION ‡(for TLV431 and TLV431A)3I K TEST CIRCUIT FOR V KA = V REFTEST CIRCUIT FOR V KA = 2 V, 3 VSTABILITY BOUNDARY CONDITION ‡(for TLV431B)StableV KA = 3 VStableUnstableV KA = 2 VT A = 25°CK = 15 mA MAX For V KA = V REF ,Stable for C L = 1 pF to 10k nF‡The areas under the curves represent conditions that may cause the device to oscillate. For V KA = 2-V and 3-V curves, R2 and V bat were adjusted to establish the initial V KA and I K conditions with C L = 0. V bat and C L then were adjusted to determine the ranges of stability.Figure 17†Operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied.TLV431, TLV431A, TLV431BLOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORSLVS139T − JULY 1996 − REVISED JUNE 200718POST OFFICE BOX 655303 •DALLAS, TEXAS 75265APPLICATION INFORMATIONV O 3.3 VV I 120 VFigure 18. Flyback With Isolation Using TLV431, TLV431A, or TLV431Bas Voltage Reference and Error AmplifierFigure 18 shows the TLV431, TLV431A, or TLV431B used in a 3.3-V isolated flyback supply. Output voltage V O can be as low as reference voltage V REF (1.24V ±1%). The output of the regulator, plus the forward voltage drop of the optocoupler LED (1.24 + 1.4 = 2.64 V), determine the minimum voltage that can be regulated in an isolated supply configuration. Regulated voltage as low as 2.7 Vdc is possible in the topology shown in Figure 18.PACKAGING INFORMATIONOrderable Device Status (1)Package Type PackageDrawing Pins Package Qty Eco Plan (2)Lead/Ball FinishMSL Peak Temp (3)Samples(Requires Login)TLV431ACDBVR ACTIVE SOT-23DBV53000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free SamplesTLV431ACDBVRE4ACTIVE SOT-23DBV53000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free SamplesTLV431ACDBVRG4ACTIVE SOT-23DBV53000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free SamplesTLV431ACDBVT ACTIVE SOT-23DBV5250Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesTLV431ACDBVTE4ACTIVE SOT-23DBV5250Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesTLV431ACDBVTG4ACTIVE SOT-23DBV5250Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesTLV431ACDBZR ACTIVE SOT-23DBZ33000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free SamplesTLV431ACDBZRG4ACTIVE SOT-23DBZ33000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free Samples TLV431ACLP ACTIVE TO-92LP31000Pb-Free (RoHS)CU SN N / A for Pkg Type Request Free Samples TLV431ACLPE3ACTIVE TO-92LP31000Pb-Free (RoHS)CU SN N / A for Pkg Type Request Free Samples TLV431ACLPR ACTIVE TO-92LP32000Pb-Free (RoHS)CU SN N / A for Pkg Type Purchase Samples TLV431ACLPRE3ACTIVE TO-92LP32000Pb-Free (RoHS)CU SN N / A for Pkg Type Purchase Samples TLV431AID ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesTLV431AIDBVR ACTIVE SOT-23DBV53000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free SamplesTLV431AIDBVRE4ACTIVE SOT-23DBV53000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free SamplesTLV431AIDBVRG4ACTIVE SOT-23DBV53000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free SamplesTLV431AIDBVT ACTIVE SOT-23DBV5250Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesTLV431AIDBVTE4ACTIVE SOT-23DBV5250Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesAddendum-Page 1Orderable Device Status (1)Package Type PackageDrawing Pins Package Qty Eco Plan (2)Lead/Ball FinishMSL Peak Temp (3)Samples(Requires Login)TLV431AIDBVTG4ACTIVE SOT-23DBV5250Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesTLV431AIDBZR ACTIVE SOT-23DBZ33000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free SamplesTLV431AIDBZRG4ACTIVE SOT-23DBZ33000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free SamplesTLV431AIDE4ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesTLV431AIDG4ACTIVE SOIC D875Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Purchase SamplesTLV431AIDR ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free SamplesTLV431AIDRE4ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free SamplesTLV431AIDRG4ACTIVE SOIC D82500Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free Samples TLV431AILP ACTIVE TO-92LP31000Pb-Free (RoHS)CU SN N / A for Pkg Type Request Free Samples TLV431AILPE3ACTIVE TO-92LP31000Pb-Free (RoHS)CU SN N / A for Pkg Type Request Free Samples TLV431AILPM ACTIVE TO-92LP32000Pb-Free (RoHS)CU SN N / A for Pkg Type Purchase Samples TLV431AILPME3ACTIVE TO-92LP32000Pb-Free (RoHS)CU SN N / A for Pkg Type Purchase Samples TLV431AILPR ACTIVE TO-92LP32000Pb-Free (RoHS)CU SN N / A for Pkg Type Request Free Samples TLV431AILPRE3ACTIVE TO-92LP32000Pb-Free (RoHS)CU SN N / A for Pkg Type Request Free Samples TLV431AQPK ACTIVE SOT-89PK31000Green (RoHS& no Sb/Br)CU SN Level-2-260C-1 YEAR Request Free SamplesTLV431AQPKG3ACTIVE SOT-89PK31000Green (RoHS& no Sb/Br)CU SN Level-2-260C-1 YEAR Request Free SamplesTLV431BCDBVR ACTIVE SOT-23DBV53000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free SamplesTLV431BCDBVRE4ACTIVE SOT-23DBV53000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free SamplesTLV431BCDBVRG4ACTIVE SOT-23DBV53000Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Request Free SamplesTLV431BCDBVT ACTIVE SOT-23DBV5250Green (RoHS& no Sb/Br)CU NIPDAU Level-1-260C-UNLIM Contact TI Distributoror Sales OfficeAddendum-Page 2。
鑫品为门锁管理系统说明书
首页................................................................................................ 错误!未定义书签。
软件安装 (4)软件安装环境 (4)读卡器连接示图 (4)软件安装步骤 (5)软件操作使用 (9)1。
0登录 (9)1。
1系统管理 (11)1。
1.0系统设置 (11)1.1.1软件注册 (12)1.1.2数据库链接 (13)1.1。
3提取开门记录 (13)1。
1.4数据备份 (14)1.1。
5数据恢复 (15)1。
1。
6退出 (16)1.2客房管理 (16)1。
2.0客房类型 (17)1.2。
1楼号设置 (18)1.2.2客房资料 (19)1.2。
3公共门 (22)1。
2。
4设置默认公共门信息 (24)1。
2.6客人查询 (25)1.2。
7客房查询 (25)1.3员工设置 (26)1。
3.0员工资料 (26)1。
3。
1用户注销 (27)1。
3.2更改密码 (28)1。
3。
3语言选项 (29)1.4制卡 (29)1.4。
0发客人卡 (29)1.4。
1团队入住 (32)1。
4.2宾客续住 (33)1.4。
3宾客退房 (34)1。
4.4卡片操作 (35)1.4.5发卡查询 (36)1.4.6制授权卡 (37)1。
4.7制时间卡 (39)1.4.8制设置卡 (40)1.4。
9制退房卡 (41)1。
4。
10制数据卡 (42)1。
4.11制总控卡 (43)1。
4.12制区域卡 (44)1.4。
13制楼号卡 (45)1.4.14制楼层卡 (46)1。
4.15制常开卡 (48)1。
4。
16制应急卡 (49)1.4。
17卡终止使用 (49)1.5关于 (52)1。
5。
0帮助手册 (52)1.5。
1关于 (52)门锁安装 (53)门锁设置 (54)第一步:设置门锁授权 (54)第二步:设置门锁时间 (55)第三步:设置门锁房号 (55)第四步:发宾客卡调试使用 (56)常见问题及解决方法附图 (56)软件安装软件安装环境Windows95、Windows98 、WindowsNT4.0 、Windows Me、Windows2000、WindowsXP或以上系统全部兼容至少有一个闲置串口管理系统由PC机、智能卡读写器、管理软件、打印机组成.主要完成前台服务及后台管理中的各项客房门锁事务,包括对钥匙的发行管理、门锁管理、信息查询等功能。
鑫品为门锁管理系统说明书
首页................................................................................................ 错误!未定义书签。
软件安装........................................................................................ 错误!未定义书签。
软件安装环境ﻩ错误!未定义书签。
读卡器连接示图 (4)软件安装步骤ﻩ错误!未定义书签。
软件操作使用ﻩ错误!未定义书签。
1.0登录ﻩ错误!未定义书签。
1.1系统管理ﻩ错误!未定义书签。
1.1.0系统设置ﻩ错误!未定义书签。
1.1.1软件注册.................................................................................................................... 错误!未定义书签。
1.1.2数据库链接ﻩ错误!未定义书签。
1.1.3提取开门记录ﻩ错误!未定义书签。
1.1.4数据备份..................................................................................................................... 错误!未定义书签。
1.1.5数据恢复..................................................................................................................... 错误!未定义书签。
1.1.6退出............................................................................................................................. 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SL431xM
S e m i c o n d u c t o r
Programmable Voltage Reference Description
The SL431 series are 3-terminal precision shunt regulators that are programmable over a wide voltage range of 2.495V to 36V with ±0.5%, ±1.0% tolerance. The SL431 series have a low dynamic impedance of 0.15Ω. These features make the SL431 series an excellent replacement for zener diodes in numerous applications circuits that require a precision reference voltage.
Features
• Programmable output voltage from 2.495V to 36V
• V oltage reference tolerance : ±0.5%, ±1.0%
• Cathode current capability of 1mA to 100mA
Ordering Information
Type NO. Marking Package Code
SL431xM SL431□TO-92M
□: Grade => A:±1% , B:±0.5%
Outline Dimensions ( Unit : mm )
Absolute maximum ratings [Ta=25℃]
Characteristic
Symbol Rating Unit
Cathode to Anode voltage V KA 37 V
Cathode current I K
150 mA
Reference input current I ref 10 mA Power Dissipation P D 400 mW
Junction Temperature T J 150 ℃ Operating temperature range T opr -40 ~ +85 ℃ Storage temperature range
T stg
-55 ~ +150
℃
Recommended operating conditions
Rating
Characteristic Symbol Min. Max.
Unit
Cathode to Anode voltage V KA
V ref 36 V
Cathode current
I K 1 100 mA
=
1ref 2
1
ref KA R ×I +)R R +1(×V =V Note.
T ∆)
10×)℃25=T (V (
=℃ppm (V αa
a ref ref
ref V αcan be positive or negative depending on whether V ref Min or V ref Max occurs at the lower ambient temperature, refer to
Fig. 8
Example : △V ref = 30mV and the slope is positive, △V ref @ 25℃ = 2.495V △Ta = 125℃
3. The dynamic impedance Z KA is defined as:
K
KA
KA I ∆V ∆=
Ζ When the device is operating with two external resistors, R1 and R2, (refer to Fig.2) the total dynamic impedance of the circuit is given by:
R R +
1(×Ζ=Ζ2
1
KA 'KA Fig. 1 Test circuit for V KA =V ref
Fig. 2 Test circuit for V KA >V ref
Fig. 3 Test circuit for I K(off)
ref Min ℃
/ppm 96=125
10×)495.203
.0(
=)℃ppm (V α6
ref
Electrical Characteristics Curves (Continue)
C a t h o d e c u r r e n t I K [m A ]
0.04.0
1.03.0-0.2
2.0Fig.4 I K vs V KA (1)
Fig.5 I K vs V KA (2)
Fig.6 I K(off) vs V KA
325-100
2 C a t h o d e c u r r e n t I K [m A ]
0 Cathode V oltage V KA [V] 1 -1 -2 -25150Cathode V oltage V KA [V]Fig.7 ΔV ref /ΔV KA vs T a
-75-50I Fig.8 V ref vs T a
Fig.9 P D vs T a
Cathode V oltage V KA [V]
0.050
0.51.51.00
40 20 2.0O f f -s t a t e c a t h o d e c u r r e n t I K (o f f ) [µA ]
30 10 50
0.0-25
-0.2
75
25
100
-0.1
-0.4
-0.3
-0.5
-50
R a t i o o f d e l t a r e f e r e n c e i n p u t v o l t a g e t o d e l t a
c a t h o
d
e v o l t a g ΔV r e
f /ΔV K A [m V /V ]
Ambient Temperature T a [˚C]
Electrical Characteristics Curves
Fig.10 Pulse Response
7
10
4-1
8 I n p u t a n d o u t p u t v o l t
a g e – V
4
t – Time [μs ]
6 2
20 1 356Ta=25˚C
Fig.11 Test circuit for Fig. 10
Input
Output
A
B
Fig.12 Pulse Response (Magnify A of Fig.10)
Fig.13 Pulse Response (Magnify B of Fig.10)
7
54-1 4 I n p u t a n d o u t p u t v o l t a g e – V
2 t – Time [μs ]
3 1 0
20 1 3567
5
4-1
4I n p u t a n d o u t p u t v o l t a g e – V
2 t – Time [μs ]
3 1 0
201356Output
Input
Input
Output
Ta=25˚C
Ta=25˚C
The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).
Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..
Specifications mentioned in this publication are subject to change without notice.。