最新初中数学相交线与平行线技巧及练习题附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学相交线与平行线技巧及练习题附答案解析
一、选择题
1.如图,下列说法一定正确的是()
A.∠1和∠4是内错角B.∠1和∠3是同位角
C.∠3和∠4是同旁内角D.∠1和∠C是同位角
【答案】D
【解析】
【分析】
根据内错角、同位角以及同旁内角的定义进行判断即可.
【详解】
解:A、∠2和∠4是内错角,故本选项错误;
B、∠1和∠C是同位角,故本选项错误;
C、∠3和∠4是邻补角,故本选项错误;
D、∠1和∠C是同位角,故本选项正确;
故选:D.
【点睛】
本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.
2.如图,能判定EB∥AC的条件是()
A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE
【答案】D
【解析】
【分析】
在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.
【详解】
A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;
B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;
C 、∠C =∠ABC 只能判断出AB =AC ,不能判断出EB ∥AC ,故C 选项不符合题意;
D 、∠A =∠AB
E ,根据内错角相等,两直线平行,可以得出EB ∥AC ,故D 选项符合题意. 故选:D .
【点睛】
此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.
3.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA 的度数是( )
A .28°
B .30°
C .38°
D .36°
【答案】D
【解析】
【分析】
根据两直线平行,内错角相等,得到∠DFA=∠CDB ,根据三角形的内角和求出∠CDB 的度数从而得到∠DFA 的度数.
【详解】 解:∠C=
(52)1801085
︒-⨯=,且CD=CB , ∴∠CDB=∠CBD ∵由三角形的内角和∠C+∠CDB+∠CBD=180°
∴∠CDB+∠CBD=180°-∠C =180°-108°=72°
∴∠CDB==∠CBD=72362

︒= 又∵AF ∥CD
∴∠DFA=∠CDB=36°(两直线平行,内错角相等)
故选D
【点睛】
本题主要考查多边形的基本概念和三角形的基本概念,正n 边形的内角读数为
(2)180n n
-⨯.
4.如图,直线AC ∥BD ,AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么下列结论错误的是( )
A .∠BAO 与∠CAO 相等
B .∠BA
C 与∠AB
D 互补 C .∠BAO 与∠ABO 互余
D .∠ABO 与∠DBO 不等
【答案】D
【解析】
【分析】
【详解】 解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B 正确;
因AO 、BO 分别是∠BAC 、∠ABD 的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A 正确,选项D 不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO 即可得∠BAO+∠ABO=90°,选项A 正确,故选D.
5.如图,OC 平分AOB ∠,//CD OB .若3DC =,C 到OB 的距离是2.4,则ODC ∆的面积等于( )
A .3.6
B .4.8
C .1.8
D .7.2
【答案】A
【解析】
【分析】 由角平分线的定义可得出∠BOC=∠DOC ,由CD ∥OB ,得出∠BOC=∠DCO ,进而可证出OD=CD=3.再由角平分线的性质可知C 到OA 的距离是2.4,然后根据三角形的面积公式可求ODC ∆的面积.
【详解】
证明:∵OC 平分∠AOB ,
∴∠BOC=∠DOC .
∵CD ∥OB ,
∴∠BOC=∠DCO ,
∴∠DOC=∠DCO ,
∴OD=CD=3.
∵C 到OB 的距离是2.4,
∴C 到OA 的距离是2.4,
∴ODC ∆的面积=13 2.4=3.62
⨯⨯. 故选A .
【点睛】 本题考查了等腰三角形的判定、角平分线的定义、平行线的性质、以及角平分线的性质,利用角平分线的性质得出C 到OA 的距离是2.4是解题的关键.
6.如图,AB ∥EF ,设∠C =90°,那么x 、y 和z 的关系是( )
A .y =x+z
B .x+y ﹣z =90°
C .x+y+z =180°
D .y+z ﹣x =90°
【答案】B
【解析】
【分析】 过C 作CM ∥AB ,延长CD 交EF 于N ,根据三角形外角性质求出∠CNE =y ﹣z ,根据平行线性质得出∠1=x ,∠2=∠CNE ,代入求出即可.
【详解】
解:过C 作CM ∥AB ,延长CD 交EF 于N ,
则∠CDE =∠E+∠CNE ,
即∠CNE =y ﹣z
∵CM ∥AB ,AB ∥EF , ∴CM ∥AB ∥EF ,
∴∠ABC =x =∠1,∠2=∠CNE ,
∵∠BCD =90°,
∴∠1+∠2=90°,
∴x+y ﹣z =90°.
故选:B .
【点睛】
本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.
7.如图,四边形ABCD 中,//,,AB CD AD CD E F =、分别是AB BC 、的中点,若140,∠=︒则D ∠=( )
A .40︒
B .100︒
C .80︒
D .110︒
【答案】B
【解析】
【分析】 利用E 、F 分别是线段BC 、BA 的中点得到EF 是△BAC 的中位线,得出∠CAB 的大小,再利用CD ∥AB 得到∠DCA 的大小,最后在等腰△DCA 中推导得到∠D.
【详解】
∵点E 、F 分别是线段CB 、AB 的中点,∴EF 是△BAC 的中位线
∴EF ∥AC
∵∠1=40°,∴∠CAB=40°
∵CD ∥BA
∴∠DCA=∠CAB=40°
∵CD=DA
∴∠DAC=∠DCA=40°
∴在△DCA 中,∠D=100°
故选:B
【点睛】
本题考查中位线的性质和平行线的性质,解题关键是推导得出EF 是△ABC 的中位线.
8.如图,直线 a ∥b ∥c ,直角三角板的直角顶点落在直线 b 上,若∠1=30°,则∠2 等于( )
A .40°
B .60°
C .50°
D .70° 【答案】B
【解析】
【分析】
根据两直线平行内错角相等得1324==∠∠,∠∠,再根据直角三角板的性质得341290+=+=︒∠∠∠∠,即可求出∠2的度数.
【详解】
∵a ∥b ∥c
∴1324==∠∠,∠∠
∵直角三角板的直角顶点落在直线 b 上
∴341290+=+=︒∠∠∠∠
∵∠1=30°
∴290160=︒-=︒∠∠
故答案为:B .
【点睛】
本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.
9.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )
A .2个
B .3个
C .4个
D .5个
【答案】C
【解析】
【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.
【详解】
∵∠1=∠2,
∴AC ∥DE ,故①正确;
∵AC ⊥BC ,CD ⊥AB ,
∴∠ACB=∠CDB=90°,
∴∠A+∠B=90°,∠3+∠B=90°,
∴∠A=∠3,故②正确;
∵AC ∥DE ,AC ⊥BC ,
∴DE ⊥BC ,
∴∠DEC=∠CDB=90°,
∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,
∴∠3=∠EDB,故③正确,④错误;
∵AC⊥BC,CD⊥AB,
∴∠ACB=∠CDA=90°,
∴∠A+∠B=90°,∠1+∠A=90°,
∴∠1=∠B,故⑤正确;
即正确的个数是4个,
故选:C.
【点睛】
此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.
10.给出下列说法,其中正确的是( )
A.两条直线被第三条直线所截,同位角相等;
B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;
C.相等的两个角是对顶角;
D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.
【答案】B
【解析】
【分析】
正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.
【详解】
A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;
B选项:强调了在平面内,正确;
C选项:不符合对顶角的定义,错误;
D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.
故选:B.
【点睛】
对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.
11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()
A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°
【答案】A
【解析】
【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.
【详解】如图,AP∥BC,
∴∠2=∠1=50°,
∵∠EBF=80°=∠2+∠3,
∴∠3=∠EBF﹣∠2=80°﹣50°=30°,
∴此时的航行方向为北偏东30°,
故选A.
【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.
12.A、B、C是直线L上三点,P为直线外一点,若PA=2cm,PB=3cm,PC=5cm,则P 到直线L的距离是()
A.等于2cm B.大于2cm C.不小于2cm D.不大于2cm
【答案】D
【解析】
【分析】
从直线外一点到这条直线上各点所连的线段中,垂线段最短.
【详解】
∵PA=2cm,PB=3cm,PC=5cm,
∴PA<PB<PC.
∴①当PA⊥L时,点P到直线L的距离等于2cm;
②当PA与直线L不垂直时,点P到直线L的距离小于2cm;
综上所述,则P到直线L的距离是不大于2cm.
故选:D.
【点睛】
本题考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.
13.如图,△ABC 中,∠C=90°,则点B 到直线AC 的距离是 ( )
A .线段AB
B .线段A
C C .线段BC
D .无法确定
【答案】C
【解析】
【分析】
直接利用点到直线的距离定义得出答案.
【详解】
解:如图,三角形ABC 中,∠C=90°,则点B 到直线AC 的距离是:线段BC .
故选:C .
【点睛】
本题考查点到之间的距离,正确把握相关定义是解题关键.
14.如图,//AB CD ,点E 在CD 上,点F 在AB 上,如果:6:7CEF BEF ∠∠=,50ABE ∠=︒,那么AFE ∠的度数为( )
A .110︒
B .120︒
C .130︒
D .140︒
【答案】B
【解析】
【分析】 由//AB CD 可得∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒,即∠CEB=130°,由
:6:7CEF BEF ∠∠=可得=67CEF BEF ∠∠,设=67
CEF BEF ∠∠=k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由//AB CD 可得AFE ∠=∠DEF 即可解答.
【详解】
解:∵//AB CD
∴∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒
∴∠CEB=130°
∵:6:7CEF BEF ∠∠= ∴=67
CEF BEF ∠∠
设=67
CEF BEF ∠∠=k ,则∠CEF=6k,∠FEB=7k, ∴6k+7k=130°
∴∠FEB=7k=70°
∴∠DEF=∠FEB+∠BED=120° ∵//AB CD
∴AFE ∠=∠DEF=120°
故答案为B .
【点睛】
本题考查的是平行线的性质以及比例的应用,.熟练掌握平行线的性质是解答本题的关键.
15.如图所示,下列条件中,能判定直线a ∥b 的是( )
A .∠1=∠4
B .∠4=∠5
C .∠3+∠5=180°
D .∠2=∠4
【答案】B
【解析】
【分析】 在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.
【详解】
A 、∠1=∠4,错误,因为∠1、∠4不是直线a 、b 被其它直线所截形成的同旁内角或内错角;
B 、∵∠4=∠5,∴a ∥b (同位角相等,两直线平行).
C 、∠3+∠5=180°,错误,因为∠3与∠5不是直线a 、b 被其它直线所截形成的同旁内角;
D 、∠2=∠4,错误,因为∠2、∠4不是直线a 、b 被其它直线所截形成的同位角. 故选:B .
【点睛】
本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角
16.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )
A .4
B .3
C .2
D .1
【答案】A
【解析】
【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE 32,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC 23即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.
【详解】
解:连接OB 、OC
∵ABC V 是等边三角形,点O 是ABC V 的内心,
∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB ∴∠OBA=∠OBC=
12∠ABC=30°,∠OCA=∠OCB=12
∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒
∴∠=FOG ∠BOC
∴∠FOG -∠BOE=∠BOC -∠BOE
∴∠BOD=∠COE
在△ODB 和△OEC 中
BOD COE BO CO
OBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△ODB ≌△OEC
∴OD=OE
∴△ODE 是顶角为120°的等腰三角形,
∴ODE V 形状不变,故①正确;
过点O 作OH ⊥DE ,则DH=EH
∵△ODE 是顶角为120°的等腰三角形
∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·
sin ∠OED=12OE ,EH= OE·cos ∠OED=3OE ∴DE=2EH=3OE ∴S △ODE =12DE·OH=34
OE 2 ∴OE 最小时,S △ODE 最小,
过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值
∴BE ′=
12BC=12
a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=
12a 33 ∴S △ODE 3223 ∵△ODB ≌△OEC
∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =1223 23=1423 ∴S △ODE ≤
14
S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE 23 ∴四边形ODBE 的面积始终不变,故③正确;
∵△ODB ≌△OEC
∴DB=EC
∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE
∴DE 最小时BDE V 的周长最小
∵OE
∴OE 最小时,DE 最小
而OE 的最小值为
∴DE =12a ∴BDE V 的周长的最小值为a +
12a =1.5a ,故④正确; 综上:4个结论都正确,
故选A .
【点睛】
此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.
17.下列说法中不正确的是( )
①过两点有且只有一条直线
②连接两点的线段叫两点的距离
③两点之间线段最短
④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点
A .①
B .②
C .③
D .④
【答案】B
【解析】
【分析】
依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.
【详解】
①过两点有且只有一条直线,正确;
②连接两点的线段的长度叫两点间的距离,错误
③两点之间线段最短,正确;
④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确;
故选B .
18.下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)不相交的两条直线叫做平行线;
(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.
A .1个
B .2个
C .3个
D .4个
【答案】C
(1)应强调过直线外一点,故错误;
(2)正确;
(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;
(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.
19.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()
A.34°B.56°C.66°D.54°
【答案】B
【解析】
试题分析:∵AB∥CD,
∴∠D=∠1=34°,
∵DE⊥CE,
∴∠DEC=90°,
∴∠DCE=180°﹣90°﹣34°=56°.
故选B.
考点:平行线的性质.
20.下列五个命题:
①如果两个数的绝对值相等,那么这两个数的平方相等;
②内错角相等;
③在同一平面内,垂直于同一条直线的两条直线互相平行;
④两个无理数的和一定是无理数;
⑤坐标平面内的点与有序数对是一一对应的.
其中真命题的个数是()
A.2个B.3个C.4个D.5个
【答案】B
【解析】
【分析】
根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.
【详解】
①正确;
②在两直线平行的条件下,内错角相等,②错误;
④反例:两个无理数π和-π,和是0,④错误;
⑤坐标平面内的点与有序数对是一一对应的,正确;
故选:B.
【点睛】
本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.。

相关文档
最新文档