北站西路实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北站西路实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)若不等式组无解,则实数a的取值范围是()
A. a≥-1
B. a<-1
C. a≤1
D. a≤-1
【答案】C
【考点】解一元一次不等式组
【解析】【解答】解:由①得:x≥4-a
由②得:-3x>-9
解之:x<3
∵原不等式组无解
∴4-a≥3
解之:a≤1
故答案为:C
【分析】先求出不等式组中的每一个不等式的解集,再根据原不等式组无解,列出关于a的不等式,解不等式
即可。
注意:4-a≥3(不能掉了等号)。
2、(2分)实数在数轴上的对应点的位置如图所示,则正确的结论是()
A. B. C. D.
【答案】C
【考点】绝对值及有理数的绝对值,实数在数轴上的表示
【解析】【解答】解:由数轴上点的位置,得:
a<−4<b<0<c<1<d.
A.a<−4,故A不符合题意;
B.bd<0,故B不符合题意;
C.|a|>|b|,故C符合题意;
D.b+c<0,故D不符合题意;
故答案为:C.
【分析】根据数轴上表示的数的特点,可知在数轴上右边的总比左边的大,即可得出a<−4<b<0<c<1<d,即可判断A是错误的,再根据有理数的加法法则,乘法法则即可判断B,D是错误的,最后根据数轴上表示的数离开原点的距离就是该数的绝对值即可判断C是正确的,综上所述即可得出答案。
3、(2分)下列不等式组是一元一次不等式组的是()
A.
B.
C.
D.
【答案】C
【考点】一元一次不等式组的定义
【解析】【解答】根据一元一次不等式组的定义可知选项C正确,
故选:C.
【分析】根据一元一次不等式组的定义可判断.不等式组中只含有一个未知数并且未知数的次数是一次的.
4、(2分)如图,AB,CD相交于点O,AC⊥CD与点C,若∠BOD=38°,则∠A等于()
A. 52
B. 46
C. 48
D. 50
【答案】A
【考点】对顶角、邻补角
【解析】【解答】解:由对顶角的性质和直角三角形两锐角互余,可以求出∠A的度数为52.
故答案为:A
【分析】利用对顶角的性质,可知∠AOC=∠BOD,由直角三角形两锐角互余,可求出∠A的度数.
5、(2分)已知方程5m-2n=1,当m与n相等时,m与n的值分别是()
A.
B.
C.
D.
【答案】D
【考点】解二元一次方程组
【解析】【解答】解:根据已知,得
解得
同理,解得
故答案为:D
【分析】根据m与n相等,故用m替换方程5m-2n=1 的n即可得出一个关于m的方程,求解得出m的值,进而得出答案。
6、(2分)下列说法:①5是25的算术平方根, ②是的一个平方根;③(-4)2的平方根是±2;④立方根和算术平方根都等于自身的数只有1.其中正确的是()
A. ①②
B. ①③
C. ①②④
D. ③④
【答案】A
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:①5是25的算术平方根,正确;
②是的一个平方根,正确;
③(-4)2=16的平方根是±4,故③错误;
④立方根和算术平方根都等于自身的数有1和0,错误;
正确的有:①②
故答案为:A
【分析】根据算术平方根的定义,可对①作出判断;根据平方根的性质:正数的平方根有两个。
它们互为相反数,可对②③作出判断;立方根和算术平方根都等于自身的数有1和0,,可对④作出判断。
即可得出正确说法的序号。
7、(2分)二元一次方程x-2y=1 有无数多个解,下列四组值中不是该方程的解的是()
A.
B.
C.
D.
【答案】B
【考点】二元一次方程组的解
【解析】【解答】解:二元一次方程x-2y=1 ,
当时,,故A. 是方程 x-2y=1 的解;
当时,,故B不是方程x-2y=1 的解;故C. 是方程x-2y=1的解;
当x=-1 时,y=-1 ,故 D. 是方程 x-2y=1 的解,
故答案为:B
【分析】分别将各选项中的x、y的值代入方程x-2y=1,去判断方程的左右两边是否相等,即可作出判断。
8、(2分)如图,下列说法中错误的是()
A. ∠GBD和∠HCE是同位角
B. ∠ABD和∠ACE是同位角
C. ∠FBC和∠ACE是内错角
D. ∠GBC和∠BCE是同旁内角
【答案】A
【考点】同位角、内错角、同旁内角
【解析】【解答】解:A、∠GBD和∠HCE不符合同位角的定义,故本选项正确;
B、∠ABD和∠ACE是同位角,故本选项错误;
C、∠FBC和∠ACE是内错角,故本选项错误;
D、∠GBC和∠BCE是同旁内角,故本选项错误;
故答案为:A.
【分析】】∠GBD和∠HCE是由两条直线被另两条直线所截形成的两个角,一共有四条直线,不是同位角.
9、(2分)若方程组的解为x,y,且x+y>0,则k的取值范围是()
A. k>4
B. k>﹣4
C. k<4
D. k<﹣4
【答案】B
【考点】解二元一次方程组,解一元一次不等式
【解析】【解答】解:两式相加得:4x+4y=k+4
∵x+y>0
∴4x+4y=4(x+y)>0
即k+4>0
k>﹣4
故答案为:B.
【分析】先观察x,y的系数,系数之和都是4,所以两式相加得x+y=(k+4)÷4,再让k+4>0,解得k>﹣4 10、(2分)下列方程组中,是二元一次方程组的是()
A. B. C. D.
【答案】C
【考点】二元一次方程组的定义
【解析】【解答】解:A、与是分式,故该选项错误;
B、有三个未知数,故该选项错误;
C、符合二元一次方程组的定义;
D、第一个方程中的xy是二次的,故该选项错误.故答案为:C.
【分析】根据二元一次方程组的定义,两个方程中,含有两个未知数,且含未知数项的次数都是1的整式方程。
判断即可得出答案。
11、(2分)下列各组数中,是方程2x-y=8的解的是()
A.
B.
C.
D.
【答案】C
【考点】二元一次方程的解
【解析】【解答】解:先把原方程化为y=2x-8,然后利用代入法可知:当x=1时,y=-6,当x=2时,y=-4,当x=0.5时,y=-7,当x=5时,y=2.
故答案为:C.
【分析】能使方程的左边和右边相等的未知数的值就是方程的解,首先将方程变形为用含x的式子表示y,再分别将每个答案中的x的值代入算出对应的y的值,将计算的y的值与每个答案中给出的y的值进行比较,如果相等,该答案就是方程的解,反之就不是方程的解。
12、(2分)若a>b,则下列各式变形正确的是()
A. a-2<b-2
B. -2a<-2b
C. |a|>|b|
D. a2>b2
【答案】B
【考点】有理数大小比较,不等式及其性质
【解析】【解答】解:A、依据不等式的性质1可知A不符合题意;
B、由不等式的性质3可知B符合题意;
C、如a-3,b=-4时,不等式不成立,故C不符合题意;
D、不符合不等式的基本性质,故D不符合题意.故答案为:B
【分析】根据不等式的性质,不等式的两边都减去同一个数,不等号的方向不变;不等式的两边都乘以同一个负数,不等号的方向改变;只有两个正数,越大其绝对值就越大,也只有对于两个正数才存在越大其平方越大。
二、填空题
13、(3分)把下列各数填在相应的横线上
﹣8,π,﹣|﹣2|,,,﹣0.9,5.4,,0,﹣3.6,1.2020020002…(每两个2之间多一个0)整数________;负分数________;无理数________.
【答案】﹣8,,,0;﹣0.9,﹣3.6;π,,1.2020020002….
【考点】实数及其分类
【解析】【解答】解:整数﹣8,﹣|﹣2|,,0;
负分数﹣0.9,﹣3.6;
无理数π,,1.2020020002…;
故答案为:﹣8,﹣|﹣2|,,0;﹣0.9,﹣3.6;π,,1.2020020002….
【分析】考查无理数、有理数、整数、分数的定义。
无理数:无限不循环小数;除无理数之外的都是有理数。
另外,要记住:是无理数。
14、(1分)已知,则x+y=________.
【答案】-2
【考点】解二元一次方程组,非负数之和为0
【解析】【解答】解:因为, ,
所以可得: ,解方程组可得: ,所以x+y=-2,故答案为: -2.
【分析】根据几个非负数之和为0,则每一个数都为0,就可建立关于x、y的方程组,利用加减消元法求出方程组的解,然后求出x与y的和。
15、(7分)如图,AB∥DE,试问:∠B、∠E、∠BCE有什么关系?
解:∠B+∠E=∠BCE
理由:过点C作CF∥AB
则∠B=∠________(________)
∵AB∥DE,AB∥CF
∴ ________(________)
∴∠E=∠________(________)
∴∠B+∠E=∠1+∠2(________)
即∠B+∠E=∠BCE
【答案】1;两直线平行内错角相等;CF//DE;平行于同一条直线的两条直线互相平行;2;两直线平行内错角相等;等式的基本性质
【考点】等式的性质,平行线的判定与性质
【解析】【分析】第1个空和第2个空:因为CF∥AB,根据两直线平行,内错角相等,即可求出∠B=∠1;第3个空和第4个空:由题意CF∥AB,AB∥DE,根据平行于同一条直线的两条直线互相平行可求CF∥DE;第5个空和第6个空:根据平行线的性质,两直线平行,内错角相等,即可进行求证。
第7个空:根据等式的性质,等式两边同时加上相同的数或式子,两边依然相同。
16、(1分)规定用符号[x]表示一个实数的整数部分,例如[3.69]=3 ,按此规定,
=________
【答案】2
【考点】估算无理数的大小
【解析】【解答】解:∵9<13<16,∴3<<4.∴2<<3,∴=2
【分析】根号13的被开方数介于两个完全平方数9与13之间,从而得出根号13介于3和4之间,进而得出根号13再减1,介于2和3之间,从而得出答案。
17、(1分)二元一次方程组的解是________.
【答案】
【考点】解二元一次方程组
【解析】【解答】解:原方程可化为:,
化简为:,
解得:.
故答案为:
【分析】先将原方程组进行转化为并化简,就可得出,再利用加减消元法,就可求出方程组的解。
18、(10分)如图,AE、BF、DC是直线,B在直线AC上,E在直线DF上,∠1=∠2,∠A=∠F.求证:∠C=∠D.
证明:因为∠1=∠2(已知),∠1=∠3________
得∠2=∠3________
所以AE//________ ________
得∠4=∠F________
因为________(已知)
得∠4=∠A
所以________//________ ________
所以∠C=∠D________
【答案】对顶角相等;等量代换;BF;同位角相等,两直线平行;两直线平行,同位角相等;∠A=∠F;DF;AC;内错角相等,两直线平行;两直线平行,内错角相等
【考点】平行线的判定与性质
【解析】【解答】解:∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠2=∠3(等量代换)
∴AE//BF (同位角相等,两直线平行)
∴∠4=∠F(两直线平行,同位角相等)
∵∠A=∠F (已知)
∴∠4=∠A
∴DF//AC (内错角相等,两直线平行)
∴∠C=∠D (两直线平行,内错角相等)
【分析】由对顶角相等可得∠1=∠3,所以结合已知可得∠2=∠3,根据同位角相等,两直线平行可得AE//BF,根据两直线平行,同位角相等可得∠4=∠F,于是结合已知可得∠4=∠A,根据内错角相等,两直线平行可得DF//AC,所以根据两直线平行,内错角相等可得∠C=∠D。
三、解答题
19、(10分)下列调查方式是普查还是抽样调查?如果是抽样调查,请指出总体、个体、样本和样本容量.
(1)为了了解七(2)班同学穿鞋的尺码,对全班同学做调查;
(2)为了了解一批空调的使用寿命,从中抽取10台做调查.
【答案】(1)解:因为要求调查数据精确,故采用普查。
(2)解:在调查空调的使用寿命时,具有破坏性,故采用抽样调查.其中该批空调的使用寿命是总体,每一台空调的使用寿命是个体,从中抽取的10台空调的使用寿命是总体中的一个样本,样本容量为10。
【考点】总体、个体、样本、样本容量
【解析】【分析】(1)根据调查的方式的特征即可确定;
(2)根据总体、样本、个体、样本容量定义即可解答.
20、(5分)如图,已知DA⊥AB,DE平分∠ADC,CE平分∠BCD,∠1+ ∠2=90°.求证:BC ⊥ AB.
【答案】证明:∵DE平分∠ADC,CE平分∠BCD,
∴∠1=∠ADE,∠2=∠BCE,
∵∠1+∠2=90°,
即∠ADE+∠BCE=90°,
∴∠DEC=180°-(∠1+∠2)=90°,
∴∠BEC+∠AED=90°,
又∵DA ⊥AB,
∴∠A=90°,
∴∠AED+∠ADE=90°,
∴∠BEC=∠ADE,
∵∠ADE+∠BCE=90°,
∴∠BEC+∠BCE=90°,
∴∠B=90°,
即BC⊥AB.
【考点】垂线,三角形内角和定理
【解析】【分析】根据角平分线性质得∠1=∠ADE,∠2=∠BCE,结合已知条件等量代换可得∠1+∠2=∠ADE+∠BCE=90°,根据三角形内角和定理和邻补角定义可得∠BEC=∠ADE,代入前面式子即可得∠BEC+∠BCE=90°,由三角形内角和定理得∠B=90°,即BC⊥AB.
21、(5分)阅读下面情境:甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试求出a、b的正确值,并计算a2
017+(-b)2 018的值.
【答案】解:根据题意把代入4x﹣by=﹣2得:﹣12+b=﹣2,解得:b=10,把代入ax+5y=15
得:5a+20=15,解得:a=﹣1,所以a2017+(﹣b)2018=(﹣1)2017+(﹣×10)2018=0.
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,因此将甲得到的方程组的记为代入方程②求出b的值,而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出a的值,然后将a、b的值代入代数式计算求值。
22、(5分)如图,已知AB∥CD,CD∥EF,∠A=105°,∠ACE=51°.求∠E.
【答案】解:∵AB∥CD,
∴∠A+∠ACD=180°,
∵∠A=105°,
∴∠ACD=75°,
又∵∠ACE=51°,
∴∠DCE=∠ACD-∠ACE=75°-51°=24°,
∵CD∥EF,
∠E=∠DCE=24°.
【考点】平行线的性质
【解析】【分析】根据平行线的性质得∠A+∠ACD=180°,结合已知条件求得∠DCE=24°,再由平行线的性质即可求得∠E的度数.
23、(5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解
为;乙看错了方程②中的b,得到方程组的解为,试计算的值. 【答案】解:由题意可知:
把代入,得,
,
,
把代入,得,
,
∴= = .
【考点】代数式求值,二元一次方程组的解
【解析】【分析】根据甲看错了方程①中的a,将甲得到的方程组的解代入方程②求出b的值;而乙看错了方程②中的b,因此将乙得到的方程组的解代入方程①求出的值,然后将a、b的值代入代数式求值即可。
24、(5分)如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.
【答案】解:∵∠FOC=90°,∠1=40°,
∴∠3=∠AOB-∠FOC-∠1=180°-90°-40°=50°,
∴∠DOB=∠3=50°
∴∠AOD=180°-∠BOD=130°
∵OE平分∠AOD
∴∠2=∠AOD=×130°=65°
【考点】角的平分线,对顶角、邻补角
【解析】【分析】根据平角的定义,由角的和差得出∠3的度数,根据对顶角相等得出∠DOB=∠3=50°,再根据邻补角的定义得出∠AOD=180°-∠BOD=130°,再根据角平分线的定义即可得出答案。
25、(5分)如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角,若已知∠BOE= ∠AOC,
∠EOD=36°,求∠AOC的度数.
【答案】解:∵∠AOC=∠BOD是对顶角,
∴∠BOD=∠AOC,
∵∠BOE=∠AOC,∠EOD=36º,
∴∠EOD=2∠BOE=36º,
∴∠EOD=18º,
∴∠AOC=∠BOE=18º+36º=54º.
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据对顶角相等可知∠BOD=∠AOC,再由∠BOE= ∠AOC知∠EOD=∠BOD,代入数据求得∠BOD,再求得∠AOC。
26、(14分)为了解某县2014年初中毕业生的实验成绩等级的分布情况,随机抽取了该县若干名学生的实验成绩进行统计分析,并根据抽取的成绩绘制了如图所示的统计图表:
成绩等级A B C D
人数60x y10
百分比30%50%15%m
请根据以上统计图表提供的信息,解答下列问题:
(1)本次抽查的学生有________名;
(2)表中x,y和m所表示的数分别为:x=________,y=________,m=________;
(3)请补全条形统计图;
(4)若将抽取的若干名学生的实验成绩绘制成扇形统计图,则实验成绩为D类的扇形所对应的圆心角的度数是多少.
【答案】(1)200
(2)100;30;5%
(3)解:补全的条形统计图如右图所示;
(4)解:由题意可得,实验成绩为D类的扇形所对应的圆心角的度数是:×360°=18°,
即实验成绩为D类的扇形所对应的圆心角的度数是18°
【考点】统计表,条形统计图
【解析】【解答】解:⑴由题意可得,本次抽查的学生有:60÷30%=200(名),
故答案为:200;
⑵由⑴可知本次抽查的学生有200名,
∴x=200×50%=100,y=200×15%=30,m=10÷200×100%=5%,
故答案为:100,30,5%
【分析】(1)根据人数除以百分比可得抽查的学生人数;
(2)根据(1)中的学生人数乘以百分比可得对应的字母的值;(3)根据(2)得到B、C对应的人数,据此补全条形统计图即可;(4)先计算D类所占的百分比,然后乘以360°可得圆心角的度数.。