苏科版八年级下册第二学期月考数学试卷(含答案)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求证BE=DE;
(2)判断DF与ON的位置关系,并说明理由;
(3)△BEF的周长为.
8.解方程: .
9.2020年4月23日,是第25个世界读书日.为了解学生每周阅读时间,某校随机抽取了部分学生进行调查,根据调查结果,将阅读时间x(单位:小时)分成了4组,A:0≤x<2;B:2≤x<4;C:4≤x<6;D:6≤x<8,试结合图中所给信息解答下列问题:
(1)这次随机抽取了名学生进行调查;扇形统计图中,扇形B的圆心角的度数为.
(2)补全频数分布直方图;
(3)若该校共有2000名学生,试估计每周阅读时间不少于4小时的学生共有多少名?
10.如图,在▱ABCD中,BC=6cm,点E从点D出发沿DA边运动到点A,点F从点B出发沿BC边向点C运动,点E的运动速度为2cm/s,点F的运动速度为lcm/s,它们同时出发,设运动的时间为t秒,当t为何值时,EF∥AB.
(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.
(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.
()作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值.
4.用适当的方法解方程:
(1)x2﹣4x﹣5=0;
一、解答题
1.解:(1)如图所示:点A1的坐标(2,﹣4).
(2)如图所示,点A2的坐标(﹣2,4).
【解析】
试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标.
(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.
(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想线段AE、CF、EF之间存在的数量关系为.(不需要证明);
(2)当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE、CF、EF又有怎样的数量关系?请写出你的猜想,不需证明.
【参考答案】***试卷处理标记,请不要删除
(2)y(y﹣7)=14﹣2y;
(3)2x2﹣3x﹣1=0.
5.已知关于x的方程x2﹣(k+3)x+3k=0.
(1)若该方程的一个根为1,求k的值;
(2)求证:不论k取何实数,该方程总有两个实数根.
6.如图,在 中,∠BAC=90°,DE是 的中位线,AF是 的中线.求证DE=AF.
证法1:∵DE是 的中位线,
(1)试说明△ABC是等腰三角形;
(2)已知 =160cm²,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止,设点M运动的时间为t(秒),
①若△DMN的边与BC平行,求t的值;
②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.
13.如图,已知 .
(1)求 的面积;
(2)在 轴上是否存在点 使得 为等腰三角形,若存在,请直接写出点 所有可能的坐标,若不存在,请说明理由;
(3)如果在第二象限内有一点 ,且过点 作 轴于 ,请用含 的代数式表示梯形 的面积,并求当 与 面积相等时 的值?
14.已知: 中以 为边在 外侧作等边 .
∴DE=.
∵AF是 的中线,∠BAC=90°,
∴AF=,
∴DE=AF.
请把证法1补充完整,连接EF,DF,试用不同的方法证明DE=AF
证法2:
7.如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON上,AB=13,OB=5,E为AC上一点,且∠EBC=∠CBN,直线DE与ON交于点F.
2.(1)见解析;(2)AE=3.
【分析】
(1)由平行四边形的性质和AAS证明△OBE≌△ODF,得出对应边相等即可;
(2)先证出AE=GE,再证明DG=DO,得出OF=FG=1,即可得出结果.
【详解】
(1)∵四边形ABCD是平行四边形,
∴DC∥AB,
∴∠OBE=∠ODF.
在△OBE与△ODF中,
,
(1)连接 ,以 为边作等边 ,求证: ;
(2)当 , , 时,求 的值;
(3)若 , ,改变 的度数,发现 在变化到某一角度时, 有最大值.画出 为这个特殊角度时的示意图,并直接写出 的角度和 的最大值.
15.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120゜,∠MBN=60゜,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.
∴△OBE≌△ODF(AAS).
∴EO=FO;
(2)∵EF⊥AB,AB∥DC,
∴∠GEA=∠GFD=90°.
∵∠A=45°,
∴∠G=∠A=45°.
∴AE=GE,
∵BD⊥AD,
∴∠ADB=∠GDO=90°.
∴∠GOD=∠G=45°.
∴DG=DO,
∴OF=FG=1,
2.如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.
(1)求证:EO=FO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.
3.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
苏科版八年级下册第二学期月考数学试卷(含答案)
一、解答题
1.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.
(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.
11.如图1,在正方形ABCD中,点E是边AB上的一个动点(点E与点A,B不重合)连接CE,过点B作BF⊥CE于点G,交AD于点F.
(1)求证:△ABF≌△BCE;
(2)如图2,连接EF、CF,若CE=8,求四边形BEFC的面积;
(3)如图3,当点E运动到AB中点时,连接DG,求证:DC=DG.
12.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,
(2)判断DF与ON的位置关系,并说明理由;
(3)△BEF的周长为.
8.解方程: .
9.2020年4月23日,是第25个世界读书日.为了解学生每周阅读时间,某校随机抽取了部分学生进行调查,根据调查结果,将阅读时间x(单位:小时)分成了4组,A:0≤x<2;B:2≤x<4;C:4≤x<6;D:6≤x<8,试结合图中所给信息解答下列问题:
(1)这次随机抽取了名学生进行调查;扇形统计图中,扇形B的圆心角的度数为.
(2)补全频数分布直方图;
(3)若该校共有2000名学生,试估计每周阅读时间不少于4小时的学生共有多少名?
10.如图,在▱ABCD中,BC=6cm,点E从点D出发沿DA边运动到点A,点F从点B出发沿BC边向点C运动,点E的运动速度为2cm/s,点F的运动速度为lcm/s,它们同时出发,设运动的时间为t秒,当t为何值时,EF∥AB.
(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1.
(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2.
()作出点C关于x轴的对称点P.若点P向右平移x(x取整数)个单位长度后落在△A2B2C2的内部,请直接写出x的值.
4.用适当的方法解方程:
(1)x2﹣4x﹣5=0;
一、解答题
1.解:(1)如图所示:点A1的坐标(2,﹣4).
(2)如图所示,点A2的坐标(﹣2,4).
【解析】
试题分析:(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标.
(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.
(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想线段AE、CF、EF之间存在的数量关系为.(不需要证明);
(2)当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE、CF、EF又有怎样的数量关系?请写出你的猜想,不需证明.
【参考答案】***试卷处理标记,请不要删除
(2)y(y﹣7)=14﹣2y;
(3)2x2﹣3x﹣1=0.
5.已知关于x的方程x2﹣(k+3)x+3k=0.
(1)若该方程的一个根为1,求k的值;
(2)求证:不论k取何实数,该方程总有两个实数根.
6.如图,在 中,∠BAC=90°,DE是 的中位线,AF是 的中线.求证DE=AF.
证法1:∵DE是 的中位线,
(1)试说明△ABC是等腰三角形;
(2)已知 =160cm²,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止,设点M运动的时间为t(秒),
①若△DMN的边与BC平行,求t的值;
②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.
13.如图,已知 .
(1)求 的面积;
(2)在 轴上是否存在点 使得 为等腰三角形,若存在,请直接写出点 所有可能的坐标,若不存在,请说明理由;
(3)如果在第二象限内有一点 ,且过点 作 轴于 ,请用含 的代数式表示梯形 的面积,并求当 与 面积相等时 的值?
14.已知: 中以 为边在 外侧作等边 .
∴DE=.
∵AF是 的中线,∠BAC=90°,
∴AF=,
∴DE=AF.
请把证法1补充完整,连接EF,DF,试用不同的方法证明DE=AF
证法2:
7.如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON上,AB=13,OB=5,E为AC上一点,且∠EBC=∠CBN,直线DE与ON交于点F.
2.(1)见解析;(2)AE=3.
【分析】
(1)由平行四边形的性质和AAS证明△OBE≌△ODF,得出对应边相等即可;
(2)先证出AE=GE,再证明DG=DO,得出OF=FG=1,即可得出结果.
【详解】
(1)∵四边形ABCD是平行四边形,
∴DC∥AB,
∴∠OBE=∠ODF.
在△OBE与△ODF中,
,
(1)连接 ,以 为边作等边 ,求证: ;
(2)当 , , 时,求 的值;
(3)若 , ,改变 的度数,发现 在变化到某一角度时, 有最大值.画出 为这个特殊角度时的示意图,并直接写出 的角度和 的最大值.
15.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120゜,∠MBN=60゜,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.
∴△OBE≌△ODF(AAS).
∴EO=FO;
(2)∵EF⊥AB,AB∥DC,
∴∠GEA=∠GFD=90°.
∵∠A=45°,
∴∠G=∠A=45°.
∴AE=GE,
∵BD⊥AD,
∴∠ADB=∠GDO=90°.
∴∠GOD=∠G=45°.
∴DG=DO,
∴OF=FG=1,
2.如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.
(1)求证:EO=FO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.
3.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
苏科版八年级下册第二学期月考数学试卷(含答案)
一、解答题
1.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.
(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.
11.如图1,在正方形ABCD中,点E是边AB上的一个动点(点E与点A,B不重合)连接CE,过点B作BF⊥CE于点G,交AD于点F.
(1)求证:△ABF≌△BCE;
(2)如图2,连接EF、CF,若CE=8,求四边形BEFC的面积;
(3)如图3,当点E运动到AB中点时,连接DG,求证:DC=DG.
12.如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,