高中数学第三章概率2_3互斥事件教案北师大版必修3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
互斥事件
整体设计
教学分析
教科书通过实例定义了互斥事件、对立事件的概念.
教科书通过类比频率的性质,利用频率与概率的关系得到了概率的几个基本性质,要注意这里的推导并不是严格的数学证明,仅仅是形式上的一种解释,因为频率稳定在概率附近仅仅是一种描述,没有给出严格的定义,严格的定义,要到大学里的概率统计课程中才能给出.
三维目标
(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类比与归纳的数学思想.
(2)概率的几个基本性质:①必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;②当事件A 与B 互斥时,满足加法公式:P(A∪B)=P(A)+P(B);③若事件A 与B 为对立事件,则A∪B 为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1-P(B).
(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系,通过数学活动,了解数学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣.
重点难点
教学重点:概率的加法公式及其应用.
教学难点:事件的关系与运算.
课时安排
1课时
教学过程
导入新课
思路1.体育考试的成绩分为四个等级:优、良、中、不及格,某班50名学生参加了体育考优
85分及以上 9人 良
75—84分 15人 中
60—74分 21人 不及格 60分以下 5人
在同一次考试中,某一位同学能否既得优又得良?
从这个班任意抽取一位同学,那么这位同学的体育成绩为“优良”(优或良)的概率是多少?
为解决这个问题,我们学习概率的基本性质,教师板书课题.
思路2.(1)集合有相等、包含关系,如{1,3}={3,1},{2,4} {2,3,4,5}等;
(2)在掷骰子试验中,可以定义许多事件如:C 1={出现1点},C 2={出现2点},C 3={出现1点或2点},C 4={出现的点数为偶数},….
师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?这就是本堂课要讲的知识概率的基本性质.
思路 3.全运会中某省派两名女乒乓球运动员参加单打比赛,她们夺取冠军的概率分别是72和51,则该省夺取该次冠军的概率是72+5
1,对吗?为什么?为解决这个问题,我们学习概率
的基本性质.
推进新课
新知探究
提出问题
在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},D1={出现的点数不大于1},D2={出现的点数大于3},D3={出现的点数小于5},E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数},….
类比集合与集合的关系、运算说明这些事件的关系和运算,并定义一些新的事件.
(1)如果事件C1发生,则一定发生的事件有哪些?反之,成立吗?
(2)如果事件C2发生或C4发生或C6发生,就意味着哪个事件发生?
(3)如果事件D2与事件H同时发生,就意味着哪个事件发生?
(4)事件D3与事件F能同时发生吗?
(5)事件G与事件H能同时发生吗?它们两个事件有什么关系?
活动:学生思考或交流,教师提示点拨,事件与事件的关系要判断准确,教师及时评价学生的答案.
讨论结果:
(1)如果事件C1发生,则一定发生的事件有D1,E,D3,H,反之,如果事件D1,E,D3,H分别成立,能推出事件C1发生的只有D1.
(2)如果事件C2发生或C4发生或C6发生,就意味着事件G发生.
(3)如果事件D2与事件H同时发生,就意味着C5事件发生.
(4)事件D3与事件F不能同时发生.
(5)事件G与事件H不能同时发生,但必有一个发生.
由此我们得到事件A,B的关系和运算如下:
①如果事件A发生,则事件B一定发生,这时我们说事件B包含事件A(或事件A包含于事件
B),记为B⊇A(或A⊆B),不可能事件记为∅,任何事件都包含不可能事件.
②如果事件A发生,则事件B一定发生,反之也成立,(若B⊇A同时B⊆A),我们说这两个事件相等,即A=B.如C1=D1.
③如果某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与B的并事件(或和事件),记为A∪B或A+B.
④如果某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与B的交事件(或积事件),记为A∩B或AB.
⑤如果A∩B为不可能事件(A∩B=∅),那么称事件A与事件B互斥,即事件A与事件B在任何一次试验中不会同时发生.
⑥如果A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件,即事件A 与事件B在一次试验中有且仅有一个发生.
继续依次提出以下问题:
(1)概率的取值范围是多少?
(2)必然事件的概率是多少?
(3)不可能事件的概率是多少?
(4)互斥事件的概率应怎样计算?
(5)对立事件的概率应怎样计算?
活动:学生根据试验的结果,结合自己对各种事件的理解,教师引导学生,根据概率的意义:(1)由于事件的频数总是小于或等于试验的次数,所以,频率在0—1之间,因而概率的取值范
围也在0—1之间.(2)必然事件是在试验中一定要发生的事件,所以频率为1,因而概率是1.
(3)不可能事件是在试验中一定不发生的事件,所以频率为0,因而概率是0.
(4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和.
(5)事件A与事件B互为对立事件,A∩B为不可能事件,A∪B为必然事件,则A∪B的频率为1,因而概率是1,由(4)可知事件B的概率是1与事件A发生的概率的差.
讨论结果:
(1)概率的取值范围是0—1之间,即0≤P(A)≤1.
(2)必然事件的概率是1.如在掷骰子试验中,E={出现的点数小于7},因此P(E)=1.
(3)不可能事件的概率是0,如在掷骰子试验中,F={出现的点数大于6},因此P(F)=0.
(4)当事件A与事件B互斥时,A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,互斥事件的概率等于互斥事件分别发生的概率之和,即P(A∪B)=P(A)+P(B),这就是概率的加法公式,也称互斥事件的概率的加法公式.
(5)事件A与事件B互为对立事件,A∩B为不可能事件,A∪B为必然事件,P(A∪B)=1.所以1=P(A)+P(B),P(B)=1-P(A),P(A)=1-P(B).如在掷骰子试验中,事件G={出现的点数为偶数}与H={出现的点数为奇数}互为对立事件,因此P(G)=1-P(H).
上述这些都是概率的性质,利用这些性质可以简化概率的计算,下面我们看它们的应用. 应用示例
思路1
例1 在课本§2古典概型的例1中,随机地从2个箱子中各取1个质量盘,下面的事件A和事件B是否是互斥事件?
(1)事件A=“总质量为20 kg”,事件B=“总质量为30 kg”;
(2)事件A=“总质量为7.5 kg”,事件B=“总质量超过10 kg”;
(3)事件A=“总质量不超过10 kg”,事件B=“总质量超过10 kg”;
(4)事件A=“总质量为20 kg”,事件B=“总质量超过10 kg”.
解:在(1)(2)(3)中,事件A与事件B不能同时发生,因此事件A与事件B是互斥事件.
对于(4)中的事件A和事件B,随机地从2个箱子中各取1个质量盘,当总质量为20 kg时,事件A与事件B同时发生,因此,事件A与事件B不是互斥事件.
点评:判断互斥事件和对立事件,要紧扣定义,搞清互斥事件和对立事件的关系,互斥事件是对立事件的前提.
变式训练
1.一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?
事件A:命中环数大于7环;事件B:命中环数为10环;
事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环.
活动:教师指导学生,要判断所给事件是对立事件还是互斥事件,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生.
解:A与C互斥(不可能同时发生),B与C互斥,C与D互斥,C与D是对立事件(至少一个发生).
2.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件.
(1)恰好有1件次品和恰好有2件次品;
(2)至少有1件次品和全是次品;
(3)至少有1件正品和至少有1件次品;
(4)至少有1件次品和全是正品.
解:依据互斥事件的定义,即事件A 与事件B 在一定试验中不会同时发生,知(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,又因为它们的并不是必然事件,所以它们不是对立事件.同理可以判断:(2)中的2个事件不是互斥事件,也不是对立事件;(3)中的2个事件既不是互斥事件也不是对立事件;(4)中的2个事件既互斥又对立.
例2 从一箱产品中随机地抽取一件产品,设事件A=“抽到的是一等品”,事件B=“抽到的是二等品”,事件C =“抽到的是三等品”,且已知P(A)=,P(B)=,P(C)=.求下列事件的概率:
(1)事件D=“抽到的是一等品或三等品”;
(2)事件E=“抽到的是二等品或三等品”.
解:(1)事件D 即事件A+C,因为事件A=“抽到的是一等品”和事件C=“抽到的是三等品”是互斥事件,由互斥事件的概率加法公式,得
P(D)=P(A+C)=P(A)+P(C)=+=.
(2)事件E 即事件B+C,因为事件B=“抽到的是二等品”和事件C=“抽到的是三等品”是互斥事件,由互斥事件的概率加法公式,得
P(E)=P(B+C)=P(B)+P(C)=+=.
点评:容易看出,事件D+E 表示“抽到的产品是一等品或二等品或三等品”.事件D 和事件E 不是互斥事件,因此不满足互斥事件的概率加法公式.事实上,P(D+E)=P(A)+P(B)+P(C)=,而P(D)+P(E)=[P(A)+P(C)]+[P(B)+P(C)]=,“抽到的是三等品”的概率P(C)在P(D)和P(E)中各算了一次,因此,事件D+E 的概率P(D+E)不等于P(D)+P(E).
例3 某地政府准备对当地的农村产业结构进行调整,为此政府进行了一次民意调查.100个人接受了调查,他们被要求在赞成调整、反对调整、对这次调整不发表看法中任选一项.调查结果如下表所示:
男 女 总计 赞成 18 9 27 反对
12 25 37 不发表看法
20 16 36 总计 50 50 100
解:用A 表示事件“对这次调整表示反对”,B 表示事件“对这次调整不发表看法”,则A 和B 是互斥事件,并且A+B 就表示事件“对这次调整表示反对或不发表看法”,由互斥事件的概率加法公式,得P(A+B)=P(A)+P(B)=100
731003610037=+=, 因此,随机选取的一个被调查者对这次调整表示反对或不发表看法的概率是.
点评:若事件C=“对这次调整表示赞成”,则其对立事件C=“对这次调整表示反对或不发表看法”,因此,随机选取一个被调查者,他对这次调整表示反对或不发表看法的概率还可以按如下方法计算:P(C )=1-P(C)=1100
7310027=-=. 变式训练
1.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止1个小组,具体情况如图1所示.随机选取1个成员:
(1)他至少参加2个小组的概率是多少?
(2)他参加不超过2个小组的概率是多少?
图1 解:(1)从图1中可以看出,3个课外兴趣小组总人数为60.用A 表示事件“选取的成员只参加1个小组”,则A 就表示“选取的成员至少参加2个小组”,于是,
P(A )=1-P(A)=15
3601086=++-=. 因此,随机选取的1个成员至少参加2个小组的概率是.
(2)用B 表示事件“选取的成员参加3个小组”,则B 就表示“选取的成员参加不超过2个小组”,于是,P(B )=1-P(B)=15
136081=-≈. 所以,随机选取的1个成员参加不超过2个小组的概率约等于.
2.小明的自行车用的是密码锁,密码锁的四位数密码由4个数字2,4,6,8按一定顺序构成.小明不小心忘记了密码中4个数字的顺序,试问:随机地输入由2,4,6,8组成的一个四位数,不能打开锁的概率是多少?
解:用A 表示事件“输入由2,4,6,8组成的一个四位数,不是密码”,A 比较复杂,可考虑它的对立事件,即“输入由2,4,6,8组成的一个四位数,恰是密码”,它只有一种结果.利用树状图可以列出输入由2,4,6,8组成的一个四位数的所有可能结果(如图2).
从图中可以看出,所有可能结果数为24,并且每一种结果出现的可能性是相同的,这是一个古典概型.P(A )=24
1,因此,
图2
P(A)=1-P(A )=24
23≈, 即小明随机地输入由2,4,6,8组成的一个四位数,不能打开锁的概率约为.
思路2
例1 抛掷一骰子,观察掷出的点数,设事件A 为“出现奇数点”,B 为“出现偶数点”,已知P(A)= 21,P(B)= 2
1,求出“出现奇数点或偶数点”的概率. 活动:学生思考或讨论,教师引导,抛掷骰子,事件“出现奇数点”和“出现偶数点”是彼此互斥的,并且是相互独立事件,可以运用概率的加法公式求解.
解:记“出现奇数点或偶数点”为事件C,则C=A∪B,因为A 、B 是互斥事件,所以
P(C)=P(A)+P(B)=21+2
1=1. 出现奇数点或偶数点的概率为1.
变式训练
抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数,事件B 为出现2点,已知P(A)= 21,P(B)=6
1,求出现奇数点或2点的概率之和. 解:“出现奇数点”的概率是事件A,“出现2点”的概率是事件B,“出现奇数点或2点”的概率之和为P(C)=P(A)+P(B)=3
26121=+. 例2 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为31,得到黑球或黄球的概率是125,得到黄球或绿球的概率也是12
5,试求得到黑球、得到黄球、得到绿球的概率各是多少?
活动:学生阅读题目,交流讨论,教师点拨,利用方程的思想及互斥事件、对立事件的概率公式求解.
解:从袋中任取一球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”为A 、B 、
C 、D,则有P(B∪C)=P(B)+P(C)=125,P(C∪D)=P(C)+P(D)=125,P(B∪C∪D)=1-P(A)=1-31=32,解得P(B)=41,P(C)=61,P(D)= 4
1, 即得到黑球、得到黄球、得到绿球的概率分别是41、61、41. 变式训练
已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是71,从中取出2粒都是白子的概率是35
12,现从中任意取出2粒恰好是同一色的概率是多少?
答案:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与2粒黑子的概率的和,即为35
17351271=+. 知能训练
1.下列说法中正确的是( )
A.事件A 、B 中至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大
B.事件A 、B 同时发生的概率一定比事件A 、B 恰有一个发生的概率小
C.互斥事件一定是对立事件,对立事件不一定是互斥事件
D.互斥事件不一定是对立事件,对立事件一定是互斥事件
答案:D
2.课本练习1—4.
拓展提升
1.从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选机会.如果选得同性委员的概率等于2
1,求男女生相差几名? 解:设男生有x 名,则女生有36-x 名.
选得2名委员都是男性的概率为
35
36)1(⨯-x x , 选得2名委员都是女性的概率为3536)35)(36(⨯--x x . 以上两种选法是互斥的,又选得同性委员的概率等于
21, 得3536)35)(36(3536)1(⨯--+⨯-x x x x =2
1. 解得x=15或x=21,
即男生有15名,女生有36-15=21名,或男生有21名,女生有36-21=15名.
总之,男女生相差6名. 血型
A B AB O 该血型的人所占比/% 28 29 8 35
AB 型血的人,其他不同血型的人不能互相输血.小明是B 型血,若小明因病需要输血,问:
(1)任找一个人,其血可以输给小明的概率是多少?
(2)任找一个人,其血不能输给小明的概率是多少?
解:(1)对任一人,其血型为A,B,AB,O 型血的事件分别记为A′,B′,C′,D′,它们是互斥的. 由已知,有P(A′)=,P(B′)=,P(C′)=,P(D′)=.
因为B,O 型血可以输给B 型血的人,故“可以输给B 型血的人”为事件B′+D′.根据互斥事件的加法公式,有P(B′+D′)=P(B′)+P(D′)=+=.
(2)由于A,AB 型血不能输给B 型血的人,故“不能输给B 型血的人”为事件A′+C′,且P(A′+C′)=P(A′)+P(C′)=+=,
即任找一人,其血可以输给小明的概率为,其血不能输给小明的概率为.
注:第(2)问也可以这样解:因为事件“其血可以输给B 型血的人”与事件“其血不能输给B 型血的人”是对立事件,故由对立事件的概率公式,有P(''D B +)=1-P(B′+D′)==. 课堂小结
1.概率的基本性质是学习概率的基础.不可能事件一定不出现,因此其概率为0,必然事件一定发生,因此其概率为1.当事件A 与事件B 互斥时,A∪B 发生的概率等于A 发生的概率与B 发生的概率的和,从而有公式P(A∪B)=P(A)+P(B);对立事件是指事件A 与事件B 有且仅有一个发生.
2.在利用概率的性质时,一定要注意互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生.而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形:(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件是互斥事件的特殊情形.
作业
习题3—2 A 组 3.
设计感想
本堂课通过掷骰子试验,定义了许多事件,并根据集合的运算定义了事件的运算,给出了互斥事件和对立事件以及它们的概率运算公式,在运用时要切实注意它们的使用条件,不可模棱两可,搞清互斥事件和对立事件的关系,思路1和思路2都安排了不同层次的例题和变式
训练,对刚学的知识是一个巩固和加强,同学们要反复训练,安排的题目既有层次性,又有趣味性,适合不同基础的学生,因此本节课授完后,同学们肯定受益匪浅.。