中考数学 相似综合试题附答案解析
中考数学 相似综合试题含详细答案
中考数学相似综合试题含详细答案一、相似1.如图所示,△ABC中,AB=AC,∠BAC=90°,AD⊥BC,DE⊥AC,△CDE沿直线BC翻折到△CDF,连结AF交BE、DE、DC分别于点G、H、I.(1)求证:AF⊥BE;(2)求证:AD=3DI.【答案】(1)证明:∵在△ABC中,AB=AC,∠BAC=90°,D是BC的中点,∴AD=BD=CD,∠ACB=45°,∵在△ADC中,AD=DC,DE⊥AC,∴AE=CE,∵△CDE沿直线BC翻折到△CDF,∴△CDE≌△CDF,∴CF=CE,∠DCF=∠ACB=45°,∴CF=AE,∠ACF=∠DCF+∠ACB=90°,在△ABE与△ACF中,,∴△ABE≌△ACF(SAS),∴∠ABE=∠FAC,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE(2)证明:作IC的中点M,连接EM,由(1)∠DEC=∠ECF=∠CFD=90°∴四边形DECF是正方形,∴EC∥DF,EC=DF,∴∠EAH=∠HFD,AE=DF,在△AEH与△FDH中,∴△AEH≌△FDH(AAS),∴EH=DH,∵∠BAG+∠CAF=90°,∴∠BAG+∠ABE=90°,∴∠AGB=90°,∴AF⊥BE,∵M是IC的中点,E是AC的中点,∴EM∥AI,∴,∴DI=IM,∴CD=DI+IM+MC=3DI,∴AD=3DI【解析】【分析】(1)根据翻折的性质和SAS证明△ABE≌△ACF,利用全等三角形的性质得出∠ABE=∠FAC,再证明∠AGB=90°,可证得结论。
(2)作IC的中点M,结合正方形的性质,可证得∠EAH=∠HFD,AE=DF,利用AAS证明△AEH与△FDH全等,再利用全等三角形的性质和中位线的性质解答即可。
2020年九年级中考数学复习专题训练:《相似综合 》(含答案)
2020年九年级中考数学复习专题训练:《相似综合》1.如图1,点P从菱形ABCD的顶点B出发,沿B→D→A匀速运动到点A,BD的长是;图2是点P运动时,△PBC的面积y(cm2)随时间x(s)变化的函数图象.(1)点P的运动速度是cm/s;(2)求a的值;(3)如图3,在矩形EFGH中,EF=2a,FG﹣EF=1,若点P、M、N分别从点E、F、G三点同时出发,沿矩形的边按逆时针方向匀速运动,当点M到达点G(即点M与点G重合)时,三个点随之停止运动;若点P不改变运动速度,且点P、M、N的运动速度的比为2:6:3,在运动过程中,△PFM关于直线PM的对称图形是△PF'M,设点P、M、N的运动时间为t(单位:s).①当t=s时,四边形PFMF'为正方形;②是否存在t,使△PFM与△MGN相似,若存在,求t的值;若不存在,请说明理由.2.如图1,四边形ABCD中,AD∥BC,∠A=90°,AD=3,AB=4,BC=6,动点P从点A出发以1个单位/秒的速度沿AB运动,动点Q同时从点C出发以2个单位/秒的速度沿CB 运动,过点P作EP⊥AB,交BD于E,连接EQ.当点Q与点B重合时,两动点均停止运动,设运动的时间为t秒.(1)当t=1时,求线段EP的长;(2)运动过程中是否存在某一时刻,使△BEQ与△ABD相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由;(3)如图2,连接CE,求运动过程中△CEQ的面积S的最大值.3.如图1,在△ABC中,AB=AC=10,,点D为BC边上的动点(点D不与点B,C 重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.4.如图(1),在矩形ABCD中,AD=nAB,点M,P分别在边AB,AD上(均不与端点重合),且AP=nAM,以AP和AM为邻边作矩形AMNP,连接AN,CN.【问题发现】(1)如图(2),当n=1时,BM与PD的数量关系为,CN与PD的数量关系为.【类比探究】(2)如图(3),当n=2时,矩形AMNP绕点A顺时针旋转,连接PD,则CN与PD之间的数量关系是否发生变化?若不变,请就图(3)给出证明;若变化,请写出数量关系,并就图(3)说明理由.【拓展延伸】(3)在(2)的条件下,已知AD=4,AP=2,当矩形AMNP旋转至C,N,M三点共线时,请直接写出线段CN的长.5.如图,在△ABC中,∠C=90°,AB=10,AC=8,D、E分别是AB、BC的中点.连接DE.动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动.同时,动点Q从点C 出发,沿折线CE﹣ED向终点D运动,在CE、ED上的速度分别是每秒3个单位长度和4个单位长度,连接PQ,以PQ、PD为边作▱DPQM.设▱DPQM与四边形ACED重叠部分图形的面积是S(平方单位),点P的运动时间为t(s).(1)当点P在AD上运动时,PQ的长为(用含t的代数式表示);(2)当▱DPQM是菱形时,求t的值;(3)当0<t<2时,求S与t之间的函数关系式;(4)当△DPQ与△BDE相似时,直接写出t的值.6.如图,在平行四边形ABCD中,AC为对角线,过点D作DE⊥DC交直线AB于点E,过点E 作EH⊥AD于点H,过点B作BF⊥AD于点F.(1)如图1,若∠BAD=60°,AF=3,AH=2,求AC的长;(2)如图2,若BF=DH,在AC上取一点G,连接DG、GE,若∠DGE=75°,∠CDG=45°﹣∠CAB,求证:DG=CG.7.(1)问题引入:如图1所示,正方形ABCD和正方形AEFG,则BE与DG的数量关系是,=;(2)类比探究:如图2所示,O为AD、HG的中点,正方形EFGH和正方形ABCD中,判断BE和CF的数量关系,并求出的值;(3)解决问题:①若把(1)中的正方形都改成矩形,且==,则(1)中的结论还成立吗?若不能成立,请写出BE与GD的关系,并求出值;②若把(2)中的正方形也都改成矩形,且==2n,请直接写出BE和CF的关系以及的8.在正方形ABCD中,点E是直线AB上动点,以DE为边作正方形DEFG,DF所在直线与BC 所在直线交于点H,连接EH.(1)如图1,当点E在AB边上时,延长EH交GF于点M,EF与CB交于点N,连接CG,①求证:CD⊥CG;②若tan∠HEN=,求的值;(2)当正方形ABCD的边长为4,AE=1时,请直接写出EH的长.9.如图a,在正方形ABCD中,E、F分别为边AB、BC的中点,连接AF、DE交于点G.(1)求证:AF⊥DE;(2)如图b,连接BG,BD,BD交AF于点H.①求证:GB2=GA•GD;②若AB=10,求三角形GBH的面积.10.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP 翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC分别交PM、PB于点E、F.若AD=3DP,探究EF与AE之间的的数量关系.11.△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)当0≤t≤1时,PM=,QN=(用t的代数式表示);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?12.如图,四边形ABCD是矩形,AB=6,BC=4,点E在边AB上(不与点A、B重合),过点D作DF⊥DE,交边BC的延长线于点F.(1)求证:△DAE∽△DCF.(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式.(3)当四边形EBFD为轴对称图形时,则cos∠AED的值为.13.如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN=∠AMB,点N 在直线AD上,MN交CD于点E.(1)求证:△AMN是等腰三角形;(2)求证:AM2=2BM•AN;(3)当M为BC中点时,求ME的长.14.如图,在平面直角坐标系中,过原点O及A(8,0)、C(0,6)作矩形OABC,连接AC,一块直角三角形PDE的直角顶点P始终在对角线AC上运动(不与A、C重合),且保持一边PD始终经过矩形点B,PE交x轴于点Q(1)=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围,如果不变,请说明理由,并求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.15.如图,在矩形OABC中,点A,B的坐标分别为A(4,0),B(4,3),动点N,P分别从点B,A同时出发,点N以1单位/秒的速度向终点C运动,点P以5/4单位/秒的速度向终点C运动,连结NP,设运动时间为t秒(0<t<4)(1)直接写出OA,AB,AC的长度;(2)求证:△CPN∽△CAB;(3)在两点的运动过程中,若点M同时以1单位/秒的速度从点O向终点A运动,求△MPN的面积S与运动的时间t的函数关系式(三角形的面积不能为0),并直接写出当S =时,运动时间t的值.16.如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),连结AE,BD交于点F.(1)若点E为CD中点,AB=2,求AF的长.(2)若tan∠AFB=2,求的值.,(3)若点G在线段BF上,且GF=2BG,连结AG,CG,=x,四边形AGCE的面积为S1,求的最大值.△ABG的面积为S217.如图1,在△ABC中,AB=AC,点D,E分别是边BC,AC上的点,且∠ADE=∠B.(1)求证:AB•CE=BD•CD;(2)若AB=5,BC=6,求AE的最小值;(3)如图2,若△ABC为等边三角形,AD⊥DE,BE⊥DE,点C在线段DE上,AD=3,BE =4,求DE的长.18.如图,△ABC中,AB=AC,点P为BC边上一动点(不与B,C重合),以AP为边作∠APD=∠ABC,与BC的平行线AD交于点D,与AC交于点E,连结CD.(1)求证:△ABP∽△DAE.(2)已知AB=AC=5,BC=6.设BP=x,CE=y.①求y关于x的函数表达式及自变量x的取值范围;=时,求CE的值.②当S△ACD19.如图,在矩形ABCD的边AB上取一点E,连接CE并延长和DA的延长线交于点G,过点E作CG的垂线与CD的延长线交于点H,与DG交于点F,连接GH.(1)当tan∠BEC=2且BC=4时,求CH的长;(2)求证:DF•FG=HF•EF;(3)连接DE,求证:∠CDE=∠CGH.20.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在4×4的正方形网格中,有一个网格Rt△ABC和两个网格四边形ABCD与ABCE,其中是被AC分割成的“友好四边形”的是;(2)如图2,将△ABC绕点C逆时针旋转得到△A'B'C,点B'落在边AC,过点A作AD∥A'B'交CA'的延长线于点D,求证:四边形ABCD是“友好四边形”;(3)如图3,在△ABC中,AB≠BC,∠ABC=60°,△ABC的面积为6,点D是∠ABC 的平分线上一点,连接AD,CD.若四边形ABCD是被BD分割成的“友好四边形”,求BD 的长.参考答案1.解:(1)由图2可知,s点P从点B运动到点D,∵BD=,∴点P的运动速度=÷=1(cm/s),故答案为:1;(2)如图1,作DQ⊥BC于点Q,当点P在BD上时,a=×BC×DP,∵四边形ABCD为菱形,点P的运动速度为1,∴AD=BC=1×a=a,∴a=×a×DP,解得,DQ=2,在Rt△BDQ中,BQ==1,∴CQ=a﹣1,在Rt△CDQ中,CD2=CQ2+DQ2,即a2=(a﹣1)2+22,解得,a=;(3)①∵点P的运动速度1cm/s,点P、M的运动速度的比为2:6 ∴点M的运动速度3cm/s,由题意得,EF=2a=5,∵FG﹣EF=1,∴FG=6,∴PF=5﹣t,FM=3t,由翻转变换的性质可知,PF=PF′,FM=FM′,当PF=FM时,PF=PF′=FM=FM′,∴四边形PFMF'为菱形,又∠F=90°,∴四边形PFMF'为正方形,∴5﹣t=3t,即t=1.25时,四边形PFMF'为正方形,故答案为:1.25;②存在,∵点P的运动速度1cm/s,点P、M、N的运动速度的比为2:6:3,∴点M的运动速度3cm/s,点N的运动速度1.5cm/s,∴PF=5﹣t,FM=3t,GN=1.5t,∵点M的运动速度3cm/s,FG=6,∴0≤t≤2,当△PFM∽△MGN时,=,即=,解得,t=,当△PFM∽△NGM时,=,即=,解得,t1=﹣7﹣(舍去),t2=﹣7+,综上所述,当t=或﹣7+时,△PFM与△MGN相似.2.解:(1)当t=1时,则AP=1,∴BP=AB﹣AP=3,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴EP=;(2)∵∠A=90°,AD=3,AB=4,∴BD===5,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴BE=5﹣t,∵AD∥BC,∴∠ADB=∠EBQ,若∠BEQ=∠A=90°,∴△BAD∽△QEB,∴,∴=,∴t=28(不合题意舍去),若∠BQE=∠A=90°,∴△BAD∽△EQB,∴,∴t=,(3)∵S=×CQ×PB=×2t×(4﹣t)=﹣(t﹣2)2+4,∴当t=2时,S最大值为4,∴△CEQ的面积S的最大值为4.3.证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE;(2)如图2中,作AM⊥BC于M.在Rt△ABM中,设BM=4k,∵=,∴,由勾股定理,得到AB2=AM2+BM2,∴102=(3k)2+(4k)2,∴k=2或﹣2(舍弃),∴AM=6,BM=8,∵AB=AC,AM⊥BC,∴BC=2BM=2×2k=16,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA,∴,∴=,∵DE∥AB,∴,∴=.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,∴四边形AMHN为矩形,∴∠MAN=90°,MH=AN,∵AB=AC,AM⊥BC,∵AB=10,∴BM=CM=8,∴BC=16,在Rt△ABM中,由勾股定理,得AM=6,∵AN⊥FH,AM⊥BC,∴∠ANF=90°=∠AMD,∵∠DAF=90°=∠MAN,∴∠NAF=∠MAD,∴△AFN∽△ADM,∴,∴,∴CH=CM﹣MH=CM﹣AN=8﹣=,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=7,∴BD=BC﹣CD=16﹣7=9,∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=9.4.解:(1)BM=PD,,理由如下:当n=1,则AD=AB,AP=AM,∴AD﹣AP=AB﹣AM,∴DP=BM,∵四边形ABCD是矩形,四边形AMNP是矩形,∴AD=CD=AB,AP=AM=NP,∠ADC=∠APN=90°,∴AC=AD,AN=AP,∴AC﹣AN=(AD﹣AP),∴CN=PD,故答案为:BM=PD,;(2)CN与PD之间的数量关系发生变化,,理由如下:如图(1)在矩形ABCD和矩形AMNP中,∵当n=2.AD=2AB,AP=2AM,∴,,∴.,如图(3)连接AC,∵矩形AMNP绕点A顺时针旋转,∴∠NAC=∠PAD,∴△ANC∽△APD,∴,∴;(3)如图,当点N在线段CM上时,∵AD=4,AD=2AB,∴AB=CD=2,∴AC===,∵AP=2,AP=2AM,∴AM=1,∴CM===,∴CN=CM﹣MN=﹣2;如图,当点M在线段CN上时,同理可求CM=,∴CN=CM+MN=+2;综上所述:线段CN的长为或.5.解:(1)∵∠C=90°,AB=10,AC=8,∴BC===6,∵D、E分别是AB、BC的中点.∴DE∥AC,DE=AC=4,BD=AD=5,BE=CE=3,∵动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动,∴AP=5t,∴BP=10﹣5t,∵DE∥AC,∴△BPQ∽△BAC,∴,∴∴PQ=8﹣4t,故答案为:8﹣4t;(2)当点P在AD上运动时,∵四边形DPQM是菱形,∴PD=PQ,∴5﹣5t=8﹣4t,∴t=﹣3(不合题意舍去),当点P在BD上运动时,过点P作PH⊥DQ于H,∵四边形DPQM是菱形,∴PD=PQ,且PH⊥DQ,∴DH=HQ=DQ=[4﹣4(t﹣1)]=4﹣2t,∵DE∥AC,∴∠DEB=∠ACB=90°=∠PHD,∴PH∥BE,∴△PDH∽△BDE,∴,∴,∴t=,PH=3t﹣3,综上所述:当t=时,▱DPQM是菱形;(3)当0<t<1时,S=×(8﹣4t+4)×(3﹣3t)=6t2﹣24t+18,当t=1时,不能作出▱DPQM,当1<t<2时,S=×(8﹣4t)×(3t﹣3)=﹣6t2+18t﹣12;(4)当点P在AD上时,不存在△DPQ与△BDE相似,当点P在BD上时,则∠PDQ=∠BDE,若∠PQD=∠DEB=90°时,∴△PDQ∽△BDE,∴,∴∴t=,若∠DPQ=∠DEB=90°时,∴△QPD∽△BED,∴,∴∴t=综上所述:当t=或时,△DPQ与△BDE相似.6.解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵BF⊥AD于F,∴∠AFB=90°,∵∠BAD=60°,∴AB=2AF=6,BF=AF=3,∵EH⊥AD于H,∴AE=2AH=4,EH=AH=2,∵DE⊥DC交AB于E,∴∠DEA=90°,∴AD=2AE=8,∴CB=AD=8,如图1,作AM⊥CB于M,则∠ABM=∠BAD=60°,∴BM=(1/2)AB=3,AM=BM=3,∴CM=CB+BM=11,在Rt△ACM中:AC===2.(2)如图2,作EN⊥AC于N,连接DN、CE,则∠CNE=90°.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵DE⊥DC交AB于E,∴∠CDE=∠DEA=90°,∵EH⊥AD于H,∴∠DHD=∠EHA=90°,∵BF⊥AD于F,∴∠DFB=∠AFB=90°,∴∠DHE=∠BFA,∵∠DEH+∠HEA=∠HEA+∠BAF=90°,∴∠DEH=∠BAF,∵DH=BF,∴△DEH≌△BAF(AAS),∴DE=BA=CD,∴△CDE是等腰直角三角形,∠DCE=∠DEC=45°,∵∠CDE=∠CNE=90°,∴C、D、N、E四点共圆,∴∠DNC=∠DEC=45°,∵∠CDG=45°﹣∠CAB,∴∠CDG+∠CAB=45°,∵CD∥AB,∴∠CAB=∠DCG,∴∠DGN=∠DCG+∠CDG=45°=∠DNC,∴△DGN是等腰直角三角形,∠GDN=90°,DG=DN,∵∠CDG+∠GDE=∠GDE+∠EDN=90°,∴∠CDG=∠EDN,∴△CDG≌△EDN(SAS),∴EN=CG,∵∠CGD=75°,∴∠CGN=∠CGD﹣∠DGN=30°,∴GN=EN=CG,∴DG=GN=CG7.解:(1)如图1中,连接AC,AF.∵四边形ABCD,四边形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,AC=AB,AF=AE,∠BAC=45°,∠EAF=45°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∵AC=AB,AF=AE,∴=,∵∠BAC=∠EAF=45°,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∵DG=BE,∴=.故答案为:BE=DG,.(2)如图2中,连接OB,OE,OF,OC.∵四边形ABCD是正方形,OA=OD,∴∠A=∠CDO=90°,AB=CD,∴△AOB≌△DOC(SAS),∴OB=OC,同法可证OE=OF,∴∠OBC=∠OCB,∠OEF=∠OFE,∵BC∥AD,∴∠CBO=∠AOB,∴tan∠CBO=tan∠AOB=2,同法可证:tan∠FEO=2,∴tan∠CBO=tan∠FEO,∴∠CBO=∠FEO,∴∠OBC=∠OCB=∠OEF=∠OFE,∴∠BOC=∠EOF,∴∠EOB=∠FOC,∵OE=OF,OB=OC,∴△OEB≌△OFC(SAS),∴BE=FC,∵tan∠COD=tan∠COD=2,∴∠FOG=∠COD,∴∠FOC=∠GOD,∵==,∴△FOG∽△GOD,∴==.(3)①如图3中,结论不成立,BE=3DG.连接BE,AC,AF,CF.∵四边形ABCD,四边形AEFG都是矩形,∴∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∵AB=3AD,AE=3AG,∴△BAE∽△DAG,∴==3,∴BE=3DG,由题意:=,=,∴=,∴=,∵tan∠BAC=tan∠EAF=,∴∠BAC=∠EAF,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∴=.②如图4中,连接OE,OB,OF,OC.由(2)可知,∠BOC=∠EOF,OE=OF,OB=OC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴BE=CF.同法可证△FOC∽△GOD,∴=,设EH=k,则GH=2nk,∴OG=nk,∴OF==•k,∵BE=CF,∴==.8.证明:(1)①∵四边形ABCD和四边形DEFG是正方形,∴∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠A=∠DCG=90°,∴CD⊥CG;②如图1,过点N作NP∥DE,∵四边形DEFG是正方形,∴EF=GF,∠EFH=∠GFH=45°,且HF=HF,∴△EFH≌△GFH(SAS),∴EH=GH,∠HEF=∠HGF,∵∠HEF=∠HGF,EF=GF,∠EFM=∠GFN,∴△EFM≌△GFN(ASA),∴FM=NF,EM=GN,∵tan∠HEN==,∴EF=4MF=4NF=GF,∴GM=3MF=EN=3NF,∴NP∥DE,∴△PNE∽△MFE,∴,∴PN=MF,∵NP∥DE,∴=,∴;(2)如图1,∵AD=4,AE=1,∴DE===,∴EF=GF=,∴NF=EF=,∵GN2=GF2+NF2,∴GN=,∵∴GH=GN=,∴EH=GH=若点E在点A左侧,如图2,设AB与DH于点O,过点F作FN⊥AB,∵∠DEA+∠FEB=90°,∠DEA+∠ADE=90°,∴∠ADE=∠FEB,且∠DAE=∠FNE=90°,DE=EF,∴△ADE≌△NEF(AAS)∴AE=NF=1,DA=EN=4,∴AN=3,BN=1,∵DA∥NF,∴,∴ON=,∴BO=,∴AO=∵DA∥BH,∴,∴BH=,∴EH===9.证明:(1)∵正方形ABCD,E、F分别为边AB、BC的中点,∴AD=BC=DC=AB,AE=BE=AB,BF=CF=BC,∴AE=BF,∵在△ADE和△BAF中,∴△ADE≌△BAF(SAS)∴∠BAF=∠ADE,∵∠BAF+∠DAF=90°∴∠ADE+∠DAF=90°=∠AGD,∴AF⊥DE;(2)①如图b,过点B作BN⊥AF于N,∵∠BAF=∠ADE,∠AGD=∠ANB=90°,AB=AD,∴△ABN≌△ADG(AAS)∴AG=BN,DG=GN,∵∠AGE=∠ANB=90°,∴EG∥BN,∴,且AE=BE,∴AG=GN,∴AN=2AG=DG,∵BG2=BN2+GN2=AG2+AG2,∴BG2=2AG2=2AG•AG=GA•DG;②∵AB=10,∴AE=BF=5,∴DE===5,∵×AD×AE=×DE×AG,∴AG=2,∴GN=BN=2,∴AN=DG=4,∴△DGH∽△BNH,∴==2,∴GH=2HN,且GH+HN=GN=2,∴GH=,=×GH×BN=××2=.∴S△GHB10.(1)证明:过点P作PG⊥AB于点G,如图1所示:则四边形DPGA和四边形PCBG是矩形,∴AD=PG,DP=AG,BG=PC,∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴=,∴PG2=AG•BG,即AD2=DP•PC;(2)解:四边形PMBN是菱形;理由如下:∵四边形ABCD是矩形,∴AB∥CD,∵BM∥PN,BN∥MP,∴四边形PMBN是平行四边形,∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴四边形PMBN是菱形;(3)解:∵AD=3DP,∴设DP=1,则AD=3,由(1)可知:AG=DP=1,PG=AD=3,∵PG2=AG•BG,∴32=1•BG,∴BG=PC=9,AB=AG+BG=10,∵CP∥AB,∴△PCF∽△BAF,∴==,∴=,∵PM=MB,∴∠MPB=∠MBP,∵∠APB=90°,∴∠MPB+∠APM=∠MBP+∠MAP=90°,∴∠APM=∠MAP,∴PM=MA=MB,∴AM=AB=5,∵AB∥CD,∴△PCE∽△MAE,∴==,∴=,∴EF=AF﹣AE=AC﹣AC=AC,∴==.11.解:(1)由题意得:AM=t,∵PM⊥AB,∴∠PMA=90°,∵∠A=60°,∴∠APM=30°,∴PM=AM=t.∵∠C=90°,∴∠B=90°﹣∠A=30°,∴AB=2AC=4,BC=AC=2,∵MN=1,∴BN=AM﹣AM﹣1=3﹣t,∵QN⊥AB,∴QN=BN=(3﹣t);故答案为:tcm,(3﹣t)cm.(2)四边形MNQP有可能成为矩形,理由如下:由(1)得:QN=(3﹣t).由条件知,若四边形MNQP为矩形,则需PM=QN,即t=(3﹣t),∴t=.∴当t=s时,四边形MNQP为矩形;(3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB,∴△PQC∽△ABC.除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=.∵=cos60°=,∴AP=2AM=2t.∴CP=2﹣2t.∵=cos30°=,∴BQ=(3﹣t).又∵BC=2,∴CQ=2 .∴.综上所述,当s或s时,以C,P,Q为顶点的三角形与△ABC相似.12.证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∠A=∠BCD=∠ADC=90°,AD=BC=4,AB=CD=6,∴∠ADE+∠EDC=90°,∵DF⊥DE,∴∠EDC+∠CDF=90°,∴∠ADE=∠CDF,且∠A=∠DCF=90°,∴△DAE∽△DCF;(2)∵△DAE∽△DCF,∴,∴∴y=x+4;(3)∵四边形EBFD为轴对称图形,∴DE=BE,∵AD2+AE2=DE2,∴16+AE2=(6﹣AE)2,∴AE=,∴DE=BE=,∴cos∠AED==,故答案为:.13.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠NAM=∠BMA,∵∠AMN=∠AMB,∴∠AMN=∠NAM,∴AN=MN,即△AMN是等腰三角形;(2)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=2,AB=CD=3,∴∠NAM=∠BMA,作NH⊥AM于H,如图所示:∵AN=MN,NH⊥AM,∴AH=AM,∵∠NHA=∠ABM=90°,∠NAM=∠BMA,∴△NAH∽△AMB,∴=,∴AN•BM=AH•AM=AM2,∴AM2=2BM•AN;(3)解:∵M为BC中点,∴BM=CM=BC=×2=1,由(2)得:AM2=2BM•AN,即:AM2=2AN,∵AM2=AB2+BM2=32+12=10,∴10=2AN,∴AN=5,∴DN=AN﹣AD=5﹣2=3,设DE=x,则CE=3﹣x,∵AN∥BC,∴△DNE∽△CME∴=,即=,解得:x=,即DE=,∴CE=DC﹣DE=3﹣=,∴ME===.14.解:(1)∵A(8,0)、C(0,6),∴OA=8,OC=6,∵四边形OABC是矩形,∴∠ABC=∠OAB=90°,BC=OA=8,AB=OC=6,∴==,故答案为:;(2)的值不发生变化,=,理由如下:∵∠OAB=∠BPQ=90°,∴∠AOB+∠BPQ=180°,∴A、B、P、Q四点共圆,∴∠PQB=∠PAB,∵∠ABC=∠BPQ=90°,∴△PBQ∽△BCA,∴==;(3)设BQ交AP于M,如图所示:在Rt△ABC中,由勾股定理得:AC===10,由折叠的性质得:BQ⊥AP,PM=AM,∴∠AMB=90°=∠ABC,∵∠BAM=∠CAB,∴△ABM∽△ACB,∴=,即=,解得:AM=3.6,∴PA=2AM=7.2,∴PC=AC﹣PA=10﹣7.2=2.8;故答案为:2.8.15.(1)证明:∵四边形OABC是矩形,A(4,0),B(4,3),∴OA=BC=4,AB=OC=3,∠AOC=90°,∴AC===5;(2)解:由题意得:BN=t,AP=t,∵=,==,∴=,∴PN∥AB,∴△CPN∽△CAB;(3)解:分两种情况:①当0<t<2时,延长NP交OA于D,如图1所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=4﹣t﹣t=4﹣2t,∴△MPN的面积S=PN×DM=×(3﹣t)×(4﹣2t)=t2﹣t+6,即S=t2﹣t+6(0<t<2);②当2<t<4时,延长NP交OA于D,如图2所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=t+﹣4t=2t﹣4,∴△MPN的面积S=PN×DM=×(3﹣t)×(2t﹣4)=﹣t2+t﹣6,即S=﹣t2+t﹣6(2<t<4);当S=,0<t<2时,则t2﹣t+6=,整理得:t2﹣6t+6=0,解得:t=3﹣,或t=3+(不合题意舍去),∴t=3﹣;当S=,2<t<4时,则﹣t2+t﹣6=,整理得:t2﹣6t+10=0,∵△=36﹣40<0,∴此方程无解;综上所述,当S=时,运动时间t的值为(3﹣)秒.16.解:(1)∵点E为CD中点,AB=AD=CD=2,∴DE=,∴AE===5,∵AB∥CD,∴△ABF∽△EDF,∴,∴AF=2EF,且AF+EF=5,∴AF=;(2)如图1,连接AC,∵四边形ABCD是正方形,∴AB=BC=CD=AD,BD=AB,AO⊥BD,AO=BO=CO=DO,∴AO=DO=BO=AB,∵tan∠AFB==2,∴OF=AO=AB,∴DF=OD﹣OF=AB,BF=OB+OF=AB,∴;(3)如图2,设AB=CD=AD=a,则BD=a,∵=x,∴DE=xa,∴S△ADE=×AD×DE=xa2,∵△ABF∽△EDF,∴=x,∴DF=x•BF,∴S△ABF=a2,∵GF=2BG,∴S2=S△ABG=S△ABF=,∵AB=CB,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS)∴S△ABG =S△CBG,∴S1=四边形AGCE的面积=a2﹣xa2﹣2×∴=﹣3x2+3x+4=﹣3(x﹣)2+∴当x=时,的最大值为.17.(1)证明:∵AB=AC,∴∠B=∠C,∵∠ADC为△ABD的外角,∴∠ADE+∠EDC=∠B+∠DAB,∵∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△ABD∽△DCE,∴=,∴AB•CE=BD•CD;(2)解:设BD=x,AE=y,由(1)得,5×(5﹣y)=x×(6﹣x),整理得,y=x2﹣x+5=(x﹣3)2+,∴AE的最小值为;(3)解:作AF⊥BE于F,则四边形ADEF为矩形,∴EF=AD=3,AF=DE,∴BF=BE﹣EF=1,设CD=x,CE=y,则AF=DE=x+y,由勾股定理得,AD2+CD2=AC2,CE2+BE2=BC2,AF2+BF2=AB2,∵△ABC为等边三角形,∴AB=AC=BC,∴32+x2=AC2,y2+42=BC2,(x+y)2+12=AC2,∴x2﹣y2=7,y2+2xy=8,解得,x=,y=,∴DE=x+y=.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵∠APC=∠ABC+∠BAP,∠APC=∠APD+∠EPC,∠APD=∠ABC,∴∠BAP=∠EPC,∴△ABP∽△PCE,∵BC∥AD,∴△PCE∽△DAE,∴△ABP∽△DAE;(2)解:①∵△ABP∽△PCE,∴=,即=,∴y=﹣x2+x(0<x<6);②∵△ABP∽△DAE,∴=,即=,∴AD=,∵AD∥BC,∴,∵,∴,∴,即13x2+24x﹣100=0,∴x=2,(舍去)1∴.19.(1)解:在Rt△BCE中,当tan∠BEC=2,∴=2,即=2,解得,BE=2,由勾股定理得,CE===2,∵四边形ABCD为矩形,∴AB∥CD,∴∠ECH=∠BEC,∴tan∠ECH==2,即=2,∴EH=4,∴CH==10;(2)证明:∵∠FEG=∠FDH=90°,∠EFG=∠DFH,∴△EFG∽△DFH,∴=,∴DF•FG=HF•EF;(3)证明:∵△EFG∽△DFH,∴∠CGD=∠CHE,又∠GCD=∠HCE,∴△GCD∽△HCE,∴=,又∠GCD=∠HCE,∴△CDE∽△CGH,∴∠CDE=∠CGH.20.解:(1)AB=2,BC=1,AD=4,由勾股定理得,AC==,CD==,AE==2,CE==5,===,∴△ABC∽△EAC,∴四边形ABCE是“友好四边形”,≠,∴△ABC与△ACD不相似,∴四边形ABCD不是“友好四边形”,故答案为:四边形ABCE;(2)证明:根据旋转的性质得,∠A'CB'=∠ACB,∠CA'B'=∠CAB,∵AD∥A'B',∴∠CA'B'=∠D,∴∠CAB=∠D,又∠A'CB'=∠ACB,∴△ABC∽△DAC,∴四边形ABCD是“友好四边形”;(3)如图3,过点A作AM⊥BC于M,在Rt△ABM中,AM=AB•sin∠ABC=AB,∵△ABC的面积为6,∴BC×AB=6,∴BC×AB=24,∵四边形ABCD是被BD分割成的“友好四边形”,且AB≠BC,∴△ABD∽△DBC∴,∴BD2=AB×BC=24,∴BD==2.。
中考数学相似的综合题试题附详细答案
一、相似真题与模拟题分类汇编(难题易错题)1.如图,抛物线过点,.为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与相似,求点M的坐标.【答案】(1)解:设直线的解析式为()∵,∴解得∴直线的解析式为∵抛物线经过点,∴解得∴(2)解:∵轴,则,∴,∵点是的中点∴∴解得,(不合题意,舍去)∴(3)解:∵,,∴,∴∵∴当与相似时,存在以下两种情况:∴解得∴∴ ,解得∴【解析】【分析】(1)运用待定系数法解答即可。
(2)由(1)可得直线AB的解析式和抛物线的解析式,由点M(m,0)可得点N,P用m 表示的坐标,则可求得NP与PM,由NP=PM构造方程,解出m的值即可。
(3)在△BPN与△APM中,∠BPN=∠APM,则有和这两种情况,分别用含m的代数式表示出BP,PN,PM,PA,代入建立方程解答即可。
2.如图,BD是□ABCD的对角线,AB⊥BD,BD=8cm,AD=10cm,动点P从点D出发,以5cm/s的速度沿DA运动到终点A,同时动点Q从点B出发,沿折线BD—DC运动到终点C,在BD、DC上分别以8cm/s、6cm/s的速度运动.过点Q作QM⊥AB,交射线AB于点M,连接PQ,以PQ与QM为边作□PQMN.设点P的运动时间为t(s)(t>0),□PQMN与□ABCD重叠部分图形的面积为S(cm2).(1)AP=________cm(同含t的代数式表示).(2)当点N落在边AB上时,求t的值.(3)求S与t之间的函数关系式.(4)连结NQ,当NQ与△ABD的一边平行时,直接写出t的值.【答案】(1)(10-5t)(2)解:如图①,当点N落在边AB上时,四边形PNBQ为矩形.∵PN∥DB,∴△APN∽△ADB,∴AP:AD=PN:DB,∴(10-5t):10=8t:8,120t=80,∴.(3)解:分三种情况讨论:a)如图②,过点P作PE⊥BD于点E,则PE=3t.当时,.b)如图③,过点P作PE⊥BD于点E,则PE=3t,设PN交AB于点F,则.当时,.c)如图④,当时,PF=8-4t,FB=3t,PN=DB=QM=8,∴FN=4t,DQ=6(t-1),∴BM=DQ=6(t-1).∵∠GBM=∠A,∠DBA=∠GMB,∴△BGM∽△ABD,∴GM:BM=DB:AB,解得:GM=8t-8,∴S=S平行四边形PNMQ-S△FMN-S△BMG=8(9t-6)- ×4t×(9t-6)- ×(6t-6)(8t-8)= .综上所述:(4)解:分三种情况讨论.①当NQ∥AB时,如图5,过P作PF⊥BD于F,则PF=3t,DF=4t,PN=FQ=BQ=8t,∴BD=8t+8t+4t=8,解得:.②当AD∥NQ,且Q在BD上时,如图6.∵PNQD和PNBQ都是平行四边形,∴PN=DQ=BQ,∴8t+8t=8,解得:.③当AD∥NQ,且Q在DC上时,如图7,可以证明当Q与C重合,即直线NQ与直线BC重合时,满足条件,如图8,此时DQ=AB= =6,t= =2.综上所述:或或.【解析】【解答】解:(1)(10-5t);【分析】(1)由题意可得,DP=5t,所以AP=AD-DP=10-5t;(2)由欧勾股定理的逆定理可得∠ABD=,所以根据有一个角是直角的平行四边形是矩形可得,当点N落在边AB上时,四边形PNBQ为矩形;由平行线分线段成比例定理可得比例式:,则可得关于t的方程,解方程即可求解;(3)由(2)知,当□PQMN全部在□ABCD中时,运动时间是秒,由已知条件可知,点Q 在BD边上的运动速度是8cm/s,在DC边上的运动速度是6cm/s,所以当点Q运动到C点时,点P也运动到了点A,所以分3种情况:a)如图②,过点P作PE⊥BD于点E,当0 < t ≤时, S=BQ PE;b)如图③,过点P作PE⊥BD于点E,设PN交AB于点F,当< t ≤ 1 时,S =(PF+BQ)PE;c)如图④,当 1 < t ≤ 2 时, S =平行四边形PNMQ的面积-三角形FNM的面积-三角形BMG 的面积;(4)由题意NQ与△ABD的一边平行可知,有3种情况:①当NQ∥AB;②当AD∥NQ,且Q在BD上时;③当AD∥NQ,且Q在DC上时。
中考数学专题复习相似的综合题及详细答案
一、相似真题与模拟题分类汇编(难题易错题)1.已知线段a,b,c满足,且a+2b+c=26.(1)判断a,2b,c,b2是否成比例;(2)若实数x为a,b的比例中项,求x的值.【答案】(1)解:设,则a=3k,b=2k,c=6k,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;∴2b=8,b2=16∵a=6,2b=8,c=12,b2=16∴2bc=96,ab2=6×16=96∴2bc=ab2a,2b,c,b2是成比例的线段。
(2)解:∵x是a、b的比例中项,∴x2=6ab,∴x2=6×4×6,∴x=12.【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。
(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。
2.如图,在一个长40 m、宽30 m的矩形小操场上,王刚从A点出发,沿着A→B→C的路线以3 m/s的速度跑向C地.当他出发4 s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶,当张华跑到距B地2 m的D处时,他和王刚在阳光下的影子恰好落在一条直线上.(1)此时两人相距多少米(DE的长)?(2)张华追赶王刚的速度是多少?【答案】(1)解:在Rt△ABC中:∵AB=40,BC=30,∴AC=50 m.由题意可得DE∥AC,∴Rt△BDE∽Rt△BAC,∴ = ,即 = .解得DE= m.答:此时两人相距 m.(2)解:在Rt△BDE中:∵DB=2,DE=,∴BE=2 m.∴王刚走的总路程为AB+BE=42 m.∴王刚走这段路程用的时间为 =14(s).∴张华用的时间为14-4=10(s),∵张华走的总路程为AD=AB-BD=40-2=37(m),∴张华追赶王刚的速度是37÷10≈3.7(m/s).答:张华追赶王刚的速度约是3.7m/s.【解析】【分析】(1)在Rt△ABC中,根据勾股定理得AC=50 m,利用平行投影的性质得DE∥AC,再利用相似三角形的性质得出对应边的比相等可求得DE长.(2)在Rt△BDE中,根据勾股定理得BE=2 m,根据题意得王刚走的总路程为42 m,根据时间=路程÷速度求得王刚用的时间,减去4即为张华用的时间,再根据速度=路程÷时间解之即可得出答案.3.如图1,过等边三角形ABC边AB上一点D作交边AC于点E,分别取BC,DE 的中点M,N,连接MN.(1)发现:在图1中, ________;(2)应用:如图2,将绕点A旋转,请求出的值;(3)拓展:如图3,和是等腰三角形,且,M,N分别是底边BC,DE的中点,若,请直接写出的值.【答案】(1)(2)解:如图2中,连接AM、AN,,都是等边三角形,,,,,,,,,,∽,(3)解:如图3中,连接AM、AN,延长AD交CE于H,交AC于O,,,,,,,,,,,,,,,∽,,,,,,≌,,,,,,,,,,【解析】【解答】解:(1)如图1中,作于H,连接AM,,,,时等边三角形,,,,,平分线段DE,,、N、M共线,,四边形MNDH时矩形,,,故答案为:;【分析】(1)作DH ⊥BC 于H,连接AM.证四边形MNDH时矩形,所以MN=DH,则MN:BD=DH:BD=sin60°,即可求解;(2)利用△ABC ,△ADE 都是等边三角形可得AM:AB=AN:AD,易得∠BAD = ∠MAN ,从而得△ BAD ∽△ MAN,则NM:BD=AM:AB=sin60°,从而求解;(3)连接AM、AN,延长AD交CE于H,交AC于O.先证明△BAD ∽△MAN可得NM:BD=AM:AB=sin∠ABC;再证明△ BAD ≌△ CAE,则∠ ABD = ∠ ACE ,进而可得∠ ABC = 45°,可求出答案.4.如图,在中,,于点,点在上,且,连接.(1)求证:(2)如图,将绕点逆时针旋转得到(点分别对应点),设射线与相交于点,连接,试探究线段与之间满足的数量关系,并说明理由.【答案】(1)证明:在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴(2)解:方法1:如图1,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,∴点C,H,G,A四点共圆,∴∠CGH=∠CAH,设CG与AH交于点Q,∵∠AQC=∠GQH,∴△AQC∽△GQH,∴,∵△EHF是由△BHD绕点H逆时针旋转30°得到,由(1)知,BD=AC,∴EF=AC∴即:EF=2HG.方法2:如图2,取EF的中点K,连接GK,HK,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,由旋转知,∠EHF=90°,∴EK=HK= EF∴EK=GK= EF,∴HK=GK,∵EK=HK,∴∠FKG=2∠AEF,∵EK=GK,∴∠HKF=2∠HEF,由旋转知,∠AHF=30°,∴∠AHE=120°,由(1)知,BH=AH,∵BH=EH,∴AH=EH,∴∠AEH=30°,∴∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,∴△HKG是等边三角形,∴GH=GK,∴EF=2GK=2GH,即:EF=2GH.【解析】【分析】(1)根据等腰直角三角形的性质得出AH=BH,然后由SAS判断出△BHD≌△AHC,根据全等三角形对应角相等得出答案;(2)方法1:如图1,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,从而得出点C,H,G,A四点共圆,根据圆周角定理同弧所对的圆周角相等得出∠CGH=∠CAH,根据对顶角相等得出∠AQC=∠GQH,从而得出△AQC∽△GQH,根据全等三角形对应边成比例得出 A C∶ H G = A Q∶ G Q = 1 ∶sin 30 ° = 2,根据旋转的性质得出EF=BD,由(1)知,BD=AC,从而得出EF=ACEF=BD,由E F∶ H G = A C∶ G H = A Q∶ G Q = 1∶ sin 30 ° = 2得出结论;方法2:如图2,取EF的中点K,连接GK,HK,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,由旋转知,∠EHF=90°,根据直角三角形斜边上的中线等于斜边的一半得出EK=HK= EF,EK=GK= EF,从而得出HK=GK,根据等边对等角及三角形的外角定理得出∠FKG=2∠AEF,∠HKF=2∠HEF,由旋转知,∠AHF=30°,故∠AHE=120°,由(1)知,BH=AH,根据等量代换得出AH=EH,根据等边对等角得出∠AEH=30°,∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,根据有一个角为60°的等腰三角形是等边三角形得出△HKG是等边三角形,根据等边三角形三边相等得出GH=GK,根据等量代换得出EF=2GK=2GH。
中考数学相似-经典压轴题附答案解析
AM= AF,AN= AE,从而分别表示出 S△ AMN 与 S△ AEF,求出它们的比值即可得出答案。
2.如图,抛物线 y=﹣x2+bx+c 与 x 轴分别交于点 A、B,与 y 轴交于点 C,且 OA=1, OB=3,顶点为 D,对称轴交 x 轴于点 Q.
(1)求抛物线对应的二次函数的表达式; (2)点 P 是抛物线的对称轴上一点,以点 P 为圆心的圆经过 A、B 两点,且与直线 CD 相 切,求点 P 的坐标; (3)在抛物线的对称轴上是否存在一点 M,使得△ DCM∽ △ BQC?如果存在,求出点 M 的坐标;如果不存在,请说明理由. 【答案】(1)解: ∴
一、相似真题与模拟题分类汇编(难题易错题)
1.定义:如图 1,点 M,N 把线段 AB 分割成 AM,MN 和 BN,若以 AM,MN,BN 为边的
三角形是一个直角三角形,则称点 M,N 是线段 AB 的勾股分割点.
(1)已知点 M,N 是线段 AB 的勾股分割点,若 AM=3,MN=4 求 BN 的长; (2)已知点 C 是线段 AB 上的一定点,其位置如图 2 所示,请在 BC 上画一点 D,使 C,D 是线段 AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可); (3)如图 3,正方形 ABCD 中,M,N 分别在 BC,DC 上,且 BM≠DN,∠ MAN=45°,AM, AN 分别交 BD 于 E,F. 求证:①E、F 是线段 BD 的勾股分割点; ②△ AMN 的面积是△ AEF 面积的两倍. 【答案】(1)解:(1)①当 MN 为最大线段时, ∵ 点 M,N 是线段 AB 的勾股分割点,
(1)求证:BC=CD; (2)分别延长 AB,DC 交于点 P,若 PB=OB,CD=
2023年中考数学----《相似综合》知识点总结与专项练习题(含答案解析)
2023年中考数学----《相似综合》知识点总结与专项练习题(含答案解析)知识点总结1. 比例的性质:①基本性质:两内项之积等于量外项之积。
即若d c b a ::=,则ad bc =。
②合比性质:若d c b a =,则dd c b b a +=+。
③分比性质:若d c b a =,则dd c b b a −=−。
④合分比性质:若d c b a =,则dc d c b a b a −+=−+。
⑤等比性质:若n m d c b a ===...,则n m d c b a n d b m c a ====++++++.........。
2. 平行线分线段成比例:三条平行线被两条直线所截,所得的对应线段成比例。
即如图:有EFDE BC AB =; DFDE AC AB =; DFEF AC BC =。
推论:①平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
②如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
③平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。
3. 相似三角形的性质:①相似三角形的对应角相等,对应边的比相等。
对应边的比叫做相似比。
②相似三角形的周长比等于相似比,面积比等于相似比的平方。
相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比。
4.相似三角形的判定:①平行线法判定:平行于三角形一边的直线与三角形的另两边或另两边的延长线相交所构成的三角形与原三角形相似。
②对应边判定:三组对应边的比相等的两个三角形相似。
③两边及其夹角判定法:两组对应边的比相等,且这两组对应边的夹角相等的两个三角形相似。
④两角判定:有两组角(三组角)对应相等的两个三角形相似。
练习题1.如图,在Rt△ABC中,∠ABC=90°,E是边AC上一点,且BE=BC,过点A作BE的垂线,交BE的延长线于点D,求证:△ADE∽△ABC.【分析】根据等腰三角形的性质可得∠C=∠CEB=∠AED,由AD⊥BE可得∠D=∠ABC=90°,即可得△ADE∽△ABC.【解答】证明:∵BE=BC,∴∠C=∠CEB,∵∠CEB =∠AED ,∴∠C =∠AED ,∵AD ⊥BE ,∴∠D =∠ABC =90°,∴△ADE ∽△ABC .2.如图,在△ABC 与△A ′B ′C ′中,点D 、D ′分别在边BC 、B ′C ′上,且△ACD ∽△A ′C ′D ′,若 ,则△ABD ∽△A ′B ′D ′. 请从①''''=D C D B CD BD ;②''''=D C B A CD AB ;③∠BAD =∠B ′A ′D ′这3个选项中选择一个作为条件(写序号),并加以证明.【分析】利用相似三角形的判定:两角对应相等的两个三角形相似可证明.【解答】解:③.理由如下:∵△ACD ∽△A ′C ′D ′,∴∠ADC =∠A 'D 'C ',∴∠ADB =∠A 'D 'B ',又∵∠BAD =∠B ′A ′D ′,∴△ABD ∽△A 'B 'D '.同理,选①也可以.故答案是:③(答案不唯一).3.如图所示,在等腰三角形ABC 中,AB =AC ,点E ,F 在线段BC 上,点Q 在线段AB 上,且CF =BE ,求证:(1)∠CAE=∠BAF;(2)CF•FQ=AF•BQ.【分析】(1)根据等腰三角形的性质得到∠B=∠C,利用SAS证明△ACE≌△ABF,根据全等三角形的性质即可得解;(2)利用全等三角形的性质,结合题意证明△ACE∽AFQ,△CAF∽△BFQ,根据相似三角形的性质即可得解.【解答】证明:(1)∵AB=AC,∴∠B=∠C,∵CF=BE,∴CF﹣EF=BE﹣EF,即CE=BF,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴∠CAE=∠BAF;(2)∵△ACE≌△ABF,∴AE=AF,∠CAE=∠BAF,∵AE2=AQ•AB,AC=AB,∴=,∴△ACE∽△AFQ,∴∠AEF=∠BQF,∵AE=AF,∴∠AEF=∠AFE,∴∠BQF=∠AFE,∵∠B=∠C,∴△CAF∽△BFQ,∴=,即CF•FQ=AF•BQ.4.如图,在矩形ABCD中,AB=8,AD=4,点E是DC边上的任一点(不包括端点D,C),过点A作AF⊥AE交CB的延长线于点F,设DE=a.(1)求BF的长(用含a的代数式表示);(2)连接EF交AB于点G,连接GC,当GC∥AE时,求证:四边形AGCE是菱形.【分析】(1)根据矩形的性质可得∠ADE=∠ABF,∠∠DAE+∠BAE=90°,结合题干AF⊥AE可得∠BAF+∠BAE=90°,进而可得∠DAE=∠BAF,进而可得△ADE∽△ABF,利用相似三角形的性质可得BF的长度;(2)先根据AG∥CE,GC∥AE进而可得四边形AGCE是平行四边形,通过勾股定理可得GF2、EF2、AE2,再过点G作GM⊥AF于点M,易得△MGF∽△AEF,进而利用相似三角形的性质可得GM的长,即可得GM=GB,进而可得GF是∠AFB的角平分线,最后利用角平分线得性质可得EA=EC,即可得平行四边形AGCE是菱形.【解答】(1)解:∵四边形ABCD是矩形,∴∠ADE=∠ABF=∠BAD=90°,∴∠DAE+∠BAE=90°,∵AF⊥AE,∴∠BAF+∠BAE=90°,∴∠DAE=∠BAF,∴△ADE∽△ABF,∴,即,∴BF=2a,(2)证明:∵四边形ABCD是矩形,∴AG∥CE,∵GC∥AE,∴四边形AGCE是平行四边形.∴AG=CE=8﹣a,∴BG=AB﹣AG=8﹣(8﹣a)=a,在Rt△BGF中,GF2=a2+(2a)2=5a2,在Rt△CEF中,EF2=(2a+4)2+(8﹣a)2=5a2+80,在Rt△ADE中,AE2=42+a2=16+a2,如图,过点G作GM⊥AF于点M,∴GM∥AE,∴△MGF∽△AEF,∴,∴,∴=,∴GM =a ,∴GM =BG ,又∵GM ⊥AF ,GB ⊥FC ,∴GF 是∠AFB 的角平分线,∴EA =EC ,∴平行四边形AGCE 是菱形.5.如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF .已知四边形BFED 是平行四边形,41=BC DE . (1)若AB =8,求线段AD 的长.(2)若△ADE 的面积为1,求平行四边形BFED 的面积.【分析】(1)证明△ADE ∽△ABC ,根据相似三角形对应边的比相等列式,可解答;(2)根据相似三角形面积的比等于相似比的平方可得△ABC 的面积是16,同理可得△EFC 的面积=9,根据面积差可得答案.【解答】解:(1)∵四边形BFED 是平行四边形,∴DE ∥BF ,∴DE ∥BC ,∴△ADE ∽△ABC ,∴==,∵AB=8,∴AD=2;(2)∵△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为1,∴△ABC的面积是16,∵四边形BFED是平行四边形,∴EF∥AB,∴△EFC∽△ABC,∴=()2=,∴△EFC的面积=9,∴平行四边形BFED的面积=16﹣9﹣1=6.6.如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.【分析】(1)根据两角相等可得两三角形相似;(2)根据(1)中的相似列比例式可得结论.【解答】(1)证明:∵四边形ABCD为菱形,∴∠ACD=∠BCA,∵∠ACD=∠ABE,∴∠BCA=∠ABE,∵∠BAC=∠EAB,∴△ABC∽△AEB;(2)解:∵△ABC∽△AEB,∴=,∵AB=6,AC=4,∴=,∴AE==9.7.如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.【分析】(1)根据矩形的性质和角平分线的定义,求得∠3=∠6,从而求证BF⊥AC;(2)根据相似三角形的判定进行分析判断;(3)利用相似三角形的性质分析求解.【解答】(1)证明:如图,在矩形ABCD中,OD=OC,AB∥CD,∠BCD=90°,∴∠2=∠3=∠4,∠3+∠5=90°,∵DE=BE,∴∠1=∠2,又∵BE平分∠DBC,∴∠1=∠6,∴∠3=∠6,∴∠6+∠5=90°,∴BF⊥AC;(2)解:与△OBF相似的三角形有△ECF,△BAF理由如下:∵∠1=∠3,∠EFC=∠BFO,∴△ECF∽△OBF,∵DE=BE,∴∠1=∠2,又∵∠2=∠4,∴∠1=∠4,又∵∠BFA=∠OFB,∴△BAF∽△OBF;(3)解:在矩形ABCD中,∠4=∠3=∠2,∵∠1=∠2,∴∠1=∠4.又∵∠OFB=∠BFA,∴△OBF∽△BFA.∵∠1=∠3,∠OFB=∠EFC,∴△OBF∽△ECF.∴,∴,即3CF=2BF,∴3(CF+OF)=3CF+9=2BF+9,∴3OC=2BF+9∴3OA=2BF+9①,∵△ABF∽△BOF,∴,∴BF2=OF•AF,∴BF2=3(OA+3)②,联立①②,可得BF=1±(负值舍去),∴DE=BE=2+1+=3+.8.如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,点E为BC边上的动点(不与B、C重合,过点E作直线AB的垂线,垂足为F,连接DE、DF.(1)求证:△ABM∽△EBF;(2)当点E为BC的中点时,求DE的长;(3)设BE=x,△DEF的面积为y,求y与x之间的函数关系式,并求当x为何值时,y有最大值,最大值是多少?【分析】(1)利用两个角对应相等的三角形全等即可证明△ABM∽△EBF;(2)过点E作EN⊥AD于点N,可得四边形AMEN为矩形,从而得到NE=AM=4,AN=ME,再由勾股定理求出BM=3,从而得到ME=AN=2,进而得到DN=8,再由勾股定理,即可求解;(3)延长FE交DC的延长线于点G.根据,可得,再证得△ABM∽△ECG,可得,从而得到,再根据三角形的面积公式,得到函数关系式,再根据二次函数的性质,即可求解.【解答】(1)证明:∵EF⊥AB,AM是BC边上的高,∴∠AMB=∠EFB=90°,又∵∠B=∠B,∴△ABM∽△EBF;(2)解:过点E作EN⊥AD于点N,如图:在平行四边形ABCD中,AD∥BC,又∵AM是BC边上的高,∴AM⊥AD,∴∠AME=∠MAN=∠ANE=90°,∴四边形AMEN为矩形,∴NE=AM=4,AN=ME,在Rt△ABM中,,又∵E为BC的中点,∴,∴ME=AN=2,∴DN=8,在Rt△DNE中,;(3)解:延长FE交DC的延长线于点G,如图:∵sin B==,∴,∴EF=x,∵AB∥CD,∴∠B=∠ECG,∠EGC=∠BFE=90°,又∵∠AMB=∠EGC=90°,∴△ABM∽△ECG,∴,∴,∴GC=(10﹣x),∴DG=DC+GC=5+(10﹣x),∴y=EF•DG=×x•[5+(10﹣x)]=﹣x2+x=﹣(x﹣)2+,∴当x=时,y有最大值为,答:y=﹣x2+x,当x=时,y有最大值为.9.【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.【类比探究】如图2,△ABC 和△ADE 都是等腰直角三角形,∠ABC =∠ADE =90°.连接BD ,CE .请直接写出CE BD 的值.【拓展提升】如图3,△ABC 和△ADE 都是直角三角形,∠ABC =∠ADE =90°,且43==DE AD BC AB .连接BD ,CE . (1)求CEBD 的值; (2)延长CE 交BD 于点F ,交AB 于点G .求sin ∠BFC 的值.【分析】【问题呈现】证明△BAD CAE ,从而得出结论;【类比探究】证明△BAD ∽△CAE ,进而得出结果;【拓展提升】(1)先证明△ABC ∽△ADE ,再证得△CAE ∽△BAD ,进而得出结果;(2)在(1)的基础上得出∠ACE =∠ABD ,进而∠BFC =∠BAC ,进一步得出结果.【解答】【问题呈现】证明:∵△ABC 和△ADE 都是等边三角形,∴AD =AE ,AB =AC ,∠DAE =∠BAC =60°,∴∠DAE ﹣∠BAE =∠BAC ﹣∠BAE ,∴∠BAD =∠CAE ,∴△BAD ≌△CAE (SAS ),∴BD =CE ;【类比探究】解:∵△ABC 和△ADE 都是等腰直角三角形,∴==,∠DAE =∠BAC =45°,∴∠DAE ﹣∠BAE =∠BAC ﹣∠BAE ,∴∠BAD =∠CAE ,∴△BAD ∽△CAE ,∴==;【拓展提升】解:(1)∵==,∠ABC =∠ADE =90°,∴△ABC ∽△ADE ,∴∠BAC =∠DAE ,,∴∠CAE =∠BAD ,∴△CAE ∽△BAD ,∴==;(2)由(1)得:△CAE ∽△BAD ,∴∠ACE =∠ABD ,∵∠AGC =∠BGF ,∴∠BFC =∠BAC ,∴sin ∠BFC ==.10.如图,在矩形ABCD 中,AB =6,BC =4,点M 、N 分别在AB 、AD 上,且MN ⊥MC ,点E 为CD 的中点,连接BE 交MC 于点F .(1)当F 为BE 的中点时,求证:AM =CE ;(2)若BF EF=2,求ND AN的值;(3)若MN ∥BE ,求NDAN 的值. 【分析】(1)根据矩形的性质,利用AAS 证明△BMF ≌△ECF ,得BM =CE ,再利用点E 为CD 的中点,即可证明结论;(2)利用△BMF ∽△ECF ,得,从而求出BM 的长,再利用△ANM ∽△BMC ,得,求出AN 的长,可得答案;(3)首先利用同角的余角相等得∠CBF =∠CMB ,则tan ∠CBF =tan ∠CMB ,得,可得BM 的长,由(2)同理可得答案.【解答】(1)证明:∵F 为BE 的中点,∴BF =EF ,∵四边形ABCD 是矩形,∴AB ∥CD ,AB =CD∴∠BMF =∠ECF ,∵∠BFM =∠EFC ,∴△BMF ≌△ECF (AAS ),∴BM =CE ,∵点E 为CD 的中点,∴CE =DE ,∴BM =CE =DE ,∵AB =CD ,∴AM =CE ;(2)解:∵∠BMF =∠ECF ,∠BFM =∠EFC ,∴△BMF∽△ECF,∴,∵CE=3,∴BM=,∴AM=,∵CM⊥MN,∴∠CMN=90°,∴∠AMN+∠BMC=90°,∵∠AMN+∠ANM=90°,∴∠ANM=∠BMC,∵∠A=∠MBC,∴△ANM∽△BMC,∴,∴,∴,∴DN=AD﹣AN=4﹣=,∴;(3)解:∵MN∥BE,∴∠BFC=∠CMN,∴∠FBC+∠BCM=90°,∵∠BCM+∠BMC=90°,∴∠CBF=∠CMB,∴tan∠CBF=tan∠CMB,∴,∴,∴,∴=,由(2)同理得,,∴,解得AN=,∴DN=AD﹣AN=4﹣=,∴=.11.在四边形ABCD中,∠BAD的平分线AF交BC于F,延长AB到E使BE=FC,G是AF的中点,GE 交BC于O,连接GD.(1)当四边形ABCD是矩形时,如图1,求证:①GE=GD;②BO•GD=GO•FC.(2)当四边形ABCD是平行四边形时,如图2,(1)中的结论都成立.请给出结论②的证明.【分析】(1)连接CG,过点G作GJ⊥CD于点J.证明△EAG≌△DAG(SAS),可得EG=DG,∠AEG =∠ADG,再证明△OBE∽△OGC,推出=,可得结论;(2)过点D作DT⊥BC于点T,连接GT.证明△EAG≌△DAG(SAS),推出EG=DG,∠AEG=∠ADG,再证明△OBE∽△OGT,推出=,可得结论.【解答】(1)证明:连接CG,过点G作GJ⊥CD于点J.∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,AD=BC,∵AF平分∠BAD,∴∠BAF=∠DAF=45°,∴∠AFB=∠BAF=45°,∴BA=BF,∵BE=CF,∴AE=AB+BE=BF+CF=BC=AD,∵AG=AG,∴△EAG≌△DAG(SAS),∴EG=DG,∠AEG=∠ADG,∵AD∥FC,AG=GF,∴DJ=JC,∵GJ⊥CD,∴GD=GC,∴∠GDC=∠GCD,∵∠ADC=∠BCD=90°,∴∠ADG=∠GCO,∴∠OEB=∠OCG,∵∠BOE=∠GOC,∴△OBE∽△OGC,∴=,∵GC=GD,BE=CF,∴BO•GD=GO•FC;(2)解:过点D作DT⊥BC于点T,连接GT.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAG=∠AFB,∵AF平分∠DAB,∴∠DAG=∠BAF,∴BAF=∠AFB,∴AE =AB +BE =BF +CF =BC =AD , ∵AG =AG ,∴△EAG ≌△DAG (SAS ), ∴∠AEG =∠ADG , ∵AD ∥FT ,AG =GF , ∴DJ =JT , ∵GJ ⊥DT , ∴GD =GT , ∴∠GDT =∠GTD , ∵∠ADT =∠BTD =90°, ∴∠ADG =∠GTO , ∴∠OEB =∠OTG , ∵∠BOE =∠GOT , ∴△OBE ∽△OGT , ∴=,∵GT =GD ,BE =CF , ∴BO •GD =GO •FC . 12.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是△ABC 的角平分线,可证CDBDAC AB =.小慧的证明思路是:如图2,过点C 作CE ∥AB ,交AD 的延长线于点E ,构造相似三角形来证明CDBDAC AB =.(1)请参照小慧提供的思路,利用图2证明:CDBDAC AB =; 应用拓展:(2)如图3,在Rt △ABC 中,∠BAC =90°,D 是边BC 上一点.连接AD ,将△ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处. ①若AC =1,AB =2,求DE 的长;②若BC =m ,∠AED =α,求DE 的长(用含m ,α的式子表示).【分析】(1)证明△CED ∽△BAD ,由相似三角形的性质得出,证出CE =CA ,则可得出结论;(2)①由折叠的性质可得出∠CAD =∠BAD ,CD =DE ,由(1)可知,,由勾股定理求出BC=,则可求出答案;②由折叠的性质得出∠C =∠AED =α,则tan ∠C =tan α=,方法同①可求出CD =,则可得出答案.【解答】(1)证明:∵CE ∥AB , ∴∠E =∠EAB ,∠B =∠ECB , ∴△CED ∽△BAD , ∴,∵∠E =∠EAB ,∠EAB =∠CAD , ∴∠E =∠CAD , ∴CE =CA ,(2)解:①∵将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处,∴∠CAD=∠BAD,CD=DE,由(1)可知,,又∵AC=1,AB=2,∴,∴BD=2CD,∵∠BAC=90°,∴BC===,∴BD+CD=,∴3CD=,∴CD=;∴DE=;②∵将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处,∴∠CAD=∠BAD,CD=DE,∠C=∠AED=α,∴tan∠C=tanα=,由(1)可知,,∴tanα=,∴BD=CD•tanα,又∵BC=BD+CD=m,∴CD•tanα+CD=m,∴CD=,∴DE =.13.【基础巩固】(1)如图1,在△ABC 中,D ,E ,F 分别为AB ,AC ,BC 上的点,DE ∥BC ,BF =CF ,AF 交DE 于点G ,求证:DG =EG .【尝试应用】(2)如图2,在(1)的条件下,连结CD ,CG .若CG ⊥DE ,CD =6,AE =3,求BCDE的值. 【拓展提高】(3)如图3,在▱ABCD 中,∠ADC =45°,AC 与BD 交于点O ,E 为AO 上一点,EG ∥BD 交AD 于点G ,EF ⊥EG 交BC 于点F .若∠EGF =40°,FG 平分∠EFC ,FG =10,求BF 的长.【分析】(1)证明△AGD ∽△AFB ,△AFC ∽△AGE ,根据相似三角形的性质得到=,进而证明结论;(2)根据线段垂直平分线的性质求出CE ,根据相似三角形的性质计算,得到答案;(3)延长GE 交AB 于M ,连接MF ,过点M 作MN ⊥BC 于N ,根据直角三角形的性质求出∠EFG ,求出∠MFN =30°,根据直角三角形的性质、勾股定理计算即可. 【解答】(1)证明:∵DE ∥BC , ∴△AGD ∽△AFB ,△AFC ∽△AGE , ∴=,=,∴=,∵BF =CF , ∴DG =EG ;(2)解:∵DG=EG,CG⊥DE,∴CE=CD=6,∵DE∥BC,∴△ADE∽△ABC,∴===;(3)解:延长GE交AB于M,连接MF,过点M作MN⊥BC于N,∵四边形ABCD为平行四边形,∴OB=OD,∠ABC=∠ADC=45°,∵MG∥BD,∴ME=GE,∵EF⊥EG,∴FM=FG=10,在Rt△GEF中,∠EGF=40°,∴∠EFG=90°﹣40°=50°,∵FG平分∠EFC,∴∠GFC=∠EFG=50°,∵FM=FG,EF⊥GM,∴∠MFE=∠EFG=50°,∴∠MFN=30°,∴MN=MF=5,∴NF==5,∵∠ABC=45°,∴BN=MN=5,∴BF=BN+NF=5+5.14.如图1,在矩形ABCD中,AB=4,BC=6.点E是线段AD上的动点(点E不与点A,D重合),连接CE,过点E作EF⊥CE,交AB于点F.(1)求证:△AEF∽△DCE;(2)如图2,连接CF,过点B作BG⊥CF,垂足为G,连接AG.点M是线段BC的中点,连接GM.①求AG+GM的最小值;②当AG+GM取最小值时,求线段DE的长.【分析】(1)由矩形的性质及直角三角形的性质证出∠DCE=∠AEF,根据相似三角形的判定可得出结论;(2)①连接AM,由直角三角形的性质得出MB=CM=GM=,则点G在以点M为圆心,3为半径的圆上,当A,G,M三点共线时,AG+GM=AM,此时,AG+GM取得最小值,由勾股定理求出AM=5,则可得出答案;②方法一:过点M作MN∥AB交FC于点N,证明△CMN∽△CBF,由相似三角形的性质得出,设AF=x,则BF=4﹣x,得出MN=BF=(4+x),证明△AFG∽△MNG,得出比例线段,列出方程,解得x=1,求出AF=1,由(1)得,设DE=y,则AE=6﹣y,得出方程,解得y=3+或y=3﹣,则可得出答案.方法二:过点G作GH∥AB交BC于点H,证明△MHG∽△MBA,由相似三角形的性质得出,求出GH=,MH=,证明△CHG∽△CBF,得出,求出FB=3,则可得出AF=1,后同方法一可求出DE的长.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠CED+∠DCE=90°,∵EF⊥CE,∴∠CED+∠AEF=90°,∴∠DCE=∠AEF,∴△AEF∽△DCE;(2)解:①连接AM,如图2,∵BG⊥CF,∴△BGC是直角三角形,∵点M是BC的中点,∴MB=CM=GM=,∴点G在以点M为圆心,3为半径的圆上,当A,G,M三点不共线时,由三角形两边之和大于第三边得:AG+GM>AM,当A,G,M三点共线时,AG+GM=AM,此时,AG+GM取得最小值,在Rt△ABM中,AM===5,∴AG+GM的最小值为5.②如图3,过点M作MN∥AB交FC于点N,∴△CMN∽△CBF,∴,设AF=x,则BF=4﹣x,∴MN=BF=(4﹣x),∵MN∥AB,∴△AFG∽△MNG,∴,由(2)可知AG+GM的最小值为5,即AM=5,又∵GM=3,∴AG=2,∴,解得x =1, 即AF =1, 由(1)得,设DE =y ,则AE =6﹣y , ∴,解得:y =3+或y =3﹣, ∵0<6,0<3﹣<6, ∴DE =3+或DE =3﹣.15.已知矩形ABCD ,点E 为直线BD 上的一个动点(点E 不与点B 重合),连接AE ,以AE 为一边构造矩形AEFG (A ,E ,F ,G 按逆时针方向排列),连接DG .(1)如图1,当1==AE AGAB AD 时,请直接写出线段BE 与线段DG 的数量关系与位置关系; (2)如图2,当2==AEAGAB AD 时,请猜想线段BE 与线段DG 的数量关系与位置关系,并说明理由;(3)如图3,在(2)的条件下,连接BG ,EG ,分别取线段BG ,EG 的中点M ,N ,连接MN ,MD ,ND ,若AB =5,∠AEB =45°,请直接写出△MND 的面积.【分析】(1)证明△BAE ≌△DAG ,进一步得出结论; (2)证明BAE ∽△DAG ,进一步得出结论;(3)当点E在线段BD上时,解斜三角形ABE,求得BE=3,根据(2)可得DG=6,从而得出三角形BEG的面积,可证得△MND≌△MNG,△MNG与△BEG的面积比等于1:4,进而求得结果;同理可得点E在DB的延长线时的情形.【解答】解:(1)由题意得:四边形ABCD和四边形AEFG是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAD﹣∠DAE=∠EAG﹣∠DAE,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∠ABE=∠ADG,∴∠ADG+∠ADB=∠ABE+∠ADB=90°,∴∠BDG=90°,∴BE⊥DG;(2)BE=,BE⊥DG,理由如下:由(1)得:∠BAE=∠DAG,∵==2,∴△BAE∽△DAG,∴,∠ABE=∠ADG,∴∠ADG+∠ADB=∠ABE+∠ADB=90°,∴∠BDG=90°,∴BE⊥DG;(3)如图,当B在线段BD上时,作AH⊥BD于H,∵tan∠ABD=,∴设AH=2x,BH=x,在Rt△ABH中,x2+(2x)2=()2,∴BH=1,AH=2,在Rt△AEH中,∵tan∠AEB=,∴,∴EH=AH=2,∴BE=BH+EH=3,∵BD==5,∴DE=BD﹣BE=5﹣3=2,由(2)得:,DG⊥BE,∴DG=2BE=6,∴S△BEG===9,在Rt△BDG和Rt△DEG中,点M是BG的中点,点N是CE的中点,∴DM=GM=,∵NM=NM,∴△DMN≌△GMN(SSS),∵MN是△BEG的中位线,∴MN∥BE,∴△BEG∽△MNG,∴=()2=,∴S△MND=S△MNG=S△BEG=,如图,同上可得:BE=EH﹣BH=2﹣1=1,DG=2BE=2,∴=1,∴S△BEG=,综上所述:△DMN的面积是或.。
中考数学压轴题专题相似的经典综合题附答案
一、相似真题与模拟题分类汇编(难题易错题)1.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B(A,B两点到路灯正下方的距离相等),他的影长y随他与点A之间的距离x的变化而变化.(1)求y与x之间的函数关系式;(2)作出函数的大致图象.【答案】(1)解:如图①:作CO⊥AB于O,①当小亮走到A'处(A'位于A与O之间)时,作出他的影子A'C'.小亮从点A到达点O的过程中,影长越来越小,直到影长为0;从点O到达点B的过程中,影长越来越大,到点B达到最大值.设小亮的身高MA'=l,CO=h,AO=m,影长C'A'=y,小亮走过的距离AA'=x,由图易得C'A=x-y,∵MA'⊥AB,CO⊥AB,∴△MC'A'∽△CC'O,∴,即 = ,∴y= x- (0≤x≤m),(此时m,l,h为常数),②当小亮走到A″处(A″位于O与B之间)时;同理可得y=- x+ (m<x≤2m).(2)解:如图②所示:【解析】【分析】(1)如图①:作CO⊥AB于O,①当小亮走到A'处(A'位于A与O之间)时,作出他的影子A'C';根据中心投影的特点可知影长随x的变化情况.设小亮的身高MA'=l,CO=h,AO=m,影长C'A'=y,小亮走过的距离AA'=x,由图易得C'A=x-y,根据相似三角形的判定和性质可得y与x的函数解析式.②当小亮走到A″处(A″位于O与B之间)时;同理可得y=- x+ (m<x≤2m).(2)根据(1)的函数解析式可画出图像.2.如图,在中,,于点,点在上,且,连接.(1)求证:(2)如图,将绕点逆时针旋转得到(点分别对应点),设射线与相交于点,连接,试探究线段与之间满足的数量关系,并说明理由.【答案】(1)证明:在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴(2)解:方法1:如图1,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,∴点C,H,G,A四点共圆,∴∠CGH=∠CAH,设CG与AH交于点Q,∵∠AQC=∠GQH,∴△AQC∽△GQH,∴,∵△EHF是由△BHD绕点H逆时针旋转30°得到,由(1)知,BD=AC,∴EF=AC∴即:EF=2HG.方法2:如图2,取EF的中点K,连接GK,HK,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,由旋转知,∠EHF=90°,∴EK=HK= EF∴EK=GK= EF,∴HK=GK,∵EK=HK,∴∠FKG=2∠AEF,∵EK=GK,∴∠HKF=2∠HEF,由旋转知,∠AHF=30°,∴∠AHE=120°,由(1)知,BH=AH,∵BH=EH,∴AH=EH,∴∠AEH=30°,∴∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,∴△HKG是等边三角形,∴GH=GK,∴EF=2GK=2GH,即:EF=2GH.【解析】【分析】(1)根据等腰直角三角形的性质得出AH=BH,然后由SAS判断出△BHD≌△AHC,根据全等三角形对应角相等得出答案;(2)方法1:如图1,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,从而得出点C,H,G,A四点共圆,根据圆周角定理同弧所对的圆周角相等得出∠CGH=∠CAH,根据对顶角相等得出∠AQC=∠GQH,从而得出△AQC∽△GQH,根据全等三角形对应边成比例得出 A C∶ H G = A Q∶ G Q = 1 ∶sin 30 ° = 2,根据旋转的性质得出EF=BD,由(1)知,BD=AC,从而得出EF=ACEF=BD,由E F∶ H G = A C∶ G H = A Q∶ G Q = 1∶ sin 30 ° = 2得出结论;方法2:如图2,取EF的中点K,连接GK,HK,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,由旋转知,∠EHF=90°,根据直角三角形斜边上的中线等于斜边的一半得出EK=HK= EF,EK=GK= EF,从而得出HK=GK,根据等边对等角及三角形的外角定理得出∠FKG=2∠AEF,∠HKF=2∠HEF,由旋转知,∠AHF=30°,故∠AHE=120°,由(1)知,BH=AH,根据等量代换得出AH=EH,根据等边对等角得出∠AEH=30°,∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,根据有一个角为60°的等腰三角形是等边三角形得出△HKG是等边三角形,根据等边三角形三边相等得出GH=GK,根据等量代换得出EF=2GK=2GH。
中考数学 相似 综合题附答案
中考数学相似综合题附答案一、相似1.如图,在△ABC中,∠C=90°,AC=8,BC=6。
P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N设AP=x.(1)在△ABC中,AB= ________;(2)当x=________时,矩形PMCN的周长是14;(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明。
【答案】(1)10(2)5(3)解:∵PM⊥AC,PN⊥BC,∴∠AMP=∠PNB=∠C=90º.∴AC∥PN,∠A=∠NPB.∴△AMP∽△PNB∽△ABC.当P为AB中点时,可得△AMP≌△PNB此时S△AMP=S△PNB= ×4×3=6而S矩形PMCN=PM·MC=3×4=12.所以不存在x的值,能使△AMP的面积、△PNB的面积与矩形PMCN面积同时相等.【解析】【解答】(1)∵△ABC为直角三角形,且AC=8,BC=6,( 2 )∵PM⊥AC PN⊥BC∴MP∥BC,AC∥PN(垂直于同一条直线的两条直线平行),∴,∵AP=x,AB=10,BC=6,AC=8,BP=10-x,∴矩形PMCN周长=2(PM+PN)=2( x+8- x)=14,解得x=5;【分析】在△ABC中,∠C=90°,AC=8,BC=6根据勾股定理,可求出AB的长;AP=x,可以得到矩形PMCN的周长的表达式,构造方程,解方程得到x值.可以证明△AMP∽△PNB∽△ABC,只有当P为AB中点时,可得△AMP≌△PNB,此时S△AMP=S△PNB,分别求出当P为AB中点时△PAM的面积、△PBN的面积与矩形PMCN的面积比较即可.2.如图,抛物线y=﹣ +bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与△APM相似,求点M的坐标.【答案】(1)解:设直线AB的解析式为y=px+q,把A(3,0),B(0,2)代入得,解得,∴直线AB的解析式为y=﹣ x+2;把A(3,0),B(0,2)代入y=﹣ +bx+c得,解得,∴抛物线解析式为y=﹣ x2+ x+2(2)解:∵M(m,0),MN⊥x轴,∴N(m,﹣ m2+ m+2),P(m,﹣ m+2),∴NP=﹣ m2+4m,PM=﹣ m+2,而NP=PM,∴﹣ m2+4m=﹣ m+2,解得m1=3(舍去),m2= ,∴N点坐标为(,)(3)解:∵A(3,0),B(0,2),P(m,﹣ m+2),∴AB= = ,BP= = m,而NP=﹣ m2+4m,∵MN∥OB,∴∠BPN=∠ABO,当 = 时,△BPN∽△OBA,则△BPN∽△MPA,即 m:2=(﹣ m2+4m):,整理得8m2﹣11m=0,解得m1=0(舍去),m2= ,此时M点的坐标为(,0);当 = 时,△BPN∽△ABO,则△BPN∽△APM,即 m: =(﹣ m2+4m):2,整理得2m2﹣5m=0,解得m1=0(舍去),m2= ,此时M点的坐标为(,0);综上所述,点M的坐标为(,0)或(,0)【解析】【分析】(1)因为抛物线和直线AB都过点A(3,0)、B(0,2),所以用待定系数法求两个解析式即可;(2)由题意知点P是MN的中点,所以PM=PN;而MN OA交抛物线与点N,交直线AB于点P,所以M、P、N的横坐标相同且都是m,纵坐标分别可用(1)中相应的解析式表示,即P(m,),N(m,),PM与PN的长分别为相应两点的纵坐标的绝对值,代入PM=PN即可的关于m的方程,解方程即可求解;(3)因为以B,P,N为顶点的三角形与△APM相似,而△APM是直角三角形,所以分两种情况:当∠PBN=时,则可得△PBN∽△PMA,即得相应的比例式,可求得m的值;当∠PNB=时,则可得△PNB∽△PMA,即得相应的比例式,可求得m的值。
中考数学复习---相似三角形综合压轴题练习(含答案解析)
中考数学复习---相似三角形综合压轴题练习(含答案解析)一.平行线分线段成比例(共1小题)1.(2022•襄阳)如图,在△ABC中,D是AC的中点,△ABC的角平分线AE 交BD于点F,若BF:FD=3:1,AB+BE=3,则△ABC的周长为.【答案】5【解答】解:如图,过点F作FM⊥AB于点M,FN⊥AC于点N,过点D作DT∥AE交BC于点T.∵AE平分∠BAC,FM⊥AB,FN⊥AC,∴FM=FN,∴===3,∴AB=3AD,设AD=DC=a,则AB=3a,∵AD=DC,DT∥AE,∴ET=CT,∴==3,设ET=CT=b,则BE=3b,∵AB+BE=3,∴3a+3b=3,∴a+b=,∴△ABC的周长=AB+AC+BC=5a+5b=5,故答案为:5.二.相似三角形的性质和判定2.(2022•鞍山)如图,在正方形ABCD中,点E为AB的中点,CE,BD交于点H,DF⊥CE于点F,FM平分∠DFE,分别交AD,BD于点M,G,延长MF交BC于点N,连接BF.下列结论:①tan∠CDF=;②S△EBH:S△DHF =3:4;③MG:GF:FN=5:3:2;④△BEF∽△HCD.其中正确的是.(填序号即可).【答案】①③④【解答】解:如图,过点G作GQ⊥DF于点Q,GP⊥EF于点P.设正方形ABCD的边长为2a.∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,∵AE=EB=a,BC=2a,∵DF⊥CE,∴∠CFD=90°,∴∠ECB+∠DCF=90°,∵∠DCF+∠CDF=90°,∴∠CDF=∠ECB,∴tan∠CDF=,故①正确,∵BE∥CD,∴===,∵EC===a,BD=CB=2a,∴EH=EC=a,BH=BD=a,DH=BD=a,在Rt△CDF中,tan∠CDF==,CD=2a,∴CF=a,DF=a,∴HF=CE﹣EH﹣CF=a﹣a﹣a=a,∴S△DFH=•FH•DF=×a×a=a2,∵S△BEH=S△ECB=××a×2a=a2,∴S△EBH:S△DHF=a2:a2=5:8,故②错误.∵FM平分∠DFE,GQ⊥EF,GP⊥FE,∴GQ=GP,∵==,∴=,∴BG=DG,∵DM∥BN,∴==1,∴GM=GN,∵S△DFH=S△FGH+S△FGD,∴×a×a=××GP+×a×GQ,∴GP=GQ=a,∴FG=a,过点N作NJ⊥CE于点J,设FJ=NJ=m,则CJ=2m,∴3m=a,∴m=a,∴FN=m=a,∴MG=GN=GF+FN=a+a=a,∴MG:GF:FN=a:a:a=5:3:2,故③正确,∵AB∥CD,∴∠BEF=∠HCD,∵==,==,∴=,∴△BEF∽△HCD,故④正确.故答案为:①③④.3.(2022•眉山)如图,四边形ABCD为正方形,将△EDC绕点C逆时针旋转90°至△HBC,点D,B,H在同一直线上,HE与AB交于点G,延长HE与CD的延长线交于点F,HB=2,HG=3.以下结论:①∠EDC=135°;②EC2=CD•CF;③HG=EF;④sin∠CED=.其中正确结论的个数为()A.1个B.2个C.3个D.4个【答案】D【解答】解:∵△EDC旋转得到△HBC,∴∠EDC=∠HBC,∵ABCD为正方形,D,B,H在同一直线上,∴∠HBC=180°﹣45°=135°,∴∠EDC=135°,故①正确;∵△EDC旋转得到△HBC,∴EC=HC,∠ECH=90°,∴∠HEC=45°,∴∠FEC=180°﹣45°=135°,∵∠ECD=∠ECF,∴△EFC∽△DEC,∴,∴EC2=CD•CF,故②正确;设正方形边长为a,∵∠GHB+∠BHC=45°,∠GHB+∠HGB=45°,∴∠BHC=∠HGB=∠DEC,∵∠GBH=∠EDC=135°,∴△GBH∽△EDC,∴,即,∵△HEC是等腰直角三角形,∴,∵∠GHB=∠FHD,∠GBH=∠HDF=135°,∴△HBG∽△HDF,∴,即,解得:EF=3,∵HG=3,∴HG=EF,故③正确;过点E作EM⊥FD交FD于点M,∴∠EDM=45°,∵ED=HB=2,∴,∵EF=3,∴,∵∠DEC+∠DCE=45°,∠EFC+∠DCE=45°,∴∠DEC=∠EFC,∴,故④正确综上所述:正确结论有4个,故选:D.4.(2022•东营)如图,已知菱形ABCD的边长为2,对角线AC、BD相交于点O,点M,N分别是边BC、CD上的动点,∠BAC=∠MAN=60°,连接MN、OM.以下四个结论正确的是()①△AMN是等边三角形;②MN的最小值是;③当MN最小时S△CMN=S菱形ABCD;④当OM⊥BC时,OA2=DN•AB.A.①②③B.①②④C.①③④D.①②③④【答案】D【解答】解:∵四边形ABCD是菱形,∴AB=CB=AD=CD,AB∥CD,AC⊥BD,OA=OC,∴∠BAC=∠ACD=60°,∴△ABC和△ADC都是等边三角形,∴∠ABM=∠ACN=60°,AB=AC,∵∠MAN=60°,∴∠BAM=∠CAN=60°﹣∠,∴△BAM≌△CAN(ASA),∴AM=AN,∴△AMN是等边三角形,故①正确;当AM⊥BC时,AM的值最小,此时MN的值也最小,∵∠AMB=90°,∠ABM=60°,AB=2,∴MN=AM=AB•sin60°=2×=,∴MN的最小值是,故②正确;∵AM⊥BC时,MN的值最小,此时BM=CM,∴CN=BM=CB=CD,∴DN=CN,∴MN∥BD,∴△CMN∽△CBD,∴===,∴S△CMN=S△CBD,∵S△CBD=S菱形ABCD,∴S△CMN=×S菱形ABCD=S菱形ABCD,故③正确;∵CB=CD,BM=CN,∴CB﹣BM=CD﹣CN,∴CM=DN,∵OM⊥BC,∴∠CMO=∠COB=90°,∵∠OCM=∠BCO,∴△OCM∽△BCO,∴=,∴OC2=CM•CB,∴OA2=DN•AB,故④正确,故选:D.5.(2022•绍兴)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB =9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是()A.B.C.10D.【答案】A【解答】解:如右图1所示,由已知可得,△DFE∽△ECB,则,设DF=x,CE=y,则,解得,∴DE=CD+CE=6+=,故选项B不符合题意;EB=DF+AD=+2=,故选项D不符合题意;如图2所示,由已知可得,△DCF∽△FEB,则,设FC=m,FD=n,则,解得,∴FD=10,故选项C不符合题意;BF=FC+BC=8+7=15;如图3所示:此时两个直角三角形的斜边长为6和7;故选:A.6.(2022•连云港)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=AD;③GE =DF;④OC=2OF;⑤△COF∽△CEG.其中正确的是()A.①②③B.①③④C.①④⑤D.②③④【答案】B【解答】解:由折叠性质可得:DG=OG=AG,AE=OE=BE,OC=BC,∠DGF=∠FGO,∠AGE=∠OGE,∠AEG=∠OEG,∠OEC=∠BEC,∴∠FGE=∠FGO+∠OGE=90°,∠GEC=∠OEG+∠OEC=90°,∴∠FGE+∠GEC=180°,∴GF∥CE,故①正确;设AD=2a,AB=2b,则=OG=AG=a,AE=OE=BE=b,∴CG=OG+OC=3a,在Rt△CGE中,CG2=GE2+CE2,(3a)2=a2+b2+b2+(2a)2,解得:b=a,∴AB=AD,故②错误;在Rt△COF中,设OF=DF=x,则CF=2b﹣x=2a﹣x,∴x2+(2a)2=(2a﹣x)2,解得:x=a,∴DF=×a=a,2OF=2×a=2a,在Rt△AGE中,GE==a,∴GE=DF,OC=2OF,故③④正确;无法证明∠FCO=∠GCE,∴无法判断△COF∽△CEG,故⑤错误;综上,正确的是①③④,故选:B.7.(2022•遂宁)如图,正方形ABCD与正方形BEFG有公共顶点B,连接EC、GA,交于点O,GA与BC交于点P,连接OD、OB,则下列结论一定正确的是()①EC⊥AG;②△OBP∽△CAP;③OB平分∠CBG;④∠AOD=45°;A.①③B.①②③C.②③D.①②④【答案】D【解答】解:∵四边形ABCD、四边形BEFG是正方形,∴AB=BC,BG=BE,∠ABC=90°=∠GBE,∴∠ABC+∠CBG=∠GBE+∠CBG,即∠ABG=∠EBC,∴△ABG≌△CBE(SAS),∴∠BAG=∠BCE,∵∠BAG+∠APB=90°,∴∠BCE+∠APB=90°,∴∠BCE+∠OPC=90°,∴∠POC=90°,∴EC⊥AG,故①正确;取AC的中点K,如图:在Rt△AOC中,K为斜边AC上的中点,∴AK=CK=OK,在Rt△ABC中,K为斜边AC上的中点,∴AK=CK=BK,∴AK=CK=OK=BK,∴A、B、O、C四点共圆,∴∠BOA=∠BCA,∵∠BPO=∠CPA,∴△OBP∽△CAP,故②正确,∵∠AOC=∠ADC=90°,∴∠AOC+∠ADC=180°,∴A、O、C、D四点共圆,∵AD=CD,∴∠AOD=∠DOC=45°,故④正确,由已知不能证明OB平分∠CBG,故③错误,故正确的有:①②④,故选:D.8.(2022•金华)如图是一张矩形纸片ABCD,点E为AD中点,点F在BC上,把该纸片沿EF折叠,点A,B的对应点分别为A′,B′,A′E与BC相交于点G,B′A′的延长线过点C.若=,则的值为()A.2B.C.D.【答案】A【解答】解:连接FG,CA′,过点G作GT⊥AD于点T.设AB=x,AD=y.∵=,∴可以假设BF=2k,CG=3k.∵AE=DE=y,由翻折的性质可知EA=EA′=y,BF=FB′=2k,∠AEF=∠GEF,∵AD∥CB,∴∠AEF=∠EFG,∴∠GEF=∠GFE,∴EG=FG=y﹣5k,∴GA′=y﹣(y﹣5k)=5k﹣y,∵C,A′,B′共线,GA′∥FB′,∴=,∴=,∴y2﹣12ky+32k2=0,∴y=8k或y=4k(舍去),∴AE=DE=4k,∵四边形CDTG是矩形,∴CG=DT=3k,∴ET=k,∵EG=8k﹣5k=3k,∴AB=CD=GT==2k,∴==2.解法二:不妨设BF=2,CG=3,连接CE,则Rt△CA'E≌Rt△CDE,推出A'C =CD=AB=A'B',==1,推出GF=CG=3,BC=8,在Rt△CB'F,勾股得CB'=4则A'B'=2,故选:A.9.(2022•乐山)如图,等腰△ABC的面积为2,AB=AC,BC=2.作AE∥BC且AE=BC.点P是线段AB上一动点,连结PE,过点E作PE的垂线交BC的延长线于点F,M是线段EF的中点.那么,当点P从A点运动到B 点时,点M的运动路径长为()A.B.3C.2D.4【答案】B【解答】解:如图,过点A作AH⊥BC于点H.当点P与A重合时,点F与C重合,当点P与B重合时,点F的对应点为F″,点M的运动轨迹是△ECF″的中位线,M′M″=CF″,∵AB=AC,AH⊥BC,∴BH=CH,∵AE∥BC,AE=BC,∴AE=CH,∴四边形AHCE是平行四边形,∵∠AHC=90°,∴四边形AHCE是矩形,∴EC⊥BF″,AH=EC,∵BC=2,S△ABC=2,∴×2×AH=2,∴AH=EC=2,∵∠BEF″=∠ECB=∠ECF″,∴∠BEC+∠CEF″=90°,∠CEF″+∠F″=90°,∴∠BEC=∠F″,∴△ECB∽△F″CE,∴EC2=CB•CF″,∴CF″==6,∴M′M″=3故选:B.10.(2022•海南)如图,菱形ABCD中,点E是边CD的中点,EF垂直AB交AB的延长线于点F,若BF:CE=1:2,EF=,则菱形ABCD的边长是()A.3B.4C.5D.【答案】B【解答】解:过点D作DH⊥AB于点H,如图,∵四边形ABCD是菱形,∴AD=AB=CD,AB∥CD.∵EF⊥AB,DH⊥AB,∴DH∥EF,∴四边形DHFE为平行四边形,∴HF=DE,DH=EF=.∵点E是边CD的中点,∴DE=CD,∴HF=CD=AB.∵BF:CE=1:2,∴设BF=x,则CE=2x,∴CD=4x,DE=HF=2x,AD=AB=4x,∴AF=AB+BF=5x.∴AH=AF﹣HF=3x.在Rt△ADH中,∵DH2+AH2=AD2,∴.解得:x=±1(负数不合题意,舍去),∴x=1.∴AB=4x=4.即菱形ABCD的边长是4,故选:B.11.(2022•黑龙江)如图,正方形ABCD的对角线AC,BD相交于点O,点F 是CD上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①AE⊥BF;②∠OPA=45°;③AP﹣BP=OP;④若BE:CE =2:3,则tan∠CAE=;⑤四边形OECF的面积是正方形ABCD面积的.其中正确的结论是()A.①②④⑤B.①②③⑤C.①②③④D.①③④⑤【答案】B【解答】解:①∵四边形ABCD是正方形,∴AB=BC=CD,AC⊥BD,∠ABD=∠DBC=∠ACD=45°.∴∠BOE+∠EOC=90°,∵OE⊥OF,∴∠FOC+∠EOC=90°.∴∠BOE=∠COF.在△BOE和△COF中,,∴△BOE≌△COF(ASA),∴BE=CF.在△BAE和△CBF中,,∴△BAE≌△CBF(SAS),∴∠BAE=∠CBF.∵∠ABP+∠CBF=90°,∴∠ABP+∠BAE=90°,∴∠APB=90°.∴AE⊥BF.∴①的结论正确;②∵∠APB=90°,∠AOB=90°,∴点A,B,P,O四点共圆,∴∠APO=∠ABO=45°,∴②的结论正确;③过点O作OH⊥OP,交AP于点H,如图,∵∠APO=45°,OH⊥OP,∴OH=OP=HP,∴HP=OP.∵OH⊥OP,∴∠POB+∠HOB=90°,∵OA⊥OB,∴∠AOH+∠HOB=90°.∴∠AOH=∠BOP.∵∠OAH+BAE=45°,∠OBP+∠CBF=45°,∠BAE=∠CBF,∴∠OAH=∠OBP.在△AOH和△BOP中,,∴△AOH≌△BOP(ASA),∴AH=BP.∴AP﹣BP=AP﹣AH=HP=OP.∴③的结论正确;④∵BE:CE=2:3,∴设BE=2x,则CE=3x,∴AB=BC=5x,∴AE==x.过点E作EG⊥AC于点G,如图,∵∠ACB=45°,∴EG=GC=EC=x,∴AG==x,在Rt△AEG中,∵tan∠CAE=,∴tan∠CAE===.∴④的结论不正确;⑤∵四边形ABCD是正方形,∴OA=OB=OC=OD,∠AOB=∠BOC=∠COD=∠DOA=90°,∴△OAB≌△OBC≌△OCD≌△DOA(SAS).∴.∴.由①知:△BOE≌△COF,∴S△OBE=S△OFC,∴.即四边形OECF的面积是正方形ABCD面积的.∴⑤的结论正确.综上,①②③⑤的结论正确.故选:B.12.(2022•辽宁)如图,在正方形ABCD中,对角线AC,BD相交于点O,点E是OD的中点,连接CE并延长交AD于点G,将线段CE绕点C逆时针旋转90°得到CF,连接EF,点H为EF的中点.连接OH,则的值为.【答案】【解答】解:以O为原点,平行于AB的直线为x轴,建立直角坐标系,过E 作EM⊥CD于M,过F作FN⊥DC,交DC延长线于N,如图:设正方形ABCD的边长为2,则C(1,1),D(﹣1,1),∵E为OD中点,∴E(﹣,),设直线CE解析式为y=kx+b,把C(1,1),E(﹣,)代入得:,解得,∴直线CE解析式为y=x+,在y=x+中,令x=﹣1得y=,∴G(﹣1,),∴GE==,∵将线段CE绕点C逆时针旋转90°得到CF,∴CE=CF,∠ECF=90°,∴∠MCE=90°﹣∠NCF=∠NFC,∵∠EMC=∠CNF=90°,∴△EMC≌△CNF(AAS),∴ME=CN,CM=NF,∵E(﹣,),C(1,1),∴ME=CN=,CM=NF=,∴F(,﹣),∵H是EF中点,∴H(,0),∴OH=,∴==.故答案为:.13.(2022•辽宁)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,点P为斜边AB上的一个动点(点P不与点A、B重合),过点P作PD⊥AC,PE⊥BC,垂足分别为点D和点E,连接DE,PC交于点Q,连接AQ,当△APQ为直角三角形时,AP的长是.【答案】3或2【解答】解:在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠BAC=30°,∴AB=2BC=2×2=4,∴AC===2,当∠APQ=90°时,如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠BAC=30°,∴AB=2BC=2×2=4,∴AC===2,∵∠APQ=∠ACB=90°,∠CAP=∠BAC,∴△CAP∽△BAC,∴,即,∴AP=3,当∠AQP=90°时,如图2,∵PD⊥AC,PE⊥BC,∠ACB=90°,∴四边形DPEC是矩形,∴CQ=QP,∵∠AQP=90°,∴AQ垂直平分CP,∴AP=AC=2,综上所述,当△APQ为直角三角形时,AP的长是3或2,故答案为:3或2.14.(2022•绍兴)如图,AB=10,点C是射线BQ上的动点,连结AC,作CD ⊥AC,CD=AC,动点E在AB延长线上,tan∠QBE=3,连结CE,DE,当CE=DE,CE⊥DE时,BE的长是.【答案】或5【解答】解:如图,过点C作CT⊥AE于点T,过点D作DJ⊥CT交CT的延长线于点J,连接EJ.∵tan∠CBT=3=,∴可以假设BT=k,CT=3k,∵∠CAT+∠ACT=90°,∠ACT+∠JCD=90°,∴∠CAT=∠JCD,在△ATC和△CJD中,,∴△ATC≌△CJD(AAS),∴DJ=CT=3k,AT=CJ=10+k,∵∠CJD=∠CED=90°,∴C,E,D,J四点共圆,∵EC=DE,∴∠CJE=∠DJE=45°,∴ET=TJ=10﹣2k,∵CE2=CT2+TE2=(CD)2,∴(3k)2+(10﹣2k)2=[•]2,整理得4k2﹣25k+25=0,∴(k﹣5)(4k﹣5)=0,∴k=5和,∴BE=BT+ET=k+10﹣2k=10﹣k=5或,故答案为:5或.15.(2022•甘肃)如图,在矩形ABCD中,AB=6cm,BC=9cm,点E,F分别在边AB,BC上,AE=2cm,BD,EF交于点G,若G是EF的中点,则BG的长为cm.【答案】【解答】解:∵四边形ABCD是矩形,∴AB=CD=6cm,∠ABC=∠C=90°,AB∥CD,∴∠ABD=∠BDC,∵AE=2cm,∴BE=AB﹣AE=6﹣2=4(cm),∵G是EF的中点,∴EG=BG=EF,∴∠BEG=∠ABD,∴∠BEG=∠BDC,∴△EBF∽△DCB,∴=,∴=,∴BF=6,∴EF===2(cm),∴BG=EF=(cm),故答案为:.16.(2022•新疆)如图,四边形ABCD是正方形,点E在边BC的延长线上,点F在边AB上,以点D为中心,将△DCE绕点D顺时针旋转90°与△DAF 恰好完全重合,连接EF交DC于点P,连接AC交EF于点Q,连接BQ,若AQ•DP=3,则BQ=.【答案】【解答】解:如图,连接DQ,∵将△DCE绕点D顺时针旋转90°与△DAF恰好完全重合,∴DE=DF,∠FDE=90°,∴∠DFE=∠DEF=45°,∵四边形ABCD是正方形,∴∠DAC=45°=∠BAC,∴∠DAC=∠DFQ=45°,∴点A,点F,点Q,点D四点共圆,∴∠BAQ=∠FDQ=45°,∠DAF=∠DQF=90°,∠AFD=∠AQD,∴DF=DQ,∵AD=AB,∠BAC=∠=45°,AQ=AQ,∴△ABQ≌△ADQ(SAS),∴BQ=QD,∠AQB=∠AQD,∵AB∥CD,∴∠AFD=∠FDC,∴∠FDC=∠AQB,又∵∠BAC=∠DFP=45°,∴△BAQ∽△PFD,∴,∴AQ•DP=3=BQ•DF,∴3=BQ•BQ,∴BQ=,故答案为:.17.(2022•苏州)如图,在矩形ABCD中,=.动点M从点A出发,沿边AD向点D匀速运动,动点N从点B出发,沿边BC向点C匀速运动,连接MN.动点M,N同时出发,点M运动的速度为v1,点N运动的速度为v2,且v1<v2.当点N到达点C时,M,N两点同时停止运动.在运动过程中,将四边形MABN沿MN翻折,得到四边形MA′B′N.若在某一时刻,点B的对应点B′恰好与CD的中点重合,则的值为.【答案】【解答】解:如图,设AD交A′B′于点Q.设BN=NB′=x.∵=,∴可以假设AB=2k,CB=3k,∵四边形ABCD是矩形,∴AD=BC=3k,CD=AB=2k,∠C=∠D=90°,在Rt△CNB′中,CN2+CB′2=NB′2,∴(3k﹣x)2+k2=x2,∴x=k,∴NB′=k,CN=3k﹣k=k,由翻折的性质可知∠A′B′N=∠B=90°,∴∠DB′Q+∠CB′N=90°,∠CB′N+∠CNB′=90°,∴∠DB′Q=∠CNB′,∵∠D=∠C=90°,∴△DB′Q∽△CNB′,∴DQ:DB′:QB′=CB′::NB′=3:4:5,∵DB′=k,∴DQ=k,∵∠DQB′=∠MQA′,∠D=∠A′,∴△DQB′∽△A′QM,∴A′Q:A′M:QM=DQ:DB′:QB′=3:4:5,设AM=MA′=y,则MQ=y,∵DQ+QM+AM=3k,∴k+y+y=3k,∴y=k,∴===,解法二:连接BB′,过点M作MH⊥BC于点H.设AB=CD=6m,CB=9m,设BN=NB′=n,则n2=(3m)2+(9m﹣n)2,∴n=5m,CN=4m,由△BB′C∽△MNH,可得=2m,∴AM=BH=3m,∴===,故答案为:.18.(2022•湖北)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时t的值为.【答案】2+2【解答】解:如图,连接AP,由图2可得AB=BC=4cm,∵∠B=36°,AB=BC,∴∠BAC=∠C=72°,∵AP平分∠BAC,∴∠BAP=∠PAC=∠B=36°,∴AP=BP,∠APC=72°=∠C,∴AP=AC=BP,∵∠PAC=∠B,∠C=∠C,∴△APC∽△BAC,∴,∴AP2=AB•PC=4(4﹣AP),∴AP=2﹣2=BP,(负值舍去),∴t==2+2,故答案为:2+2.19.(2022•随州)如图1,在矩形ABCD中,AB=8,AD=6,E,F分别为AB,AD的中点,连接EF.如图2,将△AEF绕点A逆时针旋转角θ(0°<θ<90°),使EF⊥AD,连接BE并延长交DF于点H.则∠BHD的度数为,DH的长为.【答案】90°,.【解答】解:如图,设EF交AD于点J,AD交BH于点O,过点E作EK⊥AB于点K.∵∠EAF=∠BAD=90°,∴∠DAF=∠BAE,∴=,∴△DAF∽△BAE,∴∠ADF=∠ABE,∵∠DOH=∠AOB,∴∠DHO=∠BAO=90°,∴∠BHD=90°,∵AF=3,AE=4,∠EAF=90°,∴EF==5,∵EF⊥AD,∴•AE•AF=•EF•AJ,∴AJ=,∴EJ===,∵EJ∥AB,∴=,∴=,∴OJ=,∴OA=AJ+OJ=+=4,∴OB===4,OD=AD﹣AO=6﹣4=2,∵cos∠ODH=cos∠ABO,∴=,∴DH=.故答案为:90°,.20.(2022•娄底)如图,已知等腰△ABC的顶角∠BAC的大小为θ,点D为边BC上的动点(与B、C不重合),将AD绕点A沿顺时针方向旋转θ角度时点D落在D′处,连接BD′.给出下列结论:①△ACD≌△ABD′;②△ACB∽△ADD′;③当BD=CD时,△ADD′的面积取得最小值.其中正确的结论有(填结论对应的应号).【答案】①②③【解答】解:由题意可知AC=AB,AD=AD′,∠CAD=∠BAD′,∴△ACD≌△ABD′,故①正确;∵AC=AB,AD=AD′,∠BAC=∠D′AD=θ,∴=,∴△ACB∽△ADD′,故②正确;∵△ACB∽△ADD′,∴=()2,∵当AD⊥BC时,AD最小,△ADD′的面积取得最小值.而AB=AC,∴BD=CD,∴当BD=CD时,△ADD′的面积取得最小值,故③正确;故答案为:①②③.21.(2022•牡丹江)如图,在等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,点D在BC边上,DE与AC相交于点F,AH⊥DE,垂足是G,交BC于点H.下列结论中:①AC=CD;②AD2=BC•AF;③若AD=3,DH=5,则BD=3;④AH2=DH•AC,正确的是.【答案】②③【解答】解:①∵△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∵∠ADC=∠B+∠BAD,而∠BAD的度数不确定,∴∠ADC与∠CAD不一定相等,∴AC与CD不一定相等,故①错误;②∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵∠B=∠AED=45°,∴△AEF∽△ABD,∴=,∵AE=AD,AB=BC,∴AD2=AF•AB=AF•BC,∴AD2=AF•BC,故②正确;④∵∠DAH=∠B=45°,∠AHD=∠AHD,∴△ADH∽△BAH,∴=,∴AH2=DH•BH,而BH与AC不一定相等,故④不一定正确;③∵△ADE是等腰直角三角形,∴∠ADG=45°,∵AH⊥DE,∴∠AGD=90°,∵AD=3,∴AG=DG=,∵DH=5,∴GH===,∴AH=AG+GH=2,由④知:AH2=DH•BH,∴(2)2=5BH,∴BH=8,∴BD=BH﹣DH=8﹣5=3,故③正确;本题正确的结论有:②③故答案为:②③.22.(2022•丹东)如图,四边形ABCD是边长为6的菱形,∠ABC=60°,对角线AC与BD交于点O,点E,F分别是线段AB,AC上的动点(不与端点重合),且BE=AF,BF与CE交于点P,延长BF交边AD(或边CD)于点G,连接OP,OG,则下列结论:①△ABF≌△BCE;②当BE=2时,△BOG的面积与四边形OCDG面积之比为1:3;③当BE=4时,BE:CG=2:1;④线段OP的最小值为2﹣2.其中正确的是.(请填写序号)【答案】①②【解答】解:①∵四边形ABCD是菱形,∴AB=BC=AD=CD,∴∠ABC=60°,∴△ABC是等边三角形,∴∠BAC=∠ABC=60°,在△ABF和△BCE中,,∴△ABF≌△BCE(SAS),故①正确;②由①知:△ABC是等边三角形,∴AC=AB=6,∵AF=BE=2,∴CF=AC﹣AF=4,∵四边形ABCD是菱形,∴AD∥BC,OB=OD,OA=OC,∴△AGF∽△CBF,S△BOG=S△DOG,S△AOD=S△COD,∴,∴,∴AG=3,∴AG=,∴S△AOD=2S△DOG,∴S△COD=2S△DOG,∴S四边形OCDG=S△DOG+S△COD=3S△DOG=3S△BOG,故②正确;③如图1,∵四边形ABCD是菱形,∴AB∥CD,∴△CGF∽△ABF,∴,∴,∴CG=3,∴BE:CG=4:3,故③不正确;④如图2,由①得:△ABF≌△BCE,∴∠BCE=∠ABF,∴BCE+∠CBF=∠ABF+∠CBF=∠ABC=60°,∴∠BPC=120°,作等边三角形△BCH,作△BCH的外接圆I,则点P在⊙I上运动,点O、P、I共线时,OP最小,作HM⊥BC于M,∴HM==3,∴PI=IH=,∵∠ACB+∠ICB=60°+30°=90°,∴OI===,∴OP最小=OI﹣PI=﹣2,故④不正确,故答案为:①②.三.相似三角形的应用23.(2022•衢州)希腊数学家海伦给出了挖掘直线隧道的方法:如图,A,B是两侧山脚的入口,从B出发任作线段BC,过C作CD⊥BC,然后依次作垂线段DE,EF,FG,GH,直到接近A点,作AJ⊥GH于点J.每条线段可测量,长度如图所示.分别在BC,AJ上任选点M,N,作MQ⊥BC,NP⊥AJ,使得==k,此时点P,A,B,Q共线.挖隧道时始终能看见P,Q处的标志即可.(1)CD﹣EF﹣GJ=km.(2)k=.【答案】1.8;.【解答】解:(1)CD﹣EF﹣GJ=5.5﹣1﹣2.7=1.8(km);(2)连接AB,过点A作AZ⊥CB,交CB的延长线于点Z.由矩形性质得:AZ=CD﹣EF﹣GJ=1.8,BZ=DE+FG﹣CB﹣AJ=4.9+3.1﹣3﹣2.4=2.6,∵点P,A,B,Q共线,∴∠MBQ=∠ZBA,又∵∠BMQ=∠BZA=90°,∴△BMQ∽△BZA,∴=k===.故答案为:1.8;.24.(2022•温州)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M在旋转中心O的正下方.某一时刻,太阳光线恰好垂直照射叶片OA,OB,此时各叶片影子在点M右侧成线段CD,测得MC=8.5m,CD =13m,垂直于地面的木棒EF与影子FG的比为2:3,则点O,M之间的距离等于米.转动时,叶片外端离地面的最大高度等于米.【答案】10,(10+)【解答】解:解法一:如图,过点O作OP∥BD,交MG于P,过P作PN ⊥BD于N,则OB=PN,∵AC∥BD,∴AC∥OP∥BD,∴=,∠EGF=∠OPM,∵OA=OB,∴CP=PD=CD=6.5,∴MP=CM+CP=8.5+6.5=15,tan∠EGF=tan∠OPM,∴OM=×15=10;∵DB∥EG,∴∠EGF=∠NDP,∴sin∠EGF=sin∠NDP,即=,∴OB=PN=,以点O为圆心,OA的长为半径作圆,当OB与OM共线时,叶片外端离地面的高度最大,其最大高度等于(10+)米.解法二:如图,设AC与OM交于点H,过点C作CN⊥BD于N,∵HC∥EG,∴∠HCM=∠EGF,∵∠CMH=∠EFG=90°,∴△HMC∽△EFG,∴==,即=,∴HM=,∵BD∥EG,∴∠BDC=∠EGF,∴tan∠BDC=tan∠EGF,设CN=2x,DN=3x,则CD=x,∴x=13,∴x=,∴AB=CN=2,∴OA=OB=AB=,在Rt△AHO中,∵∠AHO=∠CHM,∴sin∠AHO==,∴=,∴OH=,∴OM=OH+HM=+=10(米),以点O为圆心,OA的长为半径作圆,当OB与OM共线时,叶片外端离地面的高度最大,其最大高度等于(10+)米.故答案为:10,(10+).49。
2020年中考数学三轮复习专项练习:《相似综合》(含答案)
备战2020中考数学三轮复习专项练习:《相似综合》1.如图,在△ABC中,AG⊥BC,垂足为点G,点E为边AC上一点,BE=CE,点D为边BC上一点,GD=GB,连接AD交BE于点F.(1)求证:∠ABE=∠EAF;(2)求证:AE2=EF•EC;(3)若CG=2AG,AD=2AF,BC=5,求AE的长.2.在△ABC中,点D在边BC上,点E在线段AD上.(1)若∠BAC=∠BED=2∠CED=α,①若α=90°,AB=AC,过C作CF⊥AD于点F,求的值;②若BD=3CD,求的值;(2)AD为△ABC的角平分线,AE=ED=2,AC=5,tan∠BED=2,直接写出BE的长度.3.已知▱EFGH的顶点E、G分别在▱ABCD的边AD、BC上,顶点F、H在▱ABCD的对角线BD上.(1)如图1,求证:BF=DH;(2)如图2,若∠HEF=∠A=90°,,求的值;(3)如图1,当∠HEF=∠A=120°,,时,求k的值.4.如图,BM、DN分别平分正方形ABCD的两个外角,且∠MAN=45°,连接MN.(1)猜想以线段BM、DN、MN为三边组成的三角形的形状,并证明你的结论;(2)若△AMN为等腰直角三角形,探究线段BM、DN之间的数量关系;(3)当MN∥AD时,直接写出的值.5.如图,锐角△ABC中,BC=12,BC边上的高AD=8,矩形EFGH的边GH在BC上,其余两点E、F分别在AB、AC上,且EF交AD于点K.(1)求的值;(2)设EH=x,矩形EFGH的面积为S.①求S与x的函数关系式;②请直接写出S的最大值为.6.如图1,△ABC中,BD,CE是△ABC的高.(1)求证:△ABD∽△ACE.(2)△ADE与△ABC相似吗?为什么?(3)如图2,设cos∠ABD=,DE=12,DE的中点为F,BC的中点为M,连接FM,求FM的长.7.如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E,AD与BE相交于点F,连接ED.(1)求证:△AEF∽△BDF;(2)若AE=4,BD=8,EF+DF=9,求DE的长.8.如图,在矩形ABCD中,AB=4,BC=3,点P,Q在对角线BD上,且BQ=BP,过点P作PH⊥AB于点H,连接HQ,以PH、HQ为邻边作平行四边形PHQG,设BQ=m.(1)若m=2时,求此时PH的长.(2)若点C,G,H在同一直线上时,求此时的m值.(3)若经过点G的直线将矩形ABCD的面积平分,同时该直线将平行四边形PHQG的面积分成1:3的两部分,求此时m的值.9.如图,四边形ABCD是矩形.(1)如图1,E、F分别是AD、CD上的点,BF⊥CE,垂足为G,连接AG.①求证:;②若G为CE的中点,求证:sin∠AGB=;(2)如图2,将矩形ABCD沿MN折叠,点A落在点R处,点B落在CD边的点S处,连接BS交MN于点P,Q是RS的中点.若AB=2,BC=3,直接写出PS+PQ的最小值为.10.已知:如图,在平行四边形ABCD中,对角线AC与BD交于点O,点E是DB延长线上的一点,且EA=EC,分别延长AD、EC交于点F.(1)求证:四边形ABCD为菱形;(2)如果∠AEC=2∠BAC,求证:EC•CF=AF•AD.11.“创新实践”小组想利用镜子与皮尺测量大树AB的高度,因大树底部有障碍物,无法直接测量到大树底部的距离.聪明的小颖借鉴《海岛算经》的测量方法设计出如图所示的测量方案:测量者站在点F处,将镜子放在点M处时,刚好看到大树的顶端,沿大树方向向前走2.8米,到达点D处,将镜子放在点N处时,刚好看到大树的顶端(点F,M,D,N,B在同一条直线上).若测得FM=1.5米,DN=1.1米,测量者眼睛到地面的距离为1.6米,求大树AB的高度.12.矩形ABCD中,AD=9,AB=12,点E在对角线BD上(不与B、D重合),EF⊥AE 交CD于F点,连接AF交BD于G点.(1)如图1,当G为DE中点时.①求证:FD=FE;②求BE的长.(2)如图2,若E为BD上任意点,求证:AG2=BG•GE.13.已知△ABC中,∠ABC=90°,点D、E分别在边BC、边AC上,连接DE,DF⊥DE,点F、点C在直线DE同侧,连接FC,且==k.(1)点D与点B重合时,①如图1,k=1时,AE和FC的数量关系是,位置关系是;②如图2,k=2时,猜想AE和FC的关系,并说明理由;(2)BD=2CD时,①如图3,k=1时,若AE=2,S=6,求FC的长度;△CDF②如图4,k=2时,点M、N分别为EF和AC的中点,若AB=10,直接写出MN的最小值.14.如图1,△ABC的两条中线BD、CE交于点F.(1)=;(2)如图2,若BE2=EF•EC,且,EF=,求DE的长;(3)如图3,已知BC=4,∠BAC=60°,当点A在直线BC的上方运动时,直接写出CE的最大值.15.教材呈现:如图是华师版九年级上册数学教材第62页的部分内容.已知:如图,DE∥BC,并分别交AB、AC于点D、E.求证:△ADE∽△ABC.请根据教材提示,结合图①,运用相似三角形的定义,写出完整的证明过程.证明:过点D作AC的平行线交BC于点F.结论应用:如图②,△ABC中,AB=10,AC=7,AD平分∠BAC,AE是BC边上的中线,过点C作CG⊥AD交AD于F,交AB于G,连接EF,则线段EF的长为.16.如图1所示,矩形ABCD中,点E,F分别为边AB,AD的中点,将△AEF绕点A逆时针旋转α(0°<α≤360°),直线BE,DF相交于点P.(1)若AB=AD,将△AEF绕点A逆时针旋至如图2所示的位置上,则线段BE与DF 的位置关系是,数量关系是.(2)若AD=nAB(n≠1)将△AEF绕点A逆时针旋转,则(1)中的结论是否仍然成立?若成立,请就图3所示的情况加以证明;若不成立,请写出正确结论,并说明理由.(3)若AB=6,BC=8,将△AEF旋转至AE⊥BE时,请直接写出DP的长.17.如图1,矩形ABCD中,AB=8,BC=6,点E,F分别为AB,AD边上任意一点,现将△AEF沿直线EF对折,点A对应点为点G.(1)如图2,当EF∥BD,且点G落在对角线BD上时,求DG的长;(2)如图3,连接DG,当EF∥BD且△DFG是直角三角形时,求AE的值;(3)当AE=2AF时,FG的延长线交△BCD的边于点H,是否存在一点H,使得以E,H,G为顶点的三角形与△AEF相似,若存在,请求出AE的值;若不存在,请说明理由18.如果三角形的两个内角α与β满足α﹣β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠A>90°,∠B=20°,求∠C的度数;(2)如图①,在Rt△ABC中,∠BAC=90°,AB=4,BC=5,点D是BC延长线上一点.若△ABD是“准互余三角形”,求CD的长;(3)如图②,在四边形ABCD中,AC,BD是对角线,AC=4,CD=5,∠BAC=90°,∠ACD=2∠ABC,且△BCD是“准互余三角形”,求BD的长.参考答案1.(1)证明:∵EB=EC,∴∠EBC=∠C,∵AG⊥BD,BG=GD,∴AB=AD,∴∠ABD=∠ADB,∵∠ABD=∠ABE+∠EBC,∠ADB=∠DAC+∠C,∴∠ABE=∠DAC,即∠ABE=∠EAF.(2)证明:∵∠AEF=∠BEA,∠EAF=∠ABE,∴△AEF∽△BEA,∴=,∴AE2=EF•EB,∵EB=EC,∴AE2=EF•EC.(3)解:设BE交AG于J,连接DJ,DE.∵AG垂直平分线段BD,∴JB=JD,∴∠JBD=∠JDG,∵∠JBD=∠C,∴∠JDB=∠C,∴DJ∥AC,∴∠AEF=∠DJF,∵AF=DF,∠AFE=∠DFJ,∴△AFE≌△DFJ(AAS),∴EF=FJ,AE=DJ,∵AF=DF,∴四边形AJDE是平行四边形,∴DE∥AG,∵AG⊥BC,∴ED⊥BC,∵EB=EC,∴BD=DC=,∴BG=DG=,∵tan∠JDG=tan∠C===,∴JG=,∵∠JGD=90°,∴DJ====,∴AE=DJ==.2.解:(1)①∵∠BAC=∠BED=2∠CED=α,∴当α=90°,AB=AC时,△ABC与△CEF都是等腰直角三角形,∴∠BAE+∠FAC=90°,∠ACF+∠FAC=90°,∴∠BAE=∠AFC,∴在△ABE与△CAF中,,∴△ABE≌△CAF(AAS),∴AE=CF=EF,∴BE=AF=2EF=2CF,∴=2;②如图,过点C作CF∥BE,交AD的延长线于点F,在AD上取一点G,使得CG=CF,∵∠BAC=∠BED=2∠CED=α,∴∠ABE=∠CAG,∠F=∠BED=α=∠CGF,∴∠AEB=∠AGC,∴△ABE∽△CAG,∴=.∵CF∥BE,∴△BED∽△CFD,∴==3,设CF=x,BE=3x,AE=y,则CG=EG=x,∴=,解得:=,∴=;(2)如图,过点C作CF∥AD,交BA的延长线于F,延长BE交CF与G,则∠BAD=∠F,∠DAC=∠ACF,又∵AD为△ABC的角平分线,即∠BAD=∠DAC,∴∠ACF=∠F,∴AF=AC=5,又AE=ED,∴FG=CG,∴AG⊥CF,∴∠CAG=∠FAG,∴AD⊥AG,∵tan∠BED=2,∴tan∠AEG=2,∵AE=ED=2,∴=2,∴AG=2AE=4,又∵AC=5,∴FG=CG=3,∵DE∥CG,∴=,∴=,∴解得,BE=4.3.(1)证明:∵四边形EFGH是平行四边形,∴EF=HG,EF∥HG,∴∠EFD=∠GHB,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EDF=∠GBH,在△EFD和△GHB中,,∴△EFD≌△GHB(AAS),∴DF=BH,∴DF﹣HF=BH﹣HF,∴BF=DH;(2)解:作EM⊥FH于M,如图2所示:设MH=a,∵四边形ABCD、四边形EFGH都是平行四边形,∠A=∠FEH=90°,∴四边形ABCD、四边形EFGH都是矩形,∴AD=BC,∴tan∠ADB===,tan∠EFH==,∵∠FEH=∠EMH=90°,∴∠MEH+∠EHM=90°,∠EFH+∠EHF=90°,∴∠MEH=∠EFH,∴tan∠MEH=tan∠EFH===,∴EM=2a,FM=4a,∵tan∠EDM==,∴DM=4a,FH=5a,由(1)得:BF=DH,∴BF=DH=3a,∴==;(3)过点E作EM⊥BD于M,如图1所示:∵四边形ABCD是平行四边形,∴AD=BC,∵=,∴=,即=,∵∠HEF=∠A,∴△EFH∽△ADB,∴∠EFH=∠ADB,∴EF=ED,∴FM=DM,设BF=3a,∵=,∴FH=7a,∴DF=10a,∴DM=5a,由(1)得:BF=DH,∴DH=3a,MH=DM﹣DH=5a﹣3a=2a,过点E作∠NEH=∠EDH,交BD于N,∵∠ENH=∠DNE,∴△ENH∽△DNE,∴=,∴EN2=DN•HN,设HN=x,∴EN2=x•(3a+x),∴EN=,∵∠NEH=∠EDH,∴∠NEH=∠EFH,∵∠EHN=∠FHE,∴△ENH∽△FEH,∴∠END=HEF=120°,∴∠ENM=60°,∴∠NEM=30°,∴EN=2MN,∴=2(2a﹣x),解得:x=a,∴EN=2a,MN=a,由勾股定理得:EM===a,EH===a,EF=DE===2a,∴k===.4.解:(1)以BM,DN,MN为三边围成的三角形为直角三角形.证明如下:如图,过点A作AF⊥AN并截取AF=AN,连接BF、FM,∵∠1+∠BAN=90°,∠3+∠BAN=90°,∴∠1=∠3,在△ABF和△ADN中,,∴△ABF≌△ADN(SAS),∴BF=DN,∠FBA=∠NDA=135°,∵∠FAN=90°,∠MAN=45°,∴∠1+∠2=∠FAM=∠MAN=45°,在△AFM和△ANM中,,∴△AFM≌△ANM(SAS),∴FM=NM,∴∠FBP=180°﹣∠FBA=180°﹣135°=45°,∴∠FBP+∠PBM=45°+45°=90°,∴△FBM是直角三角形,∵FB=DN,FM=MN,∴以BM,DN,MN为三边围成的三角形为直角三角形;(2)∵BM、DN分别平分正方形的两个外角,∴∠CBM=∠CDN=45°,∴∠ABM=∠ADN=135°,∵∠MAN=45°,∴∠BAM+∠NAD=45°,在△ABM中,∠BAM+∠AMB=∠MBP=45°,∴∠NAD=∠AMB,在△ABM和△NDA中,,∴△ABM∽△NDA,∵△AMN是等腰直角三角形,∴;(3)连接BD并延长交MN延长线于点G,如图2,由题意知∠GDN=∠GBM=90°,∠ADN=135°,∵MN∥AD,∴∠GND=45°,∴∠G=90°﹣∠GND=45°,∴△DGN和△BGM均为等腰直角三角形,∴GN=DN,GM=BM,由(1)知,DN2+BM2=MN2,∴设BM=x,DN=y,则GM=x,GN=y,∴MN=(y﹣x),∴x2+y2=[(y﹣x)]2,∴x1=(2+)y(舍),x2=(2﹣)y,∴.5.解:(1)∵四边形EFGH是矩形,∴EF∥BC,∵AD⊥BC,∴AK⊥EF,∵EF∥BC,∴△AEF∽△ABC,∴;(2)∵四边形EFGH是矩形,∴∠FEH=∠EHG=90°,∵AD⊥BC,∴∠ADB=90°,∴四边形EHDK是矩形,∴EH=DK=x,∵AK+DK=AD,∴AK=8﹣x,∵,∴,∴S=EH•EF=x•(8﹣x)=﹣x2+12x.②∵S=﹣x2+12x=,,∴当x=4,时S有最大值24.故答案为:24.6.(1)证明:如图1中,∵BD、CE是△ABC的高,∴∠ADB=∠AEC=90°,∵∠A=∠A,∴△ABD∽△ACE(2)相似.理由:∵△ABD∽△ACE,∴,即,∵∠A=∠A,∴△ADE∽△ABC.(4)如图2中,连接DM、EM.由得,∴BC=18,又EM=DM=9,MF⊥DE,且FD=FE=6,∴FM===3.7.(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠AEF=90°,∵∠AFE=∠BFD,∴△AEF∽△BDF.(2)解:∵△AEF∽△BDF,∴===,∵DF+EF=9,∴EF=3,DF=6,∴BF===10,AF===5,∴AD=5+6=11,∴AB===∵=,∴=,∵∠AFB=∠EFD,∴△AFB∽△EFD,∴=,∴=,∴DE=.8.解:(1)在矩形ABCD中,AB=4,BC=3,∴BD===5,∵BQ=2,,∴BP=3,∵PH∥AD,∴△BPH∽△BDA,∴,∴;(2)如图,设HG与PQ交于点O,设BQ=2x,则BP=3x,PQ=x,∴PO=QO=,∴BO=x,∵PH∥BC,∴△PHO∽△BCO,∴,∴PH==,∵PH∥AD,∴△BPH∽△BDA,∴,∴,∴x=,∴BQ=;(3)连接AC交BD于O,∵经过点G的直线将矩形ABCD的面积平分,∴这条直线经过矩形ABCD的对角线的交点O.①如图,当直线OG经过PH的中点R时,直线OG将平行四边形PHQG的面积分成1:3的两部分,∵PH∥GQ,∴,∴,∴m=;②如图,当直线OG经过HQ的中点N时,直线OG将平行四边形PHQG的面积分成1:3的两部分,∵PG∥HQ,∴==,∴=,∴m=;综上所述,满足条件的m的值为或.9.(1)①证明:如图1中,∵四边形ABCD是矩形,∴∠CDE=∥BCF=90°,∵BF⊥CE,∴∠BGC=90°,∴∠BCG+∠FBC=∠BCG+∠ECD=90°,∴∠FBC=∠ECD,∴△FBC∽△ECD,∴=.②证明:如图1中,连接BE,GD.∵BF⊥CE,EG=CG,∴BF垂直平分线段EC,∴BE=CB,∠EBG=∠CBG,∵DG=CG,∴∠CDG=∠GCD,∵∠ADG+∠CDG=90°,∠BCG+∠ECD=90°,∴∠ADG=∠BCG,∵AD=BC,∴△ADG≌△BCG(SAS),∴∠DAG=∠CBG,∴∠DAG=∠EBG,∴∠AEB=∠AGB,∴sin∠AGB=sin∠AEB====.(2)如图2中,取AB的中点T,连接PT,CP.∵四边形MNSR与四边形MNBA关于MN对称,T是AB中点,Q是SR中点,∴PT=PQ,MN垂直平分线段BS,∴BP=PS,∵∠BCS=90°,∴PC=PS=PB,∴PQ+PS=PT+PC,当T,P,C共线时,PQ+PS的值最小,最小值===,∴PQ+PS的最小值为.故答案为.10.解:(1)∵四边形ABCD是平行四边形,∴OA=OC,又∵EA=EC,∴EO⊥AC,∴四边形ABCD是菱形;(2)∵∠AEB=∠CEB=∠AEC,平行四边形ABCD为菱形,∴∠AEB=∠CEB=∠BAC=∠BCA=∠DAC=∠DCA,∠CDF=∠DAC+∠DCA=∠AEF,∴△FCD∽△FAE,∴=,∵CD=AD,AE=CE,∴=,即EC•CF=AF•AD.11.解:设NB的长为x米,则MB=x+1.1+2.8﹣1.5=(x+2.4)米.由题意,得∠CND=∠ANB,∠CDN=∠ABN=90°,∴△CND∽△ANB,∴.同理,△EMF∽△AMB,∴.∵EF=CD,∴,即.解得x=6.6,∵,∴.解得AB=9.6.答:大树AB的高度为9.6米.12.(1)①证明:如图1,取AF的中点O,连接OD,OE,∵∠ADF=∠FEA=90°,∴OE=OD=AF,∵点G是DE的中点,∴OG⊥DE,∴AF⊥DE,∵点G是DE的中点,∴FD=FE;②解:由①知,AF⊥DE,∴∠AGD=90°,∵∠ADG=∠ADB,∴△ADG∽△BDA,∴,在Rt△ABD中,AD=9,AB=12,根据勾股定理得,BD=15,∴,∴DG=,∴DE=2DG=,∴BE=BD﹣DE=;(2)如图2,过点E作MN∥BC分别交AB,CD于M,N,∴BC⊥CD,∴MN⊥CD且MN⊥AB,∴∠DNE=∠AME=90°,∵∠FEA=90°,∴∠NEF=∠MAE,∴△NEF∽△MAE,∴,∵AM=DN,∴,∵∠FEA=∠END=90°,∴△FEA∽△END,∴∠FAE=∠EDN,∵∠EDN=∠ABG,∴∠FAE=∠ABG,∵∠AGE=∠BGA,∴△AGE∽△BGA,∴,∴AG2=BG•GE.13.解:(1)①如图1中,结论:AE=CF,AE⊥CF理由:由题意:BA=BC,BE=BE,∠ABC=∠EBF=90°,∴∠ABE=∠CBF,∠A=∠ACB=45°,∴△ABE≌△CBF(SAS),∴AE=CF,∠A=∠BCF=45°,∴∠ACF=∠ACB+∠BCF=90°,∴AE⊥CF,故答案为AE=CF,AE⊥CF.②如图2中,结论:AE=2CF,AE⊥CF.理由:∵==2,∠ABE=∠CBF,∴△ABE∽△CBF,∴==2,∠A=∠BCF,∴AE=2CF,∵∠A+∠ACB=90°,∴∠BCF+∠ACB=90°,∴AE⊥CF.(2)①如图3中,过点D作DH⊥AC于H,作DT∥AB交AC于T.由题意AB=BC,∠ABC=90°,∴∠ACB=45°,∵DT∥AB,∴∠CDT=∠CBA=90°,∴∠DTC=∠DCT=45°,∴DT=DC,∵DH⊥CT,∴HT=HC,∴DH=HT=HC,设DH=HT=HC=m,∵DT∥AB,∴==,∴AT =4m ,∵AE =2,∴ET =4m ﹣2,∵DE =DF ,DT =DC ,∠EDF =∠TDC =90°,∴∠EDT =∠FDC ,∴△EDT ≌△FDC (SAS ),∴S △EDT =S △FDC =6,ET =FC , ∴•(4m ﹣2)•m =6,解得m =2或﹣(舍弃),∴CF =ET =4m ﹣2=8﹣2=6.②如图4中,连接DM ,CM ,根点M 作MK ⊥BC 于K ,交AC 于J .同法可证:AE ⊥CF ,∵∠EDF =∠ECF =90°,EM =MF ,∴DM =MC =EF ,∴点M 在长度CD 的垂直平分线MK 上,当NM ⊥NK 时,MN 的值最小, 由题意:AB =10,BC =5,CD =,CK =DK =,在Rt △ABC 中,AC ==5,∵AN =CN ,∴CN =AC =, ∵JK ∥AB ,∴=,∴=,∴CJ=,∴NJ=CN﹣CJ=﹣=,∵NM⊥MK时,△NMK∽△CKJ,∴=,∴=,∴MN=,∴MN的最小值为.14.解:(1)如图1中,∵AE=BE,AD=DC,∴DE∥BC,DE=BC,∴△EDF∽△CBF,∴==,故答案为:.(2)如图2中,∵DE∥BC,且DE=BC,∵△EDF∽CBF,∴===,∵EF=,∴CF=2,EC=3,∵BE2=EF•EC,∴BE=3,∵DF=BE=2,∴BF=4,∵=,∠BEF=∠CEB,∴△BEF∽△CEB,∴=,∴=,∴CB=4,∴DE=BC=2.(3)如图3中,如图,作△ABC的外接圆⊙O,连接OA,OB,OC,取OB的中点F,连接EF,过点O作OH⊥BC于H,过点F作FT⊥BC于T.∵∠BOC=2∠BAC=120°,∵OB=OC,OH⊥BC,∴BH=CH=BC=2,∠BOH=∠COH=60°,∴OH==,OB=2OH=,∵AE=EB,BF=OF,∴EF=OA=,∴点E的运动轨迹是以F为圆心FE为半径的⊙F,∴CE的最大值=EF+CF,∵FT⊥BC,OH⊥BC,∴FT∥OH,∵BF=OF,∴BT=TH=1,FT=OH=,在Rt△FCT中,CF===,∴CE的最大值为.15.教材呈现:证明:过点D作AC的平行线交BC于点F,∵DE∥BC,∴四边形DECF是平行四边形,∴DE=CF,∵DE∥BC,∴=,∠AED=∠C,∠ADE=∠B,∵DF∥AC,∴=,∴==,∠A=∠A,∴△ADE∽△ABC;结论应用:∵AD平分∠BAC,∴∠GAF=∠CAF,∵CG⊥AD,∴∠AFG=∠AFC,在△AGF和△ACF中,,∴△AGF≌△ACF(ASA),∴AG=AC=7,GF=CF,则BG=AB﹣AG=10﹣7=3.又∵BE=CE,∴EF是△BCG的中位线,∴EF=BG=1.5.故答案是:1.5.16.解:(1)如图2中,结论:BE=DF,BE⊥DF.理由:∵四边形ABCD是矩形,AB=AD,∴四边形ABCD是正方形,AE=AB,AF=AD,∴AE=AF,∵∠DAB=∠EAF=90°,∴∠BAE=∠DAF,∴△ABE≌△ADF(SAS),∴BE=DF,∠ABE=∠ADF,∵∠ABE+∠AHB=90°,∠AHB=∠DHP,∴∠ADF+∠PHD=90°,∴∠DPH=90°,∴BE⊥DF.故答案为BE=DF,BE⊥DF.(2)如图3中,结论不成立.结论:DF=nBE,BE⊥DF,∵AE=AB,AF=AD,AD=nAB,∴AF=nAE,∴AF:AE=AD:AB,∴AF:AE=AD:AB,∵∠DAB=∠EAF=90°,∴∠BAE=∠DAF,∴△BAE∽△DAF,∴DF:BE=AF:AE=n,∠ABE=∠ADF,∴DF=nBE,∵∠ABE+∠AHB=90°,∠AHB=∠DHP,∴∠ADF+∠PHD=90°,∴∠DPH=90°,∴BE⊥DF.(3)如图4﹣1中,当点P在BE的延长线上时,在Rt△AEB中,∵∠AEB=90°,AB=6,AE=3,∴BE==3,∵△ABE∽△ADF,∴=,∴=,∴DF=4,∵四边形AEPF是矩形,∴AE=PF=3,∴PD=DF﹣PF=4﹣3;如图4﹣2中,当点P在线段BE上时,同法可得DF=4,PF=AE=3,∴PD=DF+PF=4+3,综上所述,满足条件的PD的值为4﹣3或4+3.17.解:(1)连接AG,如图2所示,由折叠得:AG⊥EF,∵EF∥BD,∴AG⊥BD,在矩形ABCD中,AB=8,BC=6,∴∠DAB=90°,AD=BC=6,∴DB===10,∴cos∠ADB===,∴DG=AD•cos∠ADB=6×=.(2)①当∠DGF=90°时,此时点D,G,E三点共线,设AF=3t,则FG=3t,AE=4t,DF=6﹣3t,在Rt△DFG中,DG2+FG2=DF2,即DG2=(6﹣3t)2﹣(3t)2=36﹣36t,∵tan∠FDG==,∴=,解得t=,∴AE=.②当∠GDF=90°时,点G在DC上,过点E作EH⊥CD于H,则四边形ADHE是矩形,EH=AD=6.设AF=3t,则FG=3t,AE=4t,DF=6﹣3t,∵∠FDG=∠FGE=∠EHG=90°,∴∠DGF+∠DFG=90°,∠DGF+∠EGH=90°,∴∠DFG=∠EGH,∴△GDF∽△EHG,∴==,∴==,∴DG=,GH=8﹣4k,∵DG+GH=AE,∴+8﹣4k=4k,∴k=,∴AE=.综上所述:AE=或.(3)①当△AEF∽△GHE时,如图4﹣1,过点H作HP⊥AB于P,∵∠AEF=∠FEG=∠EHG,∠EHG+∠HEG=90°,∴△FEG+∠HEG=90°,∴∠A=∠FEH=90°,∴△AEF∽△EHF,∴EF:HE=AF:AE=1:2,∵∠A=∠HPE=90°,∴∠AEF+∠HEP=90°,∠HEP+∠EHP=90°,∴∠AEF=∠EHP,∴△AEF∽△HPE,∴EA:HP=EF:EH=1:2,∵HP=6,∴AE=3.②当△AEF∽△GHE时,如图4﹣2,过点H作HP⊥AB于P,同法可得EF:HE=1:2,EA:HP=1:2,设AF=t,则AE=2t,EP=2t,HP=4t,∴BP=8﹣4t,∵△BHP∽△BDA,∴4t:6=(8﹣4t):8,解得:t=,AE=.③当△AEF∽△GEH时,如图4﹣3,过点G作MN∥AB交AD于点M,过点E作EN⊥MN 于N.设AF=t,则AE=2t,DF=6﹣t,由翻折可知:△AEF≌△GEF,AE=GE,∵△AEF∽△GEH,AE=GE,∴△AEF≌△GEH(AAS或ASA),∴FG=GH,∵MG∥DH,∴FM=(6﹣t),∴AM=EN=AF+FM=,又∵△FMG∽△GNE,且GF:GE=1:2,∵MG=NE=AM=,GN=2FN=6﹣t,∵MN=AE,∴+6﹣t=2t,解得t=,∴AE=.④当△AEF∽△GEH时,如图4﹣4,过点G作MN∥AB交AD于点M,过点E作EN⊥MN 于N,过点H作HQ⊥AD于Q,设AF=t,则AE=2t,设FM=a,∴NG=2a,NE=a+t,∴MG=EN=AM=,∴+2a=2t①,由上题可知:MF=MQ=a,QH=2MG=a+t,∴DQ=6﹣t﹣2a,∵=,∴=②,解得t=,∴AE=,综上所述,满足条件的AE的值为3或或或.18.解:(1)∵△ABC是“准互余三角形”,∠A>90°,∠B=20°,若∠A﹣∠B=90°,则∠A=110°,∴∠C=180°﹣110°﹣20°=50°,若∠A﹣∠C=90°,∵∠A+∠B+∠C=180°,∴∠C=35°;(2)∵∠BAC=90°,AB=4,BC=5,∴AC===3,∵△ABD是“准互余三角形”,∴∠BAD﹣∠B=90°,或∠BAD﹣∠ADB=90°,当∠BAD﹣∠ADB=90°,∴∠BAC+∠CAD﹣∠ADB=90°,∴∠CAD=∠ADB,∴AC=CD=3,当∠BAD﹣∠B=90°,∴∠BAC+∠CAD﹣∠B=90°,∴∠B=∠CAD,∵∠ADC=∠BDA,∴△ADC∽△BDA,∴,∴,∴CD=;(3)如图,将△ABC沿BC翻折得到△EBC,∴CE=AC=4,∠BCA=∠BCE,∠CBA=∠CBE,∠E=∠BAC=90°,∴∠ABE+∠ACE=180°,∵∠ACD=2∠ABC=∠ABE,∴∠ACD+∠ACE=180°,∴点D,点C,点E三点共线,∵∠BCD=∠ACD+∠ACB=2∠ABC+∠ACB=90°+∠ABC,∴∠BCD﹣∠CBD=90°,∵△BCD是“准互余三角形”,∴∠BCD﹣∠CDB=90°,∴90°+∠ABC﹣∠CDB=90°,∴∠CDB=∠ABC=∠EBC,又∵∠E=∠E,∴△CEB∽△BED,∴,即,∴BE=6,∴BD===3.。
2020-2021中考数学相似综合题含答案
2020-2021中考数学相似综合题含答案一、相似1.如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由.【答案】(1)解:y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2,把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4,∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4(2)解:∵y=x2+2x+1=(x+1)2,∴A(﹣1,0),当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0);当x=0时,y=﹣x2+4=4,则B(0,4),从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB,∵AC=3,AD=1,CD=4,AB= ,BC=2 ,BD=2 ,∴△BCD为等腰三角形,∴构造的三角形是等腰三角形的概率=(3)解:存在,易得BC的解析是为y=﹣2x+4,S△ABC= AC•OB= ×3×4=6,M点的坐标为(m,﹣2m+4)(0≤m≤2),①当N点在AC上,如图1,∴△AMN的面积为△ABC面积的,∴(m+1)(﹣2m+4)=2,解得m1=0,m2=1,当m=0时,M点的坐标为(0,4),N(0,0),则AN=1,MN=4,∴tan∠MAC= =4;当m=1时,M点的坐标为(1,2),N(1,0),则AN=2,MN=2,∴tan∠MAC= =1;②当N点在BC上,如图2,BC= =2 ,∵BC•AN= AC•BC,解得AN= ,∵S△AMN= AN•MN=2,∴MN= = ,∴∠MAC= ;③当N点在AB上,如图3,作AH⊥BC于H,设AN=t,则BN= ﹣t,由②得AH= ,则BH= ,∵∠NBG=∠HBA,∴△BNM∽△BHA,∴,即,∴MN= ,∵AN•MN=2,即•(﹣t)• =2,整理得3t2﹣3 t+14=0,△=(﹣3 )2﹣4×3×14=﹣15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或【解析】【分析】(1)将y=x2+2x+1配方成顶点式,根据轴对称的性质,可得出翻折后的函数解析式,再根据函数图像平移的规律:上加下减,左加右减,可得出答案。
中考数学《图形的相似》真题汇编含解析
图形的相似(29题)一、单选题1(2023·重庆·统考中考真题)如图,已知△ABC ∽△EDC ,AC :EC =2:3,若AB 的长度为6,则DE 的长度为()A.4B.9C.12D.13.5【答案】B【分析】根据相似三角形的性质即可求出.【详解】解:∵△ABC ∽△EDC ,∴AC :EC =AB :DE ,∵AC :EC =2:3,AB =6,∴2:3=6:DE ,∴DE =9,故选:B .【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.2(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点△ABC 、△DEF 成位似关系,则位似中心的坐标为()A.-1,0B.0,0C.0,1D.1,0【答案】A【分析】根据题意确定直线AD 的解析式为:y =x +1,由位似图形的性质得出AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,即可求解.【详解】解:由图得:A 1,2 ,D 3,4 ,设直线AD 的解析式为:y =kx +b ,将点代入得:2=k +b 4=3k +b ,解得:k =1b =1 ,∴直线AD 的解析式为:y =x +1,AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,∴当y =0时,x =-1,∴位似中心的坐标为-1,0 ,故选:A .【点睛】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键.3(2023·浙江嘉兴·统考中考真题)如图,在直角坐标系中,△ABC 的三个顶点分别为A 1,2 ,B 2,1 ,C 3,2 ,现以原点O 为位似中心,在第一象限内作与△ABC 的位似比为2的位似图形△A B C ,则顶点C 的坐标是()A.2,4B.4,2C.6,4D.5,4【答案】C【分析】直接根据位似图形的性质即可得.【详解】解:∵△ABC 的位似比为2的位似图形是△A B C ,且C 3,2 ,∴C 2×3,2×2 ,即C 6,4 ,故选:C .【点睛】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.4(2023·四川南充·统考中考真题)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为()A.6.4mB.8mC.9.6mD.12.5m【答案】B【分析】根据镜面反射性质,可求出∠ACB =∠ECD ,再利用垂直求△ABC ∽△EDC ,最后根据三角形相似的性质,即可求出答案.【详解】解:如图所示,由图可知,AB ⊥BD ,CD ⊥DE ,CF ⊥BD∴∠ABC =∠CDE =90°.∵根据镜面的反射性质,∴∠ACF =∠ECF ,∴90°-∠ACF =90°-∠ECF ,∴∠ACB =∠ECD ,∴△ABC ∽△EDC ,∴AB DE =BC CD.∵小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,∴AB =1.6m ,BC =2m ,CD =10m .∴1.6DE =210.∴DE =8m .故选:B .【点睛】本题考查了相似三角形的应用,解题的关键在于熟练掌握镜面反射的基本性质和相似三角形的性质.5(2023·安徽·统考中考真题)如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.10【答案】B 【分析】根据平行线分线段成比例得出DE EM =AF FB =2,根据△ADE ∽△CME ,得出AD CM =DE EM =2,则CM =12AD =32,进而可得MB =32,根据BC ∥AD ,得出△GMB ∽△GDA ,根据相似三角形的性质得出BG =3,进而在Rt △BGM 中,勾股定理即可求解.【详解】解:∵四边形ABCD 是正方形,AF =2,FB =1,∴AD =BC =AB =AF +FG =2+1=3,AD ∥CB ,AD ⊥AB ,CB ⊥AB ,∵EF ⊥AB ,∴AD ∥EF ∥BC∴DE EM =AFFB=2,△ADE∽△CME,∴AD CM =DEEM=2,则CM=12AD=32,∴MB=3-CM=32,∵BC∥AD,∴△GMB∽△GDA,∴BG AG =MBDA=323=12∴BG=AB=3,在Rt△BGM中,MG=MB2+BG2=322+32=352,故选:B.【点睛】本题考查了正方形的性质,平行线分线段成比例,相似三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.6(2023·湖北黄冈·统考中考真题)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为()A.10B.11C.23D.4【答案】A【分析】由作图可知BP平分∠CBD,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,根据角平分线的性质可知RQ=RC,进而证明Rt△BCR≌Rt△BQR,推出BC=BQ=4,设RQ=RC=x,则DR=CD-CR=3-x,解Rt△DQR求出QR=CR=43.利用三角形面积法求出OC,再证△OCR∽△DCN,根据相似三角形对应边成比例即可求出CN.【详解】解:如图,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,∵矩形ABCD中,AB=3,BC=4,∴CD =AB =3,∴BD =BC 2+CD 2=5.由作图过程可知,BP 平分∠CBD ,∵四边形ABCD 是矩形,∴CD ⊥BC ,又∵RQ ⊥BD ,∴RQ =RC ,在Rt △BCR 和Rt △BQR 中,RQ =RC BR =BR ,∴Rt △BCR ≌Rt △BQR HL ,∴BC =BQ =4,∴QD =BD -BQ =5-4=1,设RQ =RC =x ,则DR =CD -CR =3-x ,在Rt △DQR 中,由勾股定理得DR 2=DQ 2+RQ 2,即3-x 2=12+x 2,解得x =43,∴CR =43.∴BR =BC 2+CR 2=4310.∵S △BCR =12CR ⋅BC =12BR ⋅OC ,∴OC =CR ⋅BC BR =43×44310=2510.∵∠COR =∠CDN =90°,∠OCR =∠DCN ,∴△OCR ∽△DCN ,∴OC DC =CR CN ,即25103=43CN,解得CN =10.故选:A .【点睛】本题考查角平分线的作图方法,矩形的性质,角平分线的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出BP 平分∠CBD ,通过勾股定理解直角三角形求出CR .7(2023·四川内江·统考中考真题)如图,在△ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC ∥DG ∥EF ,点H 为AF 与DG 的交点.若AC =12,则DH 的长为()A.1B.32C.2D.3【答案】C 【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB,解得EF =4,则DH =12EF =2.【详解】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴∠BEF =∠BAC ,∠BFE =∠BCA ,∴△BEF ∽△BAC ,∴EF AC =BE AB,即EF 12=BE 3BE ,解得:EF =4,∴DH =12EF =12×4=2,故选:C .【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.8(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,O 为原点,OA =OB =35,点C 为平面内一动点,BC =32,连接AC ,点M 是线段AC 上的一点,且满足CM :MA =1:2.当线段OM 取最大值时,点M 的坐标是()A.35,65B.355,655C.65,125D.655,1255 【答案】D【分析】由题意可得点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,先证△OAM ∽△DAC ,得OM CD =OA AD =23,从而当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,然后分别证△BDO ∽△CDF ,△AEM ∽△AFC ,利用相似三角形的性质即可求解.【详解】解:∵点C 为平面内一动点,BC =32,∴点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,∵OA =OB =35,∴AD =OD +OA =952,∴OA AD=23,∵CM :MA =1:2,∴OA AD =23=CM AC,∵∠OAM =∠DAC ,∴△OAM ∽△DAC ,∴OM CD =OA AD=23,∴当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,∵OA =OB =35,OD =352,∴BD =OB 2+OD 2=35 2+352 2=152,∴CD =BC +BD =9,∵OM CD=23,∴OM =6,∵y 轴⊥x 轴,CF ⊥OA ,∴∠DOB =∠DFC =90°,∵∠BDO =∠CDF ,∴△BDO ∽△CDF ,∴OB CF =BD CD 即35CF=1529,解得CF =1855,同理可得,△AEM ∽△AFC ,∴ME CF =AM AC =23即ME 1855=23,解得ME =1255,∴OE =OM 2-ME 2=62-1255 2=655,∴当线段OM 取最大值时,点M 的坐标是655,1255,故选:D .【点睛】本题主要考查了勾股定理、相似三角形的判定及性质、圆的一般概念以及坐标与图形,熟练掌握相似三角形的判定及性质是解题的关键.9(2023·山东东营·统考中考真题)如图,正方形ABCD 的边长为4,点E ,F 分别在边DC ,BC 上,且BF =CE ,AE 平分∠CAD ,连接DF ,分别交AE ,AC 于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN ⊥AC 垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM +PN 的最小值为32;③CF 2=GE ⋅AE ;④S ΔADM =62.其中正确的是()A.①②B.②③④C.①③④D.①③【答案】D【分析】根据正方形的性质和三角形全等即可证明∠DAE =∠FDC ,通过等量转化即可求证AG ⊥DM ,利用角平分线的性质和公共边即可证明△ADG ≌△AMG ASA ,从而推出①的结论;利用①中的部分结果可证明△ADE ∽△DGE 推出DE 2=GE ⋅AE ,通过等量代换可推出③的结论;利用①中的部分结果和勾股定理推出AM 和CM 长度,最后通过面积法即可求证④的结论不对;结合①中的结论和③的结论可求出PM +PN 的最小值,从而证明②不对.【详解】解:∵ABCD 为正方形,∴BC =CD =AD ,∠ADE =∠DCF =90°,∵BF =CE ,∴DE =FC ,∴△ADE ≌△DCF SAS .∴∠DAE =∠FDC ,∵∠ADE =90°,∴∠ADG +∠FDC =90°,∴∠ADG +∠DAE =90°,∴∠AGD =∠AGM =90°.∵AE 平分∠CAD ,∴∠DAG =∠MAG .∵AG =AG ,∴△ADG ≌△AMG ASA .∴DG =GM ,∵∠AGD =∠AGM =90°,∴AE 垂直平分DM ,故①正确.由①可知,∠ADE =∠DGE =90°,∠DAE =∠GDE ,∴△ADE ∽△DGE ,∴DE GE=AE DE ,∴DE 2=GE ⋅AE ,由①可知DE =CF ,∴CF 2=GE ⋅AE .故③正确.∵ABCD 为正方形,且边长为4,∴AB =BC =AD =4,∴在Rt △ABC 中,AC =2AB =4 2.由①可知,△ADG ≌△AMG ASA ,∴AM =AD =4,∴CM =AC -AM =42-4.由图可知,△DMC 和△ADM 等高,设高为h ,∴S △ADM =S △ADC -S △DMC ,∴4×h 2=4×42-42-4 ⋅h 2,∴h =22,∴S △ADM =12⋅AM ⋅h =12×4×22=4 2.故④不正确.由①可知,△ADG ≌△AMG ASA ,∴DG =GM ,∴M 关于线段AG 的对称点为D ,过点D 作DN ⊥AC ,交AC 于N ,交AE 于P ,∴PM +PN 最小即为DN ,如图所示,由④可知△ADM 的高h =22即为图中的DN ,∴DN =2 2.故②不正确.综上所述,正确的是①③.故选:D .【点睛】本题考查的是正方形的综合题,涉及到三角形相似,最短路径,三角形全等,三角形面积法,解题的关键在于是否能正确找出最短路径以及运用相关知识点.10(2023·内蒙古赤峰·统考中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM ⊥AB于点M ,AM =4,则下列结论,①DQ =EQ ,②BQ =3,③BP =158,④BD ∥FQ .正确的是()A.①②③B.②④C.①③④D.①②③④【答案】A【分析】由折叠性质和平行线的性质可得∠QDF =∠CDF =∠QEF ,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出MQ =AM =4,再求出BQ 即可判断②正确;由△CDP ∽△BQP 得CP BP =CD BQ=53,求出BP 即可判断③正确;根据EF DE ≠QE BE 即可判断④错误.【详解】由折叠性质可知:∠CDF =∠QDF ,CD =DQ =5,∵CD ∥AB ,∴∠CDF =∠QEF .∴∠QDF =∠QEF .∴DQ =EQ =5.故①正确;∵DQ =CD =AD =5,DM ⊥AB ,∴MQ =AM =4.∵MB =AB -AM =5-4=1,∴BQ =MQ -MB =4-1=3.故②正确;∵CD ∥AB ,∴△CDP ∽△BQP .∴CP BP =CD BQ=53.∵CP +BP =BC =5,∴BP =38BC =158.故③正确;∵CD ∥AB ,∴△CDF ∽△BEF .∴DF EF =CD BE =CD BQ +QE=53+5=58.∴EF DE =813.∵QE BE =58,∴EF DE ≠QE BE.∴△EFQ 与△EDB 不相似.∴∠EQF ≠∠EBD .∴BD 与FQ 不平行.故④错误;故选:A .【点睛】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.11(2023·黑龙江·统考中考真题)如图,在正方形ABCD中,点E,F分别是AB,BC上的动点,且AF ⊥DE,垂足为G,将△ABF沿AF翻折,得到△AMF,AM交DE于点P,对角线BD交AF于点H,连接HM,CM,DM,BM,下列结论正确的是:①AF=DE;②BM∥DE;③若CM⊥FM,则四边形BHMF是菱形;④当点E运动到AB的中点,tan∠BHF=22;⑤EP⋅DH=2AG⋅BH.()A.①②③④⑤B.①②③⑤C.①②③D.①②⑤【答案】B【分析】利用正方形的性质和翻折的性质,逐一判断,即可解答.【详解】解:∵四边形ABCD是正方形,∴∠DAE=∠ABF=90°,DA=AB,∵AF⊥DE,∴∠BAF+∠AED=90°,∵∠BAF+∠AFB=90°,∴∠AED=∠BFA,∴△ABF≌△AED AAS,∴AF=DE,故①正确,∵将△ABF沿AF翻折,得到△AMF,∴BM⊥AF,∵AF⊥DE,∴BM∥DE,故②正确,当CM⊥FM时,∠CMF=90°,∵∠AMF=∠ABF=90°,∴∠AMF+∠CMF=180°,即A,M,C在同一直线上,∴∠MCF=45°,∴∠MFC=90°-∠MCF=45°,通过翻折的性质可得∠HBF=∠HMF=45°,BF=MF,∴∠HMF=∠MFC,∠HBC=∠MFC,∴BC∥MH,HB∥MF,∴四边形BHMF是平行四边形,∵BF=MF,∴平行四边形BHMF是菱形,故③正确,当点E运动到AB的中点,如图,设正方形ABCD的边长为2a,则AE=BF=a,在Rt △AED 中,DE =AD 2+AE 2=5a =AF ,∵∠AHD =∠FHB ,∠ADH =∠FBH =45°,∴△AHD ∽△FHB ,∴FH AH =BF AD=a 2a =12,∴AH =23AF =253a ,∵∠AGE =∠ABF =90°,∴△AGF ∽△ABF ,∴AE AF =EG BF =AG AB =a 5a=55,∴EG =55BF =55a ,AG =55AB =255a ,∴DG =ED -EG =455a ,GH =AH -AG =4515a ,∵∠BHF =∠DHA ,在Rt △DGH 中,tan ∠BHF =tan ∠DHA =DG GH=3,故④错误,∵△AHD ∽△FHB ,∴BH DH=12,∴BH =13BD =13×22a =223a ,DH =23BD =23×22a =423a ,∵AF ⊥EP ,根据翻折的性质可得EP =2EG =255a ,∴EP ⋅DH =255a ⋅423a =81015a 2,2AG ⋅BH =2⋅255a ⋅223a =81015a 2,∴EP ⋅DH =2AG ⋅BH =81015a 2,故⑤正确;综上分析可知,正确的是①②③⑤.故选:B .【点睛】本题考查了正方形的性质,翻折的性质,相似三角形的判定和性质,正切的概念,熟练按照要求做出图形,利用寻找相似三角形是解题的关键.二、填空题12(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1位似,原点O 是位似中心,且AB A 1B 1=3.若A 9,3 ,则A 1点的坐标是.【答案】3,1【分析】直接利用位似图形的性质得出相似比进而得出对应线段的长.【详解】解∶设A1m,n∵△ABC与△A1B1C1位似,原点O是位似中心,且ABA1B1=3.若A9,3,∴位似比为31,∴9 m =31,3n=31,解得m=3,n=1,∴A13,1故答案为:3,1.【点睛】此题主要考查了位似变换,正确得出相似比是解题关键.13(2023·吉林长春·统考中考真题)如图,△ABC和△A B C 是以点O为位似中心的位似图形,点A 在线段OA 上.若OA:AA =1:2,则△ABC和△A B C 的周长之比为.【答案】1:3【分析】根据位似图形的性质即可求出答案.【详解】解:∵OA:AA =1:2,∴OA:OA =1:3,设△ABC周长为l1,设△A B C 周长为l2,∵△ABC和△A B C 是以点O为位似中心的位似图形,∴l1l2=OAOA=13.∴l1:l2=1:3.∴△ABC和△A B C 的周长之比为1:3.故答案为:1:3.【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.14(2023·四川乐山·统考中考真题)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE 交于点F .若AE EB =23,则S △ADF S △AEF =.【答案】52【分析】四边形ABCD 是平行四边形,则AB =CD ,AB ∥CD ,可证明△EAF ∽△DCF ,得到DF EF =CD AE =AB AE,由AE EB =23进一步即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠AEF =∠CDF ,∠EAF =∠DCF ,∴△EAF ∽△DCF ,∴DF EF =CD AE =AB AE ,∵AE EB =23,∴AB AE =52,∴S △ADF S △AEF =DF EF =AB AE=52.故答案为:52【点睛】此题考查了平行四边形的性质、相似三角形的判定和性质等知识,证明△EAF ∽△DCF 是解题的关键.15(2023·江西·统考中考真题)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,∠ABC 和∠AQP 均为直角,AP 与BC 相交于点D .测得AB =40cm ,BD =20cm ,AQ =12m ,则树高PQ =m .【答案】6【分析】根据题意可得△ABD ∽△AQP ,然后相似三角形的性质,即可求解.【详解】解:∵∠ABC 和∠AQP 均为直角∴BD ∥PQ ,∴△ABD ∽△AQP ,∴BD PQ =AB AQ∵AB =40cm ,BD =20cm ,AQ =12m ,∴PQ =AQ ×BD AB=12×2040=6m ,故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.16(2023·四川成都·统考中考真题)如图,在△ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ;③以点M 为圆心,以MN 长为半径作弧,在∠BAC 内部交前面的弧于点N :④过点N 作射线DN 交BC 于点E .若△BDE 与四边形ACED 的面积比为4:21,则BE CE的值为.【答案】23【分析】根据作图可得∠BDE =∠A ,然后得出DE ∥AC ,可证明△BDE ∽△BAC ,进而根据相似三角形的性质即可求解.【详解】解:根据作图可得∠BDE =∠A ,∴DE ∥AC ,∴△BDE ∽△BAC ,∵△BDE 与四边形ACED 的面积比为4:21,∴S △BDC S △BAC =421+4=BE BC2∴BE BC =25∴BE CE =23,故答案为:23.【点睛】本题考查了作一个角等于已知角,相似三角形的性质与判定,熟练掌握基本作图与相似三角形的性质与判定是解题的关键.17(2023·内蒙古·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =1,将△ABC 绕点A 逆时针方向旋转90°,得到△AB C .连接BB ,交AC 于点D ,则AD DC的值为.【答案】5【分析】过点D 作DF ⊥AB 于点F ,利用勾股定理求得AB =10,根据旋转的性质可证△ABB 、△DFB是等腰直角三角形,可得DF =BF ,再由S △ADB =12×BC ×AD =12×DF ×AB ,得AD =10DF ,证明△AFD ∼△ACB ,可得DF BC =AF AC ,即AF =3DF ,再由AF =10-DF ,求得DF =104,从而求得AD =52,CD =12,即可求解.【详解】解:过点D 作DF ⊥AB 于点F ,∵∠ACB =90°,AC =3,BC =1,∴AB =32+12=10,∵将△ABC 绕点A 逆时针方向旋转90°得到△AB C ,∴AB =AB =10,∠BAB =90°,∴△ABB 是等腰直角三角形,∴∠ABB =45°,又∵DF ⊥AB ,∴∠FDB =45°,∴△DFB 是等腰直角三角形,∴DF =BF ,∵S △ADB =12×BC ×AD =12×DF ×AB ,即AD =10DF ,∵∠C =∠AFD =90°,∠CAB =∠FAD ,∴△AFD ∼△ACB ,∴DF BC =AF AC,即AF =3DF ,又∵AF =10-DF ,∴DF =104,∴AD =10×104=52,CD =3-52=12,∴AD CD =5212=5,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.18(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.【答案】2或2+1【分析】分两种情况:当∠MND =90°时和当∠NMD =90°时,分别进行讨论求解即可.【详解】解:当∠MND =90°时,∵四边形ABCD 矩形,∴∠A =90°,则MN ∥AB ,由平行线分线段成比例可得:AN ND =BM MD,又∵M 为对角线BD 的中点,∴BM =MD ,∴AN ND =BM MD=1,即:ND =AN =1,∴AD =AN +ND =2,当∠NMD =90°时,∵M 为对角线BD 的中点,∠NMD =90°∴MN 为BD 的垂直平分线,∴BN =ND ,∵四边形ABCD 矩形,AN =AB =1∴∠A =90°,则BN =AB 2+AN 2=2,∴BN =ND =2∴AD =AN +ND =2+1,综上,AD 的长为2或2+1,故答案为:2或2+1.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.19(2023·辽宁大连·统考中考真题)如图,在正方形ABCD 中,AB =3,延长BC 至E ,使CE =2,连接AE ,CF 平分∠DCE 交AE 于F ,连接DF ,则DF 的长为.【答案】3104【分析】如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,由CF 平分∠DCE ,可知∠FCM =∠FCN =45°,可得四边形CMFN 是正方形,FM ∥AB ,设FM =CM =NF =CN =a ,则ME =2-a ,证明△EFM ∽△EAB ,则FM AB=ME BE ,即a 3=2-a 3+2,解得a =34,DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2,计算求解即可.【详解】解:如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,则四边形CMFN 是矩形,FM ∥AB ,∵CF 平分∠DCE ,∴∠FCM =∠FCN =45°,∴CM =FM ,∴四边形CMFN 是正方形,设FM =CM =NF =CN =a ,则ME =2-a ,∵FM ∥AB ,∴△EFM ∽△EAB ,∴FM AB =ME BE ,即a 3=2-a 3+2,解得a =34,∴DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2=3104,故答案为:3104.【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.20(2023·广东·统考中考真题)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.【答案】15【分析】根据正方形的性质及相似三角形的性质可进行求解.【详解】解:如图,由题意可知AD =DC =10,CG =CE =GF =6,∠CEF =∠EFG =90°,GH =4,∴CH =10=AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ AAS ,∴CJ =DJ =5,∴EJ =1,∵GI ∥CJ ,∴△HGI ∽△HCJ ,∴GI CJ =GH CH=25,∴GI =2,∴FI =4,∴S 梯形EJIF =12EJ +FI ⋅EF =15;故答案为:15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.21(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.【答案】3;13【分析】(1)过点E 作EH ⊥AD ,根据正方形和等腰三角形的性质,得到AH 的长,再利用勾股定理,求出EH 的长,即可得到△ADE 的面积;(2)延长EH 交AG 于点K ,利用正方形和平行线的性质,证明△ABF ≌△KEF ASA ,得到EK 的长,进而得到KH 的长,再证明△AHK ∽△ADG ,得到KH GD =AH AD ,进而求出GD 的长,最后利用勾股定理,即可求出AG的长.【详解】解:(1)过点E作EH⊥AD,∵正方形ABCD的边长为3,∴AD=3,∵△ADE是等腰三角形,EA=ED=52,EH⊥AD,∴AH=DH=12AD=32,在Rt△AHE中,EH=AE2-AH2=522-32 2=2,∴S△ADE=12AD⋅EH=12×3×2=3,故答案为:3;(2)延长EH交AG于点K,∵正方形ABCD的边长为3,∴∠BAD=∠ADC=90°,AB=3,∴AB⊥AD,CD⊥AD,∵EK⊥AD,∴AB∥EK∥CD,∴∠ABF=∠KEF,∵F为BE的中点,∴BF=EF,在△ABF和△KEF中,∠ABF=∠KEF BF=EF∠AFB=∠KFE,∴△ABF≌△KEF ASA,∴EK=AB=3,由(1)可知,AH=12AD,EH=2,∴KH=1,∵KH∥CD,∴△AHK∽△ADG,∴KH GD =AH AD,∴GD=2,在Rt△ADG中,AG=AD2+GD2=32+22=13,故答案为:13.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.22(2023·四川泸州·统考中考真题)如图,E,F是正方形ABCD的边AB的三等分点,P是对角线AC上的动点,当PE+PF取得最小值时,APPC的值是.【答案】27【分析】作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,此时PE +PF 取得最小值,过点F 作AD 的垂线段,交AC 于点K ,根据题意可知点F 落在AD 上,设正方形的边长为a ,求得AK 的边长,证明△AEP ∽△KF P ,可得KP AP=2,即可解答.【详解】解:作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,过点F 作AD 的垂线段,交AC 于点K ,由题意得:此时F 落在AD 上,且根据对称的性质,当P 点与P 重合时PE +PF 取得最小值,设正方形ABCD 的边长为a ,则AF =AF =23a ,∵四边形ABCD 是正方形,∴∠F AK =45°,∠P AE =45°,AC =2a∵F K ⊥AF ,∴∠F AK =∠F KA =45°,∴AK =223a ,∵∠F P K =∠EP A ,∴△E KP ∽△EAP ,∴F K AE =KP AP=2,∴AP =13AK =292a ,∴CP =AC -AP =792a , ∴AP CP=27,∴当PE +PF 取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.23(2023·山西·统考中考真题)如图,在四边形ABCD 中,∠BCD =90°,对角线AC ,BD 相交于点O .若AB =AC =5,BC =6,∠ADB =2∠CBD ,则AD 的长为.【答案】973【分析】过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,根据等腰三角形性质得出BH =HC =12BC =3,根据勾股定理求出AH =AC 2-CH 2=4,证明∠CBD =∠CED ,得出DB =DE ,根据等腰三角形性质得出CE =BC =6,证明CD ∥AH ,得出CD AH=CE HE ,求出CD =83,根据勾股定理求出DE =CE 2+CD 2=62+83 2=2973,根据CD ∥AH ,得出DE AD =CE CH ,即2973AD=63,求出结果即可.【详解】解:过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,如图所示:则∠AHC =∠AHB =90°,∵AB =AC =5,BC =6,∴BH =HC =12BC =3,∴AH =AC 2-CH 2=4,∵∠ADB =∠CBD +∠CED ,∠ADB =2∠CBD ,∴∠CBD =∠CED ,∴DB =DE ,∵∠BCD =90°,∴DC ⊥BE ,∴CE =BC =6,∴EH =CE +CH =9,∵DC ⊥BE ,AH ⊥BC ,∴CD ∥AH ,∴△ECD ~△EHA ,∴CD AH =CE HE ,即CD 4=69,解得:CD =83,∴DE =CE 2+CD 2=62+83 2=2973,∵CD ∥AH ,∴DE AD=CE CH ,即2973AD =63,解得:AD =973.故答案为:973.【点睛】本题主要考查了三角形外角的性质,等腰三角形的判定和性质,勾股定理,平行线分线段成比例,相似三角形的判定与性质,平行线的判定,解题的关键是作出辅助线,熟练掌握平行线分线段成比例定理及相似三角形的判定与性质.三、解答题24(2023·湖南·统考中考真题)在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高.(1)证明:△ABD ∽△CBA ;(2)若AB =6,BC =10,求BD 的长.【答案】(1)见解析(2)BD =185【分析】(1)根据三角形高的定义得出∠ADB =90°,根据等角的余角相等,得出∠BAD =∠C ,结合公共角∠B =∠B ,即可得证;(2)根据(1)的结论,利用相似三角形的性质即可求解.【详解】(1)证明:∵∠BAC =90°,AD 是斜边BC 上的高.∴∠ADB =90°,∠B +∠C =90°∴∠B +∠BAD =90°,∴∠BAD =∠C又∵∠B =∠B∴△ABD ∽△CBA ,(2)∵△ABD ∽△CBA∴AB CB =BD AB,又AB =6,BC =10∴BD =AB 2CB=3610=185.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.25(2023·湖南·统考中考真题)如图,CA ⊥AD ,ED ⊥AD ,点B 是线段AD 上的一点,且CB ⊥BE .已知AB =8,AC =6,DE =4.(1)证明:△ABC∽△DEB.(2)求线段BD的长.【答案】(1)见解析(2)BD=3【分析】(1)根据题意得出∠A=∠D=90°,∠C+∠ABC=90°,∠ABC+∠EBD=90°,则∠C=∠EBD,即可得证;(2)根据(1)的结论,利用相似三角形的性质列出比例式,代入数据即可求解.【详解】(1)证明:∵AC⊥AD,ED⊥AD,∴∠A=∠D=90°,∠C+∠ABC=90°,∵CE⊥BE,∴∠ABC+∠EBD=90°,∴∠C=∠EBD,∴△ABC∽△DEB;(2)∵△ABC∽△DEB,∴AB DE =AC BD,∵AB=8,AC=6,DE=4,∴8 4=6 BD,解得:BD=3.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.26(2023·四川眉山·统考中考真题)如图,▱ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:AF=AB;(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H,若AG=2,FG=6,求GH的长.【答案】(1)见解析(2)65【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,证明△AEF≅△DEC ASA,推出AF= CD,即可解答;(2)通过平行四边形的性质证明GC=GF=6,再通过(1)中的结论得到DC=AB=AF=8,最后证明△AGH∽△DCH,利用对应线段比相等,列方程即可解答.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠EAF=∠D,∵E是AD的中点,∴AE=DE,∵∠AEF =∠CED ,∴△AEF ≅△DEC ASA ,∴AF =CD ,∴AF =AB ;(2)解:∵四边形ABCD 是平行四边形,∴DC =AB =AF =FG +GA =8,DC ∥FA ,∴∠DCF =∠F ,∠DCG =∠CGB ,∵∠FCG =∠FCD ,∴∠F =∠FCG ,∴GC =GF =6,∵∠DHC =∠AHG ,∴△AGH ∽△DCH ,∴GH CH =AG DC,设HG =x ,则CH =CG -GH =6-x ,可得方程x 6-x =28,解得x =65,即GH 的长为65.【点睛】本题考查了平行四边形的性质,等腰三角形的判定和性质,相似三角形的判定和性质,熟练运用上述性质证明三角形相似是解题的关键.27(2023·四川凉山·统考中考真题)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 于点E .(1)求证:AC ⊥BD ;(2)若AB =10,AC =16,求OE 的长.【答案】(1)见详解(2)92【分析】(1)可证AB =CB ,从而可证四边形ABCD 是菱形,即可得证;(2)可求OB =6,再证△EBO ∽△BAO ,可得EO BO =BO AO,即可求解.【详解】(1)证明:∵∠CAB =∠ACB ,∴AB =CB ,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,∴AC ⊥BD .(2)解:∵四边形ABCD 是平行四边形,∴OA =12AC =8,∵AC ⊥BD ,BE ⊥AB ,∴∠AOB =∠BOE =∠ABE =90°,∴OB =AB 2-OB 2=102-82=6,∵∠EBO +∠BEO =90°,∠ABO +∠EBO =90°,∴∠BEO =∠ABO ,∴△EBO ∽△BAO ,∴EO BO =BO AO ,∴EO 6=68解得:OE =92.【点睛】本题考查了平行四边形的性质,菱形的判定及性质,勾股定理,三角形相似的判定及性质,掌握相关的判定方法及性质是解题的关键.28(2023·江苏扬州·统考中考真题)如图,点E 、F 、G 、H 分别是▱ABCD 各边的中点,连接AF 、CE 相交于点M ,连接AG 、CH 相交于点N .(1)求证:四边形AMCN 是平行四边形;(2)若▱AMCN 的面积为4,求▱ABCD 的面积.【答案】(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG ,四边形AFCH 均为平行四边形,进而得到:AM ∥CN ,AN ∥CM ,即可得证;(2)连接HG ,AC ,EF ,推出S △ANH S △ANC =HN CN=12,S △FMC S △AMC =12,进而得到S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,求出S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,再根据S ▱ABCD =2S ▱AFCH ,即可得解.【详解】(1)证明:∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,AB =CD ,AD =BC ,∵点E 、F 、G 、H 分别是▱ABCD 各边的中点,∴AE =12AB =12CD =CG ,AE ∥CG ,∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴AM ∥CN ,AN ∥CM ,∴四边形AMCN 是平行四边形;(2)解:连接HG ,AC ,EF ,∵H ,G 为AD ,CD 的中点,∴HG ∥AC ,HG =12AC ,∴△HNG ∽△CNA ,∴HN CN =HG AC =12,∴S △ANH S △ANC =HN CN=12,同理可得:S △FMC S △AMC =12∴S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,∴S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,∵AH =12AD ,∴S ▱ABCD =2S ▱AFCH =12.【点睛】本题考查平行四边形的判定和性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握平行四边形的性质,以及三角形的中位线定理,证明三角形相似,是解题的关键.29(2023·上海·统考中考真题)如图,在梯形ABCD 中AD ∥BC ,点F ,E 分别在线段BC ,AC 上,且∠FAC =∠ADE ,AC =AD(1)求证:DE =AF(2)若∠ABC =∠CDE ,求证:AF 2=BF ⋅CE【答案】见解析【分析】(1)先根据平行线的性质可得∠DAE =∠ACF ,再根据三角形的全等的判定可得△DAE ≅△ACF ,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得∠AFC =∠DEA ,从而可得∠AFB =∠CED ,再根据相似三角形的判定可得△ABF ∼△CDE ,然后根据相似三角形的性质即可得证.【详解】(1)证明:∵AD ∥BC ,∴∠DAE =∠ACF ,在△DAE和△ACF中,∠DAE=∠ACF AD=CA∠ADE=∠CAF,∴△DAE≅△ACF ASA,∴DE=AF.(2)证明:∵△DAE≅△ACF,∴∠AFC=∠DEA,∴180°-∠AFC=180°-∠DEA,即∠AFB=∠CED,在△ABF和△CDE中,∠AFB=∠CED ∠ABF=∠CDE,∴△ABF∼△CDE,∴AF CE =BF DE,由(1)已证:DE=AF,∴AF CE =BF AF,∴AF2=BF⋅CE.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.。
中考数学 相似综合试题含答案解析
中考数学相似综合试题含答案解析一、相似1.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=________,PD=________.(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q 的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.【答案】(1)8-2t;(2)解:不存在在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10∵PD∥BC,∴△APD∽△ACB,∴,即,∴AD= ,∴BD=AB-AD=10- ,∵BQ∥DP,∴当BQ=DP时,四边形PDBQ是平行四边形,即8-2t= ,解得:t= .当t= 时,PD= ,BD=10- ,∴DP≠BD,∴▱PDBQ不能为菱形.设点Q的速度为每秒v个单位长度,则BQ=8-vt,PD= ,BD=10- ,要使四边形PDBQ为菱形,则PD=BD=BQ,当PD=BD时,即 =10- ,解得:t=当PD=BQ,t= 时,即,解得:v=当点Q的速度为每秒个单位长度时,经过秒,四边形PDBQ是菱形.(3)解:如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).设直线M1M2的解析式为y=kx+b,∴,解得,∴直线M1M2的解析式为y=-2x+6.∵点Q(0,2t),P(6-t,0)∴在运动过程中,线段PQ中点M3的坐标(,t).把x= 代入y=-2x+6得y=-2× +6=t,∴点M3在直线M1M2上.过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.∴M1M2=2∴线段PQ中点M所经过的路径长为2 单位长度.【解析】【解答】(1)根据题意得:CQ=2t,PA=t,∴QB=8-2t,∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,∴∠APD=90°,∴tanA= ,∴PD= .【分析】CQ=2t,PA=t,可得QB=8﹣2t,根据tanA=,可以表示PD;易得△APD∽△ACB,即可求得AD与BD的长,由BQ∥DP,可得当BQ=DP时,四边形PDBQ是平行四边形;求得此时DP与BD的长,由DP≠BD,可判定▱PDBQ不能为菱形;然后设点Q 的速度为每秒v个单位长度,由要使四边形PDBQ为菱形,则PD=BD PD=BQ,列方程即可求得答案.以C为原点,以AC所在的直线为x轴,建立平面直角坐标系,求出直线M1M2解析式,证明M3在直线M1M2上,利用勾股定理求出M1M2.2.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【答案】(1)解:∵在矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM= AO= ,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ADC,∴,∴AP=t= ,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形(2)解:作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,在△APO与△CEO中,∵∠PAO=∠ECO,AO=OC,∠AOP=∠COE,∴△AOP≌△COE,∴CE=AP=t,∵△CEH∽△ABC,∴,∴EH= ,∵DN= = ,∵QM∥DN,∴△CQM∽△CDN,∴,即,∴QM= ,∴DG= = ,∵FQ∥AC,∴△DFQ∽△DOC,∴,∴FQ= ,∴S五边形OECQF=S△OEC+S四边形OCQF= =,∴S与t的函数关系式为(3)解:存在,∵S△ACD= ×6×8=24,∴S五边形OECQF:S△ACD=():24=9:16,解得t= ,t=0,(不合题意,舍去),∴t= 时,S五边形S五边形OECQF:S△ACD=9:16(4)解:如图3,过D作DM⊥AC于M,DN⊥AC于N,∵∠POD=∠COD,∴DM=DN= ,∴ON=OM= = ,∵OP•DM=3PD,∴OP= ,∴PM= ,∵,∴,解得:t≈15(不合题意,舍去),t≈2.88,∴当t=2.88时,OD平分∠COP.【解析】【分析】(1)根据矩形的性质可得:AB=CD=6,BC=AD=8,所以AC=10;而P、Q 两点分别从A点和D点同时出发且以相同的速度为1cm/s运动,当一个点停止运动时,另一个点也停止运动,所以点P不可能运动到点D;所以△AOP是等腰三角形分两种情况讨论:①当AP=PO=t时,过P作PM⊥AO,易证△CQM∽△CDN,可得比例式即可求解;②当AP=AO=t=5时,△AOP是等腰三角形;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,可将五边形转化成一个三角形和一个直角梯形,则五边形OECQF的面积S=三角形OCE的面积+直角梯形OCQF的面积;(3)因为三角形ACD的面积=AD CD=24,再将(2)中的结论代入已知条件S五边形S :S△ACD=9:16中,可得关于t的方程,若有解且符合题意,则存在,反之,不存五边形OECQF在;(4)假设存在。
备战中考数学相似的综合题试题附详细答案
一、相似真题与模拟题分类汇编(难题易错题)1.已知线段a,b,c满足,且a+2b+c=26.(1)判断a,2b,c,b2是否成比例;(2)若实数x为a,b的比例中项,求x的值.【答案】(1)解:设,则a=3k,b=2k,c=6k,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;∴2b=8,b2=16∵a=6,2b=8,c=12,b2=16∴2bc=96,ab2=6×16=96∴2bc=ab2a,2b,c,b2是成比例的线段。
(2)解:∵x是a、b的比例中项,∴x2=6ab,∴x2=6×4×6,∴x=12.【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。
(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。
2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.【答案】(1)解:证明:∵四边形是矩形,在中,分别是的中点,(2)解:如图1,过点作于,(舍)或秒(3)解:四边形为矩形时,如图所示:解得:(4)解:当点在上时,如图2,当点在上时,如图3,时,如图4,时,如图5,综上所述,或或或秒时,是等腰三角形.【解析】【分析】(1)根据矩形的性质可证得AD∥BC,∠A=∠C,根据中位线定理可证得EF∥AD,就可得出EF∥BC,可证得∠BEF=∠C,∠BFE=∠DBC,从而可证得结论。
2020年九年级数学典型中考压轴题训练《相似综合》含答案
2020年九年级数学典型中考压轴题训练《相似综合》1.如图,四边形ABCD内接于⊙O,且对角线AC⊥BD,垂足为点E,过点C作CF⊥AB于点F,交BD于点G.(1)如图①,连接EF,若EF平分∠AFG,求证:AE=GE;(2)如图②,连接CO并延长交AB于点H,若CH为∠ACF的平分线,AD=3,且tan∠FBG =,求线段AH长.2.如图1,在△ABC中,AB=AC,点D,E分别是边BC,AC上的点,且∠ADE=∠B.(1)求证:AB•CE=BD•CD;(2)若AB=5,BC=6,求AE的最小值;(3)如图2,若△ABC为等边三角形,AD⊥DE,BE⊥DE,点C在线段DE上,AD=3,BE =4,求DE的长.3.如图,AB是⊙O的直径,AB=10,延长弦CD至点E,CD=6,AB⊥CD于点F,点M在AB 上,AM=,连接EM,点N在半径OB上,ON=2,ND∥ME.(1)求tan∠E的值;(2)延长OB至点G,使BG=,连接GD并延长交ME于点H,判断GH与⊙O的位置关系,并求MH的长.4.在Rt△ACB中,∠ACB=90°,点D为AB上一点.(1)如图1,若CD⊥AB,求证:CD2=AD•DB;(2)如图2,若AC=BC,EF⊥CD于H,EF与BC交于E,与AC交于F,且=,求的值;(3)如图3,若AC=BC,点H在CD上,且∠AHD=45°,CH=3DH,直接写出tan∠ACH 的值为.5.定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)判断下列命题是真命题,还是假命题?①正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形.③如图1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED.(2)如图2,菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点.①求AE,DE的长;②AC,BD交于点O,求tan∠DBC的值.6.如图,在矩形ABCD中,AB=3,BC=4,点E是线段AC上的一个动点且=k(0<k<1),点F在线段BC上,且DEFH为矩形;过点E作MN⊥BC,分别交AD,BC于点M,N.(1)求证:△MED∽△NFE;(2)当EF=FC时,求k的值.(3)当矩形EFHD的面积最小时,求k的值,并求出矩形EFHD面积的最小值.7.如图1,△ABC中,∠ACB的平分线CE交AB于点E.(1)求证:=;(2)如图2,AD⊥BC交CE于F,BD=2AD,∠AEC=45°.①求证:BE=2AE;②直接写出sin∠ACE的值.8.如图1,在△ABC中,点D在AC边上,连接BD,∠ABD=∠C.(1)求证:△ADB∽△ABC;(2)点E在AB边上,连接DE,BE=DE.①如图2,若∠C=30°,求证:3AE•BE=AD•CD;②如图3,△ABC为锐角三角形,AB=6,AC=9,tan C=,请直接写出AE的长.9.在四边形ABCD中,E、F分别是BD、BC上的点,∠BAE=∠BDA.(1)如图1,求证:AB2=BE•BD;(2)如图2,若四边形ABCD是平行四边形,A、E、F三点在同一条直线上,,∠ABC=60°,求的值;(3)如图3,若A、E、F不在同一条直线,∠DEF=∠C,AB=2,BD=4,,,则CD=(直接写出结果).10.矩形ABCD 中,点P 在对角线BD 上(点P 不与点B 重合),连接AP ,过点P 作PE ⊥AP 交直线BC 于点E .(1)如图1,当AB =BC 时,猜想线段PA 和PE 的数量关系: ; (2)如图2,当AB ≠BC 时.求证:(3)若AB =8,BC =10,以AP ,PE 为边作矩形APEF ,连接BF ,当PE =时,直接写出线段BF 的长.11.已知矩形ABCD 中,E 是BC 的中点,DF ⊥AE 于点F . (1)如图1,若BE =,求AE •AF 的值;(2)如图2,连接AC 交DF 于点G ,若=,求cos ∠FCE 的值;(3)如图3,延长DF 交AB 于点G ,若G 点恰好为AB 的中点,连接PC ,过A 作AK ∥FC 交FD 于K ,设△ADK 的面积为S 1,△CDF 的面积为S 2,则的值为 .12.如图1,AB⊥BC,分别过点A,C作BM的垂线,垂足分别为M,N.(1)求证:BM•BC=AB•CN;(2)若AC=BC.①如图2,若BM=MN,过点A作AD∥BC交CM的延长线于点D,求DN:CN的值;②如图3,若BM>MN,延长BN至点E,使BM=ME,过点A作AF∥BC交CE的延长线于点F,若E是CF的中点,且CN=1,直接写出线段AF的长.13.请阅读下列材料,并完成相应的任务.梅涅劳斯(Menelaus)是公元一世纪时的希腊数学家兼天文学家,著有几何学和三角学方面的许多书籍.梅涅劳斯发现,三角形各边(或其延长线)被一条不过任何一个顶点也不与任何一条边平行的直线所截,这条直线可能与三角形的两条边相交(一定还会与一条边的延长线相交),也可能与三条边都不相交(与三条边的延长线都相交).他进行了深入研究并证明了著名的梅涅劳斯定理(简称梅氏定理):设D,E,F依次是OABC的三边AB,BC,CA或其延长线上的点,且这三点共线,则满足.这个定理的证明步骤如下:情况①:如图1,直线DE交△ABC的边AB于点D,交边AC于点F,交边BC的延长线与点E.过点C作CM∥DE交AB于点M,则,(依据)∴=∴BE•AD•FC=BD•AF•EC,即.情况②:如图2,直线DE分别交△ABC的边BA,BC,CA的延长线于点D,E,F.…(1)情况①中的依据指:(2)请你根据情况①的证明思路完成情况②的证明.(3)如图3,D,F分别是△ABC的边AB,AC.上的点,且AD:DB=CF:FA=2:3,连接DF并延长,交BC的延长线于点E,那么BE:CE=.14.如图a,在正方形ABCD中,E、F分别为边AB、BC的中点,连接AF、DE交于点G.(1)求证:AF⊥DE;(2)如图b,连接BG,BD,BD交AF于点H.①求证:GB2=GA•GD;②若AB=10,求三角形GBH的面积.15.问题发现:(1)如图1,在Rt△ABC中,∠A=90°,AB=k•AC(k>1),D是AB上一点,DE∥BC,则BD,EC的数量关系为.类比探究(2)如图2,将△AED绕着点A顺时针旋转,旋转角为a(0°<a<90°),连接CE,BD,请问(1)中BD,EC的数量关系还成立吗?说明理由拓展延伸:(3)如图3,在(2)的条件下,将△AED绕点A继续旋转,旋转角为a(a>90°).直线BD,CE交于F点,若AC=1,AB=,则当∠ACE=15°时,BF•CF的值为.参考答案1.证明:(1)过点E作EI⊥EF交CF于点I,如图①所示:∵CF⊥AB,∴∠AFG=90°,又∵EF平分∠AFG,∴∠EFA=∠EFI=45°,又∵EF⊥EI,∴∠FEI=90°,又∵∠EFI+∠EIF=90°,∴∠EIF=45°,∴EF=EI,又∵∠EAF+∠AFG+∠FGE+∠GEA=360°,∠AFG=∠AEG=90°,∴∠EGF+∠FAE=180°,又∵∠EGF+∠EGI=180°,∴∠EGI=∠FAE,又∵∠AEB=∠AEF+∠FEG,∠FEI=∠GEI+∠FEG,∴∠AEF=∠GEI,在△AEF和△GEI中,,∴△AEF≌△GEI(AAS),∴AE=GE;(2)连接DO并延长,交⊙O于点P,连接AP,如图②甲所示:∵∠ABD与∠P是⊙O上弧AD所对的圆周角,∴∠ABD=∠P,又∵DP为⊙O的直径,∴∠PAD=90°,又∵tan∠FBG=,∴tan∠P==,又∵AD=3,∴AP=4,PD=5,∴OD=,过点H作HJ⊥AC于点J,过点O作OK⊥AC于点K,设AJ=3t,CF=x,如图②乙所示,∵HJ⊥AC,BD⊥AC,∴HJ∥BD,∴∠ABD=∠AHJ,又∵tan∠ABD=∴tan∠AHJ=,又∵AJ=3t,∴HJ=4t,在Rt△AHJK由勾股定理得:AH===5t,又∵CH是∠ACF的平分线,且HF⊥CF,HJ⊥AC,∴HF=HJ=4t,∴AF=AH+HF=9t,又∵CF=x,∴CJ=x,又∵∠BFG=∠GEC,∠FGB=∠EGC,∴△FBG∽△ECG,∴∠FBG=∠ECG,∴tan∠FCJ===,解得:x=12t,∴CF=CJ=12t,∴AC=15t,∴CK=t,又∵OK∥HJ,∴=,∴OK===t,∴在Rt△OCK中,由勾股定理得:OK2+KC2=OC2,即(t)2+(t)2=()2,解得:t=,或t=﹣(舍去),∴AH=5t=.2.(1)证明:∵AB=AC,∴∠B=∠C,∵∠ADC为△ABD的外角,∴∠ADE+∠EDC=∠B+∠DAB,∵∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△ABD∽△DCE,∴=,∴AB•CE=BD•CD;(2)解:设BD=x,AE=y,由(1)得,5×(5﹣y)=x×(6﹣x),整理得,y=x2﹣x+5=(x﹣3)2+,∴AE的最小值为;(3)解:作AF⊥BE于F,则四边形ADEF为矩形,∴EF=AD=3,AF=DE,∴BF=BE﹣EF=1,设CD=x,CE=y,则AF=DE=x+y,由勾股定理得,AD2+CD2=AC2,CE2+BE2=BC2,AF2+BF2=AB2,∵△ABC为等边三角形,∴AB=AC=BC,∴32+x2=AC2,y2+42=BC2,(x+y)2+12=AC2,∴x2﹣y2=7,y2+2xy=8,解得,x=,y=,∴DE=x+y=.3.解:(1)如图,连接OD,∵AB=10,∴OA=OB=5,∵AB⊥CD,∴CF=DF=CD=3,∴OF===4,∴NF=OF﹣ON=2,∵DN∥ME,∴∠E=∠NDF,∴tan∠E=tan∠NDF==;(2)∵FB=OB﹣OF=1,∴FG=+1=,∵,∴,且∠DFG=∠DFO=90°,∴△DFO∽△GFD,∴∠G=∠ODF,∵∠FOD+∠ODF=90°=∠FOD+∠G,∴∠ODG=90°,∴OD⊥DG,且OD是半径,∴GH是⊙O的切线,∵AM=,∴GM=10﹣+=,在Rt△DFN中,DN===,∵DN∥ME,∴∴∴MH=2.4.(1)证明:∵CD⊥AB,∴∠ADC=∠CDB=90°,∵∠ACB=90°,∴∠B+∠BCD=∠ACD+∠BCD=90°,∴∠B=∠ACD,∴△CBD∽△ACD,∴CD:AD=BD:CD,∴CD2=AD•DB;(2)解:∵=,∴设FH=4a,则HE=9a(a>0),∵∠ACB=90°,EF⊥CD,∴同(1)得:CH2=HE•FH=9a×4a=36a2,∴CH=6a,在Rt△CHF中,tan∠ACD===,过D作DP⊥AC于P,如图2所示:则DP∥BC,在Rt△DPC中,tan∠ACD==,∵AC=BC,∠ACB=90°,∴∠A=45°,∴△ADP是等腰直角三角形,∴AP=DP,∴==,∵DP∥BC,∴==;(3)解:过点D作DM⊥AH于M,如图3所示:∵CH=3DH,∴设DH=2x,则CH=6x(x>0),∴CD=DH+CH=8x,∵AC=BC,∠ACB=90°,∴∠BAC=45°=∠AHD,又∵∠ADH=∠CDA,∴△ADH∽△CDA,∴∠DAH=∠ACH,AD:CD=DH:AD,∴AD2=DH•CD=16x2,∴AD=4x,∵DM⊥AH,∠AHD=45°,∴△ADM是等腰直角三角形,∴DM=HM=DH=x,∴AM===x,∴tan∠ACH=tan∠DAH===;故答案为:.5.解:(1)①正方形是自相似菱形,是真命题;理由如下:如图3所示:∵四边形ABCD是正方形,点E是BC的中点,∴AB=CD,BE=CE,∠ABE=∠DCE=90°,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴△ABE∽△DCE,∴正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形,是假命题;理由如下:如图4所示:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等边三角形,∠DCE=120°,∵点E是BC的中点,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB与△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,则∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一个内角为60°的菱形不是自相似菱形;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED,是真命题;理由如下:∵∠ABC=α(0°<α<90°),∴∠C>90°,且∠ABC+∠C=180°,△ABE与△EDC不能相似,同理△AED与△EDC也不能相似,∵四边形ABCD是菱形,∴AD∥BC,∴∠AEB=∠DAE,当∠AED=∠B时,△ABE∽△DEA,∴若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED;(2)①∵菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点,∴BE=2,AB=AD=4,由(1)③得:△ABE∽△DEA,∴==,∴AE2=BE•AD=2×4=8,∴AE=2,DE===4,②过E作EM⊥AD于M,过D作DN⊥BC于N,如图2所示:则四边形DMEN是矩形,∴DN=EM,DM=EN,∠M=∠N=90°,设AM=x,则EN=DM=x+4,由勾股定理得:EM2=DE2﹣DM2=AE2﹣AM2,即(4)2﹣(x+4)2=(2)2﹣x2,解得:x=1,∴AM=1,EN=DM=5,∴DN=EM===,在Rt△BDN中,∵BN=BE+EN=2+5=7,∴tan∠DBC==.6.(1)证明:∵四边形ABCD是矩形,∴∠B=90°,AD=BC=4,DC=AB=3,AD∥BC,∵MN⊥BC,∴MN⊥AD,∴∠EMD=∠FNE=90°,∵四边形DEFH是矩形,∴∠MED+∠NEF=90°,∴∠NEF=∠MDE,∴△MED∽△NFE;(2)解:设AM=x,则MD=NC=4﹣x,∵tan∠DAC=tan∠MAE===,∴ME=x,∴NE=3﹣x,∵△MED∽△NFE,∴=,即=,解得:NF=x,∴FC=4﹣x﹣x=4﹣x,EF==,当EF=FC时,4﹣x=,解得:x=4或x=,由题意可知x=4不合题意,当x=时,AE=,∵AC===5,∴k==;(3)解:由(1)可知:△MED∽△NFE,∴==,∴DE=EF,∴矩形EFHD的面积=DE×EF=EF2=[(3﹣x)2+(x)2]=[(x﹣)2+],∴当x﹣=0时,即x=时,矩形EFHD的面积最小,最小值为:×=,∵cos∠MAE===,∴AE=AM=×=,此时k==.7.(1)证明:过B作BG∥AC交CE的延长线于G,如图1所示:则∠G=∠ACE,∵CE平分∠ACB,∴∠ACE=∠BCE,∴∠G=∠BCE,∴BG=BC,∵BG∥AC,∴△ACE∽△BGE,∴,∴;(2)①证明:过E作EM⊥AB交BC于M,如图2所示:则∠AEM=90°,∵∠AEC=45°,∴∠MEC=45°=∠AEC,在△AEC和△MEC中,,∴△AEC≌△MEC(ASA),∴ME=AE,∵AD⊥BC,EM⊥AB,∴∠MEB=∠ADB=90°,∵∠B=∠B,∴△BME∽△BAD,∴,∴BE=2EM,∴BE=2AE;②解:由(1)得:=,∵BE=2AE,∴,设AC=x,BC=2x,AD=1,BD=2,则CD=2x﹣2,又AC2=AD2+CD2,∴x2=12+(2x﹣2)2,=1,,∴x1又2x﹣2>0,∴x=,∴AC=,CD=,作FG⊥AC于G,如图3所示:∵CE平分∠ACB,AD⊥BC,∴FD=FG,∴===,∴,∴DF=AD=×1=,∴CF===,∴sin∠DCF=,∴sin∠ACE=sin∠DCF=.8.(1)证明:∵∠ABD=∠C,∠A=∠A,∴△ADB∽△ABC(2)①证明:过点A作AF∥DE交BD的延长线于点F,过E作EG⊥BD于点G,如图2所示:∵BE=DE,∴∠ABD=∠BDE,∵AF∥DE,∴∠F=∠BDE,∵∠ABD=∠C=30°,∴∠ABD=∠BDE=∠F=∠C=30°,∵∠ADF=∠BDC,∴△ADF∽△BDC,∴DF:CD=AD:BD,∴BD•DF=AD•CD,∵BE=DE,EG⊥BD,∴BG=DG,EG=BE,∴BG=EG=BE,∴BD=2BG=BE,∵AF∥DE,∴DF:AE=BD:BE,∴DF=AE,∴BE•AE=AD•CD,∴3AE•BE=AD•CD;②解:AE=,理由如下:由(1)得:△ADB∽△ABC,∴AB:AC=AD:AB,∴AB2=AD•AC,即62=9AD,∴AD=4,∴CD=AC﹣AD=5,过点A作AF∥DE交BD的延长线于点F,过E作EG⊥BD于点G,如图3所示:∵BE=DE,∴∠ABD=∠BDE,∵AF∥DE,∴∠F=∠BDE,∵∠ABD=∠C,∴∠ABD=∠BDE=∠F=∠C,∵∠ADF=∠BDC,∴△ADF∽△BDC,∴DF:CD=AD:BD,∴BD•DF=AD•CD,∵BE=DE,EG⊥BD,∴BG=DG,tan∠ABD==tan C=,∴BG=EG=BE,∴BD=2BG=BE,∵AF∥DE,∴DF:AE=BD:BE=8:5,∴DF=AE,∴BE•AE=AD•CD,∴64AE•BE=25AD•CD;设AE=x,则BE=6﹣x,∴64x(6﹣x)=25×4×5,解得:x=,或x=,∵AE=>4=AD,∴∠ADE>∠AED=2∠C,∵AF∥DE,∴∠DAF=∠ADE>2∠C,∵△ADF∽△BDC,∴∠DBC=∠DAF>2∠C,∴∠ABC>3∠C>90°,∴x=不合题意舍去,∴AE═.9.(1)证明:∵∠BAE=∠BDA,∠ABE=∠DBA,∴△BAE~△BDA,∴AB:BD=BE:AB,∴AB2=BE•BD;(2)解:作BG⊥AD于G,如图2所示:∵,∴设BF=x,则FC=2x,∵四边形ABCD是平行四边形,∴AD=BC=BF+CF=3x,AD∥BC,∴∠BAG=∠ABC=60°,△BEF∽△DEA,∴==,∴DE=3BE,设BE=y,DE=3y,则BD=BE+DE=4y,由(1)得:AB2=BE•BD=y×4y=4y2,∴AB=2y,∵BG⊥AD,∠BAG=60°,∴∠ABG=30°,∴AG=AB=y,BG=AG=y,∴DG=AG+AD=y+3x,在Rt△BDG中,由勾股定理得:BG2+DG2=BD2,即(y)2+(y+3x)2=(4y)2,解得:x=,∴=,∴===;(3)解:作FH⊥BD于H,在BC的延长线上截取DT=DC,连接DT,如图3所示:则∠DCT=∠T,由(1)得:AB2=BE•BD,即22=BE×4,解得:BE=1,∵=,∴EH=2FH,设FH=a,则EH=2a,BH=1﹣2a,在Rt△BFH中,由勾股定理得:a2+(1﹣2a)2=()2,解得:a=,或a=(不合题意舍去),∴FH=,EH=,∴EF===,∵∠DEF=∠BCD,∠DEF+∠BEF=180°,∠BCD+∠DCT=180°,∴∠BEF=∠DCT=∠T,∵∠EBF=∠TBD,∴△BEF∽△BTD,∴=,即=,∴DT=,∴CD=;故答案为:.10.(1)解:线段PA和PE的数量关系为:PA=PE,理由如下:过点P作PM⊥AB于M,PN⊥BC于N,如图1所示:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形,∴∠ABC=90°,BD平分∠ABC,∴PM=PN,∴四边形MBNP是正方形,∴∠MPN=90°,∵PE⊥AP,∴∠APE=90°,∴∠APM+∠MPE=90°,∠EPN+∠MPE=90°,∴∠APM=∠EPN,在△APM和△EPN中,,∴△APM≌△EPN(ASA),∴PA=PE,故答案为:PA=PE;(2)证明:过点P作PM⊥AB于M,PN⊥BC于N,如图2所示:∵四边形ABCD是矩形,∴AD=BC,CD=AB,AD⊥AB,CD⊥BC,∠ABC=90°,∴四边形MBNP是矩形,∴∠MPN=90°,∵PE⊥AP,∴∠APE=90°,∴∠APM+∠MPE=90°,∠EPN+∠MPE=90°,∴∠APM=∠EPN,∵∠AMP=∠ENP=90°,∴△APM∽△EPN,∴=,∵PM⊥AB,PN⊥BC,AD⊥AB,CD⊥BC,∴PM∥AD,PN∥CD,∴△BPM∽△BDA,△BPN∽△BDC,∴=,=,∴=,∴==,∴;(3)解:连接AE、PF交于Q,连接QB,过点A作AO⊥BD于O,①当P在O的右上方时,如图3所示:由(2)得:==,∴PA=PE=×=,∵四边形ABCD是矩形,∴AD=BC=10,∠BAD=90°,∴BD===2,∵AO⊥BD,∵△ABD的面积=BD×AO=AB×AD,∴AO===,∵tan∠ABD==,∴=,解得:BO=,由勾股定理得:OP===,∴BP=BO+OP=,∵四边形APEF是矩形,∴∠AEP=90°,AE=PE,QA=QE=QP=QF,∴PF=AE===,∵∠ABE=90°,∴QB=AE=QE,∴QA=QE=QP=QF=QB,∴点A、P、E、B、F五点共圆,AE、PF为圆的直径,∴∠PBF=90°,∴BF===;②当P在O的左下方时,如图4所示:同理可得:AO=,BO=,OP=,PF=,则BP=BO﹣OP=,同理可得:点A、P、E、B、F五点共圆,AE、PF为圆的直径,∴BF===;综上所述,当PE=时,线段BF的长为或.11.解:(1)∵E是BC的中点,∴BC=2BE=2,∵四边形ABCD是矩形,∴AD=BC=2,∠B=90°,AD∥BC,∵DF⊥AE,∴∠AFD=90°=∠B,∴△ABE∽△DFA,∴=,∴AE•AF=AD•BE=2×=4;(2)延长DE交CB的延长线于H,连接DE、AH,如图2所示:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠BCD=90°,∴△ADG∽△CHG,∴==,∴BH=BC,∵E是BC的中点,∴BE=CE=BH,∴EH=BC=AD,∴四边形ADEH是平行四边形,∵DF⊥AE,∴四边形ADEH是菱形,∴DF=HF,∠AEH=∠AED,DE=AD=EH=BC,∴CE=DE,∴∠CDE=30°,∴∠CED=90°﹣30°=60°,∴∠AEH=∠AED=60°,∵DF⊥AE,∴∠FDE=30°=∠CDE,∴FE=CE,∴∠FCE=∠CFE=∠AEH=30°,∴cos∠FCE=;(3)过F作PQ⊥AB于P,交CD于Q,作KH⊥AD于H,如图3所示:则PQ=AD,AP=DQ,PQ∥BC∥AD,∵G是AB的中点,E是BC的中点,∴AB=2AG,BC=2BE,∵四边形ABCD是矩形,∴AD=BC,AB=CD,∠B=∠DAG=90°,∵DF⊥AE,∴∠ADF+∠DAF=∠BAE+∠DAF=90°,∴∠BAE=∠ADF,∴△ABE∽△DAG,∴=,∴AB•AG=AD•BE,即AB2=AD2,∴AB=AD,∴四边形ABCD是正方形,∴AB=BC=CD=AD=PQ,设AB=BC=CD=AD=PQ=4a,则BE=AG=2a,∴tan∠ADG=tan∠BAE==,AE=DG==2a,∵DF⊥AE,∴AF===a,∵PQ∥BC,∴△APF∽△ABE,∴==,即==,解得:AP=a,PF=a,∴CQ=PB=AB﹣AP=4a﹣a=a,FQ =PQ ﹣PF =4a ﹣a =a ,∵KH ⊥AD ,∴tan ∠ADG ==, 设KH =x ,则DH =2x ,∵PQ ∥AD ,AK ∥FC ,∴∠DAF =∠QFE ,∠KAF =∠CFE ,∴∠DAK =∠QFC ,又∵∠AHK =∠FQC =90°,∴△AHK ∽△FQC , ∴=,即=,解得:AH =x ,∵AH +DH =AD , ∴x +2x =4a ,解得:x =a ,∴KH =a ,∵△ADK 的面积为S 1=AD ×KH ,△CDF 的面积为S 2=CD ×FQ , ∴===; 故答案为:.12.(1)证明:如图1中,∵AM⊥BN,CN⊥BN,AB⊥BC,∴∠AMB=∠N=∠ABC=90°,∴∠A+∠ABM=90°,∠ABM+∠CBN=90°,∴∠A+∠CBN=90°,∴△ABM∽△BCN,∴=,∴BM•BC=AB•CN.(2)解:如图2中,连接AN,延长AN交BC的延长线于H,作BK⊥AN于K.由(1)可知:△ABM∽△BCN,∴=∵AB=BC,∴AM=BN,BM=CN,设CN=m,∵BM=MN,∴BM=CN=MN=m,BN=AM=2m,∵AM⊥BN,BM=MN,∵S=•BN•AM=•AN•BK.△ABN∴BK==m,∴AK===m,∵∠BAK=∠BAH,∠ABH=∠AKB=90°,∴△ABK∽△AHB,∴=,∴=,∴AH=m,∴HN=AH﹣AN=m﹣m=m,∵AD∥CH,∴===.(3)解:如图3中,连接AE,延长AE交BC的延长线于H.∵AF∥CH,∴∠F=∠ECH,∵∠AEF=∠CEH,EF=CF,∴△AFE≌△HCE(ASA),∴AE=EH,AF=CH,∵AM⊥BE,BM=ME,∴AB=AE,∵∠ABH=90°,∵CN=BM=ME=1,∴BE=AE=EH=2,∴AB=BC=AE=2,∴BH==2,∴CH=BH﹣BC=2﹣2,∴AF=2﹣2.13.解:(1)情况①中的依据是:两条直线被一组平行线所截,所得的对应线段成比例.故答案为两条直线被一组平行线所截,所得的对应线段成比例.(2)如图2中,作CN∥DE交BD于N.则有=,=,=,∴•=•,∴BE•AD•FC=BD•AF•EC,∴••=1.(3)如图3中,∵••=1,AD:DB=CF:FA=2:3,∴=.故答案为.14.证明:(1)∵正方形ABCD,E、F分别为边AB、BC的中点,∴AD=BC=DC=AB,AE=BE=AB,BF=CF=BC,∴AE=BF,∵在△ADE和△BAF中,∴△ADE≌△BAF(SAS)∴∠BAF=∠ADE,∵∠BAF+∠DAF=90°∴∠ADE+∠DAF=90°=∠AGD,∴AF⊥DE;(2)①如图b,过点B作BN⊥AF于N,∵∠BAF=∠ADE,∠AGD=∠ANB=90°,AB=AD,∴△ABN≌△ADG(AAS)∴AG=BN,DG=GN,∵∠AGE=∠ANB=90°,∴EG∥BN,∴,且AE=BE,∴AG=GN,∴AN=2AG=DG,∵BG2=BN2+GN2=AG2+AG2,∴BG2=2AG2=2AG•AG=GA•DG;②∵AB=10,∴AE=BF=5,∴DE===5,∵×AD×AE=×DE×AG,∴AG=2,∴GN=BN=2,∴AN=DG=4,∵GE∥BN,∴△DGH∽△BNH,∴==2,∴GH=2HN,且GH+HN=GN=2,∴GH=,=×GH×BN=××2=.∴S△GHB15.解:问题发现:(1)∵DE∥BC,∴,∵AB=k•AC,∴BD=k•EC,故答案为:BD=k•EC;类比探究:(2)成立,理由如下:连接BD由旋转的性质可知,∠BAD=∠CAE∵=,∴△ABD∽△ACE,∴==k,故BD=k•EC;拓展延伸:(3)BF•CF的值为2或1;由旋转的性质可知∠BAD=∠CAE∵=,∴△ABD∽△ACE∴∠ACE=15°=∠ABD∵∠ABC+∠ACB=90°∴∠FBC+∠FCB=90°∴∠BFC=90°∵∠BAC=90°,AC=1,AB=,∴tan∠ABC=,∴∠ABC=30°∴∠ACB=60°分两种情况分析:①如图2,∴在Rt△BAC中,∠ABC=30°,AC=1,∴BC=2AC=2,∵在Rt△BFC中,∠CBF=30°+15°=45°,BC=2 ∴BF=CF=∴BF•CF=()2=2②如图3,设CF=a,在BF上取点G,使∠BCG=15°∵∠BCF=60°+15°=75°,∠CBF=∠ABC﹣∠ABD=30°﹣15°=15°,∴∠CFB=90°∴∠GCF=60°∴CG=BG=2a,GF=a.∵CF2+BF2=BC2∴a2+(2a+a2=22,解得a2=2﹣,∴BF•CF=(2+)a•a=(2+)•a2=1,即:BF•CF=1或2.故答案为:1或2.。
2020-2021全国中考数学相似的综合中考真题汇总附答案解析
2020-2021全国中考数学相似的综合中考真题汇总附答案解析一、相似1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得解得∴抛物线解析式为:y= x2−x−1∴抛物线对称轴为直线x=- =1(2)解:存在使四边形ACPO的周长最小,只需PC+PO最小∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点.设过点C′、O直线解析式为:y=kx∴k=-∴y=- x则P点坐标为(1,- )(3)解:当△AOC∽△MNC时,如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E∵∠ACO=∠NCD,∠AOC=∠CND=90°∴∠CDN=∠CAO由相似,∠CAO=∠CMN∴∠CDN=∠CMN∵MN⊥AC∴M、D关于AN对称,则N为DM中点设点N坐标为(a,- a-1)由△EDN∽△OAC∴ED=2a∴点D坐标为(0,- a−1)∵N为DM中点∴点M坐标为(2a,a−1)把M代入y= x2−x−1,解得a=4则N点坐标为(4,-3)当△AOC∽△CNM时,∠CAO=∠NCM∴CM∥AB则点C关于直线x=1的对称点C′即为点N由(2)N(2,-1)∴N点坐标为(4,-3)或(2,-1)【解析】【分析】(1)根据点A、B的坐标,可求出抛物线的解析式,再求出它的对称轴即可解答。
(2)使四边形ACPO的周长最小,只需PC+PO最小,取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P点,利用待定系数法求出直线C′O的解析式,再求出点P的坐标。
中考数学压轴题专题相似的经典综合题及答案解析
一、相似真题与模拟题分类汇编(难题易错题)1.在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC= ,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC= ,,直接写出tan∠CEB的值.【答案】(1)解:∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN(2)解:如图2,过点P作PM⊥AP交AC于M,PN⊥AM于N.∵∠BAP+∠1=∠CPM+∠1=90°,∴∠BAP=∠CPM=∠C,∴MP=MC∵tan∠PAC=,设MN=2m,PN=m,根据勾股定理得,PM=,∴tanC=(3)解:在Rt△ABC中,sin∠BAC= = ,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴ =同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC= =【解析】【分析】(1)根据垂直的定义得出∠AMB=∠BNC=90°,根据同角的余角相等得出∠BAM=∠CBN,利用两个角对应相等的两个三角形相似得出:△ABM∽△BCN;(2)过点P作PF⊥AP交AC于F,在Rt△AFP中根据正切函数的定义,由tan∠PAC=,同(1)的方法得,△ABP∽△PQF,故,设AB= a,PQ=2a,BP= b,FQ=2b(a>0,b>0),然后判断出△ABP∽△CQF,得从而表示出CQ,进根据线段的和差表示出BC,再判断出△ABP∽△CBA,得出再得出BC,从而列出方程,表示出BC,AB,在Rt△ABC中,根据正切函数的定义得出tanC的值;(3)在Rt△ABC中,利用正弦函数的定义得出:sin∠BAC=,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,根据平行线分线段成比例定理得出,同(1)的方法得,△ABG∽△BCH ,故,设BG=4m,CH=3m,AG=4n,BH=3n,根据等腰三角形的三线合一得出EG=BG=4m,故GH=BG+BH=4m+3n,根据比例式列出方程,求解得出n与m的关系,进而得出EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中根据正切函数的定义得出tan∠BEC的值。
人教中考数学 相似综合试题及详细答案
一、相似真题与模拟题分类汇编(难题易错题)1.如图,在□ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连结BE、BF。
使它们分别与AO相交于点G、H(1)求EG :BG的值(2)求证:AG=OG(3)设AG =a ,GH =b,HO =c,求a : b : c的值【答案】(1)解:∵四边形ABCD是平行四边形,∴AO= AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴ = = .∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3(2)解:∵GC=3AG(已证),∴AC=4AG,∴AO= AC=2AG,∴GO=AO﹣AG=AG(3)解:∵AE=EF=FD,∴BC=AD=3AE,AF=2AE.∵AD∥BC,∴△AFH∽△CBH,∴ = = = ,∴ = ,即AH= AC.∵AC=4AG,∴a=AG= AC,b=AH﹣AG= AC﹣ AC= AC,c=AO﹣AH= AC﹣ AC= AC,∴a:b:c= :: =5:3:2【解析】【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可证得△AEG∽△CBG,得出对应边成比例,由AE=EF=FD可得BC=3AE,就可证得GB=3EG,即可求出EG:BG的值。
(2)根据相似三角形的性质可得GC=3AG,就可证得AC=4AG,从而可得AO=2AG,即可证得结论。
(3)根据平行可证得三角形相似,再根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到用含AC的代数式分别表示出a、b、c,就可得到a:b:c的值。
2.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.(1)求抛物线的解析式和对称轴;(2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)设四边形DECO的面积为s,求s关于t的函数表达式.【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入得:,解得:,∴抛物线的解析式为:,对称轴为:直线x=﹣;(2)解:存在,∵AD=2t,∴DF=AD=2t,∴OF=4﹣4t,∴D(2t﹣4,0),∵直线AC的解析式为:,∴E(2t﹣4,t),∵△EFC为直角三角形,分三种情况讨论:①当∠EFC=90°,则△DEF∽△OFC,∴,即,解得:t= ;②当∠FEC=90°,∴∠AEF=90°,∴△AEF是等腰直角三角形,∴DE= AF,即t=2t,∴t=0,(舍去),③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或;(3)解:∵B(1,0),C(0,2),∴直线BC的解析式为:y=﹣2x+2,当D在y轴的左侧时,S= (DE+OC)•OD= (t+2)•(4﹣2t)=﹣t2+4 (0<t<2);当D在y轴的右侧时,如图2,∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)•OD= (﹣8t+10+2)•(4t﹣4),即(2<t<).综上所述:【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相似真题与模拟题分类汇编(难题易错题)1.已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.(1)求证:AD=DE;(2)若CE=2,求线段CD的长;(3)在(2)的条件下,求△DPE的面积.【答案】(1)解:∵AB是⊙O的直径,∴∠ADB=90°,即BD⊥AC∵AB=BC,∴△ABD≌CBD∴∠ABD=∠CBD在⊙O中,AD与DE分别是∠ABD与∠CBD所对的弦∴AD=DE;(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,∵∠C=∠C,∴△CED∽△CAB,∴,∵AB=BC=10,CE=2,D是AC的中点,∴CD= ;(3)解:延长EF交⊙O于M,在Rt△ABD中,AD= ,AB=10,∴BD=3 ,∵EM⊥AB,AB是⊙O的直径,∴,∴∠BEP=∠EDB,∴△BPE∽△BED,∴,∴BP= ,∴DP=BD-BP= ,∴S△DPE:S△BPE=DP:BP=13:32,∵S△BCD= × ×3 =15,S△BDE:S△BCD=BE:BC=4:5,∴S△BDE=12,∴S△DPE= .【解析】【分析】(1)根据已知条件AB是⊙O的直径得出∠ADB=90°,再根据等腰三角形的三线合一的性质即可得出结论。
(2)根据圆内接四边形的性质证得∠CED=∠CAB,再根据相似三角形的判定证出△CED∽△CAB,得出对应边成比例,建立关于CD的方程,即可求出CD的长。
(3)延长EF交⊙O于M,在Rt△ABD中,利用勾股定理求出BD的长,再证明△BPE∽△BED,根据相似三角形的性质得对应边成比例求出BP的长,然后根据等高的三角形的面积之比等于对边之比,再由三角形面积公式即可求解。
2.如图,点A、B、C、D是直径为AB的⊙O上的四个点,CD=BC,AC与BD交于点E。
(1)求证:DC2=CE·AC;(2)若AE=2EC,求之值;(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,若S△ACH=,求EC之长.【答案】(1)证明:∵CD=BC,∴∠DAC=∠CDB,又∵∠ACD=∠DCE,∴△ACD∽△DCE,∴,∴DC2=CE·AC;(2)解:设EC=k,则AE=2k,∴AC=3k,由(1)DC2=CE·AC=3k2,DC= k,连接OC,OD,∵CD=BC,∴OC平分∠DOB,∴BC=DC= k,∵AB是⊙O的直径,∴在Rt△ACB中,,∴OB=OC=OD= k,∴∠BOD=120°,∴∠DOA=60°,∴AD=AO,∴(3)解:∵CH是⊙O的切线,连接CO,∴OC⊥CH.∵∠COH=60°,∠H=30°,过C作CG⊥AB于G,设EC=k,∵∠CAB=30°,∴,又∵∠H=∠CAB=30°,∴AC=CH=3k,∴AH=,∵S△ACH=,∴,∴k2=4,k=2,即EC=2.【解析】【分析】(1)要证DC2=CE·AC,只需证△ACD∽△DCE即可求解;(2)连接OC,OD,根据已知条件AE=2EC可用含k的代数式表示线段AE、CE、AC,由(1)可将CD用含K的代数式表示,在Rt△ACB中,由勾股定理可将AB用含K的代数式表示,结合已知条件和圆的性质可求解;(3)过C作CG⊥AB于G,设EC=k,由30度角所对的直角边等于斜边的一半可将CG用含K的代数式表示,根据三角形ACH的面积=AH CG=9即可求解。
3.如图1,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)请直接写出PM与PN的数量关系及位置关系________;(2)现将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H.请直接写出PM与PN的数量关系及位置关系________;(3)若图2中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图3,写出PM与PN的数量关系,并加以证明.【答案】(1)PM⊥PN,PM=PN(2)PM=PN,PM⊥PN(3)解:PM=kPN,∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE,∵点P、M、N分别为AD、AB、DE的中点,∴PM= BD,PN= AE.∴PM=kPN.【解析】【解答】解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠BCD=90°,∴∠CBD+∠BDC=90°,∴∠EAC+∠BDC=90°∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM= BD,PN= AE,∴PM=PN,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM∥BC,PN∥AE,∴∠NPD=∠EAC,∠MPN=∠BDC,∵∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案为:PM⊥PN,PM=PN;( 2 )PM=PN,PM⊥PN,理由:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS).∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM= BD,PM∥BD;PN= AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.故答案为:PM⊥PN,PM=PN【分析】(1)利用等腰直角三角形的性质得出结论判断出△ACE≌△BCD,得出AE=BD,再用三角形的中位线即可得出结论;(2)同(1)的方法即可得出结论;(3)利用两边对应成比例夹角相等,判断出△BCD∽△ACE,得出BD=kAE,最后用三角形的中位线即可得出结论.4.在数学兴趣小组活动中,小亮进行数学探究活动,△ABC是边长为2的等边三角形,E 是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明;(2)当点E在线段AC上运动时,点F也随着运动,若四边形ABFC的面积为,求AE 的长;(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系,并说明理由;(4)如图2,当△ECD的面积S1=时,求AE的长.【答案】(1)解:现点E沿边AC从点A向点C运动过程中,始终有△ABE≅△CBF.由图1知,△ABC与△EBF都是等边三角形,∴AB=CB,BE=BF,∠ABC=∠EBF=60°,∴∠CBF=∠ABE=60°-∠CBE,∴△ABE≅△CBF.(2)解:由(1)知点E在运动过程中始终有△ABE≅△CBF,因四边形BECF的面积等于三角形BCF的面积与三角形BCE的面积之和,∴四边形BECF的面积等于△ABC的面积,因△ABC的边长为2,则,∴四边形BECF的面积为,又四边形ABFC的面积是,∴,在三角形ABE中,因∠A=60°,∴边AB上的高为AEsin60°,∴,则AE= .(3)解: .由图2知,△ABC与△EBF都是等边三角形,∴AB=CB,BE=BF,∠ABC=∠EBF=60°,又∠CBF=∠ABE=60°+∠CBE,∴△ABE≅△CBF,∴,∴,则,则(4)解:由(3)知,即,由得,∵△ABE≅△CBF,∴AE=CF,∠BAE=∠BCF=60°,又∠BAE=∠ABC=60°,得∠ABC=∠BCF,∴CF∥AB,则△BDF的边CF上的高与△ABC的高相等,即为,则DF= ,设CE=x,则2+x=CD+DF=CD+ ,∴CD=x- ,在△ABE中,由CD∥AB得,,即,化简得,∴x=1或x=− (舍),即CE=1,∴AE=3.【解析】【分析】(1)不难发现△ABE≅△CBF,由等边三角形的性质得到相应的条件,根据“SAS”判定三角形全等;(2)由(1)可得△ABE≅△CBF,则,则四边形ABFC= = ,由四边形ABFC的面积为和等边三角形ABC的边长为2,可求得△ABE的面积,由底AB×AEsin60°,构造方程可解出AE.(3)当E在AC的延长线上时,△ABE≅△CBF依然成立,则,即由等量关系即可得答案.(4)由(3)可求出△FBD的面积,由△ABE≅△CBF,则AE=CF,∠BAE=∠BCF=60°=∠ABC,则CF//AB,则对于△BDF的边CF上的高等于△ABC的高,则可求出DF的长度;由AE=CF,可设CE=x,且CD//AB可得,代入相关值解出x即可.5.如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(-3,0)。
动点M,N 同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动时间记为t秒。
连接MN。
(1)求直线BC的解析式;(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标;(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式。
【答案】(1)解:设直线BC解析式为:y=kx+b,∵B(0,4),C(-3,0),∴,解得:∴直线BC解析式为:y= x+4.(2)解:依题可得:AM=AN=t,∵△AMN沿直线MN翻折,点A与点点D重合,∴四边形AMDN为菱形,作NF⊥x轴,连接AD交MN于O′,∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,∴M(3-t,0),又∵△ANF∽△ABO,∴ = = ,∴ = = ,∴AF= t,NF= t,∴N(3- t, t),∴O′(3- t, t),设D(x,y),∴ =3- t, = t,∴x=3- t,y= t,∴D(3- t, t),又∵D在直线BC上,∴ ×(3- t)+4= t,∴t= ,∴D(- ,).(3)①当0<t≤5时(如图2),△ABC在直线MN右侧部分为△AMN,∴S= = ·AM·DF= ×t× t= t ,②当5<t≤6时,△ABC在直线MN右侧部分为四边形ABNM,如图3∵AM=AN=t,AB=BC=5,∴BN=t-5,CN=-5-(t-5)=10-t,又∵△CNF∽△CBO,∴ = ,∴ = ,∴NF= (10-t),∴S= - = ·AC·OB- ·CM·NF,= ×6×4- ×(6-t)× (10-t),=- t + t-12.【解析】【分析】(1)设直线BC解析式为:y=kx+b,将B、C两点坐标代入即可得出二元一次方程组,解之即可得出直线BC解析式.(2)依题可得:AM=AN=t,根据翻折性质得四边形AMDN为菱形,作NF⊥x轴,连接AD交MN于O′,结合已知条件得M(3-t,0),又△ANF∽△ABO,根据相似三角形性质得 = = ,代入数值即可得AF= t,NF= t,从而得N(3- t, t),根据中点坐标公式得O′(3- t,t),设D(x,y),再由中点坐标公式得D(3- t, t),又由D在直线BC上,代入即可得D点坐标.(3)①当0<t≤5时(如图2),△ABC在直线MN右侧部分为△AMN,根据三角形面积公式即可得出S表达式.②当5<t≤6时,△ABC在直线MN右侧部分为四边形ABNM,由△CNF∽△CBO,根据相似三角形性质得 = ,代入数值得NF= (10-t),最后由S= - = ·AC·OB- ·CM·NF,代入数值即可得表达式.6.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.7.如图,点O为矩形ABCD的对称中心,AB=5cm,BC=6cm,点E.F.G分别从A.B.C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E.F.G运动的时间为t(单位:s).(1)当t等于多少s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B’与点O重合?若存在,求出t的值;若不存在,请说明理由.【答案】(1)解:若四边形EBFB′为正方形,则BE=BF,BE=5﹣t,BF=3t,即:5﹣t=3t,解得t=1.25;故答案为:1.25(2)解:分两种情况,讨论如下:①若△EBF∽△FCG,则有,即,解得:t=1.4;②若△EBF∽△GCF,则有,即,解得:t=﹣7﹣(不合题意,舍去)或t=﹣7+ .∴当t=1.4s或t=(﹣7+ )s时,以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似.(3)解:假设存在实数t,使得点B′与点O重合.如图,过点O作OM⊥BC于点M,则在Rt△OFM中,OF=BF=3t,FM= BC﹣BF=3﹣3t,OM=2.5,由勾股定理得:OM2+FM2=OF2,即:2.52+(3﹣3t)2=(3t)2解得:t=;过点O作ON⊥AB于点N,则在Rt△OEN中,OE=BE=5﹣t,EN=BE﹣BN=5﹣t﹣2.5=2.5﹣t,ON=3,由勾股定理得:ON2+EN2=OE2,即:32+(2.5﹣t)2=(5﹣t)2解得:t= .∵≠ ,∴不存在实数t,使得点B′与点O重合【解析】【分析】(1)利用正方形的性质,得到BE=BF,列一元一次方程求解即可;(2)△EBF与△FCG相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题.假设存在,则可以分别求出在不同条件下的t值,它们互相矛盾,所以不存在8.已知:如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,点P从点B出发,沿BC 向点C匀速运动,速度为lcm/s;同时,点Q从点A出发,沿AB向点B匀速运动,速度为2cm/s;当一个点停止运动时,另一个点也停止运动连接PQ,设运动时间为t(s)(0<t <2.5),解答下列问题:(1)①BQ=________,BP=________;(用含t的代数式表示)②设△PBQ的面积为y(cm2),试确定y与t的函数关系式________;(2)在运动过程中,是否存在某一时刻t,使△PBQ的面积为△ABC面积的二分之一?如果存在,求出t的值;不存在,请说明理由;(3)在运动过程中,是否存在某一时刻t,使△BPQ为等腰三角形?如果存在,求出t的值;不存在,请说明理由.【答案】(1)5﹣2t;t;y=﹣ t2+ t(2)解:不存在,理由:∵AC=3,BC=4,∴S△ABC= ×3×4=6,由(1)知,S△PBQ=﹣ t2+ t,∵△PBQ的面积为△ABC面积的二分之一,∴﹣ t2+ t=3,∴2t2﹣5t+10=0,∵△=25﹣4×2×10<0,∴此方程无解,即:不存在某一时刻t,使△PBQ的面积为△ABC面积的二分之一(3)解:由(1)知,AQ=2t,BQ=5﹣2t,BP=t,∵△BPQ是等腰三角形,∴①当BP=BQ时,∴t=5﹣2t,∴t=,②当BP=PQ时,如图2过点P作PE⊥AB于E,∴BE= BQ=(5﹣2t),∵∠BEP=90°=∠C,∠B=∠B,∴△BEP∽△BCA,∴,∴,∴t=③当BQ=PQ时,如图3,过点Q作QF⊥BC于F,∴BF= BP= t,∵∠BFQ=90°=∠C,∠B=∠B,∴△BFQ∽△BCA,∴,∴,∴t=,即:t为秒或秒或秒时,△BPQ为等腰三角形.【解析】【解答】(1)①在Rt△ABC中,AC=3cm,BC=4cm,根据勾股定理得,AB=5cm,由运动知,BP=t,AQ=2t,∴BQ=AB﹣AQ=5﹣2t,故答案为:5﹣2t,t;②如图1,过点Q作QD⊥BC于D,∴∠BDQ=∠C=90°,∵∠B=∠B,∴△BDQ∽△BCA,∴,∴,∴DQ=(5﹣2t)∴y=S△PBQ=BP•DQ= ×t× (5﹣2t)=﹣ t2+ t;【分析】(1)①先利用勾股定理求出AB,即可得出结论;②过点Q作QD⊥BC于D,进而得出△BDQ∽△BCA,用t表示出DQ,最后用三角形的面积公式即可得出结论;(2)先求出△ABC的面积,再利用△PBQ的面积为△ABC面积的二分之一,建立关于t的方程,进而判断出此方程无解,即可得出结论;(3)分三种情况,利用等腰三角形的性质和相似三角形的性质,得出比例式建立关于t的方程求解,即可得出结论.。