立体几何多选题测试附解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何多选题测试附解析
一、立体几何多选题
1.(多选题)如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是( )
A .113
P AA D V -=
B .点P 必在线段1B
C 上 C .1AP BC ⊥
D .AP ∥平面11AC D
【答案】BD 【分析】 对于A ,111
1111113326
P AA D AA D
V S CD -=
⋅=⨯⨯⨯⨯=, 对于B,C,D ,如图以D 为坐标原点可建立空间直角坐标系,利用空间向量判即可. 【详解】
对于A ,因为点P 在平面11BCC B ,平面11BCC B ∥平面1AA D , 所以点P 到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长, 所以111
1111113326
P AA D AA D
V S CD -=
⋅=⨯⨯⨯⨯=,A 错误; 对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:
则11(1,0,0),(,1,),(1,1,0),(0,0,1),(1,1,1),(0,1,0)A P x z B D B C 所以11(1,1,),(1,1,1),(1,0,1)AP x z BD BC =-=--=--, 因为1AP BD ⊥,
所以1110AP BD x z ⋅=--+=,所以x z =,即(,1,)P x x , 所以(,0,)CP x x =,
所以1CP xBC =-,即1,,B C P 三点共线, 所以点P 必在线段1B C 上,B 正确;
对于C ,因为1(1,1,),(1,0,1)AP x x BC =-=-, 所以111AP BC x x ⋅=-+=, 所以1AP BC ⊥不成立,C 错误;
对于D ,因为11(1,0,1),(0,1,1),(0,0,0)A C D , 所以11(1,0,1),(0,1,1)DA DC ==, 设平面11AC D 的法向量为(,,)n x y z =,则110
0n DA x z n DC y z ⎧⋅=+=⎪⎨
⋅=+=⎪⎩
,
令1x =,则1,1z y =-=,所以(1,1,1)n =-, 所以110AP n x x ⋅=-+-=,所以AP n ⊥, 所以AP ∥平面11AC D ,D 正确, 故选:BD 【点睛】
此题考查了空间线线垂直的判定,线面平行的判定,三棱锥的体积,考查空间想象能力,考查计算能力,属于较难题.
2.已知直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==,D 是AC 的中点,O 为1A C 的中点.点P 是1BC 上的动点,则下列说法正确的是( )
A .当点P 运动到1BC 中点时,直线1A P 与平面111A
B
C 5
B .无论点P 在1B
C 上怎么运动,都有11A P OB ⊥
C .当点P 运动到1BC 中点时,才有1A P 与1OB 相交于一点,记为Q ,且
11
3
PQ QA =
D .无论点P 在1BC 上怎么运动,直线1A P 与AB 所成角都不可能是30° 【答案】ABD 【分析】
构造线面角1PA E ∠,由已知线段的等量关系求1tan
EP
PA E AE
∠
=的值即可判断A
的正误;利用线面垂直的性质,可证明11A P OB ⊥即可知B 的正误;由中位线的性质有11
2PQ QA =可知C 的正误;由直线的平行关系构造线线角为11B A P ∠,结合动点P 分析角度范围即可知D 的正误 【详解】
直三棱柱111ABC A B C -中,AB BC ⊥,1AB BC BB ==
选项A 中,当点P 运动到1BC 中点时,有E 为11B C 的中点,连接1A E 、EP ,如下图示
即有EP ⊥面111A B C
∴直线1A P 与平面111A B C 所成的角的正切值:1tan EP
PA E AE
∠
= ∵112EP BB =
,2211115AE A B B E BB =+= ∴15
tan 5
PA E ∠=
,故A 正确
选项B 中,连接1B C ,与1BC 交于E ,并连接1A B ,如下图示
由题意知,11B BCC 为正方形,即有11B C BC ⊥
而AB BC ⊥且111ABC A B C -为直三棱柱,有11A B ⊥面11B BCC ,1BC ⊂面11B BCC ∴111A B BC ⊥,又11
11A B B C B =
∴1BC ⊥面11A B C ,1OB ⊂面11A B C ,故11BC OB ⊥ 同理可证:11A B OB ⊥,又11A B BC B ⋂=
∴1OB ⊥面11A BC ,又1A P ⊂面11A BC ,即有11A P OB ⊥,故B 正确
选项C 中,点P 运动到1BC 中点时,即在△11A B C 中1A P 、1OB 均为中位线
∴Q 为中位线的交点 ∴根据中位线的性质有:
11
2
PQ QA =,故C 错误
选项D 中,由于11//A B AB ,直线1A P 与AB 所成角即为11A B 与1A P 所成角:11B A P ∠ 结合下图分析知:点P 在1BC 上运动时
当P 在B 或1C 上时,11B A P ∠最大为45° 当P 在1BC 中点上时,11B A P ∠最小为23arctan arctan 3023
>=︒ ∴11B A P ∠不可能是30°,故D 正确 故选:ABD 【点睛】
本题考查了利用射影定理构造线面角,并计算其正弦值;利用线面垂直证明线线垂直;中位线的性质:中位线交点分中位线为1:2的数量关系;由动点分析线线角的大小
3.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,23CD =,点Q 是PD 的中点,则下列结论正确的是( )
A .CQ ⊥平面PAD
B .P
C 与平面AQC 22
C .三棱锥B ACQ -的体积为62
D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD 【分析】
取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】
解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,
所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴, 建立空间直角坐标系,则(0,0,0),(6,0,0),(6,0,0)O D A ,
(0,0,32),6,23,0),(6,23,0)P C B ,
因为点Q 是PD 的中点,所以632,0,)22
Q , 平面PAD 的一个法向量为(0,1,0)m =,
632
(
23,2
QC =-,显然 m 与QC 不共线,
所以CQ 与平面PAD 不垂直,所以A 不正确;
3632
(6,23,32),(
,0,),(26,2
PC AQ AC =-=
=, 设平面AQC 的法向量为(,,
)n x y z =,则
3602260n AQ x z
n AC
⎧⋅=
+=⎪⎨
⎪⋅=+=⎩
,
令=1x ,则y z ==, 所以(1,2,n =-, 设PC 与平面AQC 所成角为θ,
则21
sin 3
6n PC n PC
θ⋅=
=
=, 所以cos θ=
,所以B 正确;
三棱锥B ACQ -的体积为
1
1
32
B ACQ Q AB
C ABC
V V S
OP --==⋅
111
6322=⨯⨯
⨯=,
所以C 不正确;
设四棱锥Q ABCD -
外接球的球心为)M a ,则
MQ MD =,
所以2
2
2
2
2
2
a a ⎛+
+-=++ ⎝⎭
⎝
⎭,
解得0a =
,即M 为矩形ABCD
对角线的交点, 所以四棱锥Q ABCD -外接球的半径为3,
设四棱锥Q ABCD -外接球的内接正四面体的棱长为x , 将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,
故正方体的棱长为2x
,所以2
2
362x ⎛⎫= ⎪ ⎪⎝⎭
,得224x =, 所以正四面体的表面积为2
4x =,所以D 正确. 故选:BD
【点睛】
此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.
4.已知正方体1111ABCD A B C D -棱长为2,如图,M 为1CC 上的动点,AM ⊥平面α.下面说法正确的是()
A .直线A
B 与平面α所成角的正弦值范围为32⎣⎦
B .点M 与点1
C 重合时,平面α截正方体所得的截面,其面积越大,周长就越大 C .点M 为1CC 的中点时,若平面α经过点B ,则平面α截正方体所得截面图形是等腰梯形
D .已知N 为1DD 中点,当AM MN +的和最小时,M 为1CC 的中点 【答案】AC 【分析】
以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系
D xyz -,利用空间向量法可判断A 选项的正误;证明出1AC ⊥平面1A BD ,分别取棱
11A D 、11A B 、1BB 、BC 、CD 、1DD 的中点E 、F 、Q 、N 、G 、H ,比较1A BD 和六边形EFQNGH 的周长和面积的大小,可判断B 选项的正误;利用空间向量
法找出平面α与棱11A D 、11A B 的交点E 、F ,判断四边形BDEF 的形状可判断C 选项的正误;将矩形11ACC A 与矩形11CC D D 延展为一个平面,利用A 、M 、N 三点共线得知AM MN +最短,利用平行线分线段成比例定理求得MC ,可判断D 选项的正误. 【详解】
对于A 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()2,0,0A 、()2,2,0B 、设点()()0,2,02M a a ≤≤,
AM ⊥平面α,则AM 为平面α的一个法向量,且()2,2,AM a =-,()0,2,0AB =,
2232cos ,,32288AB AM
AB AM AB AM a a ⋅<>===⎢⋅⨯++⎣⎦
, 所以,直线AB 与平面α所成角的正弦值范围为322⎣⎦
,A 选项正确;
对于B 选项,当M 与1CC 重合时,连接1A D 、BD 、1A B 、AC , 在正方体1111ABCD A B C D -中,1CC ⊥平面ABCD ,
BD ⊂平面ABCD ,
1BD CC ∴⊥,
四边形ABCD 是正方形,则BD AC ⊥,
1CC AC C =,BD ∴⊥平面1ACC ,
1AC ⊂平面1ACC ,1AC BD ∴⊥,同理可证11AC A D ⊥, 1A D BD D ⋂=,1AC ∴⊥平面1A BD ,
易知1A BD 是边长为22的等边三角形,其面积为()
12
3
22234
A BD S =⨯=△,周长
为22362⨯=.
设E 、F 、Q 、N 、G 、H 分别为棱11A D 、11A B 、1BB 、BC 、CD 、1DD 的中点,
易知六边形EFQNGH 是边长为2的正六边形,且平面//EFQNGH 平面1A BD , 正六边形EFQNGH 的周长为62,面积为()
2
362334
⨯
⨯=,
则1A BD 的面积小于正六边形EFQNGH 的面积,它们的周长相等,B 选项错误; 对于C 选项,设平面α交棱11A D 于点(),0,2E b ,点()0,2,1M ,()2,2,1AM =-,
AM ⊥平面α,DE ⊂平面α,AM DE ∴⊥,即220AM DE b ⋅=-+=,得
1b =,()1,0,2E ∴,
所以,点E 为棱11A D 的中点,同理可知,点F 为棱11A B 的中点,则()2,1,2F ,
()1,1,0EF =,
而()2,2,0DB =,1
2
EF DB ∴=
,//EF DB ∴且EF DB ≠, 由空间中两点间的距离公式可得2222015DE =++=,
()()()
222
2212205BF =
-+-+-=,DE BF ∴=,
所以,四边形BDEF 为等腰梯形,C 选项正确;
对于D 选项,将矩形11ACC A 与矩形11CC D D 延展为一个平面,如下图所示:
若AM MN +最短,则A 、M 、N 三点共线,
11//CC DD ,22
22222
MC AC DN AD ∴
===-+, 11
222
MC CC =-≠,所以,点M 不是棱1CC 的中点,D 选项错误.
故选:AC. 【点睛】
本题考查线面角正弦值的取值范围,同时也考查了平面截正方体的截面问题以及折线段长的最小值问题,考查空间想象能力与计算能力,属于难题.
5.如图,点O 是正四面体P ABC -底面ABC 的中心,过点O 的直线交AC ,BC 于点
M ,N ,S 是棱PC 上的点,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,则( )
A .若//MN 平面PA
B ,则//AB RQ B .存在点S 与直线MN ,使P
C ⊥平面SRQ
C .存在点S 与直线MN ,使()
0PS PQ PR ⋅+= D .
1
11PQ
PR
PS
+
+
是常数
【答案】ABD 【分析】
对于选项A ,根据线面平行的性质定理,进行推理判断即可;
对于选项B ,当直线MN 平行于直线AB , 1
3
SC PC =
时,通过线面垂直的判定定理,证明此时PC ⊥平面SRQ ,即可证明,存在点S 与直线MN ,使PC ⊥平面SRQ ;
对于选项C ,假设存在点S 与直线MN ,使()
0PS PQ PR ⋅+=,利用线面垂直的判定定理可证得PC ⊥平面PAB ,此时通过反证法说明矛盾性,即可判断; 对于选项D ,利用S PQR O PSR O PSQ O PQR V V V V ----=++,即可求得111PQ
PR
PS
+
+
是常数.
【详解】 对于选项A , 若//MN 平面PAB ,
平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,
∴平面SMN 平面PAB =RQ ,
又MN ⊂平面SMN ,//MN 平面PAB ,
∴//MN RQ ,
点O 在面ABC 上,过点O 的直线交AC ,BC 于点M ,N ,
∴MN ⊂平面ABC ,
又//MN 平面PAB ,平面ABC
平面PAB AB =,
∴//MN AB , ∴//AB RQ ,
故A 正确; 对于选项B ,
当直线MN 平行于直线AB ,S 为线段PC 上靠近C 的三等分点,即1
3
SC PC =, 此时PC ⊥平面SRQ ,以下给出证明: 在正四面体P ABC -中,设各棱长为a ,
∴ABC ,PBC ,PAC △,PAB △均为正三角形,
点O 为ABC 的中心,//MN AB ,
∴由正三角形中的性质,易得23
CN CM a ==
, 在CNS 中,
2
3CN a =,13SC a =,3
SCN π∠=,
∴由余弦定理得,SN a ==, ∴222
249
SC SN a CN +=
=,则SN PC ⊥, 同理,SM PC ⊥,
又SM SN S =,SM ⊂平面SRQ ,SN ⊂平面SRQ ,
∴PC ⊥平面SRQ ,
∴存在点S 与直线MN ,使PC ⊥平面SRQ ,
故B 正确; 对于选项C ,
假设存在点S 与直线MN ,使()
0PS PQ PR ⋅+=, 设QR 中点为K ,则2PQ PR PK +=,
∴PS PK ⊥,即PC PK ⊥,
()
cos cos 0PC AB PC PB PA PC PB CPB PC PA CPA ⋅=⋅-=⋅∠-⋅∠=,
∴PC AB ⊥,
又易知AB 与PK 为相交直线,AB 与PK 均在平面PQR 上,
∴PC ⊥平面PQR ,即PC ⊥平面PAB ,
与正四面体P ABC -相矛盾,所以假设不成立, 故C 错误; 对于选项D ,
易知点O 到面PBC ,面PAC ,面PAB 的距离相等,记为d , 记PC 与平面PAB 所处角的平面角为α,α为常数,则sin α也为常数, 则点S 到PQR 的距离为sin PS α, 又13sin 234
PQR
S
PQ PR PQ PR π=
⋅=⋅ ∴
()
()
1
133sin sin sin 3
3412
S PQR PQR
V PS S PS PQ PR PQ PR PS ααα-=
⋅=
⋅⋅=⋅⋅, 又13
sin
23PSR
S
PS PR PS PR π=
⋅=⋅, 13sin 234
PSQ
S
PS PQ PS PQ π=
⋅=⋅,
13sin 234
PQR
S
PQ PR PQ PR π=
⋅=⋅, ()
3
S PQR O PSR O PSQ O PQR V V V V d PS PR PS PQ PQ PR ----=++=
⋅+⋅+⋅, ∴
()
33sin 1212
PQ PR PS d PS PR PS PQ PQ PR α⋅⋅=⋅+⋅+⋅, ∴
111sin d PQ
PR
PS
α
+
+
=
为常数,
故D 正确. 故选:ABD. 【点睛】
本题考查了线面平行的性质定理、线面垂直的判定定理,考查了三棱锥体积的计算,考查了向量的运算,考查了转化能力与探究能力,属于较难题.
6.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )
A .存在某个位置,使得CN A
B ⊥ B .翻折过程中,CN 的长是定值
C .若AB BM =,则1AM B
D ⊥
D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π 【答案】BD 【分析】
对于选项A ,取AD 中点E ,取1AB 中点K ,连结KN ,BK ,通过假设CN AB ⊥,推出
AB ⊥平面BCNK ,得到AB BK ⊥,则22AK AB BK AB =+>,即可判断;
对于选项B ,在判断A 的图基础上,连结EC 交MD 于点F ,连结NF ,易得
1NEC MAB ∠=∠,由余弦定理,求得CN 为定值即可;
对于选项C ,取AM 中点O ,1B O ,DO ,由线面平行的性质定理导出矛盾,即可判断; 对于选项D ,易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,说明此时AD 中点E 为外接球球心即可. 【详解】
如图1,取AD 中点E ,取1AB 中点K ,连结EC 交MD 于点F ,连结NF ,KN ,BK ,
则易知1//NE AB ,1//NF B M ,//EF AM ,//KN AD ,11
2
NE AB =,EC AM = 由翻折可知,1MAB MAB ∠=∠,1AB AB =,
对于选项A ,易得//KN BC ,则K 、N 、C 、B 四点共面,由题可知AB BC ⊥,若
CN AB ⊥,可得AB ⊥平面BCNK ,故AB BK ⊥,则22AK AB BK AB =+>,不
可能,故A 错误;
对于选项B ,易得1NEC MAB ∠=∠,
在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,
整理得2
2
2212422
AB AB AB CN AM AM BC AB AM =+-⋅⋅=+, 故CN 为定值,故B 正确;
如图2,取AD 中点E ,取AM 中点O ,连结1B E ,OE ,1B O ,DO ,,
对于选项C ,由AB BM =得1B O AM ⊥,若1AM B D ⊥,易得AM ⊥平面1B OD ,故
有AM OD ⊥,从而AD MD =,显然不可能,故C 错误;
对于选项D ,由题易知当平面1AB M 与平面AMD 垂直时,三棱锥B 1﹣AMD 的体积最大,
此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得12
BO =
,
DM =11
B E ===,因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,表面
积为4π,故D 正确. 故选:BD. 【点睛】
本题主要考查了立体几何中的翻折问题以及空间图形的位置关系,考查了空间想象能力,属于较难题.
7.已知正四棱柱1111ABCD A B C D -的底面边长为2,侧棱11AA =,P 为上底面
1111D C B A 上的动点,给出下列四个结论中正确结论为( )
A .若3PD =,则满足条件的P 点有且只有一个
B .若PD =,则点P 的轨迹是一段圆弧
C .若P
D ∥平面1ACB ,则DP 长的最小值为2
D .若PD ∥平面1ACB ,且PD =,则平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形的面积为94
π
【答案】ABD 【分析】
若3PD =,由于P 与1B 重合时3PD =,此时P 点唯一;()13PD =,,则
1PD =P 的轨迹是一段圆弧;当P 为11A C 中点时,DP 有最小值为=断C ;平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为3
2
=,可得D . 【详解】 如图:
∵正四棱柱1111ABCD A B C D -的底面边长为2, ∴1122B D =,又侧棱11AA =, ∴()
2
212213DB =
+=,则P 与1B 重合时3PD =,此时P 点唯一,故A 正确;
∵()313PD =∈,,11DD =,则12PD =,即点P 的轨迹是一段圆弧,故B 正确; 连接1DA ,1DC ,可得平面11//A DC 平面1ACB ,则当P 为11A C 中点时,DP 有最小值为
()
2
2213+=,故C 错误;
由C 知,平面BDP 即为平面11BDD B ,平面BDP 截正四棱柱1111ABCD A B C D -的外接球所得平面图形为外接球的大圆,其半径为22213
22122++=,面积为94
π,故D 正确. 故选:ABD . 【点睛】
本题考查了立体几何综合,考查了学生空间想象,逻辑推理,转化划归,数学运算的能力,属于较难题.
8.如图所示,在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交棱
1AA 于点E ,交棱1CC 于点F ,得四边形1BFD E ,在以下结论中,正确的是( )
A .四边形1BFD E 有可能是梯形
B .四边形1BFD E 在底面ABCD 内的投影一定是正方形
C .四边形1BF
D
E 有可能垂直于平面11BB D D D .四边形1BFD E 面积的最小值为62
【答案】BCD 【分析】
四边形1BFD E 有两组对边分别平行知是一个平行四边形四边形;1BFD E 在底面ABCD 内的投影是四边形ABCD ;当与两条棱上的交点是中点时,四边形1BFD E 垂直于面
11BB D D ;当E ,F 分别是两条棱的中点时,四边形1BFD E 的面积最小为62
.
【详解】
过1BD 作平面与正方体1111ABCD A B C D -的截面为四边形1BFD E , 如图所示,因为平面11//ABB A 平面11DCC D ,且平面1BFD E 平面11ABB A BE =.
平面1BFD E
平面1111,//DCC D D F BE D F =,因此,同理1//D E BF ,
故四边形1BFD E 为平行四边形,因此A 错误;
对于选项B ,四边形1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,因此B 正确; 对于选项C ,当点E F 、分别为11,AA CC 的中点时,EF ⊥平面11BB D D ,又EF ⊂平面
1BFD E ,则平面1BFD E ⊥平面11BB D D ,因此C 正确;
对于选项D ,当F 点到线段1BD 的距离最小时,此时平行四边形1BFD E 的面积最小,此时点E F 、分别为11,AA CC 的中点,此时最小值为16
232⨯⨯=
,因此D 正确. 故选:BCD
【点睛】关键点睛:解题的关键是理解想象出要画的平面是怎么样的平面,有哪些特殊的性质,考虑全面即可正确解题.。