2020最新初中数学必考知识点归纳
初中的全部数学知识点
初中的全部数学知识点初中数学是为高中数学学习打下基础的重要阶段,涵盖了丰富的知识内容。
以下是对初中数学知识点的详细梳理。
一、数与代数1、有理数有理数包括整数和分数。
整数又包括正整数、零和负整数;分数包括正分数和负分数。
有理数的运算有加、减、乘、除、乘方。
加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得 0。
减法法则:减去一个数,等于加上这个数的相反数。
乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与 0 相乘都得 0。
除法法则:除以一个不等于 0 的数,等于乘这个数的倒数;0 除以任何一个不等于 0 的数,都得 0。
乘方运算:求 n 个相同因数的积的运算,叫做乘方。
2、实数实数包括有理数和无理数。
无理数是无限不循环小数,如π、\(\sqrt{2}\)等。
平方根:如果一个数的平方等于 a,那么这个数叫做 a 的平方根。
算术平方根:正数 a 的正的平方根叫做 a 的算术平方根。
立方根:如果一个数的立方等于 a,那么这个数叫做 a 的立方根。
实数的运算与有理数的运算类似,只是在涉及无理数时要注意其近似值的计算。
3、代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
整式:单项式和多项式统称为整式。
单项式是数或字母的积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
整式的运算包括加减乘除。
乘法公式:平方差公式\((a+b)(ab)=a^2 b^2\),完全平方公式\((a\pm b)^2 = a^2 \pm 2ab + b^2\)分式:形如\(\dfrac{A}{B}\)(A、B 是整式,且 B 中含有字母,B≠0)的式子叫做分式。
分式的运算包括加减乘除。
4、方程与不等式一元一次方程:只含有一个未知数,并且未知数的次数是 1 的整式方程。
全部初中数学知识点总结(整理)
全部初中数学知识点总结(整理)初中数学是数学学习的基础阶段,它涵盖了许多重要的数学概念和技能。
以下是对初中数学知识点的全面总结:1. 数与式- 有理数:包括正数、负数和零,以及它们的加减乘除运算。
- 无理数:不能表示为两个整数的比值的实数,例如π和根号2。
- 代数式:用字母表示数的表达式,如ax+b。
- 整式与分式:整式是分母中不含字母的代数式,分式则是分母中含有字母的代数式。
2. 方程与不等式- 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。
- 二元一次方程组:由两个含有两个未知数的一次方程组成的方程组。
- 不等式:表示不等关系的式子,如x > 3。
- 一元二次方程:只含有一个未知数,且未知数的最高次数为2的方程。
3. 函数- 函数的定义:从一个集合到另一个集合的对应关系。
- 一次函数:形如y=kx+b的函数,其中k和b是常数。
- 二次函数:形如y=ax^2+bx+c的函数,其中a、b和c是常数,且a≠0。
4. 几何- 线段、射线和直线:线段有长度,射线有一个端点,直线无限长。
- 角:由两条射线组成的图形,如锐角、直角和钝角。
- 三角形:由三条线段组成的封闭图形,包括等边、等腰和直角三角形。
- 四边形:由四条线段组成的封闭图形,如平行四边形、矩形和正方形。
- 圆:平面上所有与给定点(圆心)距离相等的点的集合。
5. 统计与概率- 数据的收集和整理:包括数据的分类、排序和图表表示。
- 平均数、中位数和众数:描述数据集中趋势的统计量。
- 方差和标准差:描述数据分散程度的统计量。
- 概率:事件发生的可能性,用0到1之间的数表示。
6. 解题技巧- 因式分解:将多项式表示为几个多项式的乘积。
- 配方法:将二次方程转化为完全平方的形式。
- 换元法:通过引入新的变量来简化复杂的代数表达式。
- 图形法:利用图形来解决数学问题,如利用函数图像求解方程的根。
初中数学的学习不仅仅是对知识点的记忆,更重要的是理解和应用这些知识点来解决实际问题。
初中数学知识点总结最全版
初中数学知识点总结最全版一、数与代数1. 有理数- 整数和分数的概念- 正数、负数、零- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值的概念和性质2. 整数的性质- 素数和合数- 奇数和偶数- 整数的因数和倍数- 最大公约数和最小公倍数3. 代数表达式- 单项式和多项式- 同类项和合并同类项- 代数式的加减运算4. 一元一次方程- 方程的建立和解法- 方程的解的定义- 解一元一次方程的应用题5. 二元一次方程组- 代入法和消元法- 方程组的解的概念- 解二元一次方程组的应用题6. 不等式- 不等式的基本性质- 解一元一次不等式- 解一元一次不等式组7. 函数- 函数的概念- 函数的表示方法:表格、图像、解析式- 线性函数和二次函数的图像及性质- 函数的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对角、同位角- 三角形的分类和性质- 四边形的分类和性质- 圆的性质和圆周角2. 几何图形的计算- 面积的计算:长方形、正方形、三角形、梯形、圆 - 周长的计算:三角形、四边形、圆- 体积的计算:长方体、正方体、圆柱、圆锥3. 几何变换- 平移、旋转、对称(轴对称和中心对称)- 几何变换的性质和应用4. 解析几何- 坐标系的基本概念- 点的坐标和几何图形的坐标表示- 直线和曲线的解析表达式三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制:条形图、折线图、饼图 - 算术平均数、中位数和众数2. 概率- 概率的基本概念- 等可能事件的概率- 概率的加法和乘法法则- 简单事件和复合事件的概率计算四、综合应用题1. 数列- 等差数列的概念和性质- 等比数列的概念和性质- 数列的求和2. 应用题- 利用初中数学知识解决实际问题- 列方程解应用题- 统计与概率在实际问题中的应用3. 综合题- 结合数与代数、几何、统计与概率的知识点 - 解决综合性问题的能力培养以上总结了初中数学的主要知识点,学生在学习过程中应注重理解和应用,通过大量的练习来巩固所学知识,提高解题能力和数学思维。
2020年七年级所有知识点
2020年七年级所有知识点随着时代不断的发展,我们的知识也需要不断的更新和补充。
作为学习生涯的起点,七年级是一个关键的阶段,这个时期我们更应该将学习的重心放在基础知识的掌握上。
下面,我们来一起回顾一下2020年七年级学生所需要掌握的所有知识点。
数学知识点:数学是一门非常基础和重要的学科,对于数学知识点的掌握不仅影响到高中数学甚至是后续的科学研究。
以下是七年级需要掌握的数学知识点:1. 整数运算2. 分数运算3. 数的倍数和因数4. 数的质数和合数5. 平面直角坐标系及其运用6. 数学中的一般式及其应用7. 常见几何图形的基本性质8. 三角形的基本性质及分类9. 平行四边形的性质及其应用10. 三视图的绘制物理知识点:物理是一门在生产生活和科学研究中起着至关重要的作用的学科,它帮助我们认识自然现象,并且能够创造出许多我们熟知的实用物品。
以下是七年级需要掌握的物理知识点:1. 物质的内部结构2. 机械学之力和力的作用3. 重力和万有引力4. 动能,势能和机械能5. 显微镜和望远镜6. 各种不同的能量类型7. 电流的产生及其应用8. 电学和磁学9. 声波和光波的传播及其应用10. 能量转换及其应用化学知识点:化学作为一门研究物质变化的学科,是其他学科的基础,其中许多学科都离不开化学的成分和应用。
以下是七年级需要掌握的化学知识点:1. 化学符号和化学方程式2. 物理变化和化学变化3. 化学元素的认识4. 化合物的认识5. 饱和溶液、比溶液及其应用6. 酸、碱、中和反应及其应用7. 气体的性质和特性8. 化学反应式及其应用9. 元素周期表及其应用10. 金属和非金属的特性以及区别英语知识点:英语是目前世界上最受欢迎的语言之一,它是一门必修的学科,也是我们在未来社会中通向世界的关键能力之一。
以下是七年级需要掌握的英语知识点:1. 英语日常用语与单语句2. 动词时态, 主动语态和被动语态3. 名词、形容词和副词的基本语法4. 代词,冠词和介词的基本语法5. 简单的比较和形容词的比较6. 情态动词和语气的使用7. 常用谚语和俚语的使用8. 英语世界文化和文学的基本知识9. 常见单词词根、字典记单词记法和学习策略10. 阅读和写作技巧语文知识点:语文是传统乃至现代社会中必须掌握的学科之一,它是我们学习和提高综合素质的必修科目。
初中全部数学知识点归纳总结
初中全部数学知识点归纳总结初中数学知识点归纳总结一、数与代数1. 有理数- 整数:正整数、零、负整数- 有理数的定义:整数和分数统称为有理数- 有理数的加法、减法、乘法、除法运算法则- 有理数的大小比较2. 整式与分式- 单项式:定义、同类项、合并同类项- 多项式:定义、加减法、乘法- 因式分解:提公因式、公式法、分组分解法- 分式:定义、基本性质、分式的乘除法和加减法3. 一元一次方程与不等式- 一元一次方程的定义、解法- 不等式的概念、性质、解集表示- 一元一次不等式和不等式组的解法4. 二元一次方程组- 代入法、消元法解二元一次方程组- 三元一次方程组的解法5. 函数及其图像- 函数的概念:定义、函数关系式- 一次函数、反比例函数的图像和性质- 二次函数的图像(抛物线)和性质- 函数的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对角、平行线、垂直- 三角形:分类、性质、内角和定理- 四边形:分类、性质- 圆的基本性质、圆周角、圆心角、弦、弧、切线2. 几何图形的计算- 三角形、四边形的面积计算公式- 圆的周长和面积公式- 多边形的内角和外角和公式- 相似三角形的性质和判定- 勾股定理及其应用3. 空间几何- 立体图形的基本概念:点、线、面、体- 常见立体图形(长方体、正方体、圆柱、圆锥、球)的性质 - 立体图形的表面积和体积计算公式4. 坐标系与图形变换- 平面直角坐标系的定义和性质- 点在坐标系中的位置表示- 图形的平移、旋转、对称变换三、统计与概率1. 统计- 数据的收集、整理和描述- 频数、频率、频数分布表- 统计图表(条形图、折线图、饼图)的绘制和解读2. 概率- 随机事件的概念- 概率的定义和计算- 简单事件和复合事件的概率以上是初中数学的主要知识点归纳总结。
在实际学习过程中,学生应该通过大量的练习题来巩固和深化对这些知识点的理解和应用。
同时,解题过程中要注意培养逻辑思维能力和解题技巧,以提高解题效率和准确率。
初中数学必考知识点总结大全
初中数学必考知识点总结大全2020年的中考就要到了,同学们在总复习的过程中一定要建立系统的知识框架,接下来给大家分享初中数学的重要知识点,供参考。
概率1.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
2.互斥事件:不可能同时发生的两个事件叫做互斥事件。
3.对立事件:即必有一个发生的互斥事件叫做对立事件。
4.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。
5.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。
有理数1.定义:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
2.相反数:指绝对值相等,正负号相反的两个数互为相反数。
3.绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。
4.有理数的加减法:同号相加,把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
5.有理数的乘法:两数相乘,同号得正,异号得负,并把绝对值相乘。
6.有理数的除法:两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不为0的数,都得0。
一元一次方程1.定义:只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。
求出方程中未知数的值叫做方程式的解。
2.解一元一次方程的步骤:①去分母:把系数化成整数。
②去括号。
③移项:把等式一边的某项变号后移到另一边。
④合并同类项。
⑤系数化为1。
平行线1.在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。
2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4.判定两条直线平行的方法:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
中考数学必考知识点归纳
中考数学必考知识点归纳一、数与代数。
1. 有理数。
- 有理数的概念:整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 数轴:规定了原点、正方向和单位长度的直线叫做数轴。
数轴上的点与有理数一一对应。
- 相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0。
若a与b互为相反数,则a + b=0。
- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即| a|=a(a≥0) -a(a<0)。
- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
a^n 中,a叫做底数,n叫做指数。
2. 实数。
- 无理数:无限不循环小数叫做无理数,如√(2)、π等。
- 实数的概念:有理数和无理数统称为实数。
实数与数轴上的点一一对应。
- 实数的运算:实数的运算顺序为先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里面的。
3. 代数式。
- 代数式的概念:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或者一个字母也是代数式。
- 整式:单项式和多项式统称为整式。
单项式是数与字母的乘积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
初中数学知识点全面总结(完整版)
初中数学知识点全面总结(完整版)初中数学知识点全面总结(完整版)1. 数字与代数- 自然数:1,2,3,...- 整数:包括自然数及其负数和0- 有理数:可以表示为两个整数的比值的数- 实数:包括有理数和无理数- 代数运算:加法、减法、乘法、除法- 代数式:可以含有数、字母和运算符号的式子2. 几何与图形- 点、线、面:几何学的基本概念- 直线和线段:由无数个点连成的图形- 角度:由两条射线共享一个端点而形成的图形- 三角形:有三条边和三个角的图形- 四边形:有四条边和四个角的图形- 圆和圆周:由一条曲线上的所有点组成的图形3. 数据和统计- 数据收集:通过调查、观察或实验来获得数据- 数据处理:整理、分类和统计数据的过程- 平均数:一组数值的中间值- 概率:事件发生的可能性4. 函数与方程- 函数:将一个或多个输入值关联到一个输出值的规则- 线性函数:图像为一条直线的函数- 一次方程:含有未知数的等式,且未知数的最高次数为1 - 二次函数:含有未知数的等式,且未知数的最高次数为2 - 不等式:包含不等关系的方程式5. 测量与几何变换- 长度、面积和体积的测量- 几何变换:平移、旋转、翻转和对称6. 概率与统计- 抽样调查:通过从整体中选取一部分作为样本来进行调查- 频率分布表:将数据按一定规则整理并统计出现频率- 相对频率:某一事件发生的频率与总次数之比- 抽样误差:由于样本选择不足而引起的统计结果误差以上是初中数学的主要知识点总结,希望对你有帮助!(注意:每个知识点只是简短介绍,具体内容还需进一步研究和理解。
)。
2020七年级数学知识点
2020七年级数学知识点数学作为一门基础学科,其内容涉及到我们日常生活中的方方面面,所以我们必须掌握数学的基础知识,尤其是七年级的数学知识点,这是我们从小学到中学的过渡阶段,对我们今后的学习起着非常重要的作用。
下面是2020年七年级数学知识点的全面介绍。
一、整数的加减乘除七年级的数学学习,首先需要学习的便是整数的加减乘除。
整数的加减乘除是数学中最基础的知识点,也是七年级数学中最重要的知识点。
它是很多数学题目的基础。
如果掌握了整数的加减乘除,我们就可以更好的解决复杂的数学问题。
二、有理数的四则运算在整数的基础上,有理数的四则运算也是七年级的数学重点知识点之一。
有理数是整数、分数、小数的统称。
掌握有理数的四则运算,能够更好地解决更加复杂的数学问题。
三、分数的加减乘除分数是我们日常学习中经常会遇到的一种数学形式,它可以表示实数的商。
掌握分数的加减乘除是数学学习中的重点,也是我们进行数学运算的基础之一。
四、比例与比例的应用比例是七年级数学学习的关键内容之一,掌握比例的相关知识点非常重要。
比例的应用也是我们在日常生活和工作中经常会用到的一种数学形式,学好比例更是我们日常生活中运用数学的能力。
五、图形的分类与性质图形的分类与性质也是七年级数学学习中的重要内容。
在这项学习中,我们需要掌握各种图形的性质和相互之间的关联,包括面积、周长、角度等。
六、平面直角坐标系平面直角坐标系是七年级数学学习的难点之一,但也是我们进行高级数学学习的基础知识。
掌握平面直角坐标系,能够更好地解决各种数学问题。
七、数据的整理、处理与分析数据的整理、处理和分析是我们在日常学习和生活中经常会使用到的技能。
掌握数据的整理、处理和分析,能够帮助我们更好地理解数学中的概念和应用。
八、简单的代数式与方程式在七年级的数学学习中,代数式与方程式也是重点知识点之一。
学习代数式和方程式,有助于我们更好地应对更加复杂的数学问题。
结语以上是2020年七年级数学知识点的全面介绍。
2020中考数学知识点总结及考点分值(完整版)
中考数学知识点总结第一章:实数本节知识点试题特点:中考所占分数不多,一般为2-6分,占全卷3%左右。
考点一:实数的概念及分类考点二:实数的倒数、相反数和绝对值考点三:平方根、算术平方根和立方根考点四:科学计数法和近似数考点五:实数大小的比较考点六:实数的运算基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a 1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n次方根(1)平方根,算术平方根:设a≥0,称a叫a的平方根,a叫a的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a叫实数a的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
数学初中知识点总结归纳
数学初中知识点总结归纳一、数与代数。
1. 有理数。
- 有理数的定义:整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 数轴:规定了原点、正方向和单位长度的直线叫做数轴。
任何一个有理数都可以用数轴上的一个点来表示。
- 相反数:绝对值相等,符号相反的两个数叫做互为相反数。
0的相反数是0。
- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即| a|=a(a≥0) -a(a<0)- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数,等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法法则:除以一个不等于0的数,等于乘以这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
a^n 中,a叫做底数,n叫做指数。
2. 实数。
- 无理数:无限不循环小数叫做无理数,如√(2)、π等。
- 实数的定义:有理数和无理数统称为实数。
- 实数与数轴:实数与数轴上的点一一对应。
- 实数的运算:实数的运算顺序为先算乘方、开方,再算乘除,最后算加减,有括号的先算括号里面的。
3. 代数式。
- 代数式的定义:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或者一个字母也是代数式。
- 整式:单项式和多项式统称为整式。
单项式是数与字母的乘积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
- 整式的加减:实质是合并同类项,同类项是所含字母相同,并且相同字母的指数也相同的项。
初三数学必考知识点汇总
初三数学必考知识点汇总一、一元二次方程。
1. 定义。
- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。
一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
2. 解法。
- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。
例如方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。
- 配方法:将一元二次方程通过配方转化为(x + m)^2=n(n≥0)的形式再求解。
例如对于方程x^2+6x - 1 = 0,配方得(x + 3)^2=10,解得x=-3±√(10)。
- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。
例如方程2x^2-3x - 1 = 0,其中a = 2,b=-3,c=-1,代入公式可得x=(3±√(9 + 8))/(4)=(3±√(17))/(4)。
- 因式分解法:将方程化为两个一次因式乘积等于0的形式,即(mx +n)(px+q)=0,则mx + n = 0或px + q = 0。
例如方程x^2-3x + 2 = 0,因式分解为(x - 1)(x - 2)=0,解得x = 1或x = 2。
3. 根的判别式。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。
- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。
例如方程x^2-2x + 1 = 0,Δ=(-2)^2-4×1×1 = 0,方程有两个相等的实数根x = 1。
4. 根与系数的关系(韦达定理)- 对于一元二次方程ax^2+bx + c = 0(a≠0),设其两根为x_1,x_2,则x_1+x_2=-(b)/(a),x_1x_2=(c)/(a)。
初三数学常考知识点
初三数学常考知识点一、实数与代数1.有理数:整数、分数、相反数、绝对值、有理数的乘方、平方根、算术平方根等。
2.实数:实数的定义、实数的分类、实数的性质、实数的运算等。
3.代数式:代数式的定义、代数式的分类、代数式的运算等。
4.一元一次方程:一元一次方程的定义、一元一次方程的解法、一元一次方程的应用等。
5.不等式:不等式的定义、不等式的性质、不等式的解法、不等式的应用等。
6.二元一次方程组:二元一次方程组的定义、二元一次方程组的解法、二元一次方程组的应用等。
7.点、线、面:点的定义、线的定义、面的定义、点、线、面的关系等。
8.平面几何基本概念:邻补角、对顶角、同位角、内错角、同旁内角、平行线、相交线、垂直、平行的性质等。
9.三角形:三角形的定义、三角形的分类、三角形的性质、三角形的判定、三角形的计算等。
10.四边形:四边形的定义、四边形的分类、四边形的性质、四边形的判定、四边形的计算等。
11.圆:圆的定义、圆的性质、圆的方程、圆的计算、扇形、弧、弦等。
12.空间几何:长方体、正方体、球、棱柱、棱锥等空间几何图形的性质、计算和应用。
13.一次函数:一次函数的定义、一次函数的图像、一次函数的性质、一次函数的应用等。
14.二次函数:二次函数的定义、二次函数的图像、二次函数的性质、二次函数的应用等。
15.反比例函数:反比例函数的定义、反比例函数的图像、反比例函数的性质、反比例函数的应用等。
16.函数图像:函数图像的性质、函数图像的变换、函数图像的分析等。
四、统计与概率1.统计:统计的基本概念、统计的运算、数据的收集与处理、图表的制作等。
2.概率:概率的基本概念、概率的计算、概率的应用等。
五、解决问题的方法1.方程思想:列方程、求解方程、检验解等。
2.函数思想:建立函数关系、求解函数问题等。
3.几何思想:利用几何性质、定理解决问题等。
4.数形结合思想:利用数形结合的方法解决问题等。
以上是初三数学常考的知识点,希望对你有所帮助。
初中数学知识点必考考点大全
初中数学知识点必考考点大全1.整数和有理数运算整数的加减乘除、有理数的加减乘除、乘方、开方等运算规则。
2.分数运算分数的加减乘除、约分、通分、分数的比较、分数与整数的关系等。
3.负数的概念与运算负数的概念、负数的加减乘除、负数的乘方与开方等。
4.小数的加减乘除小数的加减乘除、小数的化简、小数的近似表示等。
5.数字的化简与科学计数法数字的约分和化简、数的大小比较、科学计数法的表示与运算等。
6.代数式与方程式的运算代数式的加减乘除、代数式的化简、对称式等。
7.坐标系与二维几何直角坐标系、点坐标的确定、平面上图形的平移、翻转、旋转、对称等。
8.直线、角的性质和计算直线的种类、直线的表示方式、角的种类和性质、角的比较和运算等。
9.平面图形的常见性质和计算三角形、四边形、多边形的性质、各种图形的面积和周长、各种图形间的关系等。
10.空间几何体的常见性质和计算立体图形的种类、立体图形的表面积和体积、立体图形间的位置关系等。
11.数据的图表表示和分析统计图表的绘制和分析、平均数、中位数、众数的计算等。
12.概率与统计概率的基本概念、概率的计算、随机事件、抽样调查等。
13.逻辑推理与数学证明常见的逻辑推理题、数学证明的基本方法和策略等。
14.四则运算的应用实际生活中的问题,如两车相遇的时间、速度问题、运动员超越问题等。
15.图形的平移、翻转、旋转、对称的应用应用图形变化的原理解决问题,如飞机投弹问题等。
16.几何形体的表面积和体积的应用计算实际问题中的几何形体的表面积和体积,如容器的容积、缸的油量等。
17.抽样调查、平均数、中位数、众数的应用利用统计数据解决实际问题,如人口普查、调查报告等。
18.几何证明的应用利用几何知识解决实际问题,如建筑设计、工程测量等。
初中数学必考知识点大全
初中数学必考知识点大全1.数的分类及数的性质:-自然数、整数、有理数、无理数、实数的概念及性质;-数的比较、绝对值、相反数、倒数等性质。
2.基本运算:-加减乘除运算的概念及性质;-整数、分数、小数之间的运算;-混合运算;-运算法则和运算顺序。
3.代数式和方程式:-代数式的概念、结果与计算;-等式、不等式的概念和性质;-简单的一元一次方程求解方法;-数据的整理和解决问题。
4.几何基本概念:-点、线、面、角的概念;-平行线、垂直线、相交线等基本性质;-三角形、四边形、圆的构成和性质。
5.几何图形的计算:-平面图形的周长和面积;-三角形、四边形的面积计算方法;-圆的周长和面积计算方法。
6.相似和全等:-相似的概念和判定;-全等的概念和判定;-利用相似和全等的性质解决问题。
7.几何变换:-平移、旋转、翻转的概念和性质;-利用几何变换解决问题。
8.三角函数:-根据角度的大小关系确定三角函数的正负性;-正弦、余弦、正切等三角函数的定义及性质;-利用三角函数计算角度和边长。
9.根式及其运算:-根式和含有根式的四则运算;-根式的化简和合并。
10.数列与函数:-等差数列和等比数列的概念和性质;-数列的通项和求和;-函数的概念和性质。
11.统计与概率:-数据的收集和整理;-统计图形的制作和解读;-概率的概念和计算。
以上是初中数学必考知识点的一个概述,详细的知识点包括各个知识点的定义、性质、计算方法以及解决问题的应用能力。
了解并掌握这些知识点对于初中数学的学习和备考非常重要。
初中数学基本知识点总结精简版
初中数学基本知识点总结精简版一、数与代数。
1. 有理数。
- 有理数的分类:整数(正整数、0、负整数)和分数(正分数、负分数)。
- 数轴:规定了原点、正方向、单位长度的直线。
数轴上的点与有理数一一对应。
- 相反数:只有符号不同的两个数互为相反数,a的相反数是-a,0的相反数是0。
- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即| a|=a(a≥0) -a(a < 0)。
- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都得0。
- 乘方:a^n表示n个a相乘,其中a是底数,n是指数。
2. 实数。
- 无理数:无限不循环小数,如√(2)、π等。
- 实数的分类:有理数和无理数。
- 实数与数轴上的点一一对应。
- 实数的运算:在进行实数运算时,有理数的运算律和运算法则同样适用。
3. 代数式。
- 代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,单独的一个数或者一个字母也是代数式。
- 整式:单项式和多项式统称为整式。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式,单项式中的数字因数叫做单项式的系数,单项式中所有字母的指数和叫做单项式的次数。
- 多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里次数最高项的次数叫做多项式的次数。
- 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
最新初中数学必考知识点大全
最新初中数学必考知识点大全数学是一门基础学科,是学生智力发展的重要组成部分。
掌握数学的基本知识点对学生的数学学习起着至关重要的作用。
以下是最新初中数学必考的知识点的详细介绍。
1.整数:四则运算、整数的比较、绝对值与相反数、整数的加法与减法运算。
2.分数与小数:分数的四则运算、分数的化简、分数与小数的相互转换。
3.小数:小数的四则运算、小数的化简、小数的计算。
4.百分数:百分数与小数的相互转换,百分数的四则运算。
5.数字的属性:倍数与约数的判断,最大公约数与最小公倍数的求解。
6.一元一次方程:一元一次方程的定义,解一元一次方程的基本方法。
7.一元一次方程应用:一元一次方程在实际生活中的应用,如关系式与图像。
8.二元一次方程:二元一次方程的定义,解二元一次方程的基本方法。
9.平方根与立方根:平方根与立方根的定义,求解平方根与立方根的方法。
10.单位换算:长度、质量、容积、面积、体积、时间等常用的单位换算。
11.数据统计:频数和频率的计算,统计图的绘制与分析。
12.几何图形的认识:点、线、线段、射线、角、平行线、垂直线等基本几何概念。
13.角的认识:直角、锐角、钝角的判断与性质。
14.三角形与四边形:三角形与四边形的命名与性质。
15.三角形的面积:三角形面积的计算公式与应用。
16.圆的认识:圆的定义、直径、半径、弧、弦、切线等基本概念。
17.圆的周长与面积:圆的周长与面积的计算公式与应用。
18.图形的相似与全等:相似与全等的定义,相似与全等的判断与性质。
19.实数集合与区间:实数集合的定义,区间的表示与性质。
20.函数的认识:函数的定义、自变量与函数值的关系。
21.正比例与反比例:正比例与反比例的定义,计算与应用。
22.初步解析几何:向量、坐标、直线、平面等初步解析几何的基本概念与应用。
23.平面镜与光的传播:平面镜的反射规律,光的传播路径与光的作用。
24.比例与相似:比例与相似的定义与性质。
25.折线与多边形:折线、凸多边形与凹多边形的特点与性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020最新初中数学必考知识点归纳
第一章:实数
重要复习的知识点:
一、实数的分类:
⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q
p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小
数,如 1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念
1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0
2、倒数:
(1)实数a (a ≠0)的倒数是a
1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数
3、绝对值:
(1)一个数a 的绝对值有以下三种情况:
⎪⎩⎪⎨⎧-==0,0,
00, a a a a a a
(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根
(1)平方根,算术平方根:设a ≥0,称a ±
叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a叫实数a的立方根。
(4)一个正数有一个正的立方根;0的立方根
是0;一个负数有一个负的立方根。
三、实数与数轴
1、数轴:规定了原点、正方向、单位长度的直
线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每
一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
四、实数大小的比较
1、在数轴上表示两个数,右边的数总比左边的
数大。
2、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。
五、实数的运算
1、加法:
(1)同号两数相加,取原来的符号,并把它们
的绝对值相加;
(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
可使用加法交换律、结合律。
2、减法:
减去一个数等于加上这个数的相反数。
3、乘法:
(1)两数相乘,同号取正,异号取负,并把绝
对值相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘
法分配律。
4、除法:
(1)两数相除,同号得正,异号得负,并把绝
对值相除。
(2)除以一个数等于乘以这个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没
有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。
无论何种运算,都要注意先定符号后运算。
六、有效数字和科学记数法
1、科学记数法:设N >0,则N= a ×n 10(其中1≤a <10,n 为整数)。
2、有效数字:一个近似数,从左边第一个不是0的数,到精确到的数位为止,所有的数字,叫做这个数的有效数字。
精确度的形式有两种:
(1)精确到那一位;(2)保留几个有效数字。
例题:
例1、已知实数a 、b 在数轴上的对应点的位置如图所示,且b a 。
化简:a b b a a --+-
分析:从数轴上a 、b 两点的位置可以看到:a <0,b >0且b a
所以可得:
解:a a b b a a =+-++-=原式
例2、若333)43(,)43(,)43(--=-=-=c b a ,比较a 、b 、
c 的大小。