数学建模历年竞赛试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
前言 ............................................................................................................. 错误!未定义书签。
目录 ..........................................................................................................................................- 0 - 一、什么是数学模型...........................................................................................................- 3 -
2001年B题……公交车调度.....................................................................................- 4 - 2001年C题……基金使用计划............................................................................. - 10 - 2002年A题……车灯线光源的优化设计........................................................... - 12 - 2002年B题……彩票中的数学............................................................................. - 13 - 2003年A题……SARS的传播............................................................................... - 18 - 2003年B题……露天矿生产的车辆安排........................................................... - 29 - 2003年D题……抢渡长江...................................................................................... - 33 - 2004年C题……饮酒驾车...................................................................................... - 36 - 2004年B题……电力市场的输电阻塞管理 ...................................................... - 38 - 电力市场交易规则: ..................................................................................... - 39 -
输电阻塞管理原则: ..................................................................................... - 40 -
表1各机组出力方案(单位:兆瓦,记作MW)............................... - 43 -
表2各线路的潮流值(各方案与表1相对应,单位:MW)......... - 45 -
表3各机组的段容量(单位:MW) ...................................................... - 46 -
表4各机组的段价(单位:元/兆瓦小时,记作元/MWh)............ - 47 -
表5各机组的爬坡速率(单位:MW/分钟)....................................... - 48 -
表6各线路的潮流限值(单位:MW)和相对安全裕度.................. - 49 -
2008年B题……高等教育学费标准探讨........................................................... - 49 - 2008年D题……NBA赛程的分析与评价.......................................................... - 50 - 2009年A题……制动器试验台的控制方法分析............................................. - 52 - 2009年B题……眼科病床的合理安排 ............................................................... - 55 - 【附录】2008-07-13到2008-09-11的病人信息.............................. - 56 - 2009年D题……会议筹备...................................................................................... - 94 - 附表1……10家备选宾馆的有关数据........................................................ - 95 -
附表2……本届会议的代表回执中有关住房要求的信息(单位:人)- 97 -
附表3……以往几届会议代表回执和与会情况....................................... - 97 -
附图(其中500等数字是两宾馆间距,单位为米).......................... - 98 -
二、为什么要学习数学模型........................................................................................ - 100 -
1、数学模型无处不在,我们的生活、工作、学习都离不开它............. - 100 -
例1买房贷款问题........................................................................................ - 100 -
例2物体冷却过程的数学模型................................................................. - 101 -
2、是学好数学用好数学的必经之路............................................................... - 103 -
3、是数学教学改革的重要手段和有效路径................................................. - 105 -
4、数学建模竞赛所提唱的团队精神是现代大学生必须具备素质........ - 108 -
5、数学建模竞赛鼓励学生用跳跃式的、发散式的形象思维方法,这有利于
培养学生的创新意识。
........................................................................................ - 109 -
6、数学建模可以培养学生创新意识和创造精神........................................ - 112 -
7、数学建模是培养学生综合素质的好方法好途径 ................................... - 112 -
8、数学模型可以培养学生理论联系实际的能力........................................ - 113 -
三、怎样学习数学模型和怎样选写数学模型论文............................................... - 114 -
四、全国大学生数学建模竞赛简介 .......................................................................... - 117 -
1、竞赛的由来及现状.......................................................................................... - 117 -
2、数学建模竞赛的特点 ..................................................................................... - 119 -
3、如何写作数学建模竞赛论文........................................................................ - 120 -
一、什么是数学模型
现在我们就讲第一个问题,什么是数学模型。
为此,我们先看几个全国大学生数学建模竞赛题:
……公交车调度
公共交通是城市交通的重要组成部分,作好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。
下面考虑一条公交线路上公交车的调度问题,其数据来自我国一座特大城市某条公交线路的客流调查和运营资料。
该条公交线路上行方向共14站,下行方向共13站,第3—4页给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。
公交公司配给该线路同一型号的大客车,每辆标准载客100 人,据统计客车在该线路上运行的平均速度为20公里/小时。
运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。
试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。
如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题的要求,如果要设计更好的调度方案,应如何采集运营数据。
C题……基金使用计划
某校基金会有一笔数额为M元的基金,打算将其存入银行或购买国库券。
当前银行存款及各期国库券的利率见下表。
假设国库券每年至少发行一次,发行时间不定。
取款政策参考银行的现行政策。
校基金会计划在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额。
校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。
请你帮助校基金会在如下情况下设计基金使用方案,并对M=5000万元,n=10年给出具体结果:
1、只存款不购国库券;
2、可存款也可购国库券;
3、学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其它年度多20%。
2002年A题……车灯线光源的优化设计安装在汽车头部的车灯的形状为一旋转抛物面,车灯的对称轴水平地指向正前方,其开口半径36毫米,深度21.6毫米。
经过车灯的焦点,在与对称轴相垂直的水平方向,对称地放置一定长度的均匀分布的线光源。
要求在某一设计规范标准下确定线光源的长度。
该设计规范在简化后可描述如下。
在焦点F正前方25米处的A点放置一测试屏,屏与FA垂直,用以测试车灯的反射光。
在屏上过A点引出一条与地面相平行的直线,在该直线A点的同侧取B点和C点,使AC=2AB=2.6米。
要求C 点的光强度不小于某一额定值(可取为1个单位),B点的光强度不小于该额定值的两倍(只须考虑一次反射)。
请解决下列问题:
(1)在满足该设计规范的条件下,计算线光源长度,使线光源的功率最小。
(2)对得到的线光源长度,在有标尺的坐标系中画出测试屏上反射光的亮区。
(3)讨论该设计规范的合理性。
B题……彩票中的数学
近年来“彩票飓风”席卷中华大地,巨额诱惑使越来越多的人加入到“彩民”的行列,目前流行的彩票主要有“传统型”和“乐透型”两种类型。
“传统型”采用“10选6+1”方案:先从6组0~9号球中摇出6个基本号码,每组摇出一个,然后从0~4号球中摇出一个特别号码,构成中奖号码。
投注者从0~9十个号码中任选6个基本号码(可重复),从0~4中选一个特别号码,构成一注,根据单注号码与中奖号码相符的个数多少及顺序确定中奖等级。
以中奖号码“abcdef+g”为例说明中奖等级,如表一(X表示未选中的号码)。
表一
“乐透型”有多种不同的形式,比如“33选7”的方案:先从01~33个号码球中一个一个地摇出7个基本号,再从剩余的26个号码球中摇出一个特别号码。
投注者从01~33个号码中任选7个组成一注(不可重复),根据单注号码与中奖号码相符的个数多少确定相应的中奖等级,不考虑号码顺序。
又如“36选6+1”的方案,先从01~36个号码球中一个一个地摇出6个基本号,再从剩下的30个号码球中摇出一个特别号码。
从01~36个号码中任选7个组成一注(不可重复),根据单注号码与中奖号码相符的个数多少确定相应的中奖等级,不考虑号码顺序。
这两种方案的中奖等级如表二。
表二
注:●为选中的基本号码;★为选中的特别号码;○为未选中的号码。
以上两种类型的总奖金比例一般为销售总额的50%,投注者单注金额为2元,单注若已得到高级别的奖就不再兼得低级别的奖。
现在常见的销售规则及相应的奖金设置方案如表三,其中一、二、三等奖为高项奖,后面的为低项奖。
低项奖数额固定,高项奖按比例分配,但一等奖单注保底金额60万元,封顶金额500万
元,各高项奖额的计算方法为:
[(当期销售总额×总奖金比例)-低项奖总额]×单项奖比例
(1)根据这些方案的具体情况,综合分析各种奖项出现的可能性、奖项和奖金额的设置以及对彩民的吸引力等因素评价各方案的合理性。
(2)设计一种“更好”的方案及相应的算法,并据此给彩票管理部门提出建议。
(3)给报纸写一篇短文,供彩民参考。
表三
2003年A题……SARS的传播
SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症,俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。
SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
请你们对SARS 的传播建立数学模型,具体要求如下:(1)对附件1所提供的一个早期的模型,评价其合理性和实用性。
(2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
附件2提供的数据供参考。
(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。
附件3提供的数据供参考。
(4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。
附件1:
SARS疫情分析及对北京疫情走势的预测2003年5月8日在病例数比较多的地区,用数理模型作分析有一定意义。
前几天,XXX老师用解析公式分析了北京SARS 疫情前期的走势。
在此基础上,我们加入了每个病人可以传染他人的期限(由于
被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。
希望这种分析能对认识疫情,安排后续的工作生活有帮助。
1、模型与参数
假定初始时刻的病例数为N0,平均每病人每天可传染K个人(K一般为小数),平均每个病人可以直接感染他人的时间为L天。
则在L天之内,病例数目的增长随时间t(单位天)的关系是:
N(t)=N0(1+K)t
如果不考虑对传染期的限制,则病例数将按照指数规律增长。
考虑传染期限L的作用后,变化将显著偏离指数律,增长速度会放慢。
我们采用半模拟循环计算的办法,把到达L天的病例从可以引发直接传染的基数中去掉。
参数K和L具有比较明显的实际意义。
L可理解为平均每个病人在被发现前后可以造成直接传染的期限,在此期限后他失去传染作用,可能的原因是被严格隔离、病愈不再传染或死去等等。
从原理上讲,这个参数主要与医疗机构隔离病人的时机和隔离的严格程度有关,只有医疗机构能有效缩短这个参数。
但我们分析广东、香港、北京现有的数据后发现,不论对于疫情的爆发阶段,还是疫情的控制阶段,这个参数都不能用得太小,否则无法描写好各阶段的数据。
该参数放在15-25之间比较好,为了简单我们把它固定在20(天)上这个值有一定统计上的意义,至于有没有医学上的解释,需要其他专家分析。
参数K显然代表某种社会环境下一个病人传染他人的平均概率,与全社会的警觉程度、政府和公众采取的各种措施有关。
在疾病初发期,社会来不及防备,
此时K值比较大。
为了简单起见,我们从开始至到高峰期间均采用同样的K值(从拟合这一阶段的数据定出),即假定这阶段社会的防范程度都比较低,感染率比较高。
到达高峰期后,我们在10天的范围内逐步调整K值到比较小,然后保持不变,拟合其后在控制阶段的全部数据,即认为社会在经过短期的剧烈调整之后,进入一个对疫情控制较好的常态。
显然,如果疫情出现失控或反复的状态,则K 值需要做更多的调整。
2、计算结果
2.1、对香港疫情的计算和分析。
香港的数据相对比较完整准确。
但在初期,由于诊断标准等不确切,在3月17日之前,没有找到严格公布的数据。
我们以报道的2月15日作为发现第一例病人的起点,2月27日从报道推断为7例。
3月17日后则都是正式公布的数据。
累积病例数在图1中用三角形表示。
我们然后用上述方法计算。
4月1日前后(从起点起45天左右)是疫情高峰时期,在此之前我们取K=0.16204。
此后的10天,根据数据的变化将K逐步调到0.0273,然后保持0.0273算出后面控制期的结果。
短期内K调整的幅度很大,反映社会的变化比较大。
图中实心方黑点是计算的累积病例数。
从计算累积病例数,很容易算出每天新增病例数(当然只反映走向,实际状况有很大涨落)。
可以看出,香港疫情从起始到高峰大约45天,从高峰回落到1/10以下(每天几个病例)大约40天(5月上中旬),到基本没有病例还要再经过近一个月(到6月上中旬)。
2.2、对广东疫情的计算和分析。
广东的起点是02年11月16日,到今年2月下旬达到高峰,经过了约100天。
在今年2月10日以前的数据查不到,分析比较困难。
总体上看,广东持续的时间比香港长得多,但累积的总病例数却少一些,这
反映出广东的爆发和高峰都不强烈。
但广东的回落也比较慢。
从2月下旬高峰期到现在经过了约70天,还维持着每天10来个新增病例,而同样过程香港只用了约40天。
这种缓慢上升和下降的过程也反映到K值上。
比较好的拟合结果是,在高峰期之前(t < 101天),K=0.0892;在随后的10天逐步调整到0.031。
用这组参数算出的后期日增病例数比实际公布的偏小,说明实际上降低得更慢。
这种情况与疫情的社会控制状况有没有什么关系,需要更仔细的分析。
2.3、对北京疫情的分析与预测。
北京的病例起点定在3月1日,经过大约59天在4月29日左右达到高峰。
我们通过拟合起点和4月20日以后的数据定出高峰期以前的K=0.13913。
这个值比香港的0.16204来得低,说明北京初期的爆发程度不如香港,但遗憾的是上升时间持续了近60天,而香港是45天,这就造成了累积病例数大大超过香港。
从图2中还看出4月20日以前公布的数据大大低于计算值。
而我们从对香港、广东情况的计算中,知道疫情前期我们的计算还是比较可行的。
从而可以大致判断出北京前期实际的病例数。
图中的公布数据截止到5月7日(从起点起67天),其后的计算采用的是香港情况下获得的参数。
按这种估算,北京最终累积病例数将达到3100多。
图1、对香港疫情的拟合
图2对北京疫情的分析图3是计算的日增病例数。
后期下降得较快的实心方黑点是采用香港参数获得的。
这就是说,如果北京的疫情控制与香港相当或更好的话,就可以在高峰期后的40天(从起点起100天)左右,即6月上中旬下降到日增几例。
然后再经过约一个月,即7月上中旬达到日增0病例。
但如果北京的新病例下降速度与广东类似的话,则要再多花至少一个月,才能达到上述的效果,且
累积总病例数会到3800左右。
至于什么原因造成香港下降速度快而广东下降速
度慢,需要有关方面作具体分析。
图3、北京日增病例走势分析
3、结论
每个病人可以造成直接感染他人的期限平均在20天左右,这个值在不同地区和不同疫情阶段似乎变化不大。
病人的平均每天感染率与社会状况有关,在疫情爆发期较大,在疫情控制期要小很多。
香港的初期爆发情况比广东和北京都剧烈,但控制效果明显比较好。
北京后期如果控制在香港后期的感染率水平上,则有望在6月上中旬下降到日增几例。
然后再经过约一个月,即7月上中旬达到日增0病例。
而累积总病例数将达到3100多。
但如果北京的新病例下降速度与广东类似的话,则要再多花至少一个月,才能达到上述的效果,且累积总病例数会到3800左右。
附件2:北京市疫情的数据(据:网络)
附件3:北京市接待海外旅游人数(单位:万人)
2003年B题……露天矿生产的车辆安排
钢铁工业是国家工业的基础之一,铁矿是钢铁工业的主要原料基地。
许多现代化铁矿是露天开采的,它的生产主要是由电动铲车(以下简称电铲)装车、电动轮自卸卡车(以下简称卡车)运输来完成。
提高这些大型设备的利用率是增加露天矿经济效益的首要任务。
露天矿里有若干个爆破生成的石料堆,每堆称为一个铲位,每个铲位已预先根据铁含量将石料分成矿石和岩石。
一般来说,平均铁含量不低于25%的为矿石,否则为岩石。
每个铲位的矿石、岩石数量,以及矿石的平均铁含量(称为品位)都是已知的。
每个铲位至多能安置一台电铲,电铲的平均装车时间为5分钟。
卸货地点(以下简称卸点)有卸矿石的矿石漏、2个铁路倒装场(以下简称倒装场)和卸岩石的岩石漏、岩场等,每个卸点都有各自的产量要求。
从保护国家资源的角度及矿山的经济效益考虑,应该尽量把矿石按矿石卸点需要的铁含量(假设要求都为29.5% 1%,称为品位限制)搭配起来送到卸点,搭配的量在一个班次(8小时)内满足品位限制即可。
从长远看,卸点可以移动,但一个班次内不变。
卡车的平均卸车时间为3分钟。
km。
卡车的耗油量很大,每个班所用卡车载重量为154吨,平均时速28h
次每台车消耗近1吨柴油。
发动机点火时需要消耗相当多的电瓶能量,故一个班次中只在开始工作时点火一次。
卡车在等待时所耗费的能量也是相当可观的,原则上在安排时不应发生卡车等待的情况。
电铲和卸点都不能同时为两辆及两辆以
上卡车服务。
卡车每次都是满载运输。
每个铲位到每个卸点的道路都是专用的宽60m的双向车道,不会出现堵车现象,每段道路的里程都是已知的。
一个班次的生产计划应该包含以下内容:出动几台电铲,分别在哪些铲位上;出动几辆卡车,分别在哪些路线上各运输多少次(因为随机因素影响,装卸时间与运输时间都不精确,所以排时计划无效,只求出各条路线上的卡车数及安排即可)。
一个合格的计划要在卡车不等待条件下满足产量和质量(品位)要求,而一个好的计划还应该考虑下面两条原则之一:
1.总运量(吨公里)最小,同时出动最少的卡车,从而运输成本最小;
2.利用现有车辆运输,获得最大的产量(岩石产量优先;在产量相同的情况下,取总运量最小的解)。
请你就两条原则分别建立数学模型,并给出一个班次生产计划的快速算法。
针对下面的实例,给出具体的生产计划、相应的总运量及岩石和矿石产量。
某露天矿有铲位10个,卸点5个,现有铲车7台,卡车20辆。
各卸点一个班次的产量要求:矿石漏1.2万吨、倒装场Ⅰ1.3万吨、倒装场Ⅱ1.3万吨、岩石漏1.9万吨、岩场1.3万吨。
铲位和卸点位置的二维示意图如下,各铲位和各卸点之间的距离(公里)如下表:
倒装场Ⅰ 1.90 0.99 1.90 1.13 1.27 2.25 1.48 2.04 3.09 3.51 岩场 5.89 5.61 5.61 4.56 3.51 3.65 2.46 2.46 1.06 0.57 岩石漏0.64 1.76 1.27 1.83 2.74 2.60 4.21 3.72 5.05 6.10 倒装场Ⅱ 4.42 3.86 3.72 3.16 2.25 2.81 0.78 1.62 1.27 0.50 各铲位矿石、岩石数量(万吨)和矿石的平均铁含量如下表:
铲位1 铲位
2
铲位
3
铲位
4
铲位
5
铲位
6
铲位
7
铲位
8
铲位
9
铲位
10
矿石
量
0.95 1.05 1.00 1.05 1.10 1.25 1.05 1.30 1.35 1.25 岩石
量
1.25 1.10 1.35 1.05 1.15 1.35 1.05 1.15 1.35 1.25 铁含
量
30% 28% 29% 32% 31% 33% 32% 31% 33% 31%
2003年D 题……抢渡长江
“渡江”是武汉城市的一张名片。
1934年9月9日,武汉警备旅官兵与体育界人士联手,在武汉第一次举办横渡长江游泳竞赛活动,起点为武昌汉阳门码头,终点设在汉口三北码头,全程约5000
米。
有44人参加横渡,40人达到终点,张学良将军特意向冠军获得者赠送了一块银盾,上书“力挽狂澜”。
2001年,“武汉抢渡长江挑战赛”重现江城。
2002年,正式命名为“武汉国际抢渡长江挑战赛”,于每年的5月1日进行。
由于水情、水性的不可预测性,这种竞赛更富有挑战性和观赏性。
2002年5月1日,抢渡的起点设在武昌汉阳门码头,终点设在汉阳南岸咀,江面宽约1160米。
据报载,当日的平均水温16.8℃, 江水的平均流速为1.89米/秒。
参赛的国内外选手共186人(其中专业人员将近一半),仅34人到达终点,第一名的成绩为14分8秒。
除了气象条件外,大部分选手由于路线选择错误,被滚滚的江水冲到下游,而未能准确到达终点。
假设在竞渡区域两岸为平行直线,它们之间的垂直距离为1160米,从武昌汉阳门的正对岸到汉阳南岸咀的距离为1000米,见示意图。
请你们通过数学建模来分析上
述情况,并回答以下问题;
1.假定在竞渡过程中游泳者的
速 度大小和方向不变,且竞渡区域
1160长江水流方
每点的流速均为1.89米/秒。
试说明2002年第一名是沿着怎样的路线前进的,求她游泳速度的大小和方向。
如何根据游泳者自己的速度选择游泳方向,试为一个速度能保持在1.5米/秒的人选择游泳方向,并估计他的成绩。
2.在(1)的假设下,如果游泳者始终以和岸边垂直的方向游, 他(她)们能否到达终点?根据你们的数学模型说明为什么 1934年 和2002年能游到终点的人数的百分比有如此大的差别;给出能够成功到达终点的选手的条件。
3.若流速沿离岸边距离的分布为 (设从武昌汉阳门垂直向上为 y 轴正向):
⎪⎩
⎪
⎨⎧≤≤<<≤≤=米米秒,米米
米秒,米米
米秒,米1160960/47.1960200/11.22000/47.1)(y y y y v
游泳者的速度大小(1.5米/秒)仍全程保持不变,试为他选择游泳方向和路线,估计他的成绩。
4.若流速沿离岸边距离为连续分布, 例如
⎪⎪⎩⎪
⎪⎨⎧≤≤-<<≤≤=1160960)1160(20028.2960
20028.2200020028
.2)(y y y y y y v ,,,
或你们认为合适的连续分布,如何处理这个问题。
5.用普通人能懂的语言,给有意参加竞渡的游泳爱好者写一份竞渡策略的短文。
你们的模型还可能有什么其他的应用?
抢渡长江线路图抢渡长江现场图
2004年C题……饮酒驾车
据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。
针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。
大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?
请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:
1.对大李碰到的情况做出解释;
2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:
酒是在很短时间内喝的;
酒是在较长一段时间(比如2小时)内喝的。
3.怎样估计血液中的酒精含量在什么时间最高。
4.根据你的模型论证:如果天天喝酒,是否还能开车?
5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。
参考数据
1.人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。
2. 体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如下:。