中考数学二次函数(大题培优 易错 难题)含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学二次函数(大题培优易错难题)含答案解析
一、二次函数
1.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P 的坐标,并求出△POB的面积;若不存在,请说明理由.
【答案】(1)y=x2﹣3x。
(2)点B的坐标为:(4,4)。
(3)存在;理由见解析;
【解析】
【分析】
(1)将原点坐标代入抛物线中即可求出k的值,从而求得抛物线的解析式。
(2)根据(1)得出的抛物线的解析式可得出A点的坐标,也就求出了OA的长,根据△OAB的面积可求出B点纵坐标的绝对值,然后将符合题意的B点纵坐标代入抛物线的解析式中即可求出B点的坐标,然后根据B点在抛物线对称轴的右边来判断得出的B点是否符合要求即可。
(3)根据B点坐标可求出直线OB的解析式,由于OB⊥OP,由此可求出P点的坐标特点,代入二次函数解析式可得出P点的坐标.求△POB的面积时,求出OB,OP的长度即可求出△BOP的面积。
【详解】
解:(1)∵函数的图象与x轴相交于O,∴0=k+1,∴k=﹣1。
∴这个二次函数的解析式为y=x2﹣3x。
(2)如图,过点B做BD⊥x轴于点D,
令x 2﹣3x=0,解得:x=0或3。
∴AO=3。
∵△AOB 的面积等于6,∴
12
AO•BD=6。
∴BD=4。
∵点B 在函数y=x 2﹣3x 的图象上,
∴4=x 2﹣3x ,解得:x=4或x=﹣1(舍去)。
又∵顶点坐标为:( 1.5,﹣2.25),且2.25<4,
∴x 轴下方不存在B 点。
∴点B 的坐标为:(4,4)。
(3)存在。
∵点B 的坐标为:(4,4),∴∠BOD=45°,22BO 442=
+=。
若∠POB=90°,则∠POD=45°。
设P 点坐标为(x ,x 2﹣3x )。
∴2x x 3x =-。
若2x x 3x =-,解得x="4" 或x=0(舍去)。
此时不存在点P (与点B 重合)。
若()2x x 3x =--,解得x="2" 或x=0(舍去)。
当x=2时,x 2﹣3x=﹣2。
∴点P 的坐标为(2,﹣2)。
∴22OP 222=+=
∵∠POB=90°,∴△POB 的面积为:12PO•BO=12×2×2=8。
2.如图:在平面直角坐标系中,直线l :y=
13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=
32
. (1)求抛物线的解析式;
(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;
(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当
PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.
【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).
【解析】
【分析】
(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=
32列出关于a 、c 的方程组求解即可;
(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;
(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22
y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.
【详解】
(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩
, 解得14
a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m ,
∴直线m 的解析式为y=
13
x . ∵点P 是直线1上任意一点, ∴设P (3a ,a ),则PC=3a ,PB=a .
又∵PE=3PF , ∴PC PB PF PE =. ∴∠FPC=∠EPB .
∵∠CPE+∠EPB=90°,
∴∠FPC+∠CPE=90°,
∴FP ⊥PE .
(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .
∵CF=3BE=18﹣3a ,
∴OF=20﹣3a .
∴F (0,20﹣3a ).
∵PEQF 为矩形,
∴
22x x x x Q P F E ++=,22
y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,
∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).
∴Q (﹣2,6).
如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.
∵CF=3BE=3a ﹣18,
∴OF=3a ﹣20.
∴F (0,20﹣3a ).
∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22
y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,
∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).
∴Q (2,﹣6).
综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).
【点睛】
本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.
3.如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .
(1)求二次函数的表达式;
(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.
【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.
【解析】
【分析】
(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;
(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标;
(3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.
【详解】
解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,
103
b c c ++=⎧⎨=⎩ 解得:b=﹣4,c=3,
∴二次函数的表达式为:y=x 2﹣4x+3;
(2)令y=0,则x 2﹣4x+3=0,
解得:x=1或x=3,
∴B (3,0),
∴BC=32,
点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,
①当CP=CB 时,PC=32,∴OP=OC+PC=3+32或OP=PC ﹣OC=32﹣3
∴P 1(0,3+32),P 2(0,3﹣32);
②当PB=PC 时,OP=OB=3,
∴P 3(0,-3);
③当BP=BC 时,
∵OC=OB=3
∴此时P 与O 重合,
∴P 4(0,0);
综上所述,点P 的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);
(3)如图2,设AM=t ,由AB=2,得BM=2﹣t ,则DN=2t ,
∴S △MNB=12
×(2﹣t )×2t=﹣t 2+2t=﹣(t ﹣1)2+1,
当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x 轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
4.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.
(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.【答案】(1)抛物线的解析式为y=﹣x2﹣2x+3;(2)当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3).
【解析】
【分析】
(1)根据正切函数,可得OB,根据旋转的性质,可得△DOC≌△AOB,根据待定系数法,可得函数解析式;
(2)分两种情况讨论:①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点;②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,得到△EFC∽△EMP,根据相似三角形的性质,可得PM与ME的关系,解方程,可得t的值,根据自变量与函数值的对应关系,可得答案.
【详解】
(1)在Rt△AOB中,OA=1,tan∠BAO
OB
OA
==3,∴OB=3OA=3.
∵△DOC 是由△AOB 绕点O 逆时针旋转90°而得到的,∴△DOC ≌△AOB ,∴OC =OB =3,OD =OA =1,∴A ,B ,C 的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为 09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩
,解得:123a b c =-⎧⎪=-⎨⎪=⎩,抛物线的解析式为y =﹣x 2﹣2x +3;
(2)∵抛物线的解析式为y =﹣x 2﹣2x +3,∴对称轴为l 2
b a
=-
=-1,∴E 点坐标为(﹣1,0),如图,分两种情况讨论:
①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点,P (﹣1,4); ②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,∵∠CFE=∠PME=90°,
∠CEF=∠PEM ,∴△EFC ∽△EMP ,∴
13
EM EF OD MP CF CO ===,∴MP =3ME . ∵点P 的横坐标为t ,∴P (t ,﹣t 2﹣2t +3). ∵P 在第二象限,∴PM =﹣t 2﹣2t +3,ME =﹣1﹣t ,t <0,∴﹣t 2﹣2t +3=3(﹣1﹣t ),解得:t 1=﹣2,t 2=3(与t <0矛盾,舍去).
当t =﹣2时,y =﹣(﹣2)2﹣2×(﹣2)+3=3,∴P (﹣2,3).
综上所述:当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3).
【点睛】
本题是二次函数综合题.解(1)的关键是利用旋转的性质得出OC ,OD 的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP =3ME .
5.如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 的顶点坐标为P (2,9),与x 轴交于点A ,B ,与y 轴交于点C (0,5).
(Ⅰ)求二次函数的解析式及点A ,B 的坐标;
(Ⅱ)设点Q 在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q 的坐标;
(Ⅲ)若点M 在抛物线上,点N 在抛物线的对称轴上,使得以A ,C ,M ,N 为顶点的四边形是平行四边形,且AC 为其一边,求点M ,N 的坐标.
【答案】(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(5,45);(3)M (1,8),N(2,13)或M′(3,8),N′(2,3).
【解析】
【分析】
(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;
(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;
(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.
【详解】
(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,
∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,
令y=0,得到:x2﹣4x﹣5=0,
解得x=﹣1或5,
∴A(﹣1,0),B(5,0).
(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).
把点Q′坐标代入y=﹣x2+4x+5,
得到:m2﹣4m﹣5=﹣m2﹣4m+5,
∴m=5或5
(舍弃),
∴Q(5,45).
(Ⅲ)如图,作MK⊥对称轴x=2于K.
①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.
∵此时点M的横坐标为1,
∴y=8,
∴M(1,8),N(2,13),
②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,
此时M′的横坐标为3,可得M′(3,8),N′(2,3).
【点睛】
本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.
6.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3,
4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒1
2
个单位的
速度沿线段AD向点D运动,运动时间为t秒.过点P作PE⊥x轴交抛物线于点M,交AC 于点N.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)当t为何值时,△ACM的面积最大?最大值为多少?
(3)点Q从点C出发,以每秒1个单位的速度沿线段CD向点D运动,当t为何值时,在线段PE上存在点H,使以C、Q、N、H为顶点的四边形为菱形?
【答案】(1)A(1,4);y=-x2+2x+3;(2)当t=2时,△AMC面积的最大值为
1;(3)2085
20 13
.
【解析】
(1)由矩形的性质得到点A的坐标,由抛物线的顶点为A,设抛物线的解析式为y=a(x -1)2+4,把点C的坐标代入即可求得a的值;
(2)由点P的坐标以及抛物线解析式得到点M的坐标,由A、C的坐标得到直线AC的解析式,进而得到点N的坐标,即可用关于t的式子表示MN,然后根据△ACM的面积是△AMN和△CMN的面积和列出用t表示的△ACM的面积,利用二次函数的性质即可得到当t=2时,△AMC面积的最大值为1;
(3)①当点H在N点上方时,由PN=CQ,PN∥CQ,得到四边形PNCQ为平行四边形,
所以当PQ =CQ 时,四边形FECQ 为菱形,据此得到,解得t 值;
②当点H在N点下方时,NH=CQ=,NQ =CQ 时,四边形NHCQ 为菱形,NQ 2=CQ 2,得:
,解得t 值.
解:(1)由矩形的性质可得点A (1,4), ∵抛物线的顶点为A ,
设抛物线的解析式为y =a (x -1)2+4, 代入点C (3, 0),可得a =-1. ∴y =-(x -1)2+4=-x 2+2x +3. (2)∵P (1
12
t +,4), 将112x t =+代入抛物线的解析式,y =-(x -1)2+4=21
44t -, ∴M (112t +
,21
44
t -), 设直线AC 的解析式为
,
将A (1,4),C (3,0)代入,得:
,
将1
12x t =+代入得,
∴N (112
t +,),
∴MN ,
∴
,
∴当t =2时,△A MC 面积的最大值为1. (3)①如图1,当点H在N点上方时, ∵N(112
t +
,),P (1
12
t +
,4), ∴P N=4—()==CQ ,
又∵PN ∥CQ ,
∴四边形PNCQ 为平行四边形, ∴当PQ =CQ 时,四边形FECQ 为菱形, PQ 2=PD 2+DQ 2 =,
∴
,
整理,得240800t t -+=.解得12085t =-,22085t =+
②如图2当点H在N点下方时,
NH=CQ=,NQ =CQ 时,四边形NHCQ 为菱形, NQ 2=CQ 2,得:
.
整理,得213728000t t -+=.()()1320400t t --=.所以12013
t =
,(舍去).
“点睛”此题主要考查二次函数的综合问题,会用顶点式求抛物线,会用两点法求直线解析式,会设点并表示三角形的面积,熟悉矩形和菱形的性质是解题的关键.
7.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=16
-x 2
+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为
172
m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?
【答案】(1)抛物线的函数关系式为y=16
-x 2
+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3. 【解析】 【详解】
试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.
试题解析:(1)由题知点17(0,4),3,
2B C ⎛⎫
⎪⎝⎭
在抛物线上 所以4
171
932
6c b c =⎧⎪
⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62b
x a
=-=时,10t y =≦ 答:2
1246
y x x =-
++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,22
63
y =>,所以可以通过 (3)令8y =,即2
12486
x x -
++=,可得212240x x -+=,解得12623,623x x =+=-
1243x x -=答:两排灯的水平距离最小是3考点:二次函数的实际应用.
8.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。
(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为
S2,且S1=6S2,求点P的坐标。
【答案】(1)
(2)
(3)P的坐标为(-1,12)或(6,5)或(2,-3)或(3,-4)
【解析】
【分析】
(1)由B(5,0),C(0,5),应用待定系数法即可求直线BC与抛物线的解析式。
(2)构造MN关于点M横坐标的函数关系式,应用二次函数最值原理求解。
(3)根据S1=6S2求得BC与PQ的距离h,从而求得PQ由BC平移的距离,根据平移的性质求得PQ的解析式,与抛物线联立,即可求得点P的坐标。
【详解】
解:(1)设直线BC的解析式为,
将B(5,0),C(0,5)代入,得,得。
∴直线BC的解析式为。
将B(5,0),C(0,5)代入,得,得。
∴抛物线的解析式。
(2)∵点M是抛物线在x轴下方图象上的动点,∴设M。
∵点N是直线BC上与点M横坐标相同的点,∴N。
∵当点M在抛物线在x轴下方时,N的纵坐标总大于M的纵坐标。
∴。
∴MN的最大值是。
(3)当MN取得最大值时,N。
∵的对称轴是,B(5,0),∴A(1,0)。
∴AB=4。
∴。
由勾股定理可得,。
设BC与PQ的距离为h,则由S1=6S2得:,即。
如图,过点B作平行四边形CBPQ的高BH,过点H作x轴的垂线交点E ,则
BH=,EH是直线BC沿y轴方向平移的距离。
易得,△BEH是等腰直角三角形,
∴EH=。
∴直线BC沿y轴方向平移6个单位得PQ的解析式:
或。
当时,与联立,得
,解得或。
此时,点P的坐标为(-1,12)或(6,5)。
当时,与联立,得
,解得或。
此时,点P的坐标为(2,-3)或(3,-4)。
综上所述,点P的坐标为(-1,12)或(6,5)或(2,-3)或(3,-4)。
9.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B.抛物线过A、B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.
(1)如图1,设抛物线顶点为M,且M的坐标是(1
2
,
9
2
),对称轴交AB于点N.
①求抛物线的解析式;
②是否存在点P,使四边形MNPD为菱形?并说明理由;
(2)是否存在这样的点D,使得四边形BOAD的面积最大?若存在,求出此时点D的坐标;若不存在,请说明理由.
【答案】(1)①y=﹣2x2+2x+4;;②不存在点P,使四边形MNPD为菱形;;(2)存在,点D的坐标是(1,4).
【解析】
【分析】
(1)①由一次函数图象上点的坐标特征求得点B的坐标,设抛物线解析式为y=
a
2
19
22
x
⎛⎫
-+
⎪
⎝⎭
,把点B的坐标代入求得a的值即可;
②不存在点P,使四边形MNPD为菱形.设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),根据题意知PD∥MN,所以当PD=MN时,四边形MNPD为平行四边形,
根据该等量关系列出方程﹣2m2+4m=3
2
,通过解方程求得m的值,易得点N、P的坐
标,然后推知PN=MN是否成立即可;
(2)设点D的坐标是(n,﹣2n2+2n+4),P(n,﹣2n+4).根据S四边形BOAD=S△BOA+S△ABD =4+S△ABD,则当S△ABD取最大值时,S四边形BOAD最大.根据三角形的面积公式得到函数
S△ABD=﹣2(n﹣1)2+2.由二次函数的性质求得最值.
【详解】
解:①如图1,
∵顶点M的坐标是
19
,
22
⎛⎫ ⎪⎝⎭
,
∴设抛物线解析式为y=
2
19
22
a x
⎛⎫
-+
⎪
⎝⎭
(a≠0).
∵直线y=﹣2x+4交y轴于点B,∴点B的坐标是(0,4).
又∵点B在该抛物线上,
∴
2
19
22
a
⎛⎫
-+
⎪
⎝⎭
=4,
解得a=﹣2.
故该抛物线的解析式为:y=
2
19
2
22
x
⎛⎫
--+
⎪
⎝⎭
=﹣2x2+2x+4;
②不存在.理由如下:
∵抛物线y=
2
19
2
22
x
⎛⎫
--+
⎪
⎝⎭
的对称轴是直线x=
1
2
,且该直线与直线AB交于点N,
∴点N的坐标是
1
,3
2
⎛⎫ ⎪⎝⎭
.
∴93
3
22
MN=-=.
设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),∴PD=(﹣2m2+2m+4)﹣(﹣2m+4)=﹣2m2+4m.
∵PD∥MN.
当PD=MN时,四边形MNPD是平行四边形,即﹣2m2+4m=3
2
.
解得 m1=1
2
(舍去),m2=
3
2
.
此时P(3
2
,1).
∵PN
∴PN≠MN,
∴平行四边形MNPD不是菱形.
∴不存在点P,使四边形MNPD为菱形;(2)存在,理由如下:
设点D的坐标是(n,﹣2n2+2n+4),∵点P在线段AB上且直线PD⊥x轴,∴P(n,﹣2n+4).
由图可知S四边形BOAD=S△BOA+S△ABD.其中S△BOA=1
2
OB•OA=
1
2
×4×2=4.
则当S△ABD取最大值时,S四边形BOAD最大.
S△ABD=1
2
(y D﹣y P)(x A﹣x B)
=y D﹣y P
=﹣2n2+2n+4﹣(﹣2n+4)=﹣2n2+4n
=﹣2(n﹣1)2+2.
当n =1时,S △ABD 取得最大值2,S 四边形BOAD 有最大值. 此时点D 的坐标是(1,4).
【点睛】
主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
10.已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点
(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .
(1)求抛物线的解析式和直线AB 的解析式.
(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得
2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.
(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.
【答案】(1)抛物线的表达式为:2
28y x x =-++,直线AB 的表达式为:
21y x =-;(2)存在,理由见解析;点P (6,16)-或(4,16)--或(17,2)+或(17,2).
【解析】 【分析】
(1)二次函数表达式为:y=a (x-1)2+9,即可求解; (2)S △DAC =2S △DCM ,则
()()
()()()2111
2821139112222
DAC C A S DH x x x x x x =
-=-++-++=--⨯V ,,即可求解;
(3)分AM 是平行四边形的一条边、AM 是平行四边形的对角线两种情况,分别求解即可. 【详解】
解:(1)二次函数表达式为:()2
19y a x =-+, 将点A 的坐标代入上式并解得:1a =-, 故抛物线的表达式为:2
28y x x =-++…①, 则点()3,5B ,
将点,A B 的坐标代入一次函数表达式并解得: 直线AB 的表达式为:21y x =-; (2)存在,理由:
二次函数对称轴为:1x =,则点()1,1C , 过点D 作y 轴的平行线交AB 于点H ,
设点()
2
,28D x x x -++,点(),21H x x -,
∵2DAC DCM S S ∆∆=, 则()()
()()()2111
2821139112222
DAC C A S DH x x x x x x =
-=-++-++=--⨯V , 解得:1x =-或5(舍去5), 故点()1,5D -;
(3)设点(),0Q m 、点(),P s t ,228t s s =-++, ①当AM 是平行四边形的一条边时,
点M 向左平移4个单位向下平移16个单位得到A ,
同理,点(),0Q m 向左平移4个单位向下平移16个单位为()4,16m --,即为点P , 即:4m s -=,6t -=,而228t s s =-++, 解得:6s =或﹣4, 故点()6,16P -或()4,16--; ②当AM 是平行四边形的对角线时,
由中点公式得:2m s +=-,2t =,而228t s s =-++, 解得:17s =±
故点(
)17,2P 或()
17,2;
综上,点()6,16P -或()4,16--或(
)17,2或()
17,2. 【点睛】
本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.
11.如图①,在平面直角坐标系xOy 中,抛物线y=ax 2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y 轴交于点C
.
(1)求抛物线的表达式;
(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、 Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP 、DQ. ①若点P 的横坐标为1
2
-
,求△DPQ 面积的最大值,并求此时点D 的坐标; ②直尺在平移过程中,△DPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.
【答案】(1)抛物线y=-x 2+2x+3;(2)①点D ( 31524
,);②△PQD 面积的最大值为8 【解析】
分析:(1)根据点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;
(2)(I )由点P 的横坐标可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,过点D 作DE ∥y 轴交直线PQ 于点E ,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-x+5
4
),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+6x+
7
2
,再利用二次函数的性质即可解决最值问题; (II )假设存在,设点P 的横坐标为t ,则点Q 的横坐标为4+t ,进而可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,设点D 的坐标为(x ,-x 2+2x+3),则点E 的坐标为(x ,-2(t+1)x+t 2+4t+3),进而即可得出DE 的长度,利用三角形的面积公式可得出S △DPQ =-2x 2+4(t+2)x-2t 2-8t ,再利用二次函数的性质即可解决最值问题. 详解:(1)将A (-1,0)、B (3,0)代入y=ax 2+bx+3,得:
309330a b a b -+⎧⎨
++⎩==,解得:1
2a b -⎧⎨⎩
==, ∴抛物线的表达式为y=-x 2+2x+3. (2)(I )当点P 的横坐标为-12
时,点Q 的横坐标为7
2,
∴此时点P 的坐标为(-
12,74
),点Q 的坐标为(72,-9
4).
设直线PQ 的表达式为y=mx+n ,
将P(-1
2
,
7
4
)、
Q(
7
2
,-
9
4
)代入y=mx+n,得:
17
24
79
24
m n
m n
⎧
-+
⎪⎪
⎨
⎪+-
⎪⎩
=
=
,解得:
1
5
4
m
n
-
⎧
⎪
⎨
⎪⎩
=
=
,
∴直线PQ的表达式为y=-x+5
4
.
如图②,过点D作DE∥y轴交直线PQ于点E,
设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+
5
4
),
∴DE=-x2+2x+3-(-x+5
4
)=-x2+3x+
7
4
,
∴S△DPQ=
1
2
DE•(x Q-x P)=-2x2+6x+
7
2
=-2(x-
3
2
)2+8.
∵-2<0,
∴当x=3
2
时,△DPQ的面积取最大值,最大值为8,此时点D的坐标为(
3
2
,
15
4
).(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,
∴点P的坐标为(t,-t2+2t+3),点Q的坐标为(4+t,-(4+t)2+2(4+t)+3),
利用待定系数法易知,直线PQ的表达式为y=-2(t+1)x+t2+4t+3.
设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-2(t+1)x+t2+4t+3),
∴DE=-x2+2x+3-[-2(t+1)x+t2+4t+3]=-x2+2(t+2)x-t2-4t,
∴S△DPQ=
1
2
DE•(x Q-x P)=-2x2+4(t+2)x-2t2-8t=-2[x-(t+2)]2+8.
∵-2<0,
∴当x=t+2时,△DPQ的面积取最大值,最大值为8.
∴假设成立,即直尺在平移过程中,△DPQ面积有最大值,面积的最大值为8.
点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S△DPQ=-
2x 2+6x+
7
2
;(II )利用三角形的面积公式找出S △DPQ =-2x 2+4(t+2)x-2t 2-8t .
12.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC = (1)求抛物线的解析式及其对称轴;
(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形
ACDE 的周长的最小值;
(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.
【答案】(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小10131;(3)12(4,5),(8,45)P P -- 【解析】 【分析】
(1)OB=OC ,则点B (3,0),则抛物线的表达式为:y=a (x+1)(x-3)=a (x 2-2x-3)=ax 2-2ax-3a ,即可求解;
(2)CD+AE=A′D+DC′,则当A′、D 、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,即可求解; (3)S △PCB :S △PCA =12EB×(y C -y P ):1
2
AE×(y C -y P )=BE :AE ,即可求解. 【详解】
(1)∵OB=OC ,∴点B (3,0),
则抛物线的表达式为:y=a (x+1)(x-3)=a (x 2-2x-3)=ax 2-2ax-3a , 故-3a=3,解得:a=-1,
故抛物线的表达式为:y=-x 2+2x+3…①; 对称轴为:直线1x =
(2)ACDE 的周长=AC+DE+CD+AE ,其中10、DE=1是常数, 故CD+AE 最小时,周长最小,
取点C 关于函数对称点C (2,3),则CD=C′D , 取点A′(-1,1),则A′D=AE ,
故:CD+AE=A′D+DC′,则当A′、D、C′三点共线时,CD+AE=A′D+DC′最小,周长也最小,
四边形ACDE的周长的最小值
=AC+DE+CD+AE=10+1+A′D+DC′=10+1+A′C′=10+1+13;
(3)如图,设直线CP交x轴于点E,
直线CP把四边形CBPA的面积分为3:5两部分,
又∵S△PCB:S△PCA=1
2
EB×(y C-y P):
1
2
AE×(y C-y P)=BE:AE,
则BE:AE,=3:5或5:3,
则AE=5
2
或
3
2
,
即:点E的坐标为(3
2
,0)或(
1
2
,0),
将点E、C的坐标代入一次函数表达式:y=kx+3,
解得:k=-6或-2,
故直线CP的表达式为:y=-2x+3或y=-6x+3…②
联立①②并解得:x=4或8(不合题意值已舍去),
故点P的坐标为(4,-5)或(8,-45).
【点睛】
本题考查的是二次函数综合运用,涉及到一次函数、图象面积计算、点的对称性等,其中(1),通过确定点A′点来求最小值,是本题的难点.
13.抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.
(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;
(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标;
(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使
∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.
【答案】(1)抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)点E的坐标为E(﹣4,5)(3)当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.
【解析】
试题分析:(1)利用待定系数法求二次函数的解析式,并配方求对称轴;(2)如图1,设E(m,m2+2m﹣3),先根据已知条件求S△ACE=10,根据不规则三角形面积等于铅直高度与水平宽度的积列式可求得m的值,并根据在对称轴左侧的抛物线上有一点E,则点E 的横坐标小于﹣1,对m的值进行取舍,得到E的坐标;
(3)分两种情况:①当B在原点的左侧时,构建辅助圆,根据直径所对的圆周角是直角,只要满足∠BPF=90°就可以构成∠OBP=∠FPG,如图2,求出圆E与y轴有一个交点时的m值,则可得取值范围;②当B在原点的右侧时,只有△OBP是等腰直角三角形,
△FPG也是等腰直角三角形时满足条件,直接计算即可.
试题解析:(1)当m=﹣3时,B(﹣3,0),
把A(1,0),B(﹣3,0)代入到抛物线y=x2+bx+c中得:,解得,
∴抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;
(2)如图1,设E(m,m2+2m﹣3),
由题意得:AD=1+1=2,OC=3,
S△ACE=S△ACD=×ADOC=×2×3=10,
设直线AE的解析式为:y=kx+b,
把A(1,0)和E(m,m2+2m﹣3)代入得,
,解得:,
∴直线AE的解析式为:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),
∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S△ACE=FC(1﹣m)=10,
﹣m(1﹣m)=20,m2﹣m﹣20=0,
(m+4)(m﹣5)=0,
m1=﹣4,m2=5(舍),
∴E(﹣4,5);
(3)如图2,当B在原点的左侧时,连接BF,以BF为直径作圆E,当⊙E与y轴相切时,设切点为P,
∴∠BPF=90°,∴∠FPG+∠OPB=90°,∵∠OPB+∠OBP=90°,∴∠OBP=∠FPG,
连接EP,则EP⊥OG,
∵BE=EF,∴EP是梯形的中位线,∴OP=PG=2,
∵FG=1,tan∠FPG=tan∠OBP=,
∴,∴m=﹣4,
∴当﹣4≤m<0时,在线段OG上存在点P,使∠OBP=∠FPG;
如图3,当B在原点的右侧时,要想满足∠OBP=∠FPG,
则∠OBP=∠OPB=∠FPG,∴OB=OP,
∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,
∴FG=PG=1,∴OB=OP=3,∴m=3,
综上所述,当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.
考点:二次函数的综合题.
14.如图,已知抛物线2y ax bx c =++(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;
(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.
【答案】(1)2
23y x x =--;(2)P (1,0);(3).
【解析】
试题分析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可; (2)由图知:A .B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;
(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA=AC 、②MA=MC 、③AC=MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.
试题解析:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线2
y ax bx c
=++中,得:0{9303a b c a b c c -+=++==-,解得:1
{23
a b c ==-=-,故抛物线的解析式:2
23y x x =--.
(2)当P 点在x 轴上,P ,A ,B 三点在一条直线上时,点P 到点A 、点B 的距离之和最短,此时x=2b
a
-
=1
,故P (1,0); (3)如图所示:抛物线的对称轴为:x=2b
a
-=1,设M (1,m ),已知A (﹣1,0)、C (0,﹣3),则:
2MA =24m +,2MC =2
(3)1m ++=2610m m ++,2AC =10;
①若MA=MC ,则22MA MC =,得:24m +=2610m m ++,解得:m=﹣1; ②若MA=AC ,则22MA AC =,得:24m +=10,得:m=6±;
③若MC=AC ,则22MC AC =,得:2610m m ++=10,得:10m =,26m =-; 当m=﹣6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;
综上可知,符合条件的M 点,且坐标为 M (1,6)(1,6-)(1,﹣1)(1,0).
考点:二次函数综合题;分类讨论;综合题;动点型.
15.如图1,四边形OABC 是矩形,点A 的坐标为(3,0),点c 的坐标为(0,6).点P 从点
O 出发,沿OA 以每秒1个单位长度的速度向点A 运动,同时点Q 从点A 出发,沿AB 以
每秒2个单位长度的速度向点B 运动,当点P 与点A 重合时运动停止.设运动时间为t 秒.。