2021-2022学年北师大版九年级数学下册《3-8圆内接正多边形》同步达标训练(附答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021-2022学年北师大版九年级数学下册《3.8圆内接正多边形》同步达标训练(附答案)1.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()
A.30°B.36°C.45°D.72°
2.一个圆的内接正六边形的边长为4,则该圆的内接正方形的边长为()A.2B.4C.4D.8
3.若正六边形的边长为4,则它的外接圆的半径为()
A.4B.4C.2D.2
4.如图,正六边形ABCDEF内接于⊙O,过点O作OM⊥边BC于点M,若⊙O的半径为4,则边心距OM的长为()
A.B.C.2D.
5.已知等边三角形的内切圆半径,外接圆半径和高的比是()
A.1:2:B.2:3:4C.1::2D.1:2:3
6.如图,⊙O的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为()
A.B.C.D.
7.如图,在圆内接正六边形ABCDEF中,BF,BD分别交AC于点G,H.若该圆的半径为15cm,则线段GH的长为()
A.cm B.5cm C.3cm D.10cm
8.一个适当大的正六边形,它的一个顶点与一个边长为定值的小正六边形ABCDEF的中心O重合,且与边AB、CD相交于G、H(如图).图中阴影部分的面积记为S,三条线段GB、BC、CH的长度之和记为l,在大正六边形绕点O旋转过程中,下列说法正确的是()
A.S变化,l不变B.S不变,l变化
C.S变化,l变化D.S与l均不变
9.如图,已知正五边形ABCDE中,点F是BC的中点,P是线段EF上的动点,连接AP,BP,当AP+BP的值最小时,∠BPF的度数为()
A.36°B.45°C.54°D.60°
10.已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.
11.如图,已知⊙O的内接正六边形ABCDEF的边心距OM=2,则该圆的内接正三角形ACE 的面积为()
A.2B.4C.6D.4
12.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()
A.B.C.D.2
13.如图,在圆内接正六边形ABCDEF中,半径OC=4,OG⊥BC,垂足为点G,则正六边形的中心角=,边长=,边心距=.
14.如图,圆O的周长是1cm,正五边形ABCDE的边长是4cm,圆O从A点出发,沿A →B→C→D→E→A顺时针在正五边形的边上滚动,当回到出发点时,则圆O共滚动了周.
15.如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=20°,则这个正多边形的边数为.
16.如图拧开一个边长为a的正六角形螺帽时,扳手张开的开口b=20mm,则边长a=mm.
17.六个带30度角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积.
18.如图,边长为a的正六边形内有斜边为a、锐角为60°两个直角三角形,则=
19.如图,正六边形ABCDEF的边长为4,两顶点A,B分别在x轴和y轴上运动,则顶点D到原点O的距离的最大值为;最小值为.
20.如图,点G,H分别是正六边形ABCDEF的边BC,CD上的点,且BG=CH,AG交BH于点P.(1)求证:△ABG≌△BCH;
(2)求∠APH的度数.
21.如图正方形ABCD内接于⊙O,E为任意一点,连接DE、AE.
(1)求∠AED的度数.
(2)如图2,过点B作BF∥DE交⊙O于点F,连接AF,AF=1,AE=4,求DE的长度.
22.如图1、2、3、…、n,M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连接OM、ON.
(1)求图1中∠MON的度数;
(2)图2中∠MON的度数是,图3中∠MON的度数是;
(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).
参考答案1.解:如图,连接OC,OD.
∵ABCDE是正五边形,
∴∠COD==72°,
∴∠CPD=∠COD=36°,
故选:B.
2.解:∵圆内接正六边形的边长是4,
∴圆的半径为4.
那么直径为8.
圆的内接正方形的对角线长为圆的直径,等于8.∴圆的内接正方形的边长是4.
故选:B.
3.解:连接OA、OB,
∵六边形ABCDEF是⊙O的内接正六边形,
∴∠AOB==60°,
∵OA=OB,
∴△AOB是等边三角形,
∵AB=4,
∴OA=OB=AB=4,
即正六边形ABCDEF的外接圆的半径是4,
故选:B.
4.解:如图,连接OB、OC.
∵六边形ABCDEF是正六边形,
∴∠BOC=60°,OB=OC=4,
∴△OBC是等边三角形,
∴BC=OB=OC=4,
∵OM⊥BC,
∴BM=CM=2,
在Rt△OBM中,OM===2,
故选:A.
5.解:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;
在直角△OCD中,∠DOC=60°,
则OD:OC=1:2,
因而OD:OC:AD=1:2:3,
所以内切圆半径,外接圆半径和高的比是1:2:3.故选:D.
6.解:∵六边形ABCDEF是正六边形,
∴∠AOB=60°,
∴△OAB是等边三角形,OA=OB=AB=2,
设点G为AB与⊙O的切点,连接OG,则OG⊥AB,
∴OG=OA•sin60°=2×=,
∴S阴影=S△OAB﹣S扇形OMN=×2×﹣=﹣.
故选:A.
7.解:∵在圆内接正六边形ABCDEF中,AB=AF=BC=CD,∠BAF=∠ABC=∠BCD=120°,
∴∠AFB=∠ABF=∠BAC=∠ACB=∠CBD=∠BDC=30°,
∴AG=BG,BH=CH,
∵∠GBH=∠BGH=∠BHG=60°,
∴AG=GH=BG=BH=CH,
连接OA,OB交AC于N,
则OB⊥AC,∠AOB=60°,
∵OA=15cm,
∴AN=OA=(cm),
∴AC=2AN=15(cm),
∴GH=AC=5(cm),
故选:B.
8.解:如图,连接OA,OC.
∵∠HOB=∠AOC=120°,∠OCH=∠OAG=60°,
∴∠HOC=∠GOA,
在△OHC和△OGA中,

∴△HOC≌△GOA(ASA),
∴AG=CH,
∴S阴=S四边形OABC=定值,l=GB+BC+CH=AG+BG+BC=2BC=定值,故选:D.
9.解:如图,连接AC,PC,设AC交EF于点P′,连接BP′.
∵正五边形ABCDE中,点F是BC的中点,
∵EF⊥BC,
∴B,C关于EF对称,
∴PB=PB,
∵P A+PB=P A+PC≥AC,
∴当点P与P′重合时,P A+PB的值最小,
∵ABCDE是正五边形,
∴BA=BC,∠ABC=108°,
∴∠BAC=∠BCA=36°,
∵P′B=CP′,
∴∠P′BC=∠P′CB=36°,
∵∠EFB=90°,
∴∠BP′F=90°﹣36°=54°.
故选:C.
10.解:如图(1),
O为△ABC的中心,
AD为△ABC的边BC上的高,
则OD为边心距,
∴∠BAD=30°,
又∵AO=BO,
∴∠ABO=∠BAD=30°,
∴∠OBD=60°﹣30°=30°,
在Rt△OBD中,
BO=2DO,
即AO=2DO,
∴OD:OA:AD=1:2:3.
在正△ABC中,AD是高,设BD=x,则AD=BD•tan60°=BD=x.∵正三角形ABC面积为cm2,
∴BC•AD=,
∴×2x•x=,
∴x=1.
即BD=1,则AD=,
∵OD:OA:AD=1:2:3,
∴AO=cm.
即这个圆的半径为cm.
所以该圆的内接正六边形的边心距×sin60°=,
故选:B.
11.解:如图所示,连接OC、OB,过O作ON⊥CE于N,∵多边形ABCDEF是正六边形,
∴∠COB=60°,
∵OC=OB,
∴△COB是等边三角形,
∴∠OCM=60°,
∴OM=OC•sin∠OCM,
∴OC==.
∵∠OCN=30°,
∴ON=OC=,CN=2,
∴CE=2CN=4,
∴该圆的内接正三角形ACE的面积=3×=4,故选:D.
12.解:如图,连接AC、BD、OF,,
设⊙O的半径是r,
则OF=r,
∵AO是∠EAF的平分线,
∴∠OAF=60°÷2=30°,
∵OA=OF,
∴∠OF A=∠OAF=30°,
∴∠COF=30°+30°=60°,
∴FI=r•sin60°=,
∴EF=,
∵AO=2OI,
∴OI=,CI=r﹣=,
∴,
∴,
∴=,
即则的值是.
故选:C.
13.解:在圆内接正六边形ABCDEF中,∠COD==60°,
∵OC=OD,
∴△OCD是等边三角形,
∴BC=CD=OC=4,
∵OG⊥BC,
∴CG=BC=2,
∵∠COG=∠COD=30°,
∴OG=CG=2,
故答案为:60°,4,2.
14.解:圆O从A点出发,沿A→B→C→D→E→A顺时针在正五边形的边上滚动,∵圆O的周长是1cm,正五边形ABCDE的边长是4cm,
∴圆在边上转了4×5=20圈,
而圆从一边转到另一边时,圆心绕五边形的一个顶点旋转了五边形的一个外角的度数,∴圆绕五个顶点共旋转了360°,即它转了一圈,
∴圆回到原出发位置时,共转了21圈.
故答案为:21.
15.解:如图,设正多边形的外接圆为⊙O,连接OA,OB,∵∠ADB=20°,
∴∠AOB=2∠ADB=40°,
而360°÷40°=9,
∴这个正多边形为正九边形,
故答案为:九.
16.解:如图,连接OC、OD,过O作OH⊥CD于H.
∵∠COD==60°,OC=OD,
∴△COD是等边三角形,
∴∠COH=90°﹣60°=30°,
∵OH⊥CD,
∴CH=DH=CD,OH=b=10(mm),
∴CH=10×tan30°=(mm),
∴a=2CH=(mm),
故答案为:.
17.解:如图,∵△ABG≌△BCH,
∴AG=BH,
∵∠ABG=30°,
∴BG=2AG,
即BH+HG=2AG,
∴HG=AG=1,
∴中间正六边形的面积=6××12=,
故答案为:.
18.解:∵S正六边形=6וa2=a2,S空白=2ו•a••a=a2,∴S阴=a2,
∴=,
故答案为:.
19.解:当O、D、AB中点共线时,OD有最大值和最小值,
如图,BD=4,BK=2,
∴DK===2,OK=BK=2,
∴OD的最大值为:2+2,
同理,当O、D、AB中点共线时,将正六边形绕AB中点K旋转180°取得最小值为:2﹣2,
故答案为:2+2,2﹣2.
20.(1)证明:∵在正六边形ABCDEF中,
AB=BC,∠ABC=∠C=120°,
在△ABG与△BCH中,
∴△ABG≌△BCH;
(2)解:由(1)知:△ABG≌△BCH,
∴∠BAG=∠HBC,
∴∠BPG=∠ABG=120°,
∴∠APH=∠BPG=120°.
21.解:(1)如图1中,连接OA、OD.
∵四边形ABCD是正方形,
∴∠AOD=90°,
∴∠AED=∠AOD=45°.
(2)如图2中,连接CF,CE,CA,BD,作DH⊥AE于H.
∵BF∥DE,AB∥CD,
∴∠BDE=∠DBF,∠BDC=∠ABD,
∴∠ABF=∠CDE,
∵∠CF A=∠AEC=90°,
∴∠DEC=∠AFB=135°,
∵CD=AB,
∴△CDE≌△ABF,
∴AF=CE=1,
∴AC==,
∴AD=AC=,
∵∠DHE=90°,
∴∠HDE=∠HED=45°,
∴DH=HE,设DH=EH=x,
在Rt△ADH中,∵AD2=AH2+DH2,
∴=(4﹣x)2+x2,
解得x=或(舍弃),
∴DE=DH=
22.解:分别连接OB、OC,
(1)∵AB=AC,
∴∠ABC=∠ACB,
∵OC=OB,O是外接圆的圆心,
∴CO平分∠ACB
∴∠OBC=∠OCB=30°,
∴∠OBM=∠OCN=30°,
∵BM=CN,OC=OB,
∴△OMB≌△ONC,
∴∠BOM=∠NOC,
∵∠BAC=60°,
∴∠BOC=120°;
∴∠MON=∠BOC=120°;
(2)同(1)可得∠MON的度数是90°,图3中∠MON的度数是72°;
(3)由(1)可知,∠MON==120°;在(2)中,∠MON==90°;在(3)中∠MON==72°…,
故当n时,∠MON=.。

相关文档
最新文档