九年级上册数学 一元二次方程易错题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册数学 一元二次方程易错题(Word 版 含答案)
一、初三数学 一元二次方程易错题压轴题(难)
1.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点
P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速
度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点
P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时
间为ts . (1)如图①,
①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当38
83
a t ==
,时,证明:ADF CDF S S ∆∆=.
【答案】(1)① 2.5t =, 1.1a =或2t =,0.5a =;②1t =;(2)见解析 【解析】 【分析】
(1)①当PBM PCN ≅△△时或当MBP PCN ≅△△时,分别列出方程即可解决问题; ②当AP BD ⊥时,由ABP BCD ≅△△,推出BP CD =,列出方程即可解决问题; (2)如图②中,连接AC 交MD 于O 只要证明AOM COD ≅△△,推出OA OC =,可得ADO CDO S S ∆∆=,AFO CFO S S ∆∆=,推出ADO AFO CDO CFO S S S S ∆∆∆∆-=-,即ADF CDF S S ∆∆=;
【详解】
解:(1)①90ABC BCD ∠=∠=︒,
∴当PBM PCN ≅△△时,有BM NC =,即5t t -=①
5 1.54t at -=-②
由①②可得 1.1a =, 2.5t =.
当MBP PCN ≅△△时,有BM PC =,BP NC =,即5 1.5t t -=③ 54t at -=-④,
由③④可得0.5a =,2t =.
综上所述,当 1.1a =, 2.5t =或0.5a =,2t =时,以P 、B 、M 为顶点的三角形与
PCN △全等; ②AP BD ⊥,
90BEP ∴∠=︒,
90APB CBD ∴∠+∠=︒,
90ABC ∠=︒,
90APB BAP ∴∠+∠=︒, BAP CBD ∴∠=∠,
在ABP △和BCD 中,
BAP CBD AB BC
ABC BCD ∠=∠⎧⎪
=⎨⎪∠=∠⎩
, ()ABP BCD ASA ∴≅△△,
BP CD ∴=, 即54t -=, 1t ∴=;
(2)当38a =,8
3
t =时,1DN at ==,而4CD =,
DN CD ∴<,
∴点N 在点C 、D 之间, 1.54AM t ==,4CD =, AM CD ∴=,
如图②中,连接AC 交MD 于O , 90ABC BCD ∠=∠=︒, 180ABC BCD ∴∠+∠=︒, //AB BC ∴,
AMD CDM ∴∠=∠,BAC DCA ∠=∠, 在AOM 和COD △中, AMD CDM AM CD
BAC DCA ∠=∠⎧⎪
=⎨⎪∠=∠⎩
, ()AOM COD ASA ∴≅△△,
OA OC ∴=,
ADO CDO S S ∆∆∴=,AFO CFO S S ∆∆=, ADO AFO CDO CFO S S S S ∆∆∆∆∴-=-, ADF CDF S S ∆∆∴=.
【点睛】
本题考查三角形综合题、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
2.Rt△ABC中,∠ACB=90°,AC=BC=6,动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动,到达点C停止运动.设运动时间为t秒
(1)如图1,过点P作PD⊥AC,交AB于D,若△PBC与△PAD的面积和是△ABC的面积
的7
9
,求t的值;
(2)点Q在射线PC上,且PQ=2AP,以线段PQ为边向上作正方形PQNM.在运动过程中,若设正方形PQNM与△ABC重叠部分的面积为8,求t的值.
【答案】(1)t1=2,t2=4;(2)t 4
7
7
58.
【解析】
【分析】
(1)先求出△ABC的面积,然后根据题意可得AP=t,CP=6﹣t,然后再△PBC与△PAD
的面积和是△ABC的面积的7
9
,列出方程、解方程即可解答;
(2)根据不同时间段分三种情况进行解答即可.【详解】
(1)∵Rt△ABC中,∠ACB=90°,AC=BC=6,∴S△ABC=1
2
×6×6=18,
∵AP=t,CP=6﹣t,
∴△PBC与△PAD的面积和=1
2t2+
1
2
×6×(6﹣t),
∵△PBC与△PAD的面积和是△ABC的面积的7
9
,
∴1
2t2+
1
2
×6×(6﹣t)=18×
7
9
,
解之,得t1=2,t2=4;(2)∵AP=t,PQ=2AP,∴PQ=2t,
①如图1,当0≤t≤2时,S=(2t)2﹣1
2
t2=
7
2
t2=8,
解得:t1=4
7
7
,t2=﹣
4
7
7
(不合题意,舍去),
②如图2,当2≤t≤3时,S=1
2
×6×6﹣
1
2
t2﹣
1
2
(6﹣2t)2=12t﹣
2
5
t2=8,
解得:t1=4(不合题意,舍去),t2=4
5
(不合题意,舍去),
③如图3,当3≤t≤6时,S=1
2
6×6﹣
1
2
t2=8,
解得:t1=25,t2=﹣25(不合题意,舍去),
综上,t的值为4
7
7或25时,重叠面积为8.
【点睛】
本题考查了三角形和矩形上的动点问题,根据题意列出方程和分情况讨论是解答本题的关键.
3.已知关于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有两个不相等的实数根,求k的取值范围;
(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.
【答案】(1)k>3
4
;(215
【解析】【分析】