七年级下册数学期中综合复习题3、应用题
人教版数学七年级下学期期中测试卷三(含答案及解析)
![人教版数学七年级下学期期中测试卷三(含答案及解析)](https://img.taocdn.com/s3/m/e4d40fd14b73f242326c5fa7.png)
人教版数学七年级下学期期中测试卷三一、选择题(每小题3 分,共30 分)1.(3 分)如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A.同位角B.内错角C.对顶角D.同旁内角2.(3 分)下列方程中,是二元一次方程的是()A.x+2y=5 B.xy=3 C.3x+y2=5 D.3.(3 分)在实数、0. 、、0.202020、中,属于无理数的有()个.个B.2 个C.3 个D.4 个4.(3 分)下列计算结果正确的是()A.a3×a4=a12 B.a5÷a=a5 C.(ab2)3=ab6 D.(a3)2=a65.(3 分)下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.a(x﹣y)=ax﹣ay D.x2+2x+1=(x+1)26.(3 分)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5 尺;将绳子对折再量长木,长木还剩余1 尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是()A.B.C.D.7.(3 分)如果x+m 与x+8 的乘积中不含x 的一次项,则m 的值是()A.﹣8 B.8 C.0 D.18.(3 分)为了奖励疫情期间线上学习表现优异的同学,某校决定用1200 元购买篮球和排球,其中篮球每个120 元,排球每个90 元,在两种球类都购买且资金恰好用尽的情况下,购买方案有()种B.3 种C.4 种D.5 种9.(3 分)如图,在平面直角坐标系上有点A(1,0),点A 第一次向左跳动至A1(﹣1,1),第二次向右跳动至A2(2,1),第三次向左跳动至A3(﹣2,2),第四次向右跳动至A4(3,2)…依照此规律跳动下去,点A 第124 次跳动至A124 的坐标()A.(63,62)B.(62,61)C.(﹣62,61)D.(124,123)10.(3 分)如图,AB∥CD,∠DCE 的角平分线CG 的反向延长线和∠ABE 的角平分线BF 交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°二、填空题(每小题3 分,共18 分)11.(3 分)﹣的立方根是.12.(3 分)若不等式5(x﹣2)+8<6(x﹣1)+7 的最小整数解是方程2x﹣ax=3 的解,则a 的值为.13.(3 分)如图,已知AB∥DE,∠ABC=75°,∠CDE=160°,则∠BCD 的度数为.14.(3 分)分解因式:ax2﹣ax=.15.(3 分)不等式组有解且解集是2<x<m+7,则m 的取值范围为16.(3 分)计划在一块长为10 米,宽为7 米的长方形草坪上,修建一条宽为2 米的人行道,则剩余草坪的面积为平方米.三、解答题(共72 分)17.(8 分)(1)计算:﹣+ ;(2)计算:(+2)﹣18.(8 分)解方程组:(1);(2).19.(8 分)请把下面证明过程补充完整如图,已知AD⊥BC 于D,点E 在BA 的延长线上,EG⊥BC 于G,交AC 于点F,∠E=∠1.求证:AD 平分∠BAC.证明:∵AD⊥BC 于D,EG⊥BC 于G(),∴∠ADC=∠EGC=90°(),∴AD∥EG(),∴∠1=∠2(),=∠3(),又∵∠E=∠1(已知),∴∠2=∠3(),∴AD 平分∠BAC()20.(10 分)如图,已知BE 平分∠ABC,点D 在射线BA 上,且∠ABE=∠BED.(1)判断BC 与DE 的位置关系,并说明理由.(2)当∠ABE=25°时,求∠ADE 的度数.21.(10 分)三角形ABC(记作△ABC)在8×8 方格中,位置如图所示,A(﹣2,1),B(﹣1,4).(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)把△ABC 向上平移2 个单位长度,再向右平移3 个单位长度,请你画出平移后的△A1B1C1,若△ABC 内部一点P 的坐标为(a,b),则点P 的对应点P1 的坐标是.(3)在x 轴上存在一点D,使△DBC 的面积等于3,则点D 的坐标为.22.(10 分)疫情无情人有情,八方相助暖人心.一爱心人士向某社区捐赠了A 品牌一次性医用口罩5000 个和B 品牌免洗消毒液100 瓶,总价值18000 元.已知10 个A 品牌一次性医用口罩与1 瓶B 品牌免洗消毒液共需84 元.求A 品牌一次性医用口罩和B 品牌免洗消毒液的单价分别是多少?23.(12 分)用1 块A 型钢板可制成1 块C 型钢板、3 块D 型钢板;用1 块B 型钢板可制成2 块C 型钢板、1 块D 型钢板.(1)现需150 块C 型钢板、180 块D 型钢板,则恰好用A 型、B 型钢板各多少块?(2)若A、B 型钢板共100 块,现需C 型钢板至多150 块,D 型钢板不超过204 块,共有几种方案?(3)若需C 型钢板80 块,D 型钢板不多于45 块(A 型、B 型钢板都要使用).求A、B 型钢板各需多少块?24.(14 分)如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0,线段AB 交y 轴于F 点.(1)求点A、B 的坐标.(2)点D 为y 轴正半轴上一点,若ED∥AB,且AM,DM 分别平分∠CAB,∠ODE,如图2,求∠AMD 的度数.(3)如图3,(也可以利用图1)①求点F 的坐标;②点P 为坐标轴上一点,若△ABP 的三角形和△ABC 的面积相等?若存在,求出P 点坐标.人教版数学七年级下学期期中测试卷三参考答案与试题解析一.选择题(每小题3 分,共30 分)1.(3 分)如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A.同位角B.内错角C.对顶角D.同旁内角【分析】拇指所在直线被两个食指所在的直线所截,因而构成的一对角可看成是内错角.【解答】解:角在被截线的内部,又在截线的两侧,符合内错角的定义,故选:B.2.(3 分)下列方程中,是二元一次方程的是()A.x+2y=5 B.xy=3 C.3x+y2=5 D.【分析】根据含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.逐一判断可得.【解答】解:A.x+2y=5 是二元一次方程;B.xy=3 中xy 的指数为2,不是二元一次方程;C.3x+y2=5 中y2 的指数为2,不是二元一次方程;D.中不是整式,不是二元一次方程;故选:A.3.(3 分)如图,直线AB 与直线CD 相交于点O,OE⊥3.(3 分)在实数、0. 、、0.202020、中,属于无理数的有()个.A.1个B.2 个C.3 个D.4 个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0. 是循环小数,属于有理数;0.202020 是有限小数,属于有理数;是分数,属于有理数.无理数有:、共2个.故选:B.4.(3 分)下列计算结果正确的是()A.a3×a4=a12 B.a5÷a=a5 C.(ab2)3=ab6 D.(a3)2=a6【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a3×a4=a7,故此选项错误;B、a5÷a=a4,故此选项错误;C、(ab2)3=a3b6,故此选项错误;D、(a3)2=a6,正确.故选:D.5.(3 分)下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.a(x﹣y)=ax﹣ay D.x2+2x+1=(x+1)2【分析】直接利用因式分解的意义分析得出答案.【解答】解:A、(x+1)(x﹣1)=x2﹣1,从左到右是整式的乘法运算,不合题意;B、x2﹣2x+1=(x﹣1)2,不合题意;C、a(x﹣y)=ax﹣ay,不合题意;D、x2+2x+1=(x+1)2,从左到右是因式分解,符合题意.故选:D.6.(3 分)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5 尺;将绳子对折再量长木,长木还剩余1 尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是()A.B.C.D.【分析】根据题意可以列出相应的二元一次方程组,从而本题得以解决.【解答】解:由题意可得,,故选:B.7.(3 分)如果x+m 与x+8 的乘积中不含x 的一次项,则m 的值是()A.﹣8 B.8 C.0 D.1【分析】原式利用多项式乘多项式法则计算,根据结果不含x 的一次项,确定出m 的值即可.【解答】解:原式=x2+(m+8)x+8m,由结果不含x 的一次项,得到m+8=0,解得:m=﹣8,故选:A.8.(3 分)为了奖励疫情期间线上学习表现优异的同学,某校决定用1200 元购买篮球和排球,其中篮球每个120 元,排球每个90 元,在两种球类都购买且资金恰好用尽的情况下,购买方案有()A.2种B.3 种C.4 种D.5 种【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x、y 的方程,由x、y 均为正整数即可得.【解答】解:设购买篮球x 个,排球y 个,根据题意可得120x+90y=1200,则y=,∵x、y 均为正整数,∴x=1、y=12;x=4、y=8;x=7、y=4.所以购买资金恰好用尽的情况下,购买方案有3 种,故选:B.9.(3 分)如图,在平面直角坐标系上有点A(1,0),点A 第一次向左跳动至A1(﹣1,1),第二次向右跳动至A2(2,1),第三次向左跳动至A3(﹣2,2),第四次向右跳动至A4(3,2)…依照此规律跳动下去,点A 第124 次跳动至A124 的坐标()A.(63,62)B.(62,61)C.(﹣62,61)D.(124,123)【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【解答】解:观察发现,第 2 次跳动至点的坐标是(2,1),第4 次跳动至点的坐标是(3,2),第6 次跳动至点的坐标是(4,3),第8 次跳动至点的坐标是(5,4),…第2n 次跳动至点的坐标是(n+1,n),∴第124 次跳动至点的坐标是(63,62).故选:A.10.(3 分)如图,AB∥CD,∠DCE 的角平分线CG 的反向延长线和∠ABE 的角平分线BF 交于点F,∠E﹣∠F=36°,则∠E=()A.82°B.84°C.97°D.90°【分析】根据平行线的性质即可求解.【解答】解:过E 作直线MN∥AB,如下图所示,∵AB∥MN,∴∠3+∠4+∠BEM=180°(两直线平行,同旁内角互补),∵AB∥CD,∴MN∥CD,∴∠MEC=∠1+∠2(两直线平行,内错角相等),∴∠BEC=∠MEC+∠BEM=180°﹣∠3﹣∠4+∠1+∠2,∵∠DCE 的角平分线CG 的反向延长线和∠ABE 的角平分线BF 交于点F,∴∠1=∠2,∠3=∠4,∴∠BEC=180°﹣2∠4+2∠1,∴∠4﹣∠1=90°﹣,∵四边形BECF 内角和为360°,∴∠4+∠BEC+∠180°﹣∠1+∠F=360°,∴+∠F=90°,由,∴,故选:B.二、填空题(每小题3 分,共18 分)11.(3 分)﹣的立方根是﹣2 .【分析】先根据算术平方根的定义求出,再利用立方根的定义解答.【解答】解:∵82=64,∴=8,∴﹣=﹣8,∵(﹣2)3=﹣8,∴﹣的立方根是﹣2.故答案为:﹣2.12.(3 分)若不等式5(x﹣2)+8<6(x﹣1)+7 的最小整数解是方程2x﹣ax=3 的解,则a 的值为.【分析】首先解不等式确定不等式的最小整数解,然后代入方程,即可得到关于 a 的方程,求得a 的值.【解答】解:解不等式5(x﹣2)+8<6(x﹣1)+7 得:x>﹣3.则最小整数解是:﹣2,把x=﹣2 代入方程得:﹣4+2a=3,解得:a=.故答案是:.13.(3 分)如图,已知AB∥DE,∠ABC=75°,∠CDE=160°,则∠BCD 的度数为55°.【分析】延长ED 与BC 相交于点F,根据两直线平行,内错角相等可得∠BFD=∠ABC,再根据邻补角的定义分别求出∠CDF 和∠CFD,然后根据三角形的内角和定理列式计算即可得解.【解答】解:如图,延长ED 与BC 相交于点F,∵AB∥DE,∴∠BFD=∠ABC=75°,∴∠CFD=180°﹣75°=105°,∵∠CDE=160°,∴∠CDF=180°﹣∠CDE=180°﹣160°=20°,在△CDF 中,∠BCD=180°﹣∠CDF﹣∠CFD=180°﹣20°﹣105°=55°.故答案为:55°.14.(3 分)分解因式:ax2﹣ax=ax(x﹣1).【分析】提取公因式ax,然后整理即可.【解答】解:ax2﹣ax=ax(x﹣1).15.(3 分)不等式组有解且解集是2<x<m+7,则m 的取值范围为﹣5<m≤﹣1 .【分析】根据已知得出不等式m+1≤2 且m+7≤6,求出两不等式的公共解集,即可得出答案.【解答】解:∵不等式组的解集是2<x<m+7,∴m+1≤2 且m+7≤6 且m+7>2,解得:﹣5<m≤﹣1,故答案是:﹣5<m≤﹣1.16.(3 分)计划在一块长为10 米,宽为7 米的长方形草坪上,修建一条宽为2 米的人行道,则剩余草坪的面积为56 平方米.【分析】依据平移变换,长草部分可以组成一个长为8 米,宽为7 米的长方形,即可得到其面积.【解答】解:长草部分的面积为7×(10﹣2)=7×8=56(平方米),即长草部分的面积为56 平方米.故答案为:56.三、解答题(共72 分)17.(1)计算:﹣+ ;(2)计算:(+2)﹣.【分析】(1)利用二次根式的性质和立方根的性质进行计算,再算加减即可;(2)首先利用乘法分配律计算乘法,再算加减即可.【解答】解:(1)原式=2﹣2﹣=﹣;(2)原式=2+2 ﹣=2+ .18.解方程组:(1);(2).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把②代入①得:10+6y+3y=1,解得:y=﹣1,把y=﹣1 代入②得:x=2,则方程组的解为;(2),①×2+②×3 得:13x=38,解得:x=,把x=代入①得:y=﹣,则方程组的解为.19.请把下面证明过程补充完整如图,已知AD⊥BC 于D,点E 在BA 的延长线上,EG⊥BC 于G,交AC 于点F,∠E=∠1.求证:AD 平分∠BAC.证明:∵AD⊥BC 于D,EG⊥BC 于G(已知),∴∠ADC=∠EGC=90°(垂直的定义),∴AD∥EG(同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∠E =∠3(两直线平行,同位角相等),又∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD 平分∠BAC(角平分线的定义)【分析】根据垂直的定义得出∠ADC=∠EGC=90°,进而利用平行线的判定和性质解答即可.【解答】证明:∵AD⊥BC 于D,EG⊥BC 于G(已知),∴∠ADC=∠EGC=90°(垂直的定义),∴AD∥EG(同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∠E=∠3(两直线平行,同位角相等),又∵∠E=∠1(已知),∴∠2=∠3(等量代换),∴AD 平分∠BAC(角平分线的定义)故答案为:已知;垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;∠E;两直线平行,同位角相等;等量代换;角平分线的定义.20.如图,已知BE 平分∠ABC,点D 在射线BA 上,且∠ABE=∠BED.(1)判断BC 与DE 的位置关系,并说明理由.(2)当∠ABE=25°时,求∠ADE 的度数.【分析】(1)根据角平分线定义和∠ABE=∠BED,即可判断BC 与DE 的位置关系;(2)结合(1)的结论,根据∠ABE=25°,即可求∠ADE 的度数.【解答】解:(1)BC∥DE,理由如下:∵BE 平分∠ABC,∴∠ABE=∠EBC,∵∠ABE=∠BED,∴∠EBC=∠BED,∴BC∥DE;(2)∵BE 平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵BC∥DE,∴∠ADE=∠ABC=50°.21.三角形ABC(记作△ABC)在8×8 方格中,位置如图所示,A(﹣2,1),B(﹣1,4).(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)把△ABC 向上平移2 个单位长度,再向右平移3 个单位长度,请你画出平移后的△A1B1C1,若△ABC 内部一点P 的坐标为(a,b),则点P 的对应点P1 的坐标是(a+3,b+2).(3)在x 轴上存在一点D,使△DBC 的面积等于3,则点D 的坐标为(5,0)或(﹣1,0).【分析】(1)根据A,B 两点坐标画出坐标系即可.(2)分别作出A,B,C 的对应点A1,B1,C1 即可.(3)设D(m,0),由题意直线BC 交x 轴于(3,0),则有•|m﹣3|•(4﹣1)=3,求出m 即可.【解答】解:(1)平面直角坐标系如图所示,C(2,1).(2)如图△A1B1C1,即为所求,若△ABC 内部一点P 的坐标为(a,b),则点P 的对应点P1 的坐标是(a+3,b+2).故答案为(a+3,b+2).(3)设D(m,0),由题意直线BC 交x 轴于(3,0),则有•|m﹣3|•(4﹣1)=3,解得m=5 或﹣1,∴D(5,0)或(﹣1,0).22.疫情无情人有情,八方相助暖人心.一爱心人士向某社区捐赠了A 品牌一次性医用口罩5000 个和B品牌免洗消毒液100 瓶,总价值18000 元.已知10 个A 品牌一次性医用口罩与1 瓶B 品牌免洗消毒液共需84 元.求A 品牌一次性医用口罩和B 品牌免洗消毒液的单价分别是多少?【分析】设A 品牌一次性医用口罩单价是x 元/个,B 品牌免洗消毒液的单价是y 元/瓶,由“A 品牌一次性医用口罩5000 个和B 品牌免洗消毒液100 瓶,总价值18000 元.已知10 个A 品牌一次性医用口罩与1 瓶B 品牌免洗消毒液共需84 元”列出方程组可求解.【解答】解:设A 品牌一次性医用口罩单价是x 元/个,B 品牌免洗消毒液的单价是y 元/瓶,由,解得:,答:A 品牌一次性医用口罩单价是 2.4 元/个,B 品牌免洗消毒液的单价是60 元/瓶.23.用1 块A 型钢板可制成1 块C 型钢板、3 块D 型钢板;用1 块B 型钢板可制成2 块C 型钢板、1块D 型钢板.(1)现需150 块C 型钢板、180 块D 型钢板,则恰好用A 型、B 型钢板各多少块?(2)若A、B 型钢板共100 块,现需C 型钢板至多150 块,D 型钢板不超过204 块,共有几种方案?(3)若需C 型钢板80 块,D 型钢板不多于45 块(A 型、B 型钢板都要使用).求A、B 型钢板各需多少块?【分析】(1)设恰好用A 型钢板x 块,B 型钢板y 块,根据要制成150 块C 型钢板、180 块D 型钢板,即可得出关于x,y 的二元一次方程组,解之即可得出结论;(2)设A 型钢板有m 块,则B 型钢板有(100﹣m)块,根据“现需C 型钢板至多150 块,D 型钢板不超过204 块”,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出方案的种数;(3)设需要a 块A 型钢板,则需要块B 型钢板,根据D 型钢板不多于45 块,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再结合a 和均为正整数,即可得出结论.【解答】解:(1)设恰好用A 型钢板x 块,B 型钢板y 块,依题意,得:,解得:.答:恰好用A 型钢板42 块,B 型钢板54 块.(2)设A 型钢板有m 块,则B 型钢板有(100﹣m)块,依题意,得:,解得:50≤m≤52,又∵m 为正整数,∴m 可以取50,51,52,∴共有3 种方案.(3)设需要a 块A 型钢板,则需要块B 型钢板,依题意,得:3a+ ≤45,解得:a≤2,又∵a 和均为正整数,∴a=2,∴=39.答:需要2 块A 型钢板,39 块B 型钢板.24.如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6| =0,线段AB 交y 轴于F 点.(1)求点A、B 的坐标.(2)点D 为y 轴正半轴上一点,若ED∥AB,且AM,DM 分别平分∠CAB,∠ODE,如图2,求∠AMD 的度数.(3)如图3,(也可以利用图1)①求点F 的坐标;②点P 为坐标轴上一点,若△ABP 的三角形和△ABC 的面积相等?若存在,求出P 点坐标.【分析】(1)根据非负数的性质得a+b=0,a﹣b+6=0,然后解方程组求出a 和 b 即可得到点A 和B 的坐标;(2)由AB∥DE 得∠ODE+∠DFB=180°,而∠DFB=∠AFO=90°﹣∠FAO,所以∠ODE+90°﹣∠FAO=180°,再根据角平分线定义得∠OAN=∠FAO,∠NDM=∠ODE,则∠NDM﹣∠OAN=45°,接着利用∠OAN=90°﹣∠ANO=90°﹣∠DNM,得到∠NDM﹣(90°﹣∠DNM)=45°,所以∠NDM+∠DNM=135°,然后根据三角形内角和定理得180°﹣∠NMD=135°,所以∠NMD=45°;(3)①连接OB,如图3,设F(0,t),根据△AOF 的面积+△BOF 的面积=△AOB 的面积得到•3•t+ •t•3=•3•3,解得t=,则可得到F 点坐标为(0,);②先计算△ABC 的面积=,分类讨论:当P 点在y 轴上时,设P(0,y),利用△ABP 的三角形=△APF 的面积+△BPF 的面积得到•|y﹣|•3+ •|y﹣|•3=,解得y=5 或y=﹣2,所以此时P 点坐标为(0,5)或(0,﹣2);当P 点在x 轴上时,设P(x,0),根据三角形面积公式得•|x+3|•3=,解得x=﹣10 或x=4,从而得到此时P 点坐标.【解答】解:(1)∵(a+b)2+|a﹣b+6|=0,∴a+b=0,a﹣b+6=0,∴a=﹣3,b=3,∴A(﹣3,0),B(3,3);(2)如图2,∵AB∥DE,∴∠ODE+∠DFB=180°,而∠DFB=∠AFO=90°﹣∠FAO,∴∠ODE+90°﹣∠FAO=180°,∵AM,DM 分别平分∠CAB,∠ODE,∴∠OAN=∠FAO,∠NDM=∠ODE,∴∠NDM﹣∠OAN=45°,而∠OAN=90°﹣∠ANO=90°﹣∠DNM,∴∠NDM﹣(90°﹣∠DNM)=45°,∴∠NDM+∠DNM=135°,∴180°﹣∠NMD=135°,∴∠NMD=45°,即∠AMD=45°;(3)①连接OB,如图3,设F(0,t),∵△AOF 的面积+△BOF 的面积=△AOB 的面积,∴•3•t+ •t•3=•3•3,解得t=,∴F 点坐标为(0,);②存在.△ABC 的面积=•7•3=,当P 点在y 轴上时,设P(0,y),∵△ABP 的三角形=△APF 的面积+△BPF 的面积,∴•|y﹣|•3+ •|y﹣|•3=,解得y=5 或y=﹣2,∴此时P 点坐标为(0,5)或(0,﹣2);当P 点在x 轴上时,设P(x,0),则•|x+3|•3=,解得x=﹣10 或x=4,∴此时P 点坐标为(﹣10,0),(4,0)综上所述,满足条件的P 点坐标为(0,5);(0,﹣2);(﹣10,0),(4,0).。
人教版七年级下册数学期中考试试题(含答案)
![人教版七年级下册数学期中考试试题(含答案)](https://img.taocdn.com/s3/m/a1aa7e9a59f5f61fb7360b4c2e3f5727a5e924cf.png)
人教版七年级下册数学期中考试试卷一、单选题1.下列各式中正确的是A2=±B 3=-C2=D =2.下列说法正确的是A .3是分数B .227是无理数C .π-3.14是有理数D .3是有理数3.如图,象棋盘上,若“将”位于点(3,﹣2),“车”位于点(﹣1,﹣2),则“马”位于A .(1,3)B .(5,3)C .(6,1)D .(8,2)4.如图,直线12l l //,直角三角板的直角顶点C 在直线1l 上,一锐角顶点B 在直线2l 上,若0135∠=,则2∠的度数是A .65B .55C .45D .355.如图,△ABC 沿BC 方向平移得到△DEF ,已知BC=7,EC=4,那么平移的距离为A .2B .3C .5D .76.下列说法正确的个数有()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④不重合的三条直线a、b、c,若//a b,//b c,则//a c.A.1个B.2个C.3个D.4个7.点P为直线l外一点,点A,B在直线l上,若5cmPA=,7cmPB=,则点P到直线l的距离()A.等于5cm B.小于5cm C.不大于5cm D.等于6cm 8.如图,下列条件中,不能判定//AB CD的是()A.180∠+∠=︒B.BAC ACDD BAD∠=∠C.CAD ACB∠=∠∠=∠D.B DCE9.如图,这是小明学校周边环境的示意图,以学校为参照点,儿童公园,图书市场分别距离学校500m、700m,若以(南偏西30°,500)来表示儿童公园的位置,则图书市场的位置应表示为()A.(700,南偏东45︒)B.(南偏东45︒,700)C.(700,北偏东45︒)D.(北偏东45︒,700)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A,第二次移动到点2A……,第n次移动到点n A,A的坐标是()则点2021A .()1010,0B .()1010,1C .()1011,0D .()1011,1二、填空题11325-3-.(填“>”“<”或“=”)12.根据如表回答下列问题:x 23.123.223.323.423.523.623.723.823.92x 533.61538.24542.89547.56552.25556.96561.69566.44571.21满足23.623.7n <<的整数n 有________个.13.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为_____.14.如图,四边形ABCD 各个顶点的坐标分别为()2,8-、()11,6-、()14,0-、()0,0,则四边形ABCD 的面积是_______.15.如图所示,//AB CD ,EC CD ⊥.若28BEC ∠=︒,则ABE ∠的度数为_______.三、解答题16.(12-(2)求下列式子中x 的值:()229x -=17.根据要求,画图并回答问题:(1)如图,点P 在AOC ∠的边OA 上.①过点P 画OA 的垂线交OC 于B ;②过点P 作直线//PM OC ;(2)表示点О到直线PB 的距离的线段是__________;(3)直接写出所作图中与O ∠互余的角(可以表示出来的角).18.在平面直角坐标系xOy 中,点A 的坐标为()0,4,线段MN 的位置如图所示,其中点M 的坐标为()3,1--,点N 的坐标为()3,2-.(1)将线段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对应点为B .点M 平移到点A 的过程可以是:先向__________平移______个单位长度,再向__________平移__________个单位长度;②点B 的坐标为___________.(2)在(1)的条件下,若点C 的坐标为()4,1,连接AC ,BC ,求ABC ∆的面积.19.如图,已知∠1=∠2,∠3=∠4,∠5=∠A ,试说明:BE ∥CF .完善下面的解答过程,并填写理由或数学式:解:∵∠3=∠4(已知)∴AE ∥()∴∠EDC=∠5()∵∠5=∠A (已知)∴∠EDC=()∴DC ∥AB ()∴∠5+∠ABC=180°()即∠5+∠2+∠3=180°∵∠1=∠2(已知)∴∠5+∠1+∠3=180°()即∠BCF+∠3=180°∴BE ∥CF ().20.如图,直线AB 、CD 相交于O 点,∠AOC 与∠AOD 的度数比为4:5,OE ⊥AB ,OF 平分∠DOB ,求∠EOF 的度数.21.(1)计算下列各式的值:=____________________;;通过计算上面各式的值,你发现:对于任意有理数a=__________.(2)利用所得结论解决问题:若有理数a、b在数轴上对应的点的位置如图所示,化简:a b-.22.如图1,AB∥CD,E是射线FD上的一点,∠ABC=140°,∠CDF=40°(1)试说明BC∥EF;(2)若∠BAE=110°,连接BD,如图2.若BD∥AE,则BD是否平分∠ABC,请说明理由.23.将一副三角板中的两个直角顶点C叠放在一起(如图1),其中30∠=︒,A∠=︒,4560B∠=∠=︒.D E(1)若112∠的度数;BCD∠=︒,求ACE(2)试猜想BCD∠的数量关系,请说明理由;∠与ACE(3)若三角板ABC保持不动,绕顶点C转动三角板DCE,在转动过程中,试探究BCD∠等于多少度时,//CD AB?请你直接写出答案.参考答案1.D 2.D 3.C 4.B 5.B 6.A 7.C 8.C 9.D 10.B 11.>【详解】解:因为-25>-27,3-,故答案为:>.12.5【详解】解:∵23.62=556.96,23.72=561.69,∴556.96561.69n <<∴满足23.623.7<<的整数n 有5个,故答案为:5.13.()5,4-【详解】解:∵点M 在第四象限,∴点M 的横坐标为正,纵坐标为负,∵点M 到x 轴的距离为4,到y 轴的距离为5,∴点M 的坐标为()5,4-,故答案为:()5,4-.14.80【详解】解:(1)如图所示:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,则四边形ABCD 的面积=12×(14-11)×6+12×(6+8)×(11-2)+12×2×8,=9+63+8,=80;故答案为:80.15.118︒【详解】解:过点E 作EG ∥AB ,则EG ∥CD ,由平行线的性质可得∠GEC =90°,所以∠GEB =90°-28°=62°,因为EG ∥AB ,所以∠ABE =180°-62°=118°.故答案为:118°.16.(1)63(2)1x =-或5【详解】解:(1()238127232---93232=--+63=-;(2)∵()229x -=,∴23x -=±,∴1x =-或5.【详解】解:(1)如图所示,(2)∵OP ⊥PB∴线段OP 的长为点O 到直线PB 的距离故答案为:OP .(3)∵OP ⊥PB ∴∠OPB =90゜∴∠O +∠PBO =90゜即与O ∠互余的角为PBO ∠∵PM ∥OC ∴∠BPM =∠PBO∴∠O +∠BPM =90゜即与O ∠互余的角为BPM∠∴与O ∠互余的角为PBO ∠,BPM ∠.18.(1)①右,3,上,5(或上,5,右,3均可以);②()6,3;(2)7【分析】(1)①由点M 及其对应点的A 的坐标可得平移的方向和距离,即可;②根据①可得点N 的对应点B 的坐标;(2)割补法求解可得.【详解】解:(1)①∵点A 的坐标为()0,4,点M 的坐标为()3,1--,∴点M 移到点A 的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;也可以是:先向上平移5个单位长度,再向右平移3个单位长度;②由①得:将N (3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3),∴点B 的坐标为(6,3);(2)如图,过点C 作CF y ⊥于点F ,过点B 作BE CF ⊥交FC 延长线于点E ,过点A 作AD y ⊥轴交EB 的延长线于点D ,则四边形AFED 是矩形,∴3AF =,4CF =,2CE =,2BE =,1BD =,6AD =,∴矩形AFED ABC Rt AFC Rt BCE Rt ABDS S S S S =--- 111634322617222=⨯-⨯⨯-⨯⨯-⨯⨯=.19.答案见解析.【详解】试题分析:根据平行线的判定与性质,灵活判断同位角、内错角、同旁内角,逐步可求解.试题解析:解:∵3=4∠∠(已知)∴AE ∥BC (内错角相等,两直线平行)∴5EDC ∠=∠(两直线平行,内错角相等)∵5=A ∠∠(已知)∴EDC ∠=A ∠(等量代换)∴DC ∥AB (同位角相等,两直线平行)∴05180ABC ∠+∠=(两直线平行,同旁内角互补)即0523180∠+∠+∠=∵1=2∠∠(已知)∴0513180∠+∠+∠=(等量代换)即03180BCF ∠+∠=∴BE ∥CF (同旁内角互补,两直线平行).20.50°.【详解】解:设∠AOC =4x ,则∠AOD =5x ,∵∠AOC +∠AOD =180°,∴4x +5x =180°,解得x =20°,∴∠AOC =4x =80°,∴∠BOD =∠AOC =80°,∵OE ⊥AB ,∴∠BOE =90°,∴∠DOE =∠BOE ﹣∠BOD =10°,又∵OF 平分∠DOB ,∴∠DOF =12∠BOD =40°,∴∠EOF =∠EOD +∠DOF =10°+40°=50°.21.(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩;(2)a b-+【详解】(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩(2)解:由数轴知:21a -<<-,01b <<,∴0a b +<,0a b -<,a b -()()a b a b a b =-++--a b =-+.22.(1)见解析;(2)见解析.【详解】(1)证明:∵AB ∥CD ,∴∠ABC+∠BCD =180°,∵∠ABC =140°,∴∠BCD =40°,∵∠CDF =40°,∴∠BCD =∠CDF ,∴BC ∥EF .(2)解:结论:BD 平分∠ABC .理由:∵AE ∥BD ,∴∠BAE+∠ABD =180°,∵∠BAE =110°,∴∠ABD =70°,∵∠ABC =140°,∴∠ABD =∠DBC =70°,∴BD 平分∠ABC .23.(1)68°;(2)180BCD ACE ∠+∠=︒,理由见解析;(3)当120BCD ∠=︒或60︒时,//CD AB .【详解】解:(1)∵90BCA ECD ∠=∠=︒,112BCD ∠=︒∴1129022DCA BCD BCA ∠=∠-∠=︒-︒=︒.∴902268ACE ECD DCA ∠=∠-∠=-︒=︒.(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒.(3)当120BCD ∠=︒或60︒时,//CD AB .如图2,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,//CD AB ,此时180BCD ∠=︒-18060120B ∠=︒-︒=︒;如图3,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,//CD AB .。
2020-2021学年青岛版数学七年级下册期中测试题及答案解析(共3套)
![2020-2021学年青岛版数学七年级下册期中测试题及答案解析(共3套)](https://img.taocdn.com/s3/m/3908821408a1284ac95043b7.png)
青岛版数学七年级下册期中测试题(一)一、选择题1.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A.B.C.D.2.已知,∠α与∠β互补,且∠α﹣∠β=30°,则∠α与∠β的大小关系依次为()A.110°,70°B.105°,75°C.100°,70°D.110°,80°3.下列计算正确的是()A.a2+a2=2a4B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a44.若A,B,C是直线l上的三点,P是直线l外一点,且PA=5cm,PB=4cm,PC=3cm,则点P到直线L的距离()A.等于3cm B.大于3cm而小于4cmC.不大于3cm D.小于3cm5.要使(y2﹣ky+2y)(﹣y)的展开式中不含y2项,则k的值为()A.﹣2B.0C.2D.36.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为()A.25°B.28°C.30°D.32°7.用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()(1)(2)(3)(4)A.(1)(2)B.(2)(3)C.(3)(4)D.(4)(1)8.如图,直线AB、CD交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT等于()A.30°B.45°C.60°D.120°9.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干吗如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所托货物的袋数是()A.5B.6C.7D.810.若a=240,b=332,c=424,则下列关系正确的是()A.a>b>c B.b>c>a C.c>a>b D.c>b>a二、填空题11.若(m﹣3)x+2y|m﹣2|+8=0是关于x,y的二元一次方程,m=.12.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,用科学记数法表示是克.13.若x n﹣1•x n+5=x10,则n﹣2=.14.如图,在三角形ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=35°,∠C=65°,则∠EFD=.15.若实数m,m满足|m﹣2|+(n﹣2015)2=0,则m﹣1+n0=.16.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.17.若(2x+5)(4x﹣10)=8x2+px+q,则p=,q=.18.五一前夕,某超市促销,由顾客抽奖决定折扣,某顾客购买甲乙两种商品,分别抽到七折(按售价70%)和九折销售,共付款386元,这两种商品原销售之和为500元,则甲乙两种商品原销售价分别为、.三、解答题19.化简求值:(1)a3•a3+(﹣2a3)2+(﹣a2)3,其中a=﹣1.(2)4x(x﹣1)﹣(2x+1)(2x﹣1),其中x=﹣5.20.解方程组(1)(2).21.(1)一个角的余角与这个角的补角的和比平角的多1°,求这个角的度数.(2)已知5m=2,5n=3,求53m﹣2n.22.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数.(用含α的代数式表示)23.某开发区去年出口创汇额为25亿美元,今年达到30.55亿美元,已知今年上半年出口创汇额比去年同期增长18%,下半年比去年同期增长25%,求去年上半年和下半年的出口创汇额各是多少亿美元?24.已知如图,在三角形ABC中,AC⊥AB,DG⊥BC,EF⊥AB,∠1=∠2,试判断CD与AB的位置关系?并说明理由.25.小亮在做“化简(2x+k)(3x+2)﹣6x(x+3)+5x+16并求x=2时的值”一题时,错将x=2看成x=﹣2,但结果却和正确答案一样,由此,你能推算出k 值吗?26.如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(t•km),铁路运价为1.2元/(t•km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?参考答案一、选择题1.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选:D.2.【解答】解:∵∠α与∠β互为补角,∴∠α+∠β=180°,又∵∠α﹣∠β=30°,∴,解得:,故选:B.3.【解答】解:A、a2+a2=2a2B,故A错误;B、(﹣a2b)3=﹣a6b3,故B正确;C、a2•a3=a5,故C错误;D、a8÷a2=a6,故D错误;故选:B.4.【解答】解:根据点到直线的距离的定义,点P到直线L的距离即为点P到直线L的垂线段的长度,垂线段的长度不能超过PC的长.故选C.5.【解答】解:∵(y2﹣ky+2y)(﹣y)的展开式中不含y2项,∴﹣y3+ky2﹣2y2中不含y2项,∴k﹣2=0,解得:k=2.故选:C.6.【解答】解:过A作AE∥NM,∵NM∥GH,∴AE∥GH,∴∠3=∠1=32°,∵∠BAC=60°,∴∠4=60°﹣32°=28°,∵NM∥AE,∴∠2=∠4=28°,故选:B.7.【解答】解:把y的系数变为相等时,①×3,②×2得,,把x的系数变为相等时,①×2,②×3得,.故选:C.8.【解答】解:∵CE∥AB,∴∠DOB=∠ECO=30°,∵OT⊥AB,∴∠BOT=90°,∴∠DOT=∠BOT﹣∠DOB=90°﹣30°=60°.故选:C.9.【解答】解:设驴子原来驮x袋,根据题意,得到方程:2(x﹣1)﹣1﹣1=x+1,解得:x=5,答:驴子原来所托货物的袋数是5.故选:A.10.【解答】解:∵a=240=328,b=332=818,c=424=648,∴b>c>a,故选:B.二、填空题11.【解答】解:根据题意,得|m﹣2|=1且m﹣3≠0,解得m=1.故答案为:1.12.【解答】解:0.000000076=7.6×10﹣8.故答案为:7.6×10﹣8.13.【解答】解:由x n﹣1•x n+5=x10,得x2n+4=x10,即2n+4=10,解得n=3.n﹣2=3﹣2=,故答案为:.14.【解答】解:∵EF∥AC,∴∠EFB=∠C=65°,∵DF∥AB,∴∠DFC=∠B=35°,∴∠EFD=180°﹣65°﹣35°=80°,故答案为:80°.15.【解答】解:由m,m满足|m﹣2|+(n﹣2015)2=0,得m﹣2=0,n﹣2015=0.解得m=2,n=2015.m﹣1+n0=+1=,故答案为:.16.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.17.【解答】解:已知等式整理得:8x2﹣50=8x2+px+q,则p=0,q=﹣50,故答案为:0,﹣5018.【解答】解:设甲、乙两商品的原价分别是x元,y元,则,解得.故答案为:320元;180元三、解答题19.【解答】解:(1)原式=a6+4a6﹣a6=4a6,当a=﹣1时,原式=4;(2)原式=4x2﹣4x﹣4x2+1=﹣4x+1,当x=﹣5时,原式=20+1=21.20.【解答】解:(1),①+②×4得:23x=23,即x=1,把x=1代入①得:y=2,则方程组的解为;(2),①×3+②得:14x=﹣14,即x=﹣1,把x=﹣1代入①得:y=3,则方程组的解为.21.【解答】解:(1)设这个角为x,根据题意得:90°﹣x+180°﹣x=180°×+1°,解得:x=67°,则这个角的度数为67°;(2)∵5m=2,5n=3,∴原式=(5m)3÷(5n)2=.22.【解答】解:(1)∵∠AOE+∠AOF=180°(互为补角),∠AOE=40°,∴∠AOF=140°;又∵OC平分∠AOF,∴∠FOC=∠AOF=70°,∴∠EOD=∠FOC=70°(对顶角相等);∵∠BOE=∠AOB﹣∠AOE=50°,∴∠BOD=∠EOD﹣∠BOE=20°;(2)∵∠AOE+∠AOF=180°(互为补角),∠AOE=α,∴∠AOF=180°﹣α;又∵OC平分∠AOF,∴∠FOC=∠AOF=90°﹣α,∴∠EOD=∠FOC=90°﹣α(对顶角相等);∵∠BOE=∠AOB﹣∠AOE=90°﹣α,∴∠BOD=∠EOD﹣∠BOE=α.23.【解答】解:设去年上半年出口创汇额为x亿美元,去年下半年的出口创汇额为y亿美元,则今年上半年出口创汇额为(1+18%)x=1.18x(亿美元),今年下半年的出口创汇额为(1+25%)y=1.25(亿美元),根据题意可列方程组,解得,答:去年上半年出口创汇额为10亿美元,去年下半年的出口创汇额为15亿美元.24.【解答】解:垂直.理由:∵AC⊥BC,DG⊥BC,∴AC∥DG,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴EF∥CD,∵EF⊥AB,∴CD⊥AB.25.【解答】解:原式=6x2+4x+3kx+2k﹣6x2﹣18x+5x+16=(3k﹣9)x+2k+16,由结果与x取值无关,得到3k﹣9=0,解得:k=3.26.【解答】解:(1)设工厂从A地购买了x吨原料,制成运往B地的产品y 吨,根据题意得:,解得:.答:工厂从A地购买了400吨原料,制成运往B地的产品300吨.(2)300×8000﹣400×1000﹣15000﹣97200=1887800(元).答:这批产品的销售款比原料费与运输费的和多1887800元.青岛版数学七年级下册期中测试题(二)一、选择题(每题3分)1.16的算术平方根是()A.16 B.4 C.﹣4 D.±4【考点】22:算术平方根.【分析】根据算术平方根的概念即可求出答案.【解答】解:∵42=16,∴16的算术平方根是4,故选(B)【点评】本题考查算术平方根的概念,解题的关键是正确理解算术平方根的概念,本题属于基础题型.2.如图,∠1和∠2是对顶角的图形个数有()A.1个B.2个C.3个D.4个【考点】J2:对顶角、邻补角.【专题】12 :应用题.【分析】一个角的两边分别是另一个角两边的反向延长线,那么这两个角是对顶角.据此作答即可.【解答】解:只有丙图中的两个角是对顶角,故选:A.【点评】本题考查了对顶角的概念,解题的关键是掌握对顶角的概念.3.下列说法中,不正确的是()A.10的立方根是B.﹣2是4的一个平方根C.的平方根是D.0.01的算术平方根是0.1【考点】24:立方根;21:平方根;22:算术平方根.【分析】根据立方根,平方根的定义,即可解答.【解答】解:A.10的立方根是,正确;B.﹣2是4的一个平方根,正确;C.的平方根是±,故错误;D. 0.01的算术平方根是0.1,正确;故选C.【点评】本题考查了平方根,立方根,解决本题的关键是熟记立方根,平方根的定义.4.如图,下列条件:①∠1=∠3,②∠2=∠3,③∠4=∠5,④∠2+∠4=180°中,能判断直线l1∥l2的有()A.1个B.2个C.3个D.4个【考点】J9:平行线的判定.【专题】11 :计算题.【分析】利用平行线的判定方法判断即可得到结果.【解答】解:∵∠1=∠3,∴l1∥l2;∵∠4=∠5,∴l1∥l2;∵∠2+∠4=180°,∴l1∥l2,则能判断直线l1∥l2的有3个.故选C【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.5.如图,直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为()A.115°B.125°C.155°D.165°【考点】JA:平行线的性质.【专题】11 :计算题.【分析】如图,过点D作c∥a.由平行线的性质进行解题.【解答】解:如图,过点D作c∥a.则∠1=∠CDB=25°.又a∥b,DE⊥b,∴b∥c,DE⊥c,∴∠2=∠CDB+90°=115°.故选:A.【点评】本题考查了平行线的性质.此题利用了“两直线平行,同位角相等”来解题的.6.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.20°B.30°C.35° D.40°【考点】J2:对顶角、邻补角;IJ:角平分线的定义.【分析】根据角平分线定义求出∠AOC=∠EOC=35°,根据对顶角的定义即可求出∠BOD的度数.【解答】解:∵OA平分∠EOC,∠EOC=70°,∴∠AOC=∠EOC=35°,∴∠BOD=∠AOC=35°.故选:C.【点评】本题考查了对顶角、角平分线定义的应用,关键是求出∠AOC的度数.7.若a2=4,b3=27且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣5【考点】1E:有理数的乘方.【分析】根据有理数的乘方求出a、b,再根据异号得负判断出a的值,然后代入代数式进行计算即可得解.【解答】解:∵a2=4,b3=27,∴a=±2,b=3,∵ab<0,∴a=﹣2,∴a﹣b=﹣2﹣3=﹣5.故选D.【点评】本题考查了有理数的乘方,有理数的乘方,有理数的减法运算,熟记运算法则并确定出a=﹣2是解题的关键.8.如果点A(a、b)在第三象限,则点B(﹣a+1,3b﹣5)关于原点的对称点是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】R6:关于原点对称的点的坐标.【分析】此题首先明确两个点关于原点对称,则横、纵坐标都是互为相反数;然后能够根据点所在的位置判断点的坐标符号,根据坐标符号得到字母的取值范围.【解答】解:∵点B(﹣a+1,3b﹣5)关于原点的对称点是(a﹣1,5﹣3b).又∵点A在第三象限即a<0,b<0.∴a﹣1<0,5﹣3b>0,∴(a﹣1,5﹣3b)是第三象限的点.故选B.【点评】本题考查了坐标平面内的点坐标的符号,同时考查了关于原点对称的两点坐标之间的关系.9.在实数:3.14159,,1.010010001,4.21,π,中,无理数有()A.1个B.2个C.3个D.4个【考点】26:无理数.【分析】根据无理数的定义,可得答案.【解答】解:π是无理数,故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.10.一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)【考点】D5:坐标与图形性质;LB:矩形的性质.【分析】本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为2.【解答】解:如图可知第四个顶点为:即:(3,2).故选:B.【点评】本题考查学生的动手能力,画出图后可很快得到答案.11.如图,在下列四组条件中,能得到AB∥CD的是()A.∠ABD=∠BDC B.∠3=∠4C.∠BAD+∠ABC=180°D.∠1=∠2【考点】J9:平行线的判定.【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、若∠ABD=∠BDC,则AB∥CD,故本选项正确;B、若∠3=∠4,则AD∥BC,故本选项错误;C、若∠BAD+∠ABC=180°,则AD∥BC,故本选项错误;D、若∠1=∠2,则AD∥BC,故本选项错误;故选A.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.12.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48 B.96 C.84 D.42【考点】Q2:平移的性质.【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S四边形ODFC =S梯形ABEO,根据梯形的面积公式即可求解.【解答】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC =S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故选:A.【点评】本题主要考查了平移的性质及梯形的面积公式,得出阴影部分和梯形ABEO的面积相等是解题的关键.二、填空(每题3分)13.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.【考点】J4:垂线段最短.【专题】12 :应用题.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.【点评】本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.14.直线l1∥l2,一块含45°角的直角三角板如图放置,∠1=85°,则∠2= 40°.【考点】JA:平行线的性质;K7:三角形内角和定理.【专题】11 :计算题.【分析】根据两直线平行,同位角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠4,然后根据对顶角相等解答.【解答】解:∵l1∥l2,∴∠3=∠1=85°,∴∠4=∠3﹣45°=85°﹣45°=40°,∴∠2=∠4=40°.故答案为:40°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.15.已知a,b为两个连续的整数,且a<b,则a+b=9.【考点】2B:估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵a<b,a、b为两个连续的整数,∴<<,∴a=4,b=5,∴a+b=9.故答案为:9.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.16.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P(3,﹣2).【考点】D1:点的坐标.【专题】26 :开放型.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数写出即可.【解答】解:点P(3,﹣2).故答案为:(3,﹣2)答案不唯一.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).17.如果P(a+b,ab)在第二象限,那么点Q(a,﹣b)在第二象限.【考点】D1:点的坐标.【分析】应先判断出所求的点的横纵坐标的符号,进而判断其所在的象限.【解答】解:∵P(a+b,ab)在第二象限,∴a+b<0,ab>0,∴a,b都是负号,∴a<0,﹣b>0,∴点Q(a,﹣b)在第二象限.故填:二.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号.18.把一张纸各按图中那样折叠后,若得到∠AOB′=70°,则∠B′OG=55度.【考点】IK:角的计算.【专题】11 :计算题.【分析】根据题意∠B′OG=∠BOG,根据平角和角平分线的定义即可求得.【解答】解:由题意可得∠B′OG=∠BOG,则∠B′OG=(180﹣∠AOB′)÷2=55°.故答案为55.【点评】已知折叠问题就是已知图形全等,因而得到相等的角.三、解答题:19.(6分)求下列等式中x的值:(1)2x2﹣=0(2)(x+4)3=125.【考点】24:立方根;21:平方根.【分析】(1)直接开平方法解方程即可;(2)直接开立方解方程即可.【解答】解:(1)2x2﹣=0x=±0.5(2)(x+4)3=125x=1【点评】此题主要考查了利用立方根和平方根的性质解方程.要灵活运用使计算简便.20.(6分)已知2a﹣1的平方根是±3,11a+b﹣1的立方根是4,求a+2b的平方根.【考点】21:平方根;24:立方根.【分析】根据已知得出2a﹣1=9,11a+b﹣1=64,求出a=5,b=10,求出a+2b的值,最后求出a+2b的平方根即可.【解答】解:∵2a﹣1的平方根是±3,11a+b﹣1的立方根是4,∴2a﹣1=9,11a+b﹣1=64,∴a=5,b=10,∴a+2b=25,即a+2b的平方根是±5.【点评】本题考查了平方根,解二元一次方程组,立方根的应用,关键是得出关于a、b的方程组.21.(7分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.【考点】D3:坐标确定位置.【分析】根据题意建立平面直角坐标系进而得出各点坐标即可.【解答】解:如图所示:实验楼(﹣2,2),行政楼(﹣2,﹣2),大门(0,﹣4),食堂(3,4),图书馆(4,﹣2).【点评】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.22.(6分)如图,直线AB、CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角:∠BOD,∠EOB的邻补角:∠AOE (2)若∠AOC=70°且∠BOE:∠EOD=2:3,求∠AOE的度数.【考点】J2:对顶角、邻补角.【分析】(1)根据对顶角和邻补角的定义直接写出即可;(2)根据对顶角相等求出∠BOD的度数,再根据∠BOE:∠EOD=2:3求出∠BOE的度数,然后利用互为邻补角的两个角的和等于180°即可求出∠AOE的度数.【解答】解:(1)∠AOC的对顶角是∠BOD,∠EOB的邻补角是∠AOE,故答案为:∠BOD,∠AOE;(2)∵∠AOC=70°,∴∠BOD=∠AOC=70°,∵∠BOE:∠EOD=2:3,∴∠BOE=×70°=28°,∴∠AOE=180°﹣28°=152°.∴∠AOE的度数为152°.【点评】本题主要考查了对顶角和邻补角的定义,利用对顶角相等的性质和互为邻补角的两个角的和等于180°求解是解答此题的关键.23.(7分)如图,已知点E在直线AB外,请用三角板与直尺画图,并回答第(3)题:(1)过E作直线CD,使CD∥AB;(2)过E作直线EF,使EF⊥AB,垂足为F;(3)请判断直线CD与EF的位置关系,并说明理由.【考点】N3:作图—复杂作图.【分析】(1)根据题意直接作出CD∥AB;(2)过点E利用三角尺作出EF⊥AB;(3)利用平行线的性质,进而得出直线CD与EF的位置关系.【解答】解:(1)、(2)如图所示:(3)CD⊥EF.理由:∵CD∥AB,∴∠CEF=∠EFB,∵EF⊥AB,∴∠EFB=90°,∴∠CEF=90°,∴CD⊥EF.【点评】此题主要考查了复杂作图以及平行线的性质等知识,根据题意作出正确图形是解题关键.24.(6分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.【考点】J9:平行线的判定.【专题】14 :证明题.【分析】首先利用平行线的性质以及角平分线的性质得到满足关于AD∥BC的条件,内错角∠2和∠E相等,得出结论.【解答】证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.【点评】本题考查角平分线的性质以及平行线的判定定理.25.(8分)如图,△ABC中,A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),△A′B′C′是△ABC平移之后得到的图象,并且C的对应点C′的坐标为(4,1)(1)A′、B′两点的坐标分别为A′(3,5)、B′(1,2);(2)作出△ABC平移之后的图形△A′B′C′;(3)求△A′B′C′的面积.【考点】Q4:作图﹣平移变换.【分析】(1)由点C(﹣1,﹣3)与点C′(4,1)是对应点,得出平移规律为:向右平移5个单位,向上平移4个单位,按平移规律即可写出所求的点的坐标;(2)按平移规律作出A、B的对应点A′,B′,顺次连接A′、B′、C′,即可得到△A′B′C′;(3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积即可求解.【解答】解:(1)∵△A′B′C′是△ABC平移之后得到的图象,并且C(﹣1,﹣3)的对应点C′的坐标为(4,1),∴平移前后对应点的横坐标加5,纵坐标加4,∴△ABC先向右平移5个单位,再向上平移4个单位得到△A′B′C′,∵A(﹣2,1),B(﹣4,﹣2),∴A′(3,5)、B′(1,2);(2)△A′B′C′如图所示;(3)S=4×3﹣×3×1﹣×3×2﹣×1×4△A′B′C′=12﹣1.5﹣3﹣2=5.5.故答案为(3,5),(1,2).【点评】本题考查了作图﹣平移变换,平移的规律,三角形的面积,准确找出对应点的位置是解题的关键,格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差.青岛版数学七年级下册期中测试题(三)一、选择题(每小题3分,共42)1.在下列各数:3.1415926、、0.2、、、、中无理数的个数是()A.2 B.3 C.4 D.5【考点】26:无理数.【分析】根据无理数的定义及常见的无理数的形式即可判定.【解答】解:在下列各数:3.1415926、、0.2、、、、中,根据无理数的定义可得,无理数有、两个.故选A.【点评】此题主要考查了无理数的定义,解题要注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列各式中,正确的是()A.±=±B.±= C.±=±D.=±【考点】22:算术平方根.【分析】根据平方根的定义得到±=±,即可对各选项进行判断.【解答】解:因为±=±,所以A选项正确;B、C、D选项都错误.故选A.【点评】本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.3.若|3﹣a|+=0,则a+b的值是()A.2 B.1 C.0 D.﹣1【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】根据几个非负数的和为0时,这几个非负数都为0列出算式求出a、b 的值,计算即可.【解答】解:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选:B.【点评】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.4.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【考点】2B:估算无理数的大小.【专题】11 :计算题;511:实数.【分析】估算出的范围,即可确定出所求式子的范围.【解答】解:∵16<21<25,∴4<<5,即2<﹣2<3,则﹣2的值在2到3之间,故选B【点评】此题考查了估算无理数的大小,设实数为a,a的整数部分A为不大于a的最大整数,小数部分B为实数a减去其整数部分,即B=a﹣A;5.已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是()A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【专题】17 :推理填空题.【分析】正确的命题叫真命题,错误的命题叫做假命题,据此逐项判断即可.【解答】解:∵若a>0,b>0,则a+b>0,∴选项①符合题意;∵若a≠b,且|a|=|b|时,a2=b2,∴选项②不符合题意;∵两点之间,线段最短,∴选项③符合题意;∵同位角相等,两直线平行,∴选项④符合题意,∴真命题的个数是3个:①、③、④.故选:C.【点评】此题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A.B.C.D.【考点】Q1:生活中的平移现象.【分析】根据图形平移的性质对各选项进行逐一分析即可.【解答】解:A、由图中所示的图案通过旋转而成,故本选项错误;B、由图中所示的图案通过翻折而成,故本选项错误C、由图中所示的图案通过旋转而成,故本选项错误;D、由图中所示的图案通过平移而成,故本选项正确.故选D.【点评】本题考查的是生活中的平移现象,熟知图形平移变换的性质是解答此题的关键.7.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°【考点】IH:方向角.【专题】12 :应用题.【分析】本题考查了方向角有关的知识,若需要和出发时的方向一致,在C点的方向应调整为向右80度.【解答】解:60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.故选:A.【点评】本题考查的是方向角,解答时要注意以北方为参照方向,进行角度调整.8.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)【考点】D1:点的坐标.【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【解答】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.【点评】本题考查了点的位置判断方法及点的坐标几何意义.9.在平面直角坐标系中,将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A(x,y)重合,则点A的坐标是()A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】让B的横坐标加5,纵坐标减3即可得到所求点A的坐标.【解答】解:∵将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A(x,y)重合,∴所求点A的横坐标为:﹣3+5=2,纵坐标为2﹣3=﹣1,∴所求点的坐标为(2,﹣1).故选D.【点评】本题考查图形的平移变换,要牢记左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.10.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【考点】D3:坐标确定位置.【专题】31 :数形结合.【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【解答】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.【点评】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.11.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.无法确定【考点】D5:坐标与图形性质;K3:三角形的面积.【分析】根据B点的坐标可知AP边上的高为2,而△PAB的面积为5,点P在x轴上,说明AP=5,已知点A的坐标,可求P点坐标.【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C.【点评】本题考查了直角坐标系中,利用三角形的底和高及面积,表示点的坐标.12.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56° C.66° D.54°【考点】JA:平行线的性质.【分析】根据平行线的性质得到∠D=∠1=34°,由垂直的定义得到∠DEC=90°,根据三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.【点评】本题考查了平行线的性质,三角形的内角和,熟记平行线的性质定理是解题的关键.13.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°【考点】JA:平行线的性质.【分析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.【点评】本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°【考点】PB:翻折变换(折叠问题).【专题】16 :压轴题.【分析】由题意知∠DEF=∠EFB=20°图b∠GFC=140°,图c中的∠CFE=∠GFC﹣∠EFG.【解答】解:∵AD∥BC,∴∠DEF=∠EFB=20°,在图b中∠GFC=180°﹣2∠EFG=140°,在图c中∠CFE=∠GFC﹣∠EFG=120°,故选B.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.二、填空题15.把命题“同角的余角相等”改写成“如果…那么…”的形式如果两个角是同一个角的余角,那么这两个角相等.【考点】O1:命题与定理.【分析】命题有题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.【点评】本题考查命题的定义,根据命题的定义,命题有题设和结论两部分组成.。
人教版七年级数学下册期中测试卷(完整)
![人教版七年级数学下册期中测试卷(完整)](https://img.taocdn.com/s3/m/015b86af03d276a20029bd64783e0912a2167cc6.png)
人教版七年级数学下册期中测试卷(完整)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.32.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°5.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( ) A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)6.已知2|1|0++-=a b ,那么()2017ab +的值为( )A .-1B .1C .20173D .20173-7.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( ) A .0B .1C .4D .68.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是( )A .90B .120C .135D .1809.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如果,长方形ABCD 中有6个形状、大小相同的小长方形,且3EF =,12CD =,则图中阴影部分的面积为( ).A .108B .72C .60D .48二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=________.2.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.3.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.4.27的立方根为________.5.有三个互不相等的整数a,b,c ,如果abc=4,那么a+b+c=__________ 69=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()()371323x x x --=-+ (2)21252x x x +--=-2.计算下列各题:(1)327-+2(3)--31- (2)3331632700.1251464---++-.3.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,点P 是直线CD 上的一个动点。
湘教版数学七年级下册期中检测综合试题(含答案)
![湘教版数学七年级下册期中检测综合试题(含答案)](https://img.taocdn.com/s3/m/62d0123cfbd6195f312b3169a45177232f60e416.png)
湘教版数学七年级下册期中检测综合试题(含答案)初中数学试卷湘教版七年级数学(下)期中检测综合试题(含答案)一、选择题(每题3分,共30分)1、下列各式中是二元一次方程组的是()A. 4x π+=;B. 2x-y ;C. 3x+y =0;D. 2x -5=y 2;2、下列运算中,结果正确的是()A.x 3·x 3=x 6;B. 3x 2+2x 2=5x 4;C. (x 2) 3=x 5 ;D. (x+y ) 2=x 2+y 2;3、下列各式从左边到右边的变形中,是因式分解的为()A.a (x+y )=ax +ay ;B. x 2-4x +4=x (x -4)+4;C. 10x 2-5x =5x (2x -1);D. x 2-16x +3x =(x +4)(x -4)+3x4、已知4x 2+2mx +36是完全平方式,则m 的值为()A. 12;B. ±12;C. -6;D. ±6;5、如图,点O 在直线AB 上,OC 为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为x °、y °,那么下列可求出这两角的度数的方程组是()A. 18010x y x y +=??=-?;B. 180310x y x y +=??=-?; C. 18010x y x y +=??=+?; D. 3180310y x y =??=-?6、若(x -5)(2x -n )=2x 2+mx -15,则m 、n 的值分别是()A. m =-7,n =3;B. m =7,n =-3;C. m =-7,n =-3;D. m =7,n =3;7、已知12x y =??=?是关于x 、y 的二元一次方程ax -3y =1的解,则a 的值为()A. -5;B. -1;C. 2;D. 7;8、从边长为a 的正方形内剪去一个边长为b 的小正方形(如图①),然后将剩余部分剪拼成一个长方形(如图②),上述操作下面能验证的等式是()A. a -b =(a+b )(a -b );B. (a -b )=a -2ab +b ;C. (a +b )=a +2ab +b ;D. a +ab =a (a +b );O A BC 12(第8题图)(第9题图)9、根据图中数据(单位:cm ),计算阴影部分面积为()A. 27 cm 2;B. 25 cm 2;C. 20 cm 2;D. 30 cm 2;10、已知13a a +=,则221a a+的值等于。
人教版七年级下册数学期中考试试题带答案
![人教版七年级下册数学期中考试试题带答案](https://img.taocdn.com/s3/m/b4b63279cdbff121dd36a32d7375a417866fc13f.png)
人教版七年级下册数学期中考试试卷一、单选题1.9的算术平方根为()A .9B .9±C .3D .3±2.点P(2,-5)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限3)A .点PB .点QC .点MD .点N4.在平面直角坐标系内,点(2,5)P -到x 轴的距离是()A .1B .2C .3D .55+(的结果是()A .4B .0C .8D .126.如图,若//AD BC ,则下列结论正确的是()A .13∠=∠B .24∠∠=C .12∠=∠D .23∠∠=7.下列语句不是命题的是()A .x 与y 的和等于0吗?B .不平行的两条直线有一个交点.C .两点之间线段最短.D .对顶角不相等.8.如图,已知∠2=110°,要使a ∥b ,则须具备另一个条件()A .∠3=70°B .∠3=110°C .∠4=70°D .∠1=70°9.下列说法错误的是()A .内错角相等,两直线平行B .两直线平行,同旁内角互补C .相等的角是对顶角D .等角的补角相等10.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是()A .120︒B .130︒C .140︒D .150︒二、填空题112的相反数是_________________;12.写出一个平面直角坐标系中第三象限内点的坐标:(__________)13.若点P 在y 轴正半轴上且到x 轴的距离是3,则P 点的坐标_______14.如图所示,要在河的两岸搭建一座桥,沿线段PM 搭建最短,理由是________.15.在3.14,0,5π-,227-,2.010010001…(每两个1之间的0依次增加1个)中,无理数有_______个.16.在电影院4排3号用(4,3)表示,那么3排4号可表示为________.17.如图,将ABC 向右平移,得到DEF ,A ,D ,B ,E 在一条直线上,5AB =,3DB =,则BE =________.18.如图,一个点在第一,四象限及x 轴上运动,在第1次,它从原点运动到点(1,﹣1),用了1秒,然后按图中箭头所示方向运动,即(0,0)→(1,﹣1)→(2,0)→(3,1)→…,它每运动一次需要1秒,那么第2020秒时点所在的位置的坐标是__.三、解答题19.计算(122-;(22;(3)24x =;(4)3(1)8x -=;20.如图,12∠=∠,180BAC DGA ∠+∠=︒,100BFE ∠=︒,将BDA ∠求的过程填写完整.解:180BAC DGA ∠+∠=︒ (已知)//AB ∴()13∠∠∴=()又12∠=∠ (已知)23∴∠=∠()//EF ∴()BDA BFE ∠=∠∴()100BFE ∠=︒ (已知)BDA ∠=∴.21.将三角形ABC 向右平移3个单位长度,再向下平移2个单位长度,得到对应的三角形111A B C .(1)请写出三角形ABC 各点的坐标、(2)画出三角形111A B C ,并写出点1A ,1B ,1C 的坐标;(3)求三角形111A B C 的面积.22.如图,直线,AB CD 相交于点,O OB 平分,100EOD COE ∠∠=︒,求:(1)AOD ∠的度数.(2)AOC ∠的度数.23.已知在平面直角坐标系中,点A 的坐标为()2,31a a +-.(1)若点A 在y 轴上,求出点A 的坐标;(2)点B 的坐标为()3,5,若//AB x 轴,求出点A 的坐标.24.如图,已知EF ⊥BC ,∠1=∠C ,∠2+∠3=180°.试说明直线AD 与BC 垂直.25.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +4d +23c d -的平方根.参考答案1.C【分析】根据算术平方根的定义即可得.【详解】解:239= ,9∴的算术平方根为3,故选:C .【点睛】本题考查了算术平方根,熟记定义是解题关键.2.D【分析】根据各象限内点的坐标特征解答即可.【详解】解:点P(2,-5)所在的象限是第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.B【分析】利用无理数的估算得到34,然后对各点进行判断即可.【详解】解:∵9<15<16,∴34,而3<OQ<4,Q.故选:B.【点睛】本题考查了实数与数轴:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.4.D【分析】点到x轴的距离是纵坐标的绝对值,即|-5|=5.【详解】解:点P(2,-5)到x轴的距离是|-5|=5,故选D.【点睛】本题考查平面内点的坐标;熟练掌握平面内点的坐标特点是解题的关键.5.B【分析】根据算术平方根立方根的定义去掉根号,再计算即可判断.【详解】解:原式=4-4=0.故选B .【点睛】本题考查实数的运算,解题的关键是熟练掌握算术平方根、立方根的定义.6.A【分析】根据平行线的性质判断即可.【详解】解://AD BC ,31∴∠=∠,答案:A .【点睛】本题考查了平行线的性质,解题的关键是根据两直线平行,内错角相等解答.7.A【分析】根据命题的定义对四个选项进行判断.【详解】解:A 、是问句,未作出判断,不是命题;B 、C 、D 、均对一件事情作出判断,是命题.故选:A .【点睛】本题考查了命题与定理.解答此题要明确命题的定义:对一件事情作出判断的语句叫做命题.8.A【分析】已知∠2=110°,要使a ∥b ,可按同旁内角互补,两直线平行补充条件.【详解】解:当∠3=70°,∠2=110°时,∠2+∠3=180°,∴a∥b(同旁内角互补,两直线平行),故选A.【点睛】本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.9.C【分析】由平行线的性质和判定可知A,B正确;根据补角的性质知D也正确,而C中,对顶角一定相等,但相等的角不一定是对顶角,还要考虑到位置关系.【详解】A、内错角相等,两直线平行,是平行线的判定方法之一,正确;B、两直线平行,同旁内角互补,是平行线的判定方法之一,正确;C、对顶角既有大小关系,又有位置关系,相等的角是对顶角的说法错误;D、根据数量关系,等角的补角一定相等,正确,故答案选C.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.10.B【分析】过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.【详解】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.11.23【分析】根据只有符号不同的两个数叫做互为相反数解答即可.【详解】32的相反数是23-故答案为23【点睛】本题考查了实数的性质,熟记概念与性质是解题的关键.12.答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.【分析】让横坐标、纵坐标为负数即可.【详解】在第三象限内点的坐标为:(﹣1,﹣1)(答案不唯一).故答案为答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.13.(0,3).【分析】由y 轴正半轴得到横坐标为0,纵坐标为正,由点P 到x 轴的距离是3,得到纵坐标,从而得到答案.【详解】解:P 在y 轴正半轴上,0,P x ∴=P 到x 轴的距离是3,3,P y ∴=(0,3).P ∴故答案为:(0,3).【点睛】本题考查的是坐标轴轴上的点的坐标规律,掌握坐标轴上的点的坐标规律是解题关键.14.垂线段最短【分析】根据垂线段最短即可得.【详解】解:由图可知,PM EN ⊥,则要在河的两岸搭建一座桥,沿线段PM 搭建最短,理由是垂线段最短,故答案为:垂线段最短.【点睛】本题考查了垂线段最短,熟记垂线段最短是解题关键.15.3【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:3.14是有限小数,属于有理数;0是整数,属于有理数;-227-是分数,属于有理数;无理数有:5π-,2.010010001…(每两个1之间的0依次增加1个)共3个.故答案为:3.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.16.(3,4)【分析】由于将“4排3号”记作(4,3),根据这个规定即可确定3排4号表示的点.【详解】解:∵“4排3号”记作(4,3),∴3排4号表示(3,4).故答案为:(3,4)【点睛】此题主要考查了坐标与点的位置,解题的关键是理解题目的规定,知道坐标与位置的对应关系17.2【分析】先根据平移的性质可得5DE AB ==,再根据线段的和差即可得.【详解】解:由平移的性质得:5DE AB ==,,,,A D B E 在一条直线上,3DB =,532BE DE BD ∴=-=-=,故答案为:2.【点睛】本题考查了平移的性质、线段的和差,熟练掌握平移的性质是解题关键.18.(2020,0).【分析】根据已知得出点的横坐标等于运动秒数,纵坐标从-1,0,1,0依次循环,即可得出答案.【详解】解:∵(0,0)→(1,-1)→(2,0)→(3,1)→…,第4秒时点所在位置的坐标是:(4,0),∴第5秒运动点的坐标为:(5,-1),第6秒运动点的坐标为:(6,0),第7秒运动点的坐标为:(7,1),第8秒运动点的坐标为:(8,0),∴点的横坐标等于运动秒数,纵坐标从-1,0,1,0依次循环,∴第2020秒时点所在位置的坐标是:横坐标为:2020,∵2020÷4=505,纵坐标为:0,∴第2020秒时点所在位置的坐标是:(2020,0).故答案为:(2020,0).【点睛】此题主要考查了数字变化规律以及坐标性质,根据已知得出点坐标的变化规律是解题关键.19.(1)1-;(2)4(3)2x =±;(4)3x =.【分析】(1)先计算立方根、有理数的乘方,再计算有理数的减法即可得;(2)先计算算术平方根、化简绝对值,再计算实数的加减即可得;(3)利用平方根解方程即可得;(4)利用立方根解方程即可得.【详解】解:(1)原式34=-,1=-;(2)原式22=+,4=-;(3)24x =,2x =±;(4)3(1)8x -=,12x -=,3x =.【点睛】本题考查了平方根与立方根、实数的加减运算、利用平方根与立方根解方程等知识点,熟练掌握各运算法则是解题关键.20.DG;同旁内角互补,两直线平行;两直线平行,内错角相等;等量代换;同位角相等,两直线平行;两直线平行,同位角相等;100°【分析】根据题意,利用平行线的性质和判定填空即可..解答此类题要根据已知条件和图形,找到相应的条件,进行推理填空.【详解】解:180BAC DGA ∠+∠=︒ (已知)//AB ∴DG (同旁内角互补,两直线平行)13∠∠∴=(两直线平行,内错角相等)又12∠=∠ (已知)23∴∠=∠(等量代换)//EF ∴AD (同位角相等,两直线平行)BDA BFE ∠=∠∴(两直线平行,同位角相等)100BFE ∠=︒ (已知)BDA ∠=∴100︒.【点睛】本题主要考查了平行线的性质和判定..理解平行线的性质和判定定理是解此题的关键.21.(1)(1,4),(4,1),(1,1)A B C ---;(2)图见解析,111(2,2),(1,3),(4,1)A B C ---;(3)192.【分析】(1)根据点,,A B C 在平面直角坐标系中的位置即可得;(2)先根据平移的定义分别画出点111,,A B C ,再顺次连接即可得三角形111A B C ,然后根据点坐标的平移变换规律即可得111,,A B C 的坐标;(3)利用一个正方形的面积减去三个直角三角形的面积即可得.【详解】解:(1)由点,,A B C 在平面直角坐标系中的位置得:(1,4),(4,1),(1,1)A B C ---;(2)如图,三角形111A B C 即为所求:(1,4),(4,1),(1,1)A B C --- ,111(13,42),(43,12),(13,12)A B C ∴-+--+--+-,即111(2,2),(1,3),(4,1)A B C ---;(3)三角形111A B C 的面积为11119555232532222⨯-⨯⨯-⨯⨯-⨯⨯=.【点睛】本题考查了点坐标、平移作图等知识点,熟练掌握平移作图的方法是解题关键.22.(1)140°;(2)40°【分析】(1)根据平角的定义可得80EOD ∠=︒,利用角平分线的定义可得1402BOD DOE ∠=∠=︒,再根据平角的定义即可求解;(2)直接利用对顶角相等即可求解.【详解】解:(1)∵∠100COE =︒,∴80EOD ∠=︒,∵OB 平分EOD ∠,∴1402BOD DOE ∠=∠=︒,∴180140AOD BOD =︒-=︒∠∠;(2)∵1402BOD DOE ∠=∠=︒,∴40AOC BOD ∠=∠=︒.【点睛】本题考查角的和差,掌握平角的定义、对顶角的性质是解题的关键.23.(1)()0,7A -;(2)()4,5A 【分析】(1)根据在y 轴上的点的横坐标为0,求出a 的值,得到点A 的坐标;(2)根据题意得到A 、B 的纵坐标相等,求出a 的值,得到点A 的坐标.【详解】解:(1)∵点A 在y 轴上,∴20a +=,2a =-,∴()0,7A -;(2)∵//AB x 轴,∴315a -=,2a =,∴()4,5A .【点睛】本题考查平面直角坐标系中点坐标的性质,解题的关键是掌握点坐标的横纵坐标的特点.24.见解析.【分析】根据∠1=∠C ,得出GD ∥AC ,从而证出∠2=∠DAC ,再根据∠2+∠3=180°得出∠DAC+∠3=180°,得出AD ∥EF ,再根据EF ⊥BC ,即可证出AD ⊥BC .【详解】∵∠1=∠C ,(已知)∴GD ∥AC ,(同位角相等,两直线平行)∴∠2=∠DAC .(两直线平行,内错角相等)又∵∠2+∠3=180°,(已知)∴∠3+∠DAC =180°.(等量代换)∴AD ∥EF ,(同旁内角互补,两直线平行)∴∠ADC =∠EFC .(两直线平行,同位角相等)∵EF ⊥BC ,(已知)∴∠EFC =90°,∴∠ADC =90°,∴AD ⊥BC .【点睛】本题主要考查了平行线的判定和性质,以及垂线的定义,解答此题的关键是注意平行线的性质和判定定理的综合运用.25.(1);(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示∴点B 表示∴m =.(2)∵m =∴12130m +=+=>,12110m -=-=<∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +∴20c d ++∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-=∴4±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.。
初中七年级数学下册期中试卷及答案
![初中七年级数学下册期中试卷及答案](https://img.taocdn.com/s3/m/b84ec102ff4733687e21af45b307e87101f6f8cf.png)
初中七年级数学下册期中试卷及答案一、选择题1. 下列选项中,既是轴对称图形又是中心对称图形的是()A. 矩形B. 等边三角形C. 菱形D. 圆{答案:D}2. 已知一组数据:2,4,6,8,10,12,14,16,其中众数是()A. 2B. 4C. 6D. 8{答案:D}3. 下列等式中,正确的是()A. \(a^2 = 2a\)B. \(a^2 = -2a\)C. \(2a = a^2\)D. \(a^2 = a\){答案:C}4. 某数的平方根是3,那么这个数是()A. 3B. -3C. 9D. -9{答案:C}5. 下列各数中,是无理数的是()A. \(\sqrt{2}\)B. \(2\sqrt{2}\)C. \(\sqrt[3]{2}\)D.\(2\sqrt[3]{2}\){答案:A}二、填空题1. 若 \(a\) 为有理数,且 \(a^2 = 14\),则 \(a\) 的值为______。
{答案:±\(\sqrt{14}\)}2. 已知一组数据:1,3,5,7,9,其中中位数______。
{答案:5}3. 若\(a\) 为实数,且\(a+2>0\),则\(a\) 的取值范围为______。
{答案:\(a>-2\)}4. 下列各数中,是等差数列的是______。
{答案:2,4,6,8,10}5. 若 \(a\) 为实数,且 \(a^2 - 3a + 2 = 0\),则 \(a\) 的值为______。
{答案:1 或 2}三、解答题1. 解方程:\(2x - 5 = 3x + 1\)。
{答案:\(x = -6\)}2. 计算:\(\frac{1}{3} + \frac{2}{5} - \frac{1}{6}\)。
{答案:\(\frac{19}{30}\)}3. 某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
{答案:80元}4. 解不等式:\(3x - 7 > 2x + 3\)。
北师大版数学七年级下学期期中测试卷三(含答案及解析)
![北师大版数学七年级下学期期中测试卷三(含答案及解析)](https://img.taocdn.com/s3/m/b84e78dbaaea998fcd220e8e.png)
9 8 0 0 北师大版数学七年级下学期期中测试卷三一.选择题1. 一本笔记本 3 元,买 x 本需要 y 元,在这一问题中,自变量是() A .笔记本B .3C .xD .y2. 如图,下列结论正确的是()A .∠5 与∠2 是对顶角B .∠1 与∠3 是同位角C .∠2 与∠3 是同旁内角D .∠1 与∠2 是同旁内角3. 生物学家发现了一种病毒,其长度约为 0.0000000052mm ,数据 0.0000000052 用科学记数法表示正确的是( )A .5.2×108B .5.2×109C .5.2×1﹣ D .5.2×1 ﹣4. 如图,O A ⊥A B 于点 A ,点 O 到直线 A B 的距离是()A .线段 O AB .线段 O A 的长度C .线段 O B 的长度D .线段 A B 的长度5. 弹簧挂上物体后会伸长,测得一弹簧的长度 y (cm)与所挂的物体的质量 x (kg)间有如下关系:x 0 1 2 3 4 5 y1010.51111.51212.5下列说法不正确的是()A.x与y都是变量,x是自变量,y是因变量B.所挂物体质量为 4 kg 时,弹簧长度为 12 cmC.弹簧不挂重物时的长度为 0 cmD.物体质量x每增加 1 kg,弹簧长度y增加 0.5 cm6.若x+m 与x+2 的乘积化简后的结果中不含x 的一次项,则m 的值为()A.2 B.﹣2 C.4 D.﹣47.如图,直线l 分别与直线A B、C D相交于点E、F,E G平分∠B E F交直线C D于点G,若∠1=∠BEF=68°,则∠E G F的度数为()A.34°B.36°C.38°D.68°8.小刘上午从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小刘离家的距离y(米)和所经过的时间x(分)之间的函数图象如图所示,则下列说法不正确的是( )A.小刘家与超市相距 3000 米B.小刘去超市途中的速度是 300 米/分C.小刘在超市逗留了 30 分D.小刘从超市返回家比从家里去超市的速度快二、填空.9.若a+3b﹣3=0,则3a•27b=.10.(a﹣2018)2+(2020﹣a)2=20,则a﹣2019=.11.已知a,b,c 是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=.12.已知BD、CE 是△ABC 的高,BD、CE 所在的直线相交所成的角中有一个角为60°,则∠BAC=.13.若(4x﹣2m)(x+3)的乘积中不含x 的一次项,则常数m=.14.已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y 与x 之间的关系可表示为.三.简答题15.如图,有一块边长为(3a+2)米的正方形铁片,王师傅要制作一个工件,欲在正方形铁片中央剪去一个小正方形铁片,按照图纸要求剪去小正方形后工件的宽度为 2b米.剪去小正方形后工件的面积是多少?16.计算(1)(﹣a)3•a2+(﹣2a4)2÷a3(2).17.如图,若∠1=∠3,∠2=60°,则∠4 的大小为多少度?四.解答题18.如图,在四边形ABCD 中,AB∥CD,E 为BC 延长线上一点,AE 交CD 于点F,∠1=∠2,∠3=∠4,试说明AD∥BE.证明:∵∠3=∠4(已知)且∠4=∠AFD(对顶角相等)∴∠3=∠AFD在△ABC 中,∠1+∠B+∠3=180°在△ADF 中,∠2+∠D+∠AFD =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D(等式的性质)∵AB∥CD∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE (等量代换)∴AD∥BE(内错角相等,两直线平行)19.如图,有一池塘,要测池塘两端A,B 两点的距离,可先在平地上取一个可以直接到达A,B 两点的C,连接AC 并延长AC 到点D,使CD=CA,连接BC 并延长BC 到点E,使CE=CB,连接DE,那么量出的长就等于AB 的长.这是因为可根据方法判定△ABC≌△DEC.20.计算题:(1)(﹣)﹣1﹣(﹣3)2+(π﹣2)0;(2)(2ab)m•(﹣3b2)÷(ab2)2;(3)(2x+y)2+(x+y)(x﹣y)﹣5x(x﹣y);(4)2022﹣203×201(简便运算).21.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回,16min 时到家,假设小东始终以100m/min 的速度步行,两人离家的距离y(单位:m)与小东打完电话后的步行时间t(单位;min)之间的函数关系如图所示:(1)小东打电话时,他离家m;(2)填上图中空格相应的数据,,;(3)小东和妈妈相遇后,妈妈回家的速度为m/min;(4)min 时,两人相距m.9 8 0 0 北师大版数学七年级下学期期中测试卷三一.选择题参考答案与试题解析1. 一本笔记本 3 元,买 x 本需要 y 元,在这一问题中,自变量是( ) A .笔记本 B .3 C .xD .y【解答】:C2. 如图,下列结论正确的是()A .∠5 与∠2 是对顶角B .∠1 与∠3 是同位角C .∠2 与∠3 是同旁内角D .∠1 与∠2 是同旁内角【解答】: D3. 生物学家发现了一种病毒,其长度约为 0.0000000052mm ,数据 0.0000000052 用科学记数法表示正确的是( )A .5.2×108B .5.2×109C .5.2×1﹣ D .5.2×1 ﹣【解答】: C4. 如图,O A ⊥A B 于点 A ,点 O 到直线 A B 的距离是()A .线段 O AB .线段 O A 的长度C .线段 O B 的长度D .线段 A B 的长度【解答】:B5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有如下关系:x012345y10 10.5 11 11.5 12 12.5下列说法不正确的是( )A.x与y都是变量,x是自变量,y是因变量B.所挂物体质量为 4 kg 时,弹簧长度为 12 cmC.弹簧不挂重物时的长度为 0 cmD.物体质量x每增加 1 kg,弹簧长度y增加 0.5 cm【解答】:C6.若x+m 与x+2 的乘积化简后的结果中不含x 的一次项,则m 的值为()A.2 B.﹣2 C.4 D.﹣4【解答】: B7.如图,直线l 分别与直线A B、C D相交于点E、F,E G平分∠B E F交直线C D于点G,若∠1=∠BEF=68°,则∠E G F的度数为()A.34°B.36°C.38°D.68°【解答】:A8.小刘上午从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小刘离家的距离y(米)和所经过的时间x(分)之间的函数图象如图所示,则下列说法不正确的是( )A.小刘家与超市相距 3000 米B.小刘去超市途中的速度是 300 米/分C.小刘在超市逗留了 30 分D.小刘从超市返回家比从家里去超市的速度快【解答】:D三、填空.9.若a+3b﹣3=0,则3a•27b=27 .【分析】先将原式化为同底,然后利用条件即可求出答案.【解答】解:原式=3a•(33)b=3a+3b,∵a+3b=3,∴原式=33=27,故答案为:2710.(a﹣2018)2+(2020﹣a)2=20,则a﹣2019=±3 .【分析】将(a﹣2018)、(2020﹣a)分别转化为含有(a﹣2019)的形式,然后利用完全平方公式解答.【解答】解:∵(a﹣2018)2+(2020﹣a)2=[(a﹣2019)+1]2+[(a﹣2019)﹣1]2=2(a﹣2019)2+2=20.∴(a﹣2019)2=9.∴a﹣2019=±3.故答案是:±3.11.已知a,b,c 是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a﹣3b+c .【分析】根据三角形三边关系得到a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,再去绝对值,合并同类项即可求解.【解答】解:∵a,b,c 是一个三角形的三条边长,∴a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a+c﹣b﹣b+c﹣a+a﹣b﹣c=a﹣3b+c,故答案为:a﹣3b+c.12.已知BD、CE 是△ABC 的高,BD、CE 所在的直线相交所成的角中有一个角为60°,则∠BAC=60°或120°.【分析】分两种情况:(1)当∠A 为锐角时,如图1;(2)当∠A 为钝角时,如图2;根据四边形的内角和为360°以及三角形内角和为180°,即可得出结果.【解答】解:分两种情况:(1)当∠A 为锐角时,如图1,∵∠DOC=60°,∴∠EOD=120°,∵BD、CE 是△ABC 的高,∴∠AEC=∠ADB=90°,∴∠A=360°﹣90°﹣90°﹣120°=60°;(2)当∠A 为钝角时,如图2,∵∠F=60°,同理:∠ADF=∠AEF=90°,∴∠DAE=360°﹣90°﹣90°﹣60°=120°,∴∠BAC=∠DAE=120°,综上所述,∠BAC 的度数为60°或120°,故答案为:60°或120°.13.若(4x﹣2m)(x+3)的乘积中不含x 的一次项,则常数m= 6 .【分析】先根据多项式乘以多项式法则展开,合并同类项,根据已知得出12﹣2m=0,求出方程的解即可.【解答】解:(4x﹣2m)(x+3)=4x2+12x﹣2mx﹣6m=4x2+(12﹣2m)x﹣6m,∵(4x﹣2m)(x+3)的乘积中不含x 的一次项,∴12﹣2m=0,解得:m=6,故答案为:6.14.已知长方形的周长为16cm,其中一边长为xcm,面积为ycm2,则这个长方形的面积y 与x 之间的关系可表示为y=﹣x2+8x .【分析】用含有x 的代数式表示出矩形的长,进而表示出面积y 即可.【解答】解:由矩形的面积的计算方法得:y=x×=﹣x2+8x,故答案为:y=﹣x2+8x.三.简答题15.如图,有一块边长为(3a+2)米的正方形铁片,王师傅要制作一个工件,欲在正方形铁片中央剪去一个小正方形铁片,按照图纸要求剪去小正方形后工件的宽度为 2b米.剪去小正方形后工件的面积是多少?【解答】:由题意,减去的小正方形的边长为 3a+2-4b,所以剪去小正方形后工件的面积为(3a+2)2-(3a+2-4b)2=24ab+16b-16b2(平方米).16.计算(1)(﹣a)3•a2+(﹣2a4)2÷a3(2).【分析】(1)直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案;(2)直接利用乘法公式将原式变形进而得出答案.【解答】解:(1)原式=﹣a5+4a8÷a3=﹣a5+4a5=3a5;(2)原式=20192﹣(2019﹣1)(2019+1)+1+8=20192﹣(20192﹣1)+9=20192﹣20192+1+9=10.17.如图,若∠1=∠3,∠2=60°,则∠4 的大小为多少度?【分析】根据平行线的判定得出AB∥CD,根据平行线的性质得出∠2=∠5,再求出∠4 即可.【解答】解:∵∠1=∠3,∴AB∥CD,∴∠2=∠5,∵∠2=60°,∴∠5=60°,∴∠4=180°﹣∠5=120°,故答案为:120.四.解答题18.如图,在四边形ABCD 中,AB∥CD,E 为BC 延长线上一点,AE 交CD 于点F,∠1=∠2,∠3=∠4,试说明AD∥BE.证明:∵∠3=∠4(已知)且∠4=∠AFD(对顶角相等)∴∠3=∠AFD在△ABC 中,∠1+∠B+∠3=180°在△ADF 中,∠2+∠D+∠AFD =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D(等式的性质)∵AB∥CD∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE (等量代换)∴AD∥BE(内错角相等,两直线平行)【分析】利用平行线的性质定理和判定定理进行解答即可.【解答】证明:∵∠3=∠4(已知)∴且∠4=∠AFD(对顶角相等)∴∠3=∠AFD,在△ABC 中,∠1+∠B+∠3=180°,在△ADF 中,∠2+∠D+∠AFD=180°,∵∠1=∠2,∠3=∠AFD,∴∠B=∠D(等式的性质),∵AB∥CD,∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE(等量代换),∴AD∥BE(内错角相等,两直线平行).故答案为:已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.19.如图,有一池塘,要测池塘两端A,B 两点的距离,可先在平地上取一个可以直接到达A,B 两点的C,连接AC 并延长AC 到点D,使CD=CA,连接BC 并延长BC 到点E,使CE=CB,连接DE,那么量出DE 的长就等于AB 的长.这是因为可根据SAS 方法判定△ABC≌△DEC.【分析】利用“边角边”证明△ABC 和△DEC 全等,再根据全等三角形对应边相等解答.【解答】解:量出DE 的长就等于AB 的长.这是因为可根据SAS 方法判定△ABC≌△DEC.故答案为:DE,SAS.20.计算题:(1)(﹣)﹣1﹣(﹣3)2+(π﹣2)0;(2)(2ab)m•(﹣3b2)÷(ab2)2;(3)(2x+y)2+(x+y)(x﹣y)﹣5x(x﹣y);(4)2022﹣203×201(简便运算).【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用幂的乘方与积的乘方运算法则计算,再利用单项式乘除单项式法则计算即可求出值;(3)原式利用完全平方公式,以及平方差公式计算即可求出值;(4)原式变形后,利用平方差公式计算即可求出值.【解答】解:(1)原式=﹣3﹣9+1=﹣12+1=﹣11;(2)原式=(2m a m b m)•(﹣3b2)÷(a2b4)=﹣12×2m a m﹣2b m﹣2;(3)原式=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy;(4)原式=2022﹣(202+1)×(202﹣1)=2022﹣(2022﹣1)=2022﹣2022+1=1.21.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回,16min 时到家,假设小东始终以100m/min 的速度步行,两人离家的距离y(单位:m)与小东打完电话后的步行时间t(单位;min)之间的函数关系如图所示:(1)小东打电话时,他离家1400 m;(2)填上图中空格相应的数据800 ,2400 ,2900 ;(3)小东和妈妈相遇后,妈妈回家的速度为50 m/min;(4) 3 或.min 时,两人相距700m.【分析】(1)根据函数图象可以直接得到小东打电话时,他离家的距离;(2)根据函数图象中的数据,可以算出图中空格中应填入的数据;(3)根据函数图象中的数据可以计算出小东和妈妈相遇后,妈妈回家的速度;(4)根据题意和图象中的数据,可以计算出两人相距700m 对应的时间【解答】解:(1)由图象可得,小东打电话时,他离家1400m,故答案为:1400;(2)由图可得,小东行驶6min 对应的y 的值为:1400﹣6×100=800,小东行驶到22min 时对应的y 值为:(1400﹣6×100)+(22﹣6)×100=2400,小东行驶到27min 时对应的y 值为:(1400﹣6×100)+(27﹣6)×100=2900,故答案为:800,2400,2900;(3)小东和妈妈相遇后,妈妈回家的速度为:=50(m/min),故答案为:50;(4)设在tmin 时,两人相距700m,相遇前相距700m,t==3,相遇后相距700m,t=6+=,故答案为:3 或.。
2021-2022学年鲁教版七年级数学下册期中复习综合练习题
![2021-2022学年鲁教版七年级数学下册期中复习综合练习题](https://img.taocdn.com/s3/m/c7bd4cd68ad63186bceb19e8b8f67c1cfad6eedd.png)
2021-2022学年鲁教版七年级数学下册期中复习综合练习题(附答案)一.选择题(共10小题,满分30分)1.投掷两枚普通的正方体骰子,则下列事件为必然事件的是()A.所得点数之和等于6B.所得点数之和等于12C.所得点数之和大于1D.所得点数之和大于122.下列各命题的逆命题是真命题的是()A.对顶角相等B.全等三角形的对应角相等C.相等的角是同位角D.等边三角形的三个内角都相等3.李老师为学习进步的学生购买奖品,共用去42元购买单价为6元的A和单价为12元的B两种笔记本(购买本数均为正整数).你认为购买方案共有()种.A.2B.3C.4D.54.下列说法错误的是()A.是一个二元一次方程组B.是一个二元一次方程组C.是方程组的解D.二元一次方程x﹣7y=11有无数个解5.如图,四边形ABCD,BA=BC,AD∥BC,则下列等式不成立的是()A.∠1=∠2B.∠3=∠4C.∠2=∠3D.∠1=∠36.如图,点D,E在△ABC边上,沿DE将△ADE翻折,点A的对应点为点A′,∠A′EC=40°,∠A′DB=110°,则∠A等于()A.30°B.35°C.60°D.70°7.如图是一个游戏转盘.自由转动转盘,当转盘停止转动后,指针落在数字1,2,3,4所示区域内可能性最大的是()A.1号B.2号C.3号D.4号8.如图,七个相同的小长方形组成一个大长方形ABCD,若CD=21,则长方形ABCD的周长为()A.100B.102C.104D.1069.如果关于x,y的方程组无解,那么直线y=﹣(k+3)x﹣k不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°二.填空题(共10小题,满分30分)11.命题“三个角都相等的三角形是等边三角形”的逆命题是;该逆命题是命题(填“真”或“假”).12.某同学抛掷一枚硬币,连续抛掷20次,都是反面朝上,则抛掷第21次出现正面朝上的概率是.13.一只不透明的袋子中装有2个白球和3个红球,现在向袋中再放入n个白球,袋中的这些球除颜色外都相同,搅匀后从中任意摸出1个球,若要使摸到白球比摸到红球的可能性大,则n的最小值等于.14.关于x,y的二元一次方程(m﹣2)x+(m+1)y=2m﹣7,无论m取何值,所得到的方程都有一个相同解,则这个相同解是.15.已知关于x、y的二元一次方程组的解为,则关于x、y的方程组的解是.16.《孙于算经》是中国古代重要的数学著作,其中一道题的原文是:“今三人共车,两车空;二人共车,九人步,问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为.17.如图,已知函数y=﹣x﹣1和y=kx+b图象交于点A,点A的横坐标为﹣2,则关于x,y的方程组的解是.18.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=76°,∠C=64°,则∠DAE的度数是.19.已知角α,β(0<α,β<180°)的两边互相平行,且α比β的4倍少15度,则α=.20.如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE 沿CD,DE翻折,点A,B恰好重合于点P处,若△PCD中有一个角等于48°,则∠A =.三.解答题(共8小题,满分60分)21.解下列方程组:(1);(2).22.抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:(1)朝上的点数有哪些结果?他们发生的可能性一样吗?(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?23.如图,∠1=∠2,∠3=∠4.(1)试说明AB∥CD;(2)若∠BAD=∠BDA,且∠EBF=110°,求∠ADC的度数.24.已知关于x,y的方程组.(1)请直接写出方程x+2y﹣6=0的所有正整数解;(2)若方程组的解满足x+y=0,求m的值;(3)当m每取一个值时,2x﹣2y+mx=8就对应一个方程,而这些方程有一个公共解,你能求出这个公共解吗?25.暑假将至,某商场为了吸引顾客,设计了可以自由转动的转盘(如图所示,转盘被均匀地分为20份),并规定:顾客每200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.若某顾客购物300元.(1)求他此时获得购物券的概率是多少?(2)他获得哪种购物券的概率最大?请说明理由.26.如图,已知AB∥CD,AD∥BC,∠DCE=90°,点E在线段AB上,∠FCG=90°,点F在直线AD上,∠AHG=90°.(1)找出图中与∠D相等的角,并说明理由;(2)若∠ECF=25°,求∠BCD的度数;(3)在(2)的条件下,点C(点C不与B,H两点重合)从点B出发,沿射线BG的方向运动,其他条件不变,求∠BAF的度数.27.临近2022年春节,西安疫情形势较为严峻,对确诊病例所在地区实行区域管控,严格履行疫情防控措施.为防范疫情,某校欲购置规格分别为300mL和500mL的甲、乙两种消毒液若干瓶,已知购买2瓶甲种和1瓶乙种消毒液需要61元,购买3瓶甲种和4瓶乙种消毒液需要154元.(1)求甲、乙两种消毒液的单价;(2)为节约成本,该校购买散装消毒液进行分装,现需将11.2L的消毒液全部装入最大容量分别为300mL和500mL的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20mL,请问如何分能使总损耗最小?求出此时需要的两种空瓶的数量.28.在数学活动课上,老师出示了如下问题:如图1,已知直线AB∥CD,将三角形纸片EFG的顶点E放到直线AB上,点F落在直线AB与CD所夹区域的内部,FG与CD交于点H,试探究∠EFH,∠BEF,∠DHF之间的数量关系.“兴趣小组”了如下探究思路:过点F作FT∥AB.因为AB∥CD,∴FT∥CD.∴∠BEF=∠TFE,……数学思考(1)请你根据“兴趣小组”的探究思路,直接写出∠EFH,∠BEF,∠DHF之间的数量关系:.问题解决(2)“智慧小组”把老师提出的问题作了如下变式:将三角形纸片EFG如图2所示放置,使得点F落在AB,CD区域的外部,FG与AB,CD分别交于点M,H.试探究∠EFH,∠BEF,∠DHF之间的数量关系.请你类比“兴趣小组”的探究思路,解决智慧小组提出的问题.结论运用(3)如图3,直线AB∥CD,∠PND=75°,∠EPF=35°,∠PQM=95°.请你运用问题(1),(2)得到的结论,求∠QMC的度数.参考答案一.选择题(共10小题,满分30分)1.解:投掷两枚普通的正方体骰子,A.所得点数之和等于6,是随机事件,故A不符合题意;B.所得点数之和等于12,是随机事件,故B不符合题意;C.所得点数之和大于1,是必然事件,故C符合题意;D.所得点数之和大于12,是不可能事件,故D不符合题意;故选:C.2.解:A、对顶角相等的逆命题为“相等的角为对顶角”,此命题为假命题,故本选项错误;B、全等三角形的对应角等的逆命题为“对应角相等的三角形是全等三角形”,此命题为假命题,故本选项错误;C、相等的角是同位角的逆命题为“如果两个角的同位角,那么这两个角为相等”,此命题为假命题,故本选项错误;D、等边三角形的三个内角都相等的逆命题为“如果三个角相等,那么这个三角形是等边三角形”,此命题为真命题,故本选项正确;故选:D.3.解:设购买了A笔记本x本,B笔记本y本,根据题意可得:6x+12y=42,化简得:x=7﹣2y,∵x,y为正整数,∴符合题意的方案有:,,,即:有3种购买方案.故选:B.4.解:A.是二元一次方程组,故本选项不符合题意;B.是三元一次方程组,故本选项符合题意;C.经检验是方程2x+y=﹣1的解,也是方程x﹣y=4的解,即是方程组的解,故本选项不符合题意;D.二元一次方程x﹣7y=11有无数个解,故本选项不符合题意;故选:B.5.解:∵AD∥BC,∴∠2=∠3,∵BA=BC,∴∠1=∠3,∴∠1=∠2,故A、C、D成立,不符合题意,根据题意不能判定∠3=∠4,故选:B.6.解:∵∠A′EC=40°,∴∠AEC+∠A′EC=180°+40°=220°,由翻折可知:∠AED=∠A′ED=×220°=110°,∵∠A′DB=110°,∴∠A′DA=70°,由翻折可知:∠ADE=∠A′DE=A′DA=35°,∴∠A=180°﹣∠ADE﹣∠AED=35°.故选:B.7.解:由图形知,1对应扇形圆心角度数为360°﹣(50°+125°+65°)=120°,所以数字3对应扇形圆心角度数最大,所以指针落在数字1,2,3,4所示区域内可能性最大的是3号,故选:C.8.解:设小长方形的长为x,宽为y.由图可知:解得.,所以长方形ABCD的长为5y=5×6=30,宽为21,∴长方形ABCD的周长为2×(30+21)=102,故选:B.9.解:∵关于x,y的方程组无解,∴直线y=﹣x+1与y=(2k+1)x﹣3平行,∴﹣1=2k+1,解得k=﹣1,在直线y=﹣2x+1中,∵﹣2<0,1>0,∴直线y=﹣2x+1经过第一、二、四象限,不经过第三象限.故选:C.10.解:如图,过A作AB∥a,∵a∥b,∴AB∥b,∴∠1+∠BAD=180°,∠2=∠BAC=∠3+∠BAD,∴∠BAD=∠2﹣∠3,∴∠1+∠2﹣∠3=180°,故选:B.二.填空题(共10小题,满分30分)11.解:“三个角都相等的三角形是等边三角形”的逆命题为“等边三角形的三个角都相等”,逆命题是真命题.故答案为:等边三角形的三个角都相等;真.12.解:抛掷一枚质地均匀的硬币,每次向上的概率都是,如果连续抛掷20次,那么第21次出现正面朝上的概率是.故答案为:.13.解:∵要使摸到白球比摸到红球的可能性大,∴n的最小值等于3+1﹣2=2.故答案为:2.14.解:(m﹣2)x+(m+1)y=2m﹣7,整理,得m(x+y﹣2)+(y﹣2x+7)=0,由方程的解与m无关,得x+y﹣2=0,且y﹣2x+7=0,解得,即这个相同解是.故答案为:.15.解:∵关于x、y的二元一次方程组的解为,∴关于x、y的方程组中,解得.故答案为:.16.解:设有x人,y辆车,根据题意可得:,故答案为:.17.解:∵函数y=﹣x﹣1和y=kx+b图象交于点A,点A的横坐标为﹣2,∴y=﹣(﹣2)﹣1=1,∴点A的坐标为(﹣2,1),∴关于x,y的方程组的解是,故答案为:.18.解:∵AE是△ABC的角平分线,∴∠CAE==38°.∴∠AEB=∠C+∠CAE=64°+38°=102°.∵AD⊥BC于点D,∴∠ADE=90°.∴∠DAE=∠AEB﹣∠ADE=102°﹣90°=12°.故答案为:12°.19.解:由题意得:∠α=4∠β﹣15°,①当∠α=∠β时,得∠β=4∠β﹣15°,解得:∠β=5°,则∠α=5°;②当∠α+∠β=180°时,得4∠β﹣15°+∠β=180°,解得:∠β=39°,则∠α=141°,故答案为:5°或141°.20.解:由折叠可得,AD=PD=BD,∠CPD=∠B,∠PDC=∠BDC,∠PCD=∠DCB,∴D是AB的中点∴CD=AB=AD=BD,∴∠ACD=∠A,∠DCB=∠B,当∠CPD=48°时,∠B=48°,∴∠A=90°﹣∠B=42°;当∠PCD=48°时,∠DCB=∠B=48°,∴∠A=42°;当∠PDC=48°时,∵∠PCD=DCB=48°,∠BDC=∠A+∠ACD,∴∠A=∠BDC=24°;故答案为:42°或24°三.解答题(共8小题,满分60分)21.解:(1)方程组整理得:,①×3+②×2得:17m=306,解得:m=18,把m=18代入①得:54+2n=78,解得:n=12,则方程组的解为;(2)方程组整理得:,①×9﹣②得:46x=322,解得:x=7,把x=7代入②得:﹣7+9y=2,解得:y=1,则方程组的解为.22.解:(1)因为抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后朝上的点数可能是1、2、3、4、5、6,所以它们的可能性相同;(2)因为朝上的点数是奇数的有1,3,5,它们发生的可能性是,朝上的点数是偶数的有2,4,6,它们发生的可能性是所以发生的可能性大小相同;(3)因为朝上的点数大于4的数有5,6,发生可能性是=,朝上的点数不大于4的数有1,2,3,4,发生可能性是=,所以朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大.23.解:(1)∵∠1=∠2,∴BM∥CN,∴∠MBC=∠NCB,∵∠3=∠4,∴∠MBC+∠3=∠NCB+∠4,即∠ABC=∠DCB,∴AB∥CD;(2)∵∠EBF=∠ABD,∠EBF=110°,∴∠ABD=110°,∵∠BAD+∠BDA+∠ABD=180°,∠BAD=∠BDA,∴∠BAD=∠BDA=×(180°﹣110°)=35°,∵AB∥CD,∴∠ADC=∠BAD=35°.24.解:(1)∵x+2y﹣6=0,∴x+2y=6,∴x=6﹣2y,当y=1时,x=4,当y=2时,x=2,∴方程x+2y﹣6=0的所有正整数解为:,;(2)由题意得:,解得:,把代入2x﹣2y+mx=8中,﹣12﹣12﹣6m=8,解得:m=﹣,∴m的值为﹣;(3)∵2x﹣2y+mx=8,∴(2+m)x﹣2y=8,0﹣2y=8,解得:y=﹣4,∴无论m取何值,都是方程2x﹣2y+mx=8的解,∴公共解为.25.解:(1)∵转盘被均匀地分为20份,他此时获得购物券的有10份,∴他此时获得购物券的概率是:=;(2)∵P(获得200元购物券)=,P(获得100元购物券)=,P(获得50元购物券)==,∴他获得50元购物券的概率最大.26.解:(1)与∠D相等的角为∠DCG,∠ECF,∠B,理由如下:∵AD∥BC,∴∠D=∠DCG,∵∠FCG=90°,∠DCE=90°,∴∠ECF=∠DCG,∴∠D=∠ECF,∵AB∥DC,∴∠DCG=∠B,∴∠B=∠D,∴与∠D相等的角为∠DCG,∠ECF,∠B;(2)∵∠ECF=25°,∠DCE=90°,∴∠FCD=65°,又∵∠BCF=90°,∴∠BCD=65°+90°=155°;(3)如图,当点C在线段BH上时,点F在DA延长线上,∠ECF=∠DCG=∠B=25°,∴∠BAF=∠B=25°;如图,当点C在BH延长线上时,点F在线段AD上,∵∠B=25°,AD∥BC,∴∠BAF=180°﹣25°=155°.综上所述,∠BAF的度数为25°或155°.27.解:(1)设甲种消毒液的单价为x元,乙种消毒液的单价为y元,依题意得:,解得:,答:甲种消毒液的单价为18元,乙种消毒液的单价为25元;(2)设需要300ml的空瓶m个,500ml的空瓶n个,依题意得:(300+20)m+(500+20)n=11200,∴m=35﹣n,∵m,n均为非负整数,∴或或,当m=35,n=0时,总损耗为20(m+n)=700(ml);当m=22,n=8时,总损耗为20(m+n)=600(ml);当m=9,n=16时,总损耗为20(m+n)=500(ml);∵700>600>500,∴分装成300ml的9瓶,500ml的16瓶时,总损耗最小,此时需要300ml的空瓶9个,500ml的空瓶16个.28.解:(1)由题意得:∠EFH=∠BEF+∠DHF,故答案为:∠EFH=∠BEF+∠DHF;(2)过点F作FN∥AB,则∠NFM=∠AMH,∠NFE=∠BEF.∵AB∥CD,FN∥AB,∴NF∥CD,∴∠DHF=∠AMH=∠NFM.∵∠NFM=∠NFE+∠EFH,∴∠DHF=∠EFH+∠BEF.(3)由(2)可知,∠PND=∠BEP+∠EPF.∵∠PND=75°,∠EPF=35°,∴∠PEF=∠PND﹣∠EPF=75°﹣35°=40°.∴∠AEQ=∠PEF=40°.由(1)可知,∠PQM=∠AEQ+∠QMC,∵∠PQM=95°,∴∠QMC=∠PQM﹣∠AEQ=95°﹣40°=55°.。
人教版七年级下册数学《期中考试试题》含答案解析
![人教版七年级下册数学《期中考试试题》含答案解析](https://img.taocdn.com/s3/m/ea960518effdc8d376eeaeaad1f34693daef10b1.png)
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)1. 下列各项中,是一元一次方程的是( )A. x ﹣2y=4B. xy=4C. 3y ﹣1=4D. 144x - 2. 已知x y >,则下列不等式成立的是( ) A. 11x y -<- B. 33x y < C. x y -<- D.22x y < 3. 用“加减法”将方程组325353x y x y -=⎧⎨+=-⎩中的x 消去后得到的方程是() A. 32y = B. 78y = C. 72y -= D. 78y -= 4. 不等式组12x ≤<的解集在数轴上可表示为() A.B. C. D.5. 不等式组 26x m x x >⎧⎨-+<-⎩的解集是x 4>,那么m 的取值范围是 A. m 4≤B. m 4≥C. m 4<D. m 4= 6. 方程组23x y x y +=⎧⎨+=⎩■的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为( ) A. 1、2 B. 1、5 C. 5、1 D. 2、47. 下列变形正确的是( )A 若m >n ,则mc >ncB. 若m >n ,则mc 2>nc 2C. 若m >b ,b <c ,则m >cD. 若m+c 2>n+c 2,则m >n8. 不等式组211112x x -≤⎧⎪⎨-<⎪⎩的整数解的个数为( ) A 0个 B. 2个 C. 3个 D. 无数个 9. 一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元. 若设这件羽绒服的成本是x 元,根据题意,可得到的方程是A x(1+50%) 80%=x-250B. x(1+50%) 80%=x+250C. (1+50%x) 80%=x-250D. (1+50%x) 80%=250-x10. 某人要完成2.1千米的路程,并要在不超过18分钟的时间内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑( )A. 3分钟B. 4分钟C. 4.5分钟D. 5分钟二 填空题( 每小题3分,共15分)11. 把二元一次方程2x+y —3=0化成用x 表示y 的形式,则y=_____.12. x 3倍与5的和大于8,用不等式表示为________________ .13. 已知:237x y y z x z +=⎧⎪+=⎨⎪+=⎩,则x y z ++=__________.14. 不等式1﹣2x <6的负整数解是___________.15. 如图,由八块相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是_____.三.解答题(共8小题,共75分)16. 解下列方程:(1)2(x +3)=5(x -3)2123x -()=435x --x 17. 解二元一次方程组:27{320x y x y -=+=. 18. 解不等式223x x -≤+,并把它的解集表示在数轴上. 19. 解不等式组:{3(x 2)x 42x 13>x 1-≥-+-①②并写出它的所有的整数解.20. 已知23x y =-⎧⎨=-⎩和41x y =⎧⎨=⎩是二元一次方程35mx ny -=的两个解. (1)求、的值;(2)若x<-2,求的取值范围.21. 已知方程组331x y ax y a+=+⎧⎨-=-⎩的解是一对正数,求的取值范围.22. 一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天后两队合作.()1求甲、乙合作多少天才能把该工程完成.()2在()1条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元.23. 某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.答案与解析一、选择题(每小题3分,共30分)1. 下列各项中,是一元一次方程的是( )A. x ﹣2y=4B. xy=4C. 3y ﹣1=4D. 144x - [答案]C[解析][分析]根据一元一次方程的定义进行分析判断即可.[详解]A 选项中的方程24x y -=中有两个未知数,所以不是一元一次方程;B 选项中的方程4xy =中有两个未知数,所以不是一元一次方程;C 选项中的方程314y -=是一元一次方程,所以可以选C ;D 选项中的式子144x -不是方程,所以不能选D. 故选C.[点睛]熟知“一元一次方程的定义:含有一个未知数,且含未知数的项的次数都是1的整式方程叫做一元一次方程”是解答本题的关键.2. 已知x y >,则下列不等式成立的是( )A. 11x y -<-B. 33x y <C. x y -<-D. 22x y < [答案]C[解析][分析]根据不等式的性质逐项分析.[详解]A 在不等式的两边同时减去1,不等号的方向不变11x y ->-,故A 错误;B 在不等式的两边同时乘以3,不等号的方向不变33x y >,故B 错误;C 在不等式的两边同时乘以-1,不等号的方向改变,故C 正确;D 在不等式的两边同时乘以12,不等号的方向不变22x y >,故D 错误. [点睛]本题主要考查不等式的性质,(1)在不等式的两边同时加上或减去同一个数,不等号的方向不变;(2)在不等式的两边同时乘以或除以(不为零的数)同一个正数,不等号的方向不变;(3)在不等式的两边同时乘以或除以(不为零的数)同一个负数,不等号的方向改变.3. 用“加减法”将方程组325353x y x y -=⎧⎨+=-⎩中的x 消去后得到的方程是() A. 32y =B. 78y =C. 72y -=D. 78y -= [答案]D[解析][分析]根据方程组中每一个方程中未知数x 的系数可知,两方程相减即可消去x ,据此即可得.[详解]325353x y x y -=⎧⎨+=-⎩①②, ①-②,得:-7y=8,故选D.[点睛]本题考查了二元一次方程组的解法——加减法,根据方程组的特点灵活选用加减法或代入法进行求解是关键.4. 不等式组12x ≤<的解集在数轴上可表示为() A.B. C.D.[答案]C[解析] [分析]先在数轴上表示出不等式组的解集,然后再根据选项选出即可.[详解]不等式组1≤x<2的解集在数轴上可表示为:,故选C.[点睛]本题考查了在数轴上表示不等式的解集,能把不等式组的解集要数轴上表示出来是解此题的关键.5. 不等式组 26x m x x >⎧⎨-+<-⎩的解集是x 4>,那么m 的取值范围是 A. m 4≤B. m 4≥C. m 4<D. m 4=[答案]A[解析][分析]先求出不等式的解集,再根据不等式组的解集得出答案即可.[详解]解:26x m x x >⎧⎨-+<-⎩①②,解不等式②,得:x 4>,∵不等式组 26x m x x >⎧⎨-+<-⎩的解集是x 4>, ∴m 4≤故选择:A[点睛]本题考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m 的不等式是解此题的关键.6. 方程组23x y x y +=⎧⎨+=⎩■的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为( ) A. 1、2B. 1、5C. 5、1D. 2、4 [答案]C[解析][分析]把x =2代入x+y=3求出y,再将x,y 代入2x+y 即可求解.[详解]根据 {x 2y ==,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5故被遮盖的两个数分别为5和1.故选C .[点睛]主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y 值为解题关键. 7. 下列变形正确的是( )A. 若m >n ,则mc >ncB. 若m >n ,则mc 2>nc 2C. 若m >b ,b <c ,则m >cD. 若m+c 2>n+c 2,则m >n[答案]D[解析][分析]直接利用不等式的基本性质分别判断得出答案.[详解]A 、若m >n ,则mc >nc ,只有c 为正数时成立,故此选项错误;B 、若m >n ,则mc ²>nc ²,只有c 不等于0时成立,故此选项错误;C 、若m >b ,b <c ,则m >c ,不一定成立,故此选项错误;D 、若m +c ²>n +c ²,则m >n ,故此选项正确.故选:D .[点睛]此题主要考查了命题与定理,正确把握不等式的基本性质是解题关键.8. 不等式组211112x x -≤⎧⎪⎨-<⎪⎩的整数解的个数为( ) A. 0个B. 2个C. 3个D. 无数个[答案]C[解析][详解]可把不等式组化为 211112x x -≤⎧⎪⎨-<⎪⎩,即21x -<≤,整数为:-1,0,1, 故答案选C.考点:不等式组的整数解.9. 一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元. 若设这件羽绒服的成本是x 元,根据题意,可得到的方程是A. x(1+50%) 80%=x-250B. x(1+50%) 80%=x+250C. (1+50%x) 80%=x-250D. (1+50%x) 80%=250-x[答案]B[解析]标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%, 则可列方程为:(1+50%)x×80%=x+250, 故选B .10. 某人要完成2.1千米的路程,并要在不超过18分钟的时间内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑( )A. 3分钟B. 4分钟C. 4.5分钟D. 5分钟[答案]B[解析][分析]设这人跑了x分钟,则走了(18-x)分钟,根据速度×时间=路程结合要在18分钟内到达,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其中的最小值即可得出结论.[详解]解:设这人跑了x分钟,则走了(18-x)分钟,根据题意得:210x+90(18-x)≥2100,解得:x≥4,答:这人完成这段路程,至少要跑4分钟.故选:B.[点睛]本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.二填空题( 每小题3分,共15分)11. 把二元一次方程2x+y—3=0化成用x表示y的形式,则y=_____.[答案]3-2x.[解析][分析]题意得将原式表示成y=ax+b的形式.[详解]∵2x+y=3,∴y=3-2x,故答案为:y=3-2x.[点睛]此题考查了解二元一次方程,解题的关键是将x看做已知数,y看做未知数.12. x的3倍与5的和大于8,用不等式表示为________________ .x+>[答案]358[解析][分析]先表示出x的3倍,再表示出与5的和,最后根据大于8即可得不等式.[详解]x的3倍为3x,x的3倍与5的和为3x+5,所以x的3倍与5的和大于8为:3x+5>8,故答案为3x+5>8.[点睛]本题考查由实际问题抽象出一元一次不等式,根据关键语句,弄清运算的先后顺序和不等关系,从而得出不等式是关键.13. 已知:237x yy zx z+=⎧⎪+=⎨⎪+=⎩,则x y z++=__________.[答案]6[解析][分析]根据方程组的特点,三个方程相加即可求出x+y+z的值.[详解]237x yy zx z+=⎧⎪+=⎨⎪+=⎩①②③,(①+②+③)÷2,得x+y+z=6,故答案为6.[点睛]本题考查了三元一次方程组的特殊解法,根据方程组中每一个方程的系数特点确定合适的解法是关键.14. 不等式1﹣2x<6的负整数解是___________.[答案]﹣2,﹣1[解析]试题分析:根据不等式的性质求出不等式的解集,找出不等式的整数解即可.解:1﹣2x<6,移项得:﹣2x<6﹣1,合并同类项得:﹣2x<5,不等式的两边都除以﹣2得:x >﹣,∴不等式的负整数解是﹣2,﹣1,故答案为﹣2,﹣1.点评:本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.15. 如图,由八块相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是_____.[答案]675cm 2[解析][分析]假设小长方形的长、宽分别为a 、b ,通过图形中大长方形的边长关系,可列出二元一次方程组,求得a 、b 的值,进而求得面积.[详解]设小长方形的长、宽分别为acm 、bcm.由题意可列方程组:a+b=602a=a+3b ⎧⎨⎩, 解得:a=45b=15⎧⎨⎩, 每块小长方形地砖的面积:45×15=675(cm 2), 故填:675cm 2.[点睛]本题考查二元一次方程组在几何问题中的应用,结合图形找到两组等量关系是关键.三.解答题(共8小题,共75分)16. 解下列方程:(1)2(x +3)=5(x -3)2123x -()=435x --x [答案](1)x=7;(2)x=12. [解析][分析]按:去分母,去括号,移项,合并同类项,系数化为1等步骤解方程.[详解]解:(1)去括号,得 2x+6=5x-15移项,得2x-5x=-6-15合并同类项,得-3x=-21系数化为1,得x=7(2)去分母,得 5(2x-1) =3(4-3x) – 15x去括号,得10x – 5=12-9x-15x移项,合并同类项,得34x=17 ,系数化为1,得 x=12[点睛]本题考核知识点:解一元一次方程.解题关键点:理解解方程的一般步骤.17. 解二元一次方程组:27{320x y x y -=+=. [答案]2{3x y ==-.[解析][分析] 解此方程组利用加减消元法求出解即可.详解]解:27{320x y x y -=+=①②①×2+②得:7x=14,即x=2,把x=2代入①得:y=-3,则方程组的解为2{3x y ==-.[点睛]本题考查解二元一次方程组.18. 解不等式223x x -≤+,并把它的解集表示在数轴上. [答案]1x ≥-,数轴见解析[解析][分析]按照去分母,去括号,移项,合并同类项,系数化为1的步骤解不等式即可,然后按照大于向右画,小于向左画,有等号是实心圆点,没有等号是空心圆点即可在数轴上表示出解集.[详解]去分母得,23(2)x x -≤+,去括号得,263x x -≤+,移项得,362x x --≤-,合并同类项得,44x -≤,系数化为1得,1x≥-,数轴如图:[点睛]本题主要考查解一元一次不等式,掌握不等式的解法及用数轴表示不等式解集的方法是解题的关键.19. 解不等式组:{3(x2)x42x13>x1-≥-+-①②并写出它的所有的整数解.[答案]1、2、3[解析][分析]解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).最后求出整数解即可.[详解]解:解不等式①得,x≥1,解不等式②得,x<4,∴不等式组的解集是1≤x<4.∴不等式组的所有整数解是1、2、3.[点睛]解一元一次不等式组,一元一次不等式组的整数解.20. 已知23xy=-⎧⎨=-⎩和41xy=⎧⎨=⎩是二元一次方程35mx ny-=的两个解.(1)求、的值;(2)若x<-2,求的取值范围.[答案](1)21mn=⎧⎨=⎩(2)y<-3[解析]分析:(1)把x与y的两对值代入方程计算求出m与n的值即可;(2)由方程求出x的表达式,解不等式即可.详解:(1)把23xy=-⎧⎨=-⎩和41xy=⎧⎨=⎩代入方程得:295435m nm n-+=⎧⎨-=⎩,解得:21mn=⎧⎨=⎩;(2)当21m n =⎧⎨=⎩时,原方程变为:2x -3y =5,解得:x =532y +. ∵x <-2,∴532y +<-2,解得:y <-3. 点睛:本题考查了二元一次方程组的解,以及解一元一次不等式,熟练掌握运算法则是解答本题的关键.21. 已知方程组331x y a x y a +=+⎧⎨-=-⎩的解是一对正数,求的取值范围. [答案]1 2.2a -<<[解析][分析]先解方程组,再由题意列不等式组可得答案.详解]解:331x y a x y a +=+⎧⎨-=-⎩①② ①+②得:242,x a =+21,x a ∴=+把21x a =+代入①得:2,y a =-+21,2x a y a =+⎧∴⎨=-+⎩0,0x y ⎧⎨⎩>> 21020a a +⎧∴⎨-+⎩>> ③④ 解③得:1,2a -> 解④得:2,a <不等式组的解是12.2a -<< a ∴的取值范围是1 2.2a -<<. [点睛]本题考查的是二元一次方程组与一元一次不等式组联系,掌握其解法是解题关键.22. 一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天后两队合作.()1求甲、乙合作多少天才能把该工程完成.()2在()1的条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元.[答案](1)甲、乙合作20天才能把该工程完成;(2)完成此项工程需付给甲、乙两队共120000元.[解析][分析](1)设甲、乙合作x天才能把该工程完成,由题意一项工程甲单独做要40天完成,乙单独做需要50天完成,可以得出甲每天做整个工程的140,乙每天做整个工程的150,根据文字表述得到题目中的相等关系是:甲完成的部分+两人共同完成的部分=1,根据等量关系列出方程,然后求解即可;(2)根据甲、乙两队工作天数以及每个队每天的施工费用,每天的施工费用×施工天数即可求得. [详解]()1设甲、乙合作x天才能把该工程完成,根据题意得:1114x1 404050⎛⎫⨯++=⎪⎝⎭,解得:x20=.答:甲、乙合作20天才能把该工程完成;()2甲队的费用为()250020460000(⨯+=元),乙队的费用为30002060000(⨯=元),6000060000120000(+=元).答:完成此项工程需付给甲、乙两队共120000元.[点睛]本题考查了一元一次方程的应用,弄清题意,找到等量关系是解题的关键.23. 某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.[答案](1)甲种商品购进100件,乙种商品购进60件.(2)有两种购货方案,方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一.[解析][分析](1)设甲种商品购进x件,乙种商品购进y件,根据题意列出二元一次方程组即可求解;(2)设甲种商品购进a件,则乙种商品购进(160-a)件,根据题意列出不等式组,再根据实际情况进行求解.[详解]解:(1)设甲种商品购进x件,乙种商品购进y件.根据题意,得1605101100x yx y+=⎧⎨+=⎩解得100,60.xy=⎧⎨=⎩答:甲种商品购进100件,乙种商品购进60件. (2)设甲种商品购进a件,则乙种商品购进(160-a)件.根据题意,得1535(160-)4?300, 510(160-)1?260.a aa a+<⎧⎨+>⎩解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴ 160-a相应取94,93.所以有两种购货方案,方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一.[点睛]此题主要考查不等式组的应用,解题的关键是根据题意列出方程组或不等式组进行求解.。
2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)
![2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)](https://img.taocdn.com/s3/m/ed8145b2f71fb7360b4c2e3f5727a5e9856a27dc.png)
最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、9的算术平方根是()A.±3B.3C.﹣3D.2、下列数是无理数的有()A.B.﹣1C.0D.3、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)4、下列是真命题的是()A.有理数与数轴上的点一一对应B.内错角相等C.同一平面内,垂直于同一条直线的两条直线互相平行D.负数没有立方根5、如图,下列各组条件中,能得到AB∥CD的是()A.∥1=∥3B.∥2=∥4C.∥B=∥D D.∥B+∥2=180°6、中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛、羊各直金几何?“译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为()A.B.C.D.7、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣18、如图,将∥ABC沿BC方向平移3cm得到∥DEF,若∥ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cm C.27cm D.33cm9、如图,直线m∥n,∥1=70°,∥2=30°,则∥A等于()A.30°B.35°C.40°D.50°10、已知关于x、y的方程组的解满足x+y=6,则a的值为()A.1B.2C.﹣2D.11第8题第9题第15题二、填空题(每小题3分,满分18分)11、设n为正整数,且,则n的值为.12、若y=+2,则y=.13、若是二元一次方程ax+by=﹣1的一个解,则3a﹣2b+2024的值为.14、已知=1.038,=2.237,=4.820,则=.15、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∥1+∥2+∥3=°.16、如果,其中m,n为有理数,那么m+n=.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1)2023+|1﹣|+﹣.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、已知方程组的解和方程组的解相同,求(2a+b)2024.20、∥ABC与∥A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A(,),B(,),C(,);(2)若∥A'B'C'是由∥ABC平移得到的,点P(x,y)是∥ABC内部一点,则∥A'B'C'内与点P相对应点P'的坐标为(,);(3)求∥A'B'C'的面积.21、已知:如图,DE∥BC,BD平分∥ABC,EF平分∥AED.(1)求证:EF∥BD;(2)若BD∥AC,∥C=2∥2,求∥A的度数.22、在平面直角坐标系xOy中,已知点P(a﹣1,4a),分别根据下列条件进行求解.(1)若点P在y轴上,求此时点P坐标;(2)若点P在过点A(2,8)且与x轴平行的直线上,求此时a值;(3)若点P的横纵坐标相等,Q为x轴上的一个动点,求此时PQ的最小值.23、水果店2月份购进甲种水果50千克、乙种水果80千克,共花费1600元,其中甲种水果以20元/千克,乙种水果以15元/千克全部售出;3月份又以同样的价格购进甲种水果30千克、乙种水果40千克,共花费880元,由于市场不景气,3月份两种水果均以2月份售价的9折全部售出.(1)求甲、乙两种水果的进价每千克分别是多少元?(2)请计算该水果店2月和3月甲、乙两种水果总赢利多少元?24、规定:若P(x,y)是以x,y为未知数的二元一次方程ax+by=c的正整数解,则称此时点P为二元一次方程ax+by=c的“理想点”.请回答以下关于x,y的二元一次方程的相关问题.(1)方程x+2y=3的“理想点”P的坐标为.(2)已知m,n为非负整数,且,若是方程2x+ y=13的“理想点”,求的值;(3)“郡园点”P(x,y)满足关系式:,其中m为整数,求“理想点”P的坐标.25、如图,在平面直角坐标系中,A,B坐标分别为A(0,a)、B(b,a),且a,b满足:,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求C,D两点的坐标及四边形ABDC的面积;(2)点P是线段BD上的一个动点,连接P A,PO,当点P在BD上移动时(不与B,D重合),的值是否发生变化,并说明理由;(3)已知点M在y轴上,连接MB、MD,若∥MBD的面积与四边形ABDC 的面积相等,求点M的坐标.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、7 12、2 13、2023 14、22.37 15、360 16、5三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣218、119、720、解:(1)A(1,3),B(2,0),C(3,1)(2)答案为:x﹣4,y﹣2 (3)2.21、(1)略(2)60°22、(1)P(0,4)(2)a=2 (3)P(﹣,﹣),最小值为.23、(1)甲种水果的进价为每千克16元,乙种水果的进价为每千克10元.(2)该水果店2月和3月甲、乙两种水果共赢利800元.24、(1)P的坐标为(1,1)(2)m=25,n=3(3)P(1,1)25、(1)四边形ABDC的面积是15(2)值为1,值不发生变化(3)M的坐标为(0,18)或(0,﹣42)。
人教版七年级下册数学期中考试试题带答案
![人教版七年级下册数学期中考试试题带答案](https://img.taocdn.com/s3/m/acfb03b15ff7ba0d4a7302768e9951e79b896996.png)
人教版七年级下册数学期中考试试卷一、单选题1.将图中所示的图案平移后得到的图案是()A .B .C .D .2.在平面直角坐标系中位于第二象限的点是()A .()2,3B .()2,3-C .()2,3-D .()2,3--3.在3.1415926、0.6、3π、8-227中无理数有()个A .1B .2C .3D .44.如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠1等于()A .35°B .45°C .55°D .65°5.下列各组数中,互为相反数的一组是()A .﹣2B .﹣2C .﹣2与﹣12D .|﹣2|与26.如图,体育课上测量跳远成绩的依据是()A .平行线间的距离相等B .两点之间,线段最短C .垂线段最短D .两点确定一条直线7.如图所示,点E 在BC 的延长线上,下列条件中不能判定AB//CD 的是()A .180D DAB ∠+∠=︒B .12∠=∠C .B DCE ∠=∠D .34∠=∠8.如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A .(2,2)B .(-2,2)C .(3,2)D .(3,1)9.坐标平面内,点P 在y 轴右侧,且点P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是()A .(2,3)B .(3,2)C .(2,3)或(2,-3)D .(3,2)或(3,-2)10.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③垂直于同一条直线的两条直线平行:④同旁内角互补.其中错误的有()A .1个B .2个C .3个D .4个二、填空题11的平方根是.12.把命题“同角的余角相等”改写成“如果……,那么……”的形式:______________.13.若a 、b 为实数,且满足20a -+,则b a -的值为________.14.在平面直角坐标系中,线段A B ''是由线段AB 经过平移得到的,已知点()2,1A -的对应点为()3,1A '-,点B 的对应点为()4,0B ',则点B 的坐标为________.15.两个角的两边分别平行,其中一个角是30°,则另一个角是________.三、解答题16.计算:(1)(21-17.已知23m -和12m -是一个正数的两个不同的平方根,求m 的值和这个正数.18.如下图,已知点()5,4A -、()8,1B -、()3,0C -、()5,2D -、()4,2D '-(1)计算ABC 的面积;(2)把方格纸中的ABC 平移,使点D 平移到点D ¢的位置,画出平移后的三角形,并写出平移后点A ',B ',C '的坐标.19.如图所示,AB//CD ,∠1=75°,求3∠的度数.20.如图,EB ∥DC ,∠C=∠E ,请你说出∠A=∠ADE 的理由.21.如图,//EF AD ,12∠=∠,70BAC ∠=︒.将求AGD ∠的过程填写完整.解:∵//EF AD ,(已知)∴2∠=________()又∵12∠=∠()∴13∠=∠()∴//AB ________()∴BAC ∠+________180=︒()又∵70BAC ∠=︒,()∴AGD ∠=________.22.如图,已知12l l //,且3l 与1l ,2l 分别交于A ,B 两点,点P 在直线AB 上.(1)当点P 在A ,B 两点之间运动时,求1∠,2∠,3∠之间的数量关系,并说明理由.(2)如果点P 在A ,B 两点外侧运动,试探究1∠,2∠,3∠之间的数量关系(点P 与A ,B 不重合),并说明理由.23.在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A (-2,0),B (-4,4),C (3,-3).(1)画出△ABC ;(2)画出△ABC 向右平移3个单位长度,再向上平移5个单位长度后得到的△111A B C ,并求出平移后图形的面积.24.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0.(1)a=___,b=___,△BCD的面积为______;(2)如图2,若AC⊥BC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当∠CPQ=∠CQP时,求证:BP平分∠ABC;(3)如图3,若AC⊥BC,点E是点A与点B之间一动点,连接CE,CB始终平分∠ECF,当点E在点A与点B之间运动时,BECBCO∠∠的值是否变化?若不变,求出其值;若变化,请说明理由.参考答案1.C 【详解】图形的平移,只改变图形的位置,不改变图形的形状和大小,故选C.2.B 【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可.【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B (-2,3)符合,故选:B .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.B 【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:3.1415926、0.6是有限小数,属于有理数;8-6=是整数,属于有理数;227是分数,属于有理数;无理数有3π2个,故选:B .【点睛】本题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.A试题分析:利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠A=35°.解:如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠A=35°.故选A.5.A【分析】根据相反数的概念、性质及根式的性质化简即可判定选择项.【详解】解:A=2,﹣2与2互为相反数,故选项正确;B2,﹣2与﹣2不互为相反数,故选项错误;C、﹣2与12-不互为相反数,故选项错误;D、|﹣2|=2,2与2不互为相反数,故选项错误.故选:A.【点睛】本题考查了算术平方根,立方根,相反数的概念,掌握相关概念并对数据进行化简是解题关键.6.C【分析】根据垂线段最短即可得.【详解】体育课上测量跳远成绩是:落地时脚跟所在点到起跳线的距离,依据的是垂线段最短【点睛】本题考查了垂线段最短的应用,掌握体育常识和垂线段公理是解题关键.7.D【详解】∵∠D+∠DAB=180∘,∴AB∥CD,故A正确;∵∠1=∠2,∴AB∥CD,故B正确;∵∠B=∠DCE,∴AB∥CD;故C正确;∵∠3=∠4,∴AD∥BC,故D错误;故选D.8.C【分析】根据“车”的位置,向右2个单位,向下3个单位确定出坐标原点,建立平面直角坐标系,然后写出“炮”的坐标即可.【详解】解:∵“车”的坐标为(-2,3),“马”的坐标为(1,3),∴建立平面直角坐标系如图,∴“炮”的坐标为(3,2).故选C.【点睛】本题考查了坐标位置的确定,确定出坐标原点的位置是解题的关键.9.D【详解】试题分析:点到x轴的距离是点的纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值.∵点P在y轴右侧,且点P到x轴的距离是2,到y轴的距离是3∴点P的坐标是(3,2)或(3,-2)故选D.考点:点到坐标轴的距离点评:本题属于基础应用题,只需学生熟练掌握点到坐标轴的距离的定义,即可完成. 10.C【分析】根据对顶角的性质、同旁内角的概念、平行公理及推论逐一进行判断即可.【详解】解:①对顶角相等,原命题正确;②过直线外一点有且只有一条直线与已知直线平行,原命题错误;③在同一平面内,垂直于同一条直线的两条直线平行,原命题错误;④两直线平行,同旁内角互补,原命题错误.故选:C.【点睛】本题考查了平行公理及推论,对顶角、邻补角和同旁内角等知识,熟记其概念和性质是解题的关键.11.±2.【详解】±2.故答案为±2.12.如果两个角是同一个角的余角,那么这两个角相等【分析】根据“如果”后面接的部分是题设,“那么”后面接的部分是结论,即可解决问题.【详解】解:命题“同角的余角相等”,可以改写成:如果两个角是同一个角的余角,那么这两个角相等.故答案为:如果两个角是同一个角的余角,那么这两个角相等.【点睛】本题考查命题与定理,解题的关键是掌握“如果”后面接的部分是题设,“那么”后面接的部分是结论.13.1【分析】据非负数的性质列出方程,求出a 、b 的值,代入代数式计算即可.【详解】解:由题意得,20a -=,30b -=,解得,2a =,3b =,∴321b a -=-=,故答案为:1.【点睛】本题考查了绝对值、算术平方根和非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.14.(-1,2).【分析】直接利用平移中点的变化规律求解即可.【详解】解:横坐标从-2到3,说明是向右移动了3-(-2)=5,纵坐标从1到-1,说明是向下移动了1-(-1)=2,求原来点的坐标,则为让新坐标的横坐标都减5,纵坐标都加2.则点B 的坐标为(-1,2).故答案为:(-1,2).【点睛】本题考查了图形的平移变换,注意左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.求原来点的坐标正好相反.15.30︒或150︒【分析】若两个角的两边分别平行,那么这两个角相等或互补,根据已知条件分情况画出图形,就可求解.【详解】解:如图(1)∵AB∥DE,∴∠A=∠1=30°,∵AC∥EF,∴∠E=∠1,∴∠A=∠E=30°如图(2)∵AC∥EF,∴∠A=∠1=30°,∵DE∥AB,∴∠E+∠1=180∘,∴∠A+∠E=180∘,∴∠E=180°−∠A=180°−30°=150°故一个角是30°,则另一个角是30°或150°故答案为30°或150°【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出另一个角为30°或150°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等或互补的角是关键.16.(1(2)3.【分析】(1)原式去括号,合并同类二次根式即可得到答案;(2)根据立方根、算术平方根和绝对值的代数意义化简各项后再进行加减运算即可得到答案.【详解】解:(1)=(21-=221+=3+【点睛】此题主要考查了实数的混合运算以及二次根式的加减法,熟练掌握运算法则是解答此题的关键.17.m=5,这个正数是49.【分析】由平方根的性质列出关于m的方程,代入2m-3或m-12可得这个正数.【详解】解:根据题意知2m-3+m-12=0,解得m=5,则2m-3=7,m-12=-7,∴这个正数的两个平方根是±7,故这个正数是49.【点睛】本题考查了平方根,注意:一个正数有两个平方根,它们互为相反数.18.(1)△ABC的面积为9;(2)作出的△A′B′C′见解析,A′(4,0),B′(1,-3),C′(6,-4).【分析】(1)利用△ABC所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解;(2)根据点D、D′确定出平移规律,再根据网格结构找出点A、B、C平移后的对应点A′、B′、C′的位置,然后顺次连接,再根据平面直角坐标系写出各点的坐标即可.【详解】(1)△ABC的面积111 54335124 222=⨯-⨯-⨯⨯-⨯⨯=20-4.5-2.5-4,=20-11,=9;(2)∵D(−5,2)平移后的坐标为D'(4,-2),∴平移的规律是:向右平移9个单位,再向下平移4个单位,∴△A′B′C′如图所示;∴A′(4,0),B′(1,-3),C′(6,-4).【点睛】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.19.∠3的度数为105°.【分析】利用“两直线平行,同位角相等”求得∠2,再利用邻补角的定义即可求解.【详解】解:∵直线AB∥CD,∴∠1=∠2(两直线平行,同位角相等),∵∠3+∠2=180°,∴∠3=180°-∠2=180°-75°=105°.故∠3的度数为105°.【点睛】本题考查了平行线的性质以及邻补角的定义,用到的知识点为“两直线平行,同位角相等”.20.见解析【分析】由∠C与∠E的关系,以及平行线EB∥DC,可得出ED与AC的关系,进而求出角的关系.【详解】解:∵EB∥DC,∴∠C=∠ABE(两直线平行,同位角相等)∵∠C=∠E,∴∠E=∠ABE(等量代换)∴ED∥AC(内错角相等,两直线平行)∴∠A=∠ADE(两直线平行,内错角相等).【点睛】本题考查平行线的判定和性质,熟练掌握平行线的性质及判定是正确解题的关键.21.∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠DGA;两直线平行,同旁内角互补;已知;110°.【分析】根据平行线的判定与性质进行填空即可.【详解】解:∵EF∥AD(已知)∴∠2=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠1=∠3(等量代换)∴AB ∥DG (内错角相等,两直线平行)∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补)又∵∠BAC=70°(已知)∴∠AGD=110°.故答案为:∠3;两直线平行,同位角相等;已知;等量代换;DG ;内错角相等,两直线平行;∠DGA ;两直线平行,同旁内角互补;已知;110°.【点睛】本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.22.(1)123∠+∠=∠,见解析;(2)123∠-∠=∠或213∠-∠=∠,见解析.【分析】(1)过点P 作l 1的平行线,根据平行线的性质进行解题;(2)当点P 在下侧时,过点P 作l 1的平行线PQ ,由平行线的性质可得出l 1∥l 2∥PQ ,由此即可得出结论.【详解】(1)123∠+∠=∠.理由如下:如图所示,过点P 作1//PQ l .12//l l ,12////l l PQ ∴,14∴∠=∠,25∠=∠.453∠+∠=∠ ,123∴∠+∠=∠.(2)123∠-∠=∠或213∠-∠=∠.理由如下:如图所示,当点P 在下侧时,过点P 作1l 的平行线PQ.12//l l ,12////l l PQ ∴,24∴∠=∠,134∠=∠+∠,123∴∠-∠=∠.当点P 在上侧时,同理可得213∠-∠=∠.【点睛】本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.23.(1)见解析;(2)面积为7【分析】(1)根据A ,B ,C 三点坐标描出各点,顺次连接各点即可;(2)根据图形平移的性质画出△A 1B 1C 1,利用正方形的面积减去三个顶点上三角形的面积及矩形的面积即可.【详解】解:(1)如图:(2)如图,△A1B1C1面积=7×7-12×2×4-12×3×5-12×7×7-2×3=49-4-1549 22-6=7.故答案为7【点睛】本题考查的是作图-平移变换,熟知图形平移不变性的性质和网格图中求面积的方法是解答此题的关键.24.-3-46【解析】分析:(1)求出CD的长度,再根据三角形的面积公式列式计算即可得解;(2)根据等角的余角相等解答即可;(3)首先证明∠ACD=∠ACE,推出∠DCE=2∠ACD,再证明∠ACD=∠BCO,∠BEC=∠DCE=2∠ACD即可解决问题;详解:(1)解:如图1中,∵|a+3|+(b-a+1)2=0,∴a=-3,b=4,∵点C(0,-3),D(-4,-3),∴CD=4,且CD∥x轴,∴△BCD的面积=1212×4×3=6;故答案为-3,-4,6.(2)证明:如图2中,∵∠CPQ=∠CQP=∠OPB,AC⊥BC,∴∠CBQ+∠CQP=90°,又∵∠ABQ+∠CPQ=90°,∴∠ABQ=∠CBQ,∴BQ平分∠CBA.(3)解:如图3中,结论:BECBCO∠∠=定值=2.理由:∵AC⊥BC,∴∠ACB=90°,∴∠ACD+∠BCF=90°,∵CB平分∠ECF,∴∠ECB=∠BCF,∴∠ACD+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠ACD=∠ACE,∴∠DCE=2∠ACD,∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,∴∠ACD=∠BCO,∵C(0,-3),D(-4,-3),∴CD∥AB,∠BEC=∠DCE=2∠ACD,∴∠BEC=2∠BCO,∴BEC BCO∠∠=2.点睛:本题考查了坐标与图形性质,三角形的角平分线,三角形的面积,三角形的内角和定理,三角形的外角性质等知识,熟记性质并准确识图是解题的关键.。
北师大版七年级下数学期中综合复习题及答案
![北师大版七年级下数学期中综合复习题及答案](https://img.taocdn.com/s3/m/e777eefcfab069dc5022011a.png)
知识点综合复习知识回顾填空: 一、整式的运算1. 叫做单项式, 叫做多项式,单项式和多项式统称 .单项式的次数是指 ,多项式的次数是指 .2.整式的加减实质上就是 ,运算的结果是 .3.幂的运算:①=⋅n m a a ,②=n m a )( ,③=n ab )( ,(m 、n 都为正整数)④=÷n m a a ,(a ≠0,m 、n 均为正整数,且m >n ) 4.整式的乘法:⑴单项式乘法法则:单项式相乘,把它们的 、 分别相乘,对于只在一个单项式中出现的字母,则连同指数 ,作为积的一个因式.⑵单项式乘以多项式:就是根据 ,用单项式去乘多项式的每一项,再把所得的积 .⑶多项式乘以多项式:先用一个多项式的 乘以另一个多项式的 ,再把所得的积 .5.乘法公式:⑴平方差公式:=-+))((b a b a ,⑵完全平方公式:=+2)(b a ;=-2)(b a . 6.整式的除法:⑴单项式除以单项式:单项式相除,把 、 分别相除,作为商的因式,对于只被除式里含有的字母,则连同的它字母不变作为商的一个因式.⑵多项式除以单项式,先把这个多项式的 ,再把所得的商 . 二、相交线与平行线1.关于余角、补角及对顶角:⑴若∠α=27º42′,则∠α的余角等于 ,∠α的补角等于.⑵两直线相交,如果其中一组对顶角互补,则这两条直线相交所得的四个角的度数分别为 .2.如图所示,∠O 的同位角是 ,∠6的内错角为 ,∠7的同旁内角 .3.关于两条直线互相平行的条件:两条直线平行的条件共有三条:① ;两直线平行; ② ;两直线平行; ③ ;两直线平行;另外,如果两条直线都与第三条直线平行,那么 ;如果两条直线都与第三条直线垂直,那么 .4.关于平行线的特征:①两直线平行, ; ②两直线平行, ; ③两直线平行, ; 三、生活中的数据1.某种病毒的直径为200纳米,用科学记数法示为 米,1毫米长的一条线段上可以排 个这样的病毒.2.生活中的数据,有些是精确的,有些是近似的.如小明的身高是 1.58米,这个数据是 ,小明家有5口人,这个数据是 .3.有效数字:对于一个近似数,从左边 起,到 止,所有的数字都叫做这个数的有效数字.某种纸一张的厚度为0.017905cm ,精确到千分位为 ,有效数字是 . 四、概率1.游戏的公平性是指 .2.不可能事件发生的概率为 ,必然事件发生的概率为 ,不确定事件发生的概率 .3.概率计算:对于不确定事件A ,0<P (A )<1.掌握两种类型概率计算方法: ⑴古典概型: ; ⑵几何概型: . 训练题: 一、选择题1.下列代数中,单项式的个数是( )①m -,②x 1,③y x -2,④π,⑤3a (A )1个 (B )2个 (C )3个 (D )4个 2.下列说法正确的是( )(A )x 的系数是1,次数是1 (B )0不是整式(C )532r π的系数是53 (D )a 11+是多项式3.如图,下列说法不正确的是( )(A )∠PEF 与∠M 是同位角(B )∠PEF 与∠N 是内错角 (C )∠PEF 与∠EFP 是同旁内角 (D )∠M 与∠P 是同旁内角 4.下列等式中,能够成立的是( )(A )222)(b a b a +=+ (B )222241)21(b ab a b a +-=-(C )22244)2y xy x y x +-=- (D )22))((b a b a b a --=--- 5.1纳米=0.000000001米,则2.5纳米用科学记数法表示为( )(A )9105.2-⨯千米(B )10105.2-⨯千米(C )11105.2-⨯千米(D )12105.2-⨯千米6、下列计算正确的是( )(A )1243a a a =⋅ (B )743)(a a = (C )3632)(b a b a = (D )()043≠=÷a a a a 7.若10)42(2)3(----x x 有意义,则x 取值范围是( )(A )x ≠3 (B )x ≠2 (C )x ≠3或x ≠2 (D )x ≠3且x ≠2 8.如果∠1是的余角∠2,并且∠1=2∠2,则∠1的补角为( )(A )30º (B )60º (C )120º (D )150º9.一棵梨树上一等品的概率为87.5%,那么从树上摘一个梨不是一等品的概率为( )(A )241 (B )81(C )87.5% (D )0 10.已知M 、P 是直线AB 外两点,如果直线MN ⊥AB ,AB ⊥PQ ,那么MN 与PQ 的关系是( )(A )垂直 (B )平行 (C )垂直或平行 (D )平行或重合 二、填空题1.多项式532123--y x x 的次数是 ,其中最高次项的系数是 . 2.如图,与∠1成同位角的角有 ;与∠1成内错角的是 ; 与∠1成同旁内角的角是 .3.已知∠α是锐角,过∠α的顶点分别作两边的垂线,若这两条垂线所成锐角为60º,则该∠α等于 .4.如果∠α的补角加上30º后,等于它的余角的4倍,则这个角的度数是 度.5.化简:=------)3()2(2222b ab a b ab a . 6.如图,AB ∥CD ,EF ⊥CD ,∠1=50º,则∠EFG = .7.近似数31001.1-⨯精确到 位, 它有 个有效数字,分别是 .8.若23=n ,53=m ,则=-+123m n .9.学校要求学生穿校服,但总有一些学生要忘记.若学校有900名学生,某周一升旗仪式没穿校服的学生有18名,则任意叫出一名学生,叫到没穿校服学生的的概率为 . 10.若)32)(5(32++++x x ax x 的展开式中不含x 2的项,则a 的值为 . 三、计算题1.022)14.3()2()32(---+---π 2.)143)(143(22+++-x x x x3.)2(])1()1[(22x x x -÷+-- 4.)41()2()4121)(144(43562x x x x x x -÷-+++-四、作图题(使用尺规作图,保留作图痕迹)已知:∠α、∠β(∠α>∠β)求作:∠AOB ,使∠AOB =∠α-∠β五、袋中有红色和黄色两种球,其中红色球有6个,黄色球有4个,那么从袋中摸出一个球是红颜色的概率是多少?若要使得摸出红球的概率是54,那么袋中的球如何配置?六、已知:6=+y x ,4=xy ,求22y x +和2)(y x -的值.七、如图,已知:AB ⊥BC ,CD ⊥BC ,BE ∥CF .问:∠1和∠2有何关系?请说明理由.DCBAFE21八、下面是某地区人口和城市人口变化统计表(单位:万)(1)用一幅折线统计图表示该地区人口和城市人口的变化情况;(2)在上面所画的统计图中画出第三条折线,表示该地区农村人口变化情况; (3)比较三条折线的变化趋势,你能获取哪些信息?七年级下数学期中综合复习题(一)参考答案知识回顾填空: 一、整式的运算1.数字与字母的积组成的代数式,几个单项式的和,整式,单项式中所有字母的指数和,多项式中次数最高项的次数.2.动括号后合并同类项,一个单项式或一个多项式 3.n m a +,mn a ,n n b a ,n m a -4.⑴系数,相同字母,不变;⑵乘法分配律,相加;⑶每一项,每一项,相加. 5.⑴22b a -;⑵222b ab a ++,222b ab a +- 6.⑴系数,同底数幂;⑵每一项除以单项式,相加. 二、相交线与平行线1.⑴62º18′,152º18′;⑵90º,90º,90º,90º. 2.∠2和∠6,∠1,∠1和∠O .3.①同位角相等;②内错角相等;③同旁内角互补.这两条直线平行;这两条直线平行. 4.①同位角相等;②内错角相等;③同旁内角互补. 三、生活中的数据 1.7102-⨯,5000 2.近似数,精确数3.第一个不是0的数字,精确到的数,0.018,1、8 四、概率1.双方获胜的可能性相等. 2.0,1,在0和1之间 3.⑴所有可能的结果数可能发生的结果数事件A A P =)(;⑵图形面积所有可能结果所组成的面积可能结果所组成的图形事件)=(A A P训练题: 一、选择题1.C 2.A 3.B 4.C 5.A 6、C 7.D 8.C 9.B 10.D二、填空题 1.四,-22.∠BMG 和∠DMG ;∠NMC 和∠NMA ;∠BMN 和∠DMN . 3.60º 4.50 5.ab a -24 6.40º7.十万分,3,1、0、1 8.320 9.2% 10.23-三、计算题 1.解:原式=14149-+=23 2.解:原式=]4)13][(4)13[(22x x x x ++-+=222)4()13(x x -+ =22416169x x x -++ =110924+-x x3.解;原式=)2()2112(22x x x x x -÷---+-=)2()4(x x -÷- =24.解:原式=)48()12(41)12(4232x x x x +-++⨯-=2348)12)(12)(12(x x x x x +-+-- =23248)14)(12(x x x x +--- =2323481428x x x x x +-+-- =12+-x四、解:(略)五、解:P (摸出红球)=53466=+;若要使得摸出红球的概率是54,袋中需8个红球,2个黄球.六、解:∵ 6=+y x ,4=xy∴ 36)(2222=+=++y x y xy x ∴ 28423622=⨯-=+y x2044364)(2)(2222=⨯-=-+=+-=-xy y x y xy x y x七、答:∠1=∠2理由:∵AB ⊥BC ,CD ⊥BC (已知)∴∠ABC =∠BCD =90º(垂直定义) ∵BE ∥CF (已知)∴∠EBC =∠BCF (两直线平行,内错角相等) ∵∠1=∠ABC -∠EBC ,∠2=∠BCD -∠BCF ∴∠1=∠2八、解:(1)、(2)如下图 (3)(略)。
七年级数学下册期中考试卷(附答案)
![七年级数学下册期中考试卷(附答案)](https://img.taocdn.com/s3/m/f9cc931fb80d6c85ec3a87c24028915f814d845d.png)
七年级数学下册期中考试卷(附答案)一.选择题(共10小题,满分30分,每小题3分)1.下列方程中,属于一元一次方程的是()A.2x﹣1=0 B.1﹣x=y C.=4 D.1﹣x2=02.二元一次方程x+2y=5的非负整数解的个数是()A.4 B.3 C.2 D.13.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.>D.﹣a>﹣b4.小明用30元购买铅笔和签字笔,已知铅笔和签字笔的单价分别是2元和5元,他买了2支铅笔后,最多还能买几支签字笔?设小明还能买x支签字笔,则下列不等关系正确的是()A.5×2+2x≥30 B.5×2+2x≤30 C.2×2+2x≥30 D.2×2+5x≤305.若关于x的不等式组的整数解共有4个,则m的取值范围是()A.7<m<8 B.7≤m<8 C.7≤m≤8 D.7<m≤86.下列方程的变形正确的是()A.由3+x=5,得x=5+3 B.由x=0,得x=2C.由7x=﹣4,得x=﹣D.由3=x﹣2,得x=﹣2﹣37.如图,八块相同的小长方形地砖拼成一个大长方形,则每块小长方形地砖的宽等于()A.5cm B.10cm C.15cm D.45cm8.《孙子算经》是中国古代重要的数学著作,书中记载有这样一个问题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”译文:“现有一根木头,不知道它的长短.用一根绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木长x尺、绳子长y尺,可列方程组为()A.B.C.D.9.不等式组的整数解是()A.15 B.16 C.17 D.15,1610.如图,正方形ABCD由四个相同的大长方形,四个相同的小长方形以及一个小正方形组成,其中四个大长方形的长和宽分别是小长方形长和宽的3倍,若中间小正方形的面积为1,则大正方形ABCD的面积是()A.25 B.36 C.49 D.81二.填空题(共5小题,满分15分,每小题3分)11.关于x的一元一次方程2mx﹣1=3﹣x有解,则m的值为.12.已知方程,用含y的代数式表示x,那么.13.若|x﹣2|+|y+1|=0,则x﹣2y的值为.14.如果4m、m、6﹣2m这三个数在数轴上所对应的点从左到右依次排列,那么m的取值范围是.15.某商品的进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件元.三.解答题(共8小题,满分75分)16.(16分)解方程与方程组:(1)=1;(2).17.(10分)解不等式和不等式组,并把解集在数轴上表示出来(1)3x﹣1<7﹣x(2)(3).18.(6分)规定新运算:x*y=ax+by,其中a、b是常数.已知2*1=4,﹣1*3=﹣9.(1)求a、b的值;(2)若,求m,n的值.(3)若3x*y=1﹣7t,(﹣2)x*(﹣3)y=4t﹣3,且3x+4y<6,求t的最小整数值.19.(7分)在关于x,y的二元一次方程组中;(1)若a=3,求方程组的解;(2)若S=a(3x+y),当a为何值时,S有最小值?是多少?20.(8分)已知关于x,y的方程组的解满足2x+3y>0,试求m的取值范围.21.(9分)已知关于x的方程2x﹣3=+x的解满足|x|﹣1=0,求m的值.22.(9分)某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知购买1个篮球和2个足球共需316元;购买2个篮球和3个足球共需534元.(1)购买1个篮球和1个足球各需多少元?(2)学校准备购进篮球和足球共40个,并且总费用不超过4200元,则篮球最多可购买多少个?23.(10分)某公司要将一批物资一次性运往目的地.若用m辆载重量为5吨的汽车装运,则还剩余21吨物资,若用m辆载重量为8吨的汽车装运,则最后一辆汽车只要载2吨.(1)求m的值;(2)若同时使用载重为5吨和8吨的两种汽车运输,且每辆载重量5吨的汽车的运费为700元,每辆载重量8吨的汽车的运费为1000元,请你设计一种租车方案,每辆汽车都满载且租车的总费用最少.参考答案与解析一.选择题1.【答案】解:A、该方程符合一元一次方程的定义,故本选项符合题意.B、该方程中含有两个未知数,不是一元一次方程,故本选项不符合题意.C、该方程是分式方程不是一元一次方程,故本选项不符合题意.D、该方程的未知数的最高此时是2,不是一元一次方程,故本选项不符合题意.故选:A.2.【答案】解:由x+2y=5,得x=5﹣2y.∵x,y都是非负整数;∴y=0,1,2;相应的x=5,3,1.故选:B.3.【答案】解:A、∵a>b;∴a﹣5>b﹣5;故本选项符合题意;B、∵a>b;∴;故本选项不符合题意;C、a>b,当a=2,b=1时,可得;故C不符合题意;D、∵a>b;∴﹣a<﹣b;故本选项不符合题意;故选:A.4.【答案】解:设小明还能买x支签字笔;依题意得:2×2+5x≤30.故选:D.5.【答案】解:解不等式x﹣m<0,得:x<m;解不等式6﹣2x≤﹣2,得:x≥4;则不等式组的解集为4≤x<m;∵不等式组的整数解共有4个;∴不等式组的整数解为4、5、6、7;故选:D.6.【答案】解:(A)由3+x=5,得x=5﹣3,故A错误;(B)由x=0,得x=0,故B错误;(D)由3=x﹣2,得x=3+2,故D错误;故选:C.7.【答案】解:设每块小长方形地砖的长为xcm,宽为ycm;依题意得:;解得:;即每块小长方形地砖的宽等于15cm;故选:C.8.【答案】解:根据题意得:;故选:A.9.【答案】解:由①得x<由②得x>;所以不等式组的解集是<x<;则整数解是16.故选:B.10.【答案】解:设小长方形的长为x,宽为y,则大长方形的长为3x,宽为3y;根据题意得:;解得:;∴(3x+3y)2=(3×2+3×1)2=81.故选:D.二.填空题11.【答案】解:由2mx﹣1=3﹣x,可得(2m+1)x=4;∵关于x的一元一次方程2mx﹣1=3﹣x有解;解得:m≠﹣.故答案为:≠﹣.12.【答案】解:方程x﹣8=y;整理得:x﹣40=5y;解得:x=5y+40;故答案为:x=5y+4013.【答案】解:∵|x﹣2|+|y+1|=0;∴x﹣2=0,y+1=0;解得x=2,y=﹣1;∴x﹣2y=2﹣2×(﹣1)=2+2=4;故答案为:4.14.【答案】解:根据题意得:4m<m,m<6﹣2m,4m<6﹣2m;解得:m<0,m<2,m<1;∴m的取值范围是m<0.故答案为:m<0.15.【答案】解:设该商品的标价为每件x元;由题意得:80%x﹣10=2;解得:x=15.答:该商品的标价为每件15元.故答案为:15.三.解答题16.【答案】解:(1)去分母,得4(2x+1)﹣3(x﹣1)=12;去括号,得8x+4﹣3x+3=12;移项,得8x﹣3x=12﹣4﹣3;合并同类项,得5x=5;系数化为1,得x=1;(2);②﹣①,得3x=﹣9;解得:x=﹣3;把x=﹣3代入①,得﹣3+y=1;解得:y=4;所以方程组的解是.17.解:(1)3x﹣1<7﹣x;3x+x<7+1;4x<8;x<2;在数轴上表示为;(2)∵由①得:x≥;由②得:x>;∴不等式组的解集为:x>;在数轴上表示不等式组的解集为:;(3)∵由①得:x≤4;由②得:x>0;∴不等式组的解集为:0<x≤4;在数轴上表示不等式组的解集为:.18.【答案】解:(1)∵2*1=4,﹣1*3=﹣9,x*y=ax+by;∴;①+②×2,得7b=﹣14;解得:b=﹣2;把b=﹣2代入①,得2a﹣2=4;解得:a=3;(2)∵,a=3,b=﹣2,x*y=ax+by;∴;①×2﹣②,得﹣3n=﹣6;解得:n=2;把n=2代入②,得6m﹣2=4;解得:m=1;(3)∵3x*y=1﹣7t,(﹣2)x*(﹣3)y=4t﹣3,x*y=ax+by,a=3,b=﹣2;∴;①+②,得3x+4y=﹣2﹣3t;∵3x+4y<6;∴﹣2﹣3t<6;∴﹣3t<6+2;∴﹣3t<8;∴t>﹣;∴t的最小整数值是﹣2.19.【答案】解:(1)当a=3时,方程组为;①+②×2,得5x=5;∴x=1.把x=1代入②,得y=1.∴;(2);①+②,得3x+y=a+1;∴S=a(3x+y)=a(a+1)=a2+a=(a+)2﹣.当a=﹣时,S最小,最小值是﹣.20.【答案】解:;①+②×4,得6x+9y=9﹣m;∴2x+3y=>0;∴m<9.21.【答案】解:∵|x|﹣1=0,即|x|=1;解得x=﹣1或x=1;若x=﹣1,则2×(﹣1)﹣3=;解得m=﹣12;若x=1,则2×1﹣3=+1;解得m=﹣6;∴m=﹣12或m=﹣6.22.【答案】解:(1)设购买1个篮球需要x元,购买1个足球需要y元;依题意得:;解得:.答:购买1个篮球需要120元,购买1个足球需要98元.(2)设购买篮球m个,则购买足球(40﹣m)个;依题意得:120m+98(40﹣m)≤4200;解得:m≤12.又∵m为整数;∴m可以取的最大值为12.答:篮球最多可购买12个.23.【答案】解:(1)5m+21=8(m﹣1)+2解得m=9;(2)设使用载重为5吨的汽车x辆,使用载重为8吨的汽车y辆则5x+8y=66;x,y都是正整数或.使用载重为5吨的汽车2辆,使用载重为8吨的汽车7辆总费用最少为8400元。
人教版数学七年级下册期中考试试题含答案
![人教版数学七年级下册期中考试试题含答案](https://img.taocdn.com/s3/m/57e14ea70342a8956bec0975f46527d3250ca67a.png)
人教版数学七年级下册期中考试试卷一、选择题:(本大题共12个小题,每小题3分,共36分)1.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()2.已知是二元一次方程组的解,则a﹣b 的值为()A.3B.2C.1D.﹣13.下列说法正确的是()A .相等的两个角是对顶角B .和等于180度的两个角互为邻补角C .若两直线相交,则它们互相垂直D .两条直线相交所形成的四个角都相等,则这两条直线互相垂直4.下列命题中,属于真命题的是()A.两个锐角的和是锐角B.在同一平面内,如果a⊥b,b⊥c,则a⊥cC.同位角相等D.在同一平面内,如果a//b,b//c,则a//c5.如图,已知b a //,直角三角板的直角顶点在直线a 上,若︒=∠301,则2∠等于:A.︒30B.︒40C.︒50D.︒606.如图,在数轴上表示实数7的可能是:A.点PB.点QC.点MD.点N7.若点P ),(y x 在第四象限,且3||,2||==y x ,则y x +等于:A.1-B.1C.5D.5-8.已知⎩⎨⎧-==11y x 是方程组⎩⎨⎧=-=+21by cx cyax 的解,则b a ,间的关系是:A.3=+b aB.1-=-b aC.0=+b aD.3-=-b a 9.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么7条直线最多有:A.28个交点B.24个交点C.21个交点D.15个交点10.下列四个数:31,,3,3----π,其中最大的数是()A.3-B.3-C π- D.31-11.如右图,线段AB 经过平移得到线段CD,其中A、B 的对应点分别是C、D,这四个点都在格点上,若线段AB 上有一点P ),(b a ,则点P 在CD 上的对应点P'的坐标为:A.)2,4(+-b a B.)2,4(--b a C )2,4(++b a D.)2,4(-+b a 12.张小花家去年节余50000元,今年可节余95000元,并且今年收入比去年高15%,支出比去年低10%,今年的收入与支出各是多少?设去年的收入为x 元,支出为y 元,则可列方程为:A.⎩⎨⎧=++-=+95000%)101(%)151(50000y x y x B.⎩⎨⎧=--+=-95000%)101(%)151(50000y x y x C.⎩⎨⎧=+--=+95000%)101(%)151(50000y x y x D.⎩⎨⎧=+--=-95000%)101(%)151(50000y x y x 二、填空题:(本大题共6个小题,每小题3分,共18分)13.如图,要使BF AD //,则需要添加的条件是_____________(写一个即可).14.已知一个正数的两个平方根分别是62-m 和m +3,则2)(m -的值为____________.15.平面直角坐标系中,点A )7,5(-到x 轴的距离是__________.16.要把一张面值为10元的人民币换成零钱,如果现有足够的面值为2元、1元的人民币,那么有_____种换法.17.请将命题"等腰三角形的底角相等"改写为"如果……,那么……"的形式:____________________________________.18.如图,已知BE AD //,点C 是直线FG 上的动点,若在点C 的移动过程中,存在某时刻使得︒=∠︒=∠22,45DAC ACB ,则EBC ∠的度数为________.三、解答题:(本大题共7个小题,共46分)19.(本小题满分5分)计算:|21|27)4(3(322-+---+-20.(本小题满分5分)一个正方形鱼池的边长是xm ,当边长增加m 3后,这个鱼池的面积变为281m ,求x .21.(每小题4分,共计8分)按要求解下列方程组:(1)用代入法解方程组:⎩⎨⎧=-=+102322y x y x (2)用加减法解方程组:⎩⎨⎧=+=-8251153y x y x 22.(本小题满分5分)如图,已知CD AB //,C A ∠=∠.求证:BCAD //23.(本小题满分7分)甲乙两位同学在解方程组⎩⎨⎧=-=+1413y bx y ax 时,甲把字母a 看错了得到方程组的解为⎪⎩⎪⎨⎧-==472y x ;乙把字母b 看错了得到方程组的解为⎩⎨⎧-==12y x .求原方程组正确的解.24.(本小题满分8分)如图,︒=∠+∠180BCF ADE ,BE 平分ABC ∠,E ABC ∠=∠2.(1)AD 与BC 平行吗?请说明理由;(2)AB 与EF 的位置关系如何?为什么?(3)若AF 平分BAD ∠,试说明:︒=∠+∠90F E .(注:本题第(1)(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程)解:(1)BC AD //,理由如下:∵︒=∠+∠180BCF ADE (已知)︒=∠+∠180ADF ADE (平角的定义)∴=∠ADF __________(______________________)∴BC AD //(__________________________)(2)AB 与EF 的位置关系是:互相平行∵BE 平分ABC ∠(已知)∴ABE ABC ∠=∠2(角平分线定义)又∵E ABC ∠=∠2(已知)∴ABE E ∠=∠22(____________________)∴ABE E ∠=∠(____________________)∴______//_______(________________________)25.(本小题满分8分)如图平面直角坐标系内,已知点A 的坐标是)0,3(-.(1)点B 的坐标为_______,点C 的坐标为_____,=∠BAC ______;(2)求ABC ∆的面积;(3)点P 是y 轴负半轴上的一个动点,连接BP 交x 轴于点D,是否存在点P 使得ADP ∆与BDC ∆的面积相等?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案一.选择题题号123456789101112答案B D D D B C C A C D A B二.填空题13.︒=∠+∠180ABC A 或︒=∠+∠180DCB D 或EBF A ∠=∠或DCF D ∠=∠(任意写一个即可,不必写全)14.115.716.617.如果一个三角形是等腰三角形,那么它的两个底角相等18.︒︒6723或(第18题仅填一种情况并且正确的给2分,填了两种情况但其中有一种错误的不给分)三.解答题19.解:原式=12343-+++......................................3分=29+....................................................5分20.解:由题意得81)3(2=+x ...................................................................3分解得126-==x x 或(不合题意,舍去)..........................................4分答:该鱼池的边长x 等于m 6..........................................................5分21.解:(1)由①,得x y 22-=③..................................................1分将③代入②,得10)22(23=--x x 解这个方程,得2=x ...................................................2分将2=x 代入③,得2-=y ..........................................3分所以原方程组的解是⎩⎨⎧-==22y x ...................................................4分(2)①5⨯得,552515=-y x ③..........................................................5分②3⨯得,24615=+y x ④④-③,得3131-=y 1-=y .....................................................................6分将1-=y 代入①,得2=x ...........................................................7分所以原方程组的解是⎩⎨⎧-==12y x ....................................................8分22.证明:∵CDAB //∴︒=∠+∠180C B ....................................2分又∵C A ∠=∠................................................3分∴︒=∠+∠180A B ....................................4分∴BC AD //.................................................5分解:∵甲看错了字母a 但没有看错b ∴将⎪⎩⎪⎨⎧-==472y x 代入14=-y bx 得,147(42=-⨯-b ................................2分∴3-=b ....................................................................................................3分同理可求得2=a ......................................................................................4分将3,2-==b a 代入原方程组,得⎩⎨⎧=--=+143132y x y x ......................................5分解得⎩⎨⎧=-=57y x ..............................................................................................6分∴原方程组正确的解是⎩⎨⎧=-=57y x .................................................................7分解:(1)∠BCF 同角的补角相等同位角相等,两直线平行...............................1.5分等量代换等式性质AB EF 内错角相等,两直线平行...........................4分(每空0.5分,八个空共计4分)证明:由(1)知BCAD //∴︒=∠+∠180ABC DAB ...............................................................5分∵BE 平分ABC ∠,AF 平分DAB∠∴DABBAF ABC ABE ∠=∠∠=∠21,21∴︒=︒⨯=∠+∠=∠+∠90180212121DAB ABC BAF ABE ......6分由(2)知EFAB //∴F BAF E ABE ∠=∠∠=∠,.........................................................7分∴︒=∠+∠180F E ...........................................................................8分解:(1))5,2()0,5(︒45....................................................3分(2)过点B 作x BE ⊥轴于E∵点A,B,C 的坐标分别为)0,5(),5,2(),0,3(-∴5,835==+=+=BE OC OA AC ........................................5分∴20582121=⨯⨯=⋅=∆BE AC S ABC .........................................6分(3)存在点P 使得ADP ∆与的BDC ∆的面积相等........................................7分此时点P 的坐标为)5,0(-.........................................................................8分。
七年级下册数学期中综合复习题3应用题
![七年级下册数学期中综合复习题3应用题](https://img.taocdn.com/s3/m/87b540faa6c30c2258019ea1.png)
七年级下册数学期中综合复习题〔三〕参考答案A 卷一、选择题:1.B 2.C 3.D 4.C 5.A 6.D 7.B 8.B 9.D 10.C二、填空题1.略 2.115º 3.xy 4- 4.4,4 5.MN ∥EF 或AB ∥CD 6.80º7.2 8.4,3 9.±4 10.180º三、计算题1.8 2.127 3.412ab 4.2 四、解答题1.∵7=+b a ,12=ab∴2512272)(2222=⨯-=-+=+ab b a b a2.∵10950004500)(==第一年P ,201975007125)(==第二年P ∴P 〔第二年〕>P 〔第一年〕∴第二年效果更好3.∵a ,b ,c 为三角形的三边∴0,0,0,0<-->+-<-->-+c a b b a c a c b c b a∴原式=)()()(c a b a c a c b c b a ++-++--++---+=c a b b a c a c b c b a ++--+---+-+=c a 22-4.∠B =18º5.〔1〕∠2是直角;〔2〕∠1与∠3互余;〔3〕∠1与∠AEC 互补,∠3与∠BEF 互补 B 卷一、填空题1.5,10,152.-1,2,53.2,4x 2,44.2222a ax x +-,221a ,23292a a +- 5.2006.40º二、应用题1.))(())((b a b a b a b a b a b a b a ba ---++=+--+ =22)()(b a b a --+=222222b ab a b ab a -+-++=ab 42.AB+BC+AC>2AD理由:在△ABD 中,AB+BD>AD在△ACD 中,AC+CD>AD两式相加,得 AB+BD+AC+CD>AD+AD 即AB+BC+AC>2AD3.甲顺时针转动转盘后得到的所有可能情况有:1→3,2→6,3→4,4→5,5→3,6→6∴P 〔甲得分〕=2163= 乙逆时针转动转盘后得到的所有情况有:1→6,2→3,3→4,4→1,5→2,6→6∴P 〔乙得分〕=3264= ∴P 〔甲得分〕<∴P 〔乙得分〕所以游戏不公平。
初一年级期中数学下册综合测试题(含答案解析)
![初一年级期中数学下册综合测试题(含答案解析)](https://img.taocdn.com/s3/m/1af79e10168884868662d65d.png)
2019初一年级期中数学下册综合测试题(含答案解析)2019初一年级期中数学下册综合测试题(含答案解析) 一、选择题(本大题共8个小题,每小题3分,共24分)1.如图,已知直线、被直线所截,那么的同位角是()A. B. C. D.2.下列运算正确的是()A. B. C. D.3.下列等式由左边到右边的变形中,属于因式分解的是()A. B.C. D.4.已知是方程组的解,则的值是()A. B. C. D.5.已知,,则的值等于()A. B. C. D.6.不等式组的解集在数轴上可表示为()A. B.C. D.7.如果二元一次方程组的解是二元一次方程的一个解,那么的值是()A. B. C. D.8.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是,在不吸烟者中患肺癌的比例是,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多人.如果设这人中,吸烟者患肺癌的人数为,不吸烟者患肺癌的人数为,根据题意,下面列出的方程组正确的是()A. B.C. D.二、填空题(本大题共10个小题,每小题3分,共30分.)9.若一个正多边形的一个内角等于,那么这个多边形是正边形.10.若化简的结果中不含项,则.11.已知三角形的两边分别是和,则第三边长的取值范围是.12.已知方程用含的代数式表示为:.13.已知关于的不等式的解集为,则的取值范围是.14.若方程组与有相同的解,则,.15.若可以用完全平方式来分解因式,则的值为.16.某地准备对一段长的河道进行清淤疏通.若甲工程队先用天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要天;若甲工程队先单独工作天,则余下的任务由乙工程队单独完成需要天.设甲工程队平均每天疏通河道,乙工程队平均每天疏通河道,则的值为.17.已知关于的不等式组的解集为,则的值为.18.若关于的不等式组无解,则的取值范围是.三、解答题(本大题共10个小题,共96分.)19.(本题满分8分)计算:(1);(2).20.(本题满分8分)因式分解:(1);(2).21.(本题满分8分)用指定的方法解下列方程组:(1)(代入法)(2)(加减法)22.(本题满分10分)解不等式:(1);(2).23.(本题满分8分)解不等式组并在数轴上表示出不等式组的解集.24.(本题满分10分)小明和小文解一个二元一次组小明正确解得小文因抄错了,解得已知小文除抄错了外没有发生其他错误,求的值.25.(本题满分10分)在关于、的二元一次方程组中,的值为负数,的值为正数,求的取值范围.26.(本题满分10分)已知实数是不等于的常数,解不等式组并依据的取值情况写出其解集.27.(本题满分12分)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号 B种型号第一周 3台 5台 1800元第二周 4台 10台 3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.28.(本题满分12分)对,定义一种新运算,规定:(,)(其中、均为非零常数),这里等式右边是通常的四则运算,例如:(,).(1)已知(,),(,).①求,的值;②若关于的不等式组恰好有个整数解,求实数的取值范围;(2)若(,)(,)对任意实数x,y都成立(这里(,)和(,)均有意义),则,应满足怎样的关系式?2019初一年级期中数学下册综合测试题(含答案解析)参考答案一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求题号 1 2 3 4 5 6 7 8答案 A B C D C D C B二、填空题(本大题共10个小题,每小题3分,共30分.)9.八 10. 11. 12. 13.14., 15.或 16. 17. 18.三、解答题(本大题共10个小题,共96分.)19.(1)(4分);(2)(4分)20.(1)(4分);(2)(4分)21.(1)(4分)(2)(4分)22.(1)(5分);(2)(5分).23.解不等式,得.解不等式,得.所以不等式组的解集为.(6分)不等式组的解集在数轴表示如下:(8分)24.把代入,得.解得.(4分)把分别代入,得解得(8分)所以.(10分)25.解方程组得(5分)因为的值为负数,的值为正数,所以解得.(10分)26.解不等式,得.(3分)解不等式,得.(6分)因为实数是不等于的常数,所以当时,不等式组的解集为;(8分)当时,不等式组的解集为.(10分)27.(1)设A、B两种型号电风扇的销售单价分别为x元、y 元,依题意,得解得答:A、B两种型号电风扇的销售单价分别为250元、210元;(4分)(2)设采购A种型号电风扇台,则采购B种型号电风扇台.依题意,得.解得.答:超市最多采购A种型号电风扇台时,采购金额不多于5400元;(8分)(3)依题意,有.解得.∴在(2)的条件下超市不能实现利润1400元的目标.(1 2分)28.(1)①根据题意,得(,),即;(,),即,解得,;(4分)②根据题意,得∴不等式组的解集为.∵不等式组恰好有个整数解,即,,,∴ ,解得:;(8分)(2)由T (,)(,),得,整理得.∵ (,)(,)对任意实数x,y都成立,∴ ,即.(12分)。
西城区初一年级期中数学下册测试卷3(含答案解析)
![西城区初一年级期中数学下册测试卷3(含答案解析)](https://img.taocdn.com/s3/m/68c3fb9052d380eb63946d29.png)
西城区2019初一年级期中数学下册测试卷3(含答案解析)西城区2019初一年级期中数学下册测试卷3(含答案解析)一、选择题(每题3分,共36分)1.已知4个数中:(―1)2019,,-(-1.5),―32,其中正数的个数有().A.1 B.2 C.3 D.42.某种药品的说明书上标明保存温度是(20±2)℃,则该药品在()范围内保存才合适.A.18℃~20℃B.20℃~22℃C.18℃~21℃ D.18℃~22℃3.多项式3x2-2xy3-y-1是( ).A.三次四项式B.三次三项式C.四次四项式D.四次三项式4.下面不是同类项的是( ).A.-2与B.2m与2n C.与D.与5.若x=3是方程a-x=7的解,则a的值是().A.4 B.7 C.10 D.6.在解方程时,去分母正确的是().A.3(x-1)-2(2+3x)=1 B.3(x-1)+2(2x+3)=1C.3(x-1)+2(2+3x)=6 D.3(x-1)-2(2x+3)=6 7.如图1,由两块长方体叠成的几何体,从正面看它所得到的平面图形是().A.B.C.D.8.把图2绕虚线旋转一周形成一个几何体,与它相似的物体是().A.课桌B.灯泡C.篮球D.水桶9.甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x人,可列出方程().A.98+x=x-3 B.98-x=x-3C.(98-x)+3=x D.(98-x)+3=x-310.以下3个说法中:①在同一直线上的4点A、B、C、D只能表示5条不同的线段;②经过两点有一条直线,并且只有一条直线;③同一个锐角的补角一定大于它的余角.说法都正确的结论是().A.②③B.③C.①②D.①11.用一副三角板(两块)画角,不可能画出的角的度数是().A.1350 B.750 C.550 D.15012.如图3,已知B是线段AC上的一点,M是线段AB的中点,N 是线段AC的中点,P为NA的中点,Q是AM的中点,则MN:PQ 等于().A.1 B.2 C.3 D.4二、填空题(每小题3分,共12分)13.请你写出一个解为x=2的一元一次方程.14.在3,-4,5,-6这四个数中,任取两个数相乘,所得的积最大的是.15.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是.16.计算:77°53′26"+33.3°=______________.三、解答与证明题(本题共72分)17.计算:(本题满分8分)(1)-21 +3 --0.25(4分)(2)22+2×[(-3)2-3÷ ](4分)18.(本题满分8分)先化简,再求值,,其中.(4分)19.解下列方程:(本题满分8分)(1)(4分)(2)(4分)20.(本题6分)如图所示,点C、D为线段AB的三等分点,点E 为线段AC的中点,若ED=9,求线段AB的长度.21.(本题7分)下面是红旗商场电脑产品的进货单,其中进价一栏被墨迹污染,读了进货单后,请你求出这台电脑的进价是多少(写出解答过程)22.(本题9分)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(6分) (2)当购买30盒乒乓球时,若让你选择一家商店去办这件事,你打算去哪家商店购买?为什么?(3分)23.(本题7分)如图,某轮船上午8时在A处,测得灯塔S在北偏东60°的方向上,向东行驶至中午12时,该轮船在B处,测得灯塔S 在北偏西30°的方向上(自己完成图形),已知轮船行驶速度为每小时20千米,求∠ASB的度数及AB的长.24.(本题满分9分)如图所示已知,,OM平分,ON平分;(1) ;(2)如图∠AOB=900,将OC绕O点向下旋转,使∠BOC=,仍然分别作∠AOC,∠BOC的平分线OM,ON,能否求出∠MON的度数,若能,求出其值,若不能,试说明理由.(3) ,,仍然分别作∠AOC,∠BOC的平分线OM,ON,能否求出∠MON的度数,若能,求的度数;并从你的求解中看出什么什么规律吗?(3分)25.(本题10分)如图4,线段AB=20cm。
2020-2021学年人教版七年级数学下册 期中综合复习卷(含答案)
![2020-2021学年人教版七年级数学下册 期中综合复习卷(含答案)](https://img.taocdn.com/s3/m/ae700512da38376baf1faeea.png)
人教版七年级数学下册期中综合复习卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.4的算术平方根是()A.± 2 B. 2 C.±2 D.22.在平面直角坐标系中,点A(-2,a)位于x轴的上方,则a的值可以是()A.0 B.-1 C. 3 D.±33.如图,在铁路旁有一李庄,现要建一个火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,你选择()A.A点B.B点C.C点D.D点4.如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A.35° B.45° C.55° D.65°5.若将三个数-3,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是()A.- 3 B.7 C.11 D.7和116. 如图是围棋棋盘的一部分,将它放置在某个平面直角坐标系中,若白棋②的坐标为(-3,-1),白棋④的坐标为(-2,-5),则黑棋①的坐标为()A.(-1,-4) B.(1,-4) C.(3,1) D.(-3,-1)7.一个自然数的算术平方根为a,则下一个自然数的算术平方根是()A.a+1 B.a2+1 C.a+1 D.a2+18.下列命题中,是真命题的是( )A.三条直线a,b,c在同一平面内,若a⊥b,b⊥c,则a⊥cB.无限小数都是无理数C.经过直线外一点,有且只有一条直线与这条直线平行D.同旁内角互补9.如图,a∥b,M,N分别在a,b上,P为两平行线间的一点,那么∠1+∠2+∠3=()A.180° B.270° C.360° D.540°10.文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1,若输入7,则输出的结果为()A.5 B.6 C.7 D.8二.填空题(共8小题,3*8=24)11.计算:|5-7|+25=__ __.12. 将点A(-2,-3)向右平移3个单位长度得到点B,则点B在第________象限.13.如图,已知直线AB,CD相交于点O,∠BOE=65°,∠COE=105°.则∠AOD的度数为__ _.14.如图,AB∥CD,∠B=75°,则当∠D=105°时,BC_______DE.15.在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-2,3),B(-4,-1),C(2,0),将△ABC 平移至△A1B1C1的位置,点A,B,C的对应点分别是点A1,B1,C1,若点A1的坐标为(3,1),则点C1的坐标为____________.16.如果a的平方根是±3,则3a-17=__ __.17.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1.例如8*9=9+1=4,那么15*196=________,m*(m*16)=________.18.如图,点A,B的坐标分别为(-5,6),(3,2),则三角形ABO的面积为__________三.解答题(7小题,共66分)19.(8分) 计算:(1)16+38-(-5)2;(2)(-2)3+|1-2|×(-1)2 021-3 125.20.(8分) 六边形六个顶点的坐标为A(-4,0),B(-2,-2),C(1,-2),D(4,1),E(1,4),F(-2,4).(1)在所给坐标系中画出这个六边形;(2)直接写出各边具有的平行或垂直关系.21.(8分) 如图,直线BC,DE交于点O,OA,OF是射线,AO⊥OB,OF平分∠COE,∠COF+∠BOD=51°,求∠AOD的度数.22.(10分) 已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.23.(10分) 如图,两直线AB,CD相交于点O,OE平分∠BOD,∠AOC∶∠AOD=7∶11.(1)求∠COE的度数;(2)若OF⊥OE,求∠COF的度数.24.(10分) 如图,AD是∠BAC的角平分线,点E是射线AC上一点,延长ED至点F,∠CAD+∠ADF=180°.(1)试说明:AB∥EF.(2)若∠ADE=65°,求∠CEF的度数.25.(12分) 在如图所示的平面直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(9,0),C(7,5),D(2,7),试求四边形ABCD的面积.参考答案1-5 DCACB 6-10BBCCB11.5+7 12.四 13. 40° 14. ∥ 15. (7,-2) 16. 4 17.15;5+1 18. 14 19.解:(1)原式=4+2-5=1;(2)原式=-8+(2-1)×(-1)-5=-8+1-2-5=-12- 2. 20. 解:(1)如图(2)由图可得,AB ∥DE ,CD ⊥DE ,BC ∥EF ,CD ⊥AB21. 解:由对顶角相等,可得∠BOD =∠EOC ,又∵OF 平分∠COE ,可得∠COF =12 ∠EOC =12 ∠BOD.∵∠COF +∠BOD =51°,∴12 ∠BOD +∠BOD =51°,∴∠BOD =34°,又∵AO ⊥OB ,∴∠AOB=90°,∴∠AOD =∠AOB +∠BOD =90°+34°=124°22. 解:由题意知2a -1=9,3a -b +2=16,解得a =5,b =1,∴a +3b =5+3×1=8,∴a +3b 的立方根是223. 解:(1)∵∠AOC ∶∠AOD =7∶11,∠AOC +∠AOD =180°, ∴∠AOC =70°,∠AOD =110°. 又∵OE 平分∠BOD ,∴∠DOE =12∠DOB =12∠AOC =12×70°=35°. ∴∠COE =180°-∠DOE =180°-35°=145°.(2)∵OF ⊥OE ,∴∠FOD =90°-∠DOE =90°-35°=55°. ∴∠COF =180°-∠FOD =180°-55°=125°.24. 解:(1)∵AD 是∠BAC 的角平分线,∴∠CAD =∠DAB ,又∵∠CAD +∠ADF =180°,∴∠DAB +∠ADF =180°,∴AB ∥EF(2)∵AB ∥EF ,∴∠ADE =∠DAB ,∠CEF =∠CAB ,∴∠CEF =2∠ADE ,∵∠ADE =65°,∴∠CEF =2∠ADE =2×65°=130°25. 解:分别过点D ,C 向x 轴作垂线,垂足分别为E ,F ,则四边形ABCD 被分割为三角形ADE ,三角形BCF 及梯形CDEF ,由各点坐标可知,AE =2,DE =7,EF =7-2=5,FB =9-7=2,CF =5,所以S 三角形AED =12 AE·DE =12 ×2×7=7,S 三角形BCF =12 FB·CF =12 ×2×5=5,S 梯形CDEF =12 (CF +DE)·EF=12(5+7)×5=30,所以S 四边形ABCD =7+5+30=42(张老师推荐)好的学习方法和学习小窍门一、提高听课的效率是关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学期中综合复习题(三)
参考答案
A 卷
一、选择题:
1.B 2.C 3.D 4.C 5.A 6.D 7.B 8.B 9.D 10.C
二、填空题
1.略 2.115º 3.xy 4- 4.4,4 5.MN ∥EF 或AB ∥CD 6.80º
7.2 8.4,3 9.±4 10.180º
三、计算题
1.8 2.12
7 3.412ab 4.2 四、解答题
1.∵7=+b a ,12=ab
∴2512272)(2222=⨯-=-+=+ab b a b a
2.∵10
950004500)(==第一年P ,201975007125)(==第二年P ∴P (第二年)>P (第一年)
∴第二年效果更好
3.∵a ,b ,c 为三角形的三边
∴0,0,0,0<-->+-<-->-+c a b b a c a c b c b a
∴原式=)()()(c a b a c a c b c b a ++-++--++---+
=c a b b a c a c b c b a ++--+---+-+
=c a 22-
4.∠B =18º
5.(1)∠2是直角;(2)∠1与∠3互余;(3)∠1与∠AEC 互补,∠3与∠BEF 互补
B 卷
一、填空题
1.5,10,15
2.-1,2,5
3.2,4x 2,4
4.2222a ax x +-,
221a ,23
292a a +- 5.200
6.40º
二、应用题
1.))(())((b a b a b a b a b a b a b a b
a ---++=+--+ =22)()(
b a b a --+
=222222b ab a b ab a -+-++
=ab 4
2.AB+BC+AC>2AD
理由:在△ABD 中,AB+BD>AD
在△ACD 中,AC+CD>AD
两式相加,得 AB+BD+AC+CD>AD+AD 即AB+BC+AC>2AD
3.甲顺时针转动转盘后得到的所有可能情况有:
1→3,2→6,3→4,4→5,5→3,6→6
∴P (甲得分)=2
163= 乙逆时针转动转盘后得到的所有情况有:
1→6,2→3,3→4,4→1,5→2,6→6
∴P (乙得分)=3
264= ∴P (甲得分)<∴P (乙得分)
所以游戏不公平。