新县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )
﹣
>0的解集为( )
A .(2,+∞)
B .(0,2)
C .(0,4)
D .(4,+∞)
2. 如果集合 ,同时满足,就称有序集对
,A B {}{}{}{}1,2,3,41,1,1A B B A B =≠≠ ,A =为“ 好集对”. 这里有序集对是指当时,和是不同的集对, 那么
(),A B (),A B A B ≠(),A B (),B A “好集对” 一共有( )个
A .个
B .个
C .个
D .个
3. 在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为(
)
A .x=1
B .x=
C .x=﹣1
D .x=
﹣
4. 设是两个不同的平面,是一条直线,以下命题正确的是( )
βα,A .若,,则 B .若,
,则
α⊥l βα⊥β⊂l α//l βα//β⊂l C .若,,则
D .若,,则α⊥l βα//β⊥l α//l βα⊥β
⊥l 5. 若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )
A .
﹣
B .
C .2
D .6
6. 下列关系式中,正确的是( )
A .∅∈{0}
B .0⊆{0}
C .0∈{0}
D .∅={0}
7. 已知,满足不等式则目标函数的最大值为( )
y 430,35250,1,x y x y x -+≤⎧⎪
+-≤⎨⎪≥⎩
2z x y =+A .3
B .
C .12
D .15
13
2
8. 与函数 y=x 有相同的图象的函数是( )A .
B .
C .
D .
9. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( )
A .120°
B .60°
C .45°
D .30°
10.已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( )
A .8
B .1
C .5
D .﹣1
11.若命题p :∃x 0∈R ,sinx 0=1;命题q :∀x ∈R ,x 2+1<0,则下列结论正确的是( )
A .¬p 为假命题
B .¬q 为假命题
C .p ∨q 为假命题
D .p ∧q 真命题
12.数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( )A .
B .20
C .21
D .31
二、填空题
13.设
,则
14.已知圆O :x 2+y 2=1和双曲线C :
﹣
=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O 外
),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则
﹣
= .
15.【南通中学2018届高三10月月考】已知函数,若曲线在点处的切线经
()3
2f x x x =-()f x ()()
1,1f 过圆的圆心,则实数的值为__________.
()2
2:2C x y a +-=a 16.图中的三个直角三角形是一个体积为20的几何体的三视图,则__________.
h =
17.下列命题:
①集合的子集个数有16个;{},,,a b c d ②定义在上的奇函数必满足;
R ()f x (0)0f =③既不是奇函数又不是偶函数;2
()(21)2(21)f x x x =+--④,,,从集合到集合的对应关系是映射;A R =B R =1
:||
f x x →
A B f
⑤在定义域上是减函数.1
()f x x
其中真命题的序号是 .
18.(
﹣2)7的展开式中,x 2的系数是 .
三、解答题
19.某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11.
(Ⅰ)求该校报考飞行员的总人数;
(Ⅱ)若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X 表示体重超过60kg 的学生人数,求X 的数学期望与方差.
20.已知△ABC 的顶点A (3,2),∠C 的平分线CD 所在直线方程为y ﹣1=0,AC 边上的高BH 所在直线方程为4x+2y ﹣9=0.
(1)求顶点C 的坐标;(2)求△ABC 的面积.
21.已知函数f(x)=x3+ax+2.
(Ⅰ)求证:曲线=f(x)在点(1,f(1))处的切线在y轴上的截距为定值;(Ⅱ)若x≥0时,不等式xe x+m[f′(x)﹣a]≥m2x恒成立,求实数m的取值范围.
22.已知A、B、C为△ABC的三个内角,他们的对边分别为a、b、c,且
.
(1)求A;
(2)若,求bc的值,并求△ABC的面积.
23.(本小题满分12分)已知两点及,点在以、为焦点的椭圆上,且、、)0,1(1 F )0,1(2F P 1F 2F C 1PF 21F F 构成等差数列.2PF (I )求椭圆的方程;
C (II )设经过的直线与曲线C 交于两点,若,求直线的方程.
2F m P Q 、2
2
2
11PQ F P F Q =+m 24.已知函数f (x )=a x (a >0且a ≠1)的图象经过点(2,).(1)求a 的值;
(2)比较f (2)与f (b 2+2)的大小;(3)求函数f (x )=a
(x ≥0)的值域.
新县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题
1. 【答案】B
【解析】解:定义在(0,+∞)上的函数f (x )满足:<0.
∵f (2)=4,则2f (2)=8,
f (x )﹣
>0化简得
,
当x <2时,
⇒
成立.
故得x <2,
∵定义在(0,+∞)上.∴不等式f (x )﹣>0的解集为(0,2).
故选B .
【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解.属于中档题.
2. 【答案】B 【解析】
试题分析:因为,所以当时,;当
{}{}{}{}1,2,3,41,1,1A B B A B =≠≠ ,A ={1,2}A ={1,2,4}B =时,;当时,;当时,;当时,{1,3}A ={1,2,4}B ={1,4}A ={1,2,3}B ={1,2,3}A ={1,4}B ={1,2,4}A =;当时,;所以满足条件的“好集对”一共有个,故选B.
{1,3}B ={1,3,4}A ={1,2}B =
考点:元素与集合的关系的判断.
【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]
3. 【答案】C
【解析】解:由题意可得抛物线y 2=2px (p >0)开口向右,
焦点坐标(,0),准线方程x=﹣,
由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,
即4﹣(﹣)=5,解之可得p=2
故抛物线的准线方程为x=﹣1.
故选:C.
【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题.
C
4.【答案】111]
【解析】
考点:线线,线面,面面的位置关系
5.【答案】A
【解析】解:因为向量=(3,m),=(2,﹣1),∥,
所以﹣3=2m,
解得m=﹣.
故选:A.
【点评】本题考查向量共线的充要条件的应用,基本知识的考查.
6.【答案】C
【解析】解:对于A∅⊆{0},用“∈”不对,
对于B和C,元素0与集合{0}用“∈”连接,故C正确;
对于D,空集没有任何元素,{0}有一个元素,故不正确.
7.【答案】C
考点:线性规划问题.
【易错点睛】线性规划求解中注意的事项:(1)线性规划问题中,正确画出不等式组表示的平面区域是解题
y
的基础.(2)目标函数的意义,有的可以用直线在轴上的截距来表示,还有的可以用两点连线的斜率、两点间的距离或点到直线的距离来表示.(3)线性目标函数的最值一般在可行域的顶点或边界上取得,特别地对最优整数解可视情况而定.
8.【答案】D
【解析】解:A:y=的定义域[0,+∞),与y=x的定义域R不同,故A错误
B:与y=x的对应法则不一样,故B错误
C:=x,(x≠0)与y=x的定义域R不同,故C错误
D:,与y=x是同一个函数,则函数的图象相同,故D正确
故选D
【点评】本题主要考查了函数的三要素:函数的定义域,函数的值域及函数的对应法则的判断,属于基础试题
9.【答案】A
【解析】解:根据余弦定理可知cosA=
∵a2=b2+bc+c2,
∴bc=﹣(b2+c2﹣a2)
∴cosA=﹣
∴A=120°
故选A
10.【答案】B
【解析】解:∵函数f(2x+1)=3x+2,且f(a)=2,令3x+2=2,解得x=0,
∴a=2×0+1=1.
故选:B.
11.【答案】A
【解析】解:时,sinx0=1;
∴∃x0∈R,sinx0=1;
∴命题p是真命题;
由x2+1<0得x2<﹣1,显然不成立;
∴命题q是假命题;
∴¬p为假命题,¬q为真命题,p∨q为真命题,p∧q为假命题;
∴A正确.
故选A.
【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R满足x2≥0,命题¬p,p∨q,p∧q的真假和命题p,q真假的关系.
12.【答案】C
【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,
∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1
=2(4+3+2+1)+1=21.
故选:C.
【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.
二、填空题
13.【答案】9
【解析】由柯西不等式可知
14.【答案】 1 .
【解析】解:若对双曲线C上任意一点A(点A在圆O外),
均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,
可通过特殊点,取A(﹣1,t),
则B(﹣1,﹣t),C(1,﹣t),D(1,t),
由直线和圆相切的条件可得,t=1.
将A(﹣1,1)代入双曲线方程,可得﹣=1.
故答案为:1.
【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.
15.【答案】2
-【解析】结合函数的解析式可得:,
()3
11211f =-⨯=-对函数求导可得:,故切线的斜率为,
()2
'32f x x =-()2
'13121k f ==⨯-=则切线方程为:,即,
()111y x +=⨯-2y x =-圆:的圆心为,则:.C ()2
22x y a +-=()0,a 022a =-=-16.【答案】【解析】
试题分析:由三视图可知该几何体为三棱锥,其中侧棱底面,且为直角三角形,且
VA ⊥ABC ABC ∆,所以三棱锥的体积为,解得.
5,,6AB VA h AC ===11
5652032
V h h =⨯⨯⨯==4h =
考点:几何体的三视图与体积.17.【答案】①②【解析】
试题分析:子集的个数是,故①正确.根据奇函数的定义知②正确.对于③为偶函数,故错误.
2n
()2
41f x x =-对于④没有对应,故不是映射.对于⑤减区间要分成两段,故错误.0x =考点:子集,函数的奇偶性与单调性.
【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是个;对于
2n
奇函数来说,如果在处有定义,那么一定有,偶函数没有这个性质;函数的奇偶性判断主要0x =()00f =根据定义,注意判断定义域是否关于原点对称.映射必须集合中任意一个
()()()(),f x f x f x f x -=-=-A 元素在集合中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1B 18.【答案】﹣280 解:∵(﹣2)7的展开式的通项为=
.
由
,得r=3.
∴x 2的系数是
.
故答案为:﹣280.
三、解答题
19.【答案】
【解析】(本小题满分12分)
解:(Ⅰ)设该校报考飞行员的总人数为n,前三个小组的频率为p1,p2,p3,
则,
解得,,,…
由于,故n=55.…
(Ⅱ)由(Ⅰ)知,一个报考学生的体重超过60公斤的概率为:
p=,
由题意知X服从二项分布,即:X~B(3,),…
∴P(X=k)=,k=0,1,2,3,
∴EX==,DX==.…
【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题.
20.【答案】
【解析】解:(1)由高BH所在直线方程为4x+2y﹣9=0,∴=﹣2.
∵直线AC⊥BH,∴k AC k BH=﹣1.
∴,
直线AC的方程为,
联立
∴点C的坐标C(1,1).
(2),
∴直线BC的方程为,
联立,即.
点B到直线AC:x﹣2y+1=0的距离为.
又,
∴.
【点评】本题考查了相互垂直的直线斜率之间的关系、角平分线的性质、点到直线的距离公式、两点间的距离公式、三角形的面积计算公式,属于基础题.
21.【答案】
【解析】(Ⅰ)证明:f(x)的导数f′(x)=x2+a,
即有f(1)=a+,f′(1)=1+a,
则切线方程为y﹣(a+)=(1+a)(x﹣1),
令x=0,得y=为定值;
(Ⅱ)解:由xe x+m[f′(x)﹣a]≥m2x对x≥0时恒成立,
得xe x+mx2﹣m2x≥0对x≥0时恒成立,
即e x+mx﹣m2≥0对x≥0时恒成立,
则(e x+mx﹣m2)min≥0,
记g(x)=e x+mx﹣m2,
g′(x)=e x+m,由x≥0,e x≥1,
若m≥﹣1,g′(x)≥0,g(x)在[0,+∞)上为增函数,
∴,
则有﹣1≤m≤1,
若m<﹣1,则当x∈(0,ln(﹣m))时,g′(x)<0,g(x)为减函数,
则当x∈(ln(﹣m),+∞)时,g′(x)>0,g(x)为增函数,
∴,
∴1﹣ln(﹣m)+m≥0,
令﹣m=t,则t+lnt﹣1≤0(t>1),
φ(t)=t+lnt﹣1,显然是增函数,
由t>1,φ(t)>φ(1)=0,则t>1即m<﹣1,不合题意.
综上,实数m的取值范围是﹣1≤m≤1.
【点评】本题为导数与不等式的综合,主要考查导数的应用,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力、化归与转化思想.
22.【答案】
【解析】解:(1)∵A 、B 、C 为△ABC 的三个内角,且cosBcosC ﹣sinBsinC=cos (B+C )=
,∴B+C=
,
则A=
;(2)∵a=2
,b+c=4,cosA=﹣,∴由余弦定理得:a 2=b 2+c 2﹣2bccosA=b 2+c 2+bc=(b+c )2﹣bc ,即12=16﹣bc ,
解得:bc=4,
则S △ABC =bcsinA=×4×=.【点评】此题考查了两角和与差的余弦函数公式,余弦定理,以及三角形面积公式,熟练掌握公式及定理是解本题的关键.
23.【答案】
【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.
(II )①若为直线,代入得,即, m 1=x 13422=+y x 23±=y )23,1(P )2
3,1(-Q
直接计算知,,,不符合题意 ; 29PQ =2
25||||2121=+Q F P F 22211PQ F P F Q ¹+1=x ②若直线的斜率为,直线的方程为m k m (1)y k x =-由得 ⎪⎩
⎪⎨⎧-==+)1(1342
2x k y y x 0)124(8)43(2222=-+-+k x k x k 设,,则, 11(,)P x y 22(,)Q x y 2221438k k x x +=+222143124k k x x +-=⋅由得,22211PQ F P F Q =+110
F P FQ ×=即,0)1)(1(2121=+++y y x x 0
)1()1()1)(1(2121=-⋅-+++x k x k x x
0)1())(1()1(2212212=+++-++k x x k x x k 代入得,即 0438)1()143124)(1(222222=+⋅-+++-+k
k k k k k 0972=-k 解得,直线的方程为 773±=k m )1(773-±=x y 24.【答案】
【解析】解:(1)f (x )=a x (a >0且a ≠1)的图象经过点(2,),∴a 2=,
∴a=
(2)∵f (x )=()x 在R 上单调递减,
又2<b 2+2,
∴f (2)≥f (b 2+2),
(3)∵x ≥0,x 2﹣2x ≥﹣1,
∴≤()﹣1=3
∴0<f (x )≤(0,3]。