高压电动机接地保护配置原则

合集下载

高压变频器工频旁路设计及保护配置整定_马晋辉

高压变频器工频旁路设计及保护配置整定_马晋辉
但不可否认变频器作为一个复杂的大功率电力电子装置其长期稳定运行仍然受一定因素的影响如电磁干扰元器件质量护水平等电厂在厂用高压电动机变频改造上抱有疑虑关键词环境温度空气洁净度和人员维高压变频器工频旁路继宅保护正由于有上述因素的存在发发电厂重要辅机一旦跳闸将直接导致发电生产过程的波动中断给电厂安全稳定运行造成冲击
!""# 年第 !$ 卷第 %& 期
高压变频器工频旁路设计及保护配置整定
波电容越大、负荷运行频率越低、输出功率越小则 可维持的时间越长。一般变频器可承受 ! "#$ 电源 电压下降和 % 个周期电源丧失。具体低电压 ( 瞬 停) 时间根据电动机定转子的参数频率特性、电 动机最低运行频率来计算确定。 "( &( )( "’ 电动机接地保护 电动机的单相接地是较常见的故障,高压变频器 输出一般采用不接地运行方式,因变频器输出的高次 谐波分量要比系统母线电压大,电动机绕组单相接地 后易导致绝缘损坏,从而事故扩大为相间故障,故高 压变频器必须配备输出单相接地保护,进行报警或延 时停机。实际多采用变频器中性点经高电阻接地,对 接地电阻压降进行采样以判断是否接地。 但需要 注 意 的 是:单 机 容量在 "## *+ 及以上机组 的高压厂用系统,为保证单 相接地时零序过电流保护同 时满足选择性和灵敏性的要 求,采用变压器中性点经小 电阻接地方式,其接地电阻遵循各级零序过电流保 护既有选择性又有足够的灵敏度,同时单相接地电 流在短时间内不致加重一次设备破坏程度的原则。 零序过电流保护通常在 # , ) - 时间内切除单相接 地短路,基 本 不 会 加 重 接 地 短 路 点 的 损 坏 程 度。
图 !" 高压变频器及旁路一次接线方式
短路、断 线、 接 地 和 转 子 堵 转 等。电动机微机保护选配相应的 电气量保护: ( ! )电动机起动超时保护。当电动机正常起动 时,电流由零突然增大,超过 !, - ! . ( ! . 为电动机 额定电流定值) ,随后电流将逐渐减小;在电动机 起动时间内,电流将逐渐减小到 !, - ! . 以下,电动 机起动结束后电动机起动超时保护退出。在起动超 时保护动作期间,保护速断定值、反时限过电流定 值自动升为整定电流值的整定倍数以躲过电动机的 起动电流;!段定时限过电流保护、过载保护在电 动机起动过程中自动退出。这样可有效防止起动过 程中因起动电流过大而引起误动,同时还能保证运 行中保护有较高的灵敏度。 ( & )两段式定时限电流及反时限过电流保护。 "段一般用于电流速断保护,反映电动机的定子绕 组或引线的相间短路。!段为过流保护,作为电流 速断保护的后备保护,为电动机的堵转提供保护。 反时限电流保护反映电动机严重的过负荷。 ( - ) 负 序 过 电 流 保 护。分 别 对 电 动 机 反 相、 断相、匝间短路以及较严重的电压不对称等异常运 行状况提供保护。 ( / )零序过电流保护。对于经小电阻接地的系 统可采用零序过流保护作用于跳闸;对于一般厂用 电系统采用的不接地系统,可选择零序过流或零序 功率方向过流保护。 ( 0 )欠电压保护。欠电压保护是按照电压与时 间整定的,在母线电压异常时将次要辅机退出运 行,以保证重要辅机的运行及其自起动。 ( 1 )另 & 222 34 以上电动机或 & 222 34 以下

高压电机变频改造后综合保护配置方案

高压电机变频改造后综合保护配置方案

高压电机变频改造后综合保护配置方案摘要:随着电力电子技术的发展,变频器在电厂得到了广泛应用。

目前的新建电厂,重要辅机如风机、水泵等,一般均要求考虑配置变频器拖动;越来越多的已建电厂正在进行或已完成高压电动机采用变频器的改造。

高压电动机采用采用变频器拖动后,电动机保护如何配置才能保证机组安全可靠的运行,成为电厂、设计院、保护厂家关注的问题。

关键字:大型电动机;变频;保护配置1变频方式下电动机保护面临的问题采用变频装置后,电动机实现了软启动,启动电流从零开始平滑上升,启动电流显著减小,只有额定电流的1.2~1.5倍(工频可达5倍左右),电动机可以在较小的电流下实现加速、减速,发热较小。

但是,同时启动时间却有所延长。

这对按照躲过启动电流整定的保护和按启动时间整定的保护会带来一定的影响。

据实验实测,移相变压器将会产生5-6倍励磁涌流。

变频器输出侧频率将根据现场运行情况不断调整和变化,输出侧电流的频率可在0.2~400Hz内变化,同时变频器输出侧电流存在一定谐波分量,尤其当电动机在低频段工作时,谐波分量更高。

由于谐波电流的影响,电动机的发热量较工频运行方式下有所增加。

高压电动机变频运行后,电流互感器更容易饱和。

根据电磁式互感器的工作原理,在电压一定的情况下,频率和磁通成反比关系。

频率越低,互感器通过的磁通越大。

因此,在低频情况下.传统的工频互感器极容易发生饱和。

对于变频调速系统,由于附加了变频器装置,变频器的输入电流和输出电流在频率和相位上没有必然的联系。

这是影响电动机继续使用相量差动保护的最大障碍;电动机相量差动保护的工作原理是基于比较电动机两端电流的大小与相位的。

然而变频器输入输出侧的电流在相位上不一致,在工频运行方式下的差动保护中,即使电动机在正常工作情况下也会有相当数量的差流出现。

但是,对于电动机的输入和输出电流,它们的频率和相位是一致的,因此可以考虑对电动机单独进行差动保护,差动保护所需电流取自电动机的输入侧和输出侧。

10kV配电系统继电保护如何配置

10kV配电系统继电保护如何配置

10kV配电系统继电保护如何配置笔者曾做过10多个10kV配电所的继电保护方案、整定计算,为保证选择性、牢靠性,从区域站10kV出线、开关站10kV进出线均选用定时限速断、定时限过流。

保护配置及保护时间设定。

一、整定计算原则(1)需符合《电力装置的继电保护和自动装置设计规范》等相关国家标准。

(2)牢靠性、选择性、灵敏性、速动性应严格保障。

二、整定计算用系统运行方式(1)按《城市电力网规划设计导则》:为了取得合理的经济效益,城网各级电压的短路容量应当从网络的设计、电压等级、变压器的容量、阻抗的选择、运行方式等方面进行掌控,使各级电压断路器的开断电流以及设备的动热稳定电流得到搭配,该导则推举10kV短路电流宜为Ik≤16kA,为提高供电牢靠性、简化保护、限制短路电流,110kV站两台变压器采纳分列运行方式,高处与低处压侧分段开关均采纳备用电源自动投入。

(2)系统最大运行方式:110kV系统由一条110kV系统阻抗小的电源供电,本计算称方式1。

(3)系统最小运行方式:110kV系统由一条110kV系统阻抗大的电源供电,本计算称方式2。

(4)在无110kV系统阻抗资料的情况时,由于3~35kV系统容量与110kV系统比较相对较小,其各元件阻抗相对较大,则可认为110kV系统网络容量为无限大,对实际计算无多大影响。

(5)本计算:基准容量Sjz=100MVA,10KV基准电压Ujz=10.5kV,10kV基准电流Ijz=5.5kA。

三、10kV系统保护参数只设一套,按最大运行方式计算定值,按最小运行方式校验灵敏度(保护范围末端,灵敏度KL≥1.5,速断KL≥2,近后备KL≥1.25,远后备保护KL≥1.2)。

四、短路电流计算110kV站一台31.5MVA,10kV4km电缆线路(电缆每km按0.073,架空线每km按0.364)=0.073×4=0.29。

10kV开关站1000kVA:(至用户变电所电缆长度只有数十米至数百米,其阻抗小,可疏忽不计)。

(完整版)高压变频器电动机保护的配置

(完整版)高压变频器电动机保护的配置

高压变频器电动机保护的配置根据国家能源政策的要求,节能减排工作已全面展开,而在大型火力发电厂,厂用电率的降低势在必行。

对于占厂用电绝大部分的高压电动机来说,节能领域的重要技术措施就是高压变频技术的应用。

随着电力电子技术的发展,变频器在电厂得到了广泛应用。

目前的新建电厂,重要辅机如风机、水泵等,一般均要求考虑配置变频器拖动;越来越多的已建电厂正在进行或已完成高压电动机采用变频器的改造。

高压电动机采用采用变频器拖动后,电动机保护如何配置才能保证机组安全可靠的运行,成为电厂、设计院、保护厂家关注的问题。

1传统电动机保护配置异步电动机的故障有定子绕组相间短路故障、绕组的匝间短路故障和单相接地故障;不正常运行状态主要有过负荷、堵转、起动时间过长、三相供电不平衡或断相运行、电压异常等。

因此,对于高压电动机,根据规程以差动保护或电流速断为主保护,以过负荷保护、过流保护、负序保护、零序保护及低电压保护等作为后备保护。

2目前变频器电动机保护配置发电厂为保证系统的可靠性,高压电动机一般采用变频器带工频旁路,以便即使在变频器检修时也可通过工频旁路,保证电动机的正常运行。

图1为现场高压电动机变频器改造的示意图,其中K1、K2开关保证变频器检修时,与主回路无接触点,此时K3开关闭合,电动机通过旁路运行。

当电动机通过旁路运行,此时由厂用电中高压母线工频电压直接驱动电动机,进线开关QF处保护装置的保护对象是开关出线以及电动机本体。

因此,此时应该按照常规电动机保护的要求配置电动机保护,有差动保护要求的,需要配置电动机差动保护。

当旁路开关K3断开,电动机由变频器拖动时,进线开关QF处保护装置的保护对象是开关出线以及变频器。

由于目前发电厂使用的变频器一般由整流变压器、控制柜等部分构成,即进线开关QF处保护装置的保护对象是开关出线以及整流变压器。

此时电动机成为与厂用电母线隔离后高压变频器的负荷,因而电动机的保护应由高压变频系统的控制器实现。

高压电动机保护整定参考

高压电动机保护整定参考

一、电动给水泵组保护1.主要技术参数:额定容量:5400KW CT配置: 1000/5额定电压:6KV 额定电流I s:启动电流:6I n2.开关类型:真空断路器保护配置:HN2001 HN20413.HN2041定值整定:3.1电动机二次额定电流I e计算:I e=I n/n r=(1000/5)=(A)启动时间:8S3.2分相最小动作电流I seta、I setc:1)最小动作电流整定,保证最大负荷下不误动。

按标准继电保护用的电流互感器在额定电流下10P级的比值误差为 +3℅,即最大误差为6℅。

I dz = K k. 6℅I s/n lh =2××=取I seta= I setc=3.3制动系数K Z.的整定原则:保护动作应避越外部最大短路电流的不平蘅电流,K k应等于其比率制动曲线的斜率I dzmax/I resmax即K z = I dzmax/I resmax= (K k K fzq K st F j I kmax)/I kmax= ╳2╳╳=3.4差动保护时间:t dz=0 s3.5拐点制动电流I res =(额定电流作为拐点)4.HN2001定值整定:配置:速断保护,定时限过电流I段保护,正序电流定时限保护,负序电流定时限保护,低电压保护,零序定时限过电流保护,过载反时限保护(投信号).4.1电动机二次额定电流I e计算:I e=I n/n r=(1000/5)=(A)4.2速断保护I>>计算:启动时速断保护定值:按躲过电动机启动电流整定,可靠系数取。

启动电流6 I e根据设计院图纸。

I qd=6 I e=6×=(A)I dz =K k×I qd=×=灵敏度校验:取最小运行方式下电动机出口两相短路电流校核灵敏系数K lm:K lm=I(2) I dz=16520/4680>2.运行时速断保护定值:I dz= K k×3Ie=×3×= A保护动作时间:t取0秒.4.3定时限I段过电流保护:启动状态下,启动时保护动作电流整定:I Z= 2×=运行状态下,过电流保护整定::I r=×= 动作时间: t取4.4定时限I段过电流保护:启动状态下,启动时保护动作电流整定:I Z= 2×=运行状态下,过电流保护整定::I r=×= 动作时间: t取4.5正序定时限保护定值计算:正序电流定时限过流保护整定:启动状态下:I dz =K k×I qd=×=一次动作电流I dz计算:I dz=×200=4680(A)灵敏度校验:取最小运行方式下电动机出口两相短路电流校核灵敏系数K lm:K lm=I(2) I dz=16520/4680>2.运行状态下:I r=×=保护动作时间:t取秒.4.6负序电流定时限过流保护:负序电流定时限过流保护整定:启动状态下:I r=K k. I qd/n lh=×=运行状态下:I r= K k I e/n lh=×=保护动作时间: t取秒.4.7零序定时限过电流保护:根据限制6KV系统接地电流要求取接地一次动作电流10A。

高低压电动机保护定值整定

高低压电动机保护定值整定

低压电动机保护定值整定U無定原则1.K短略保护山机粗路时〃电流为110倍额定电流I鉄定値推荐取8倍1总庞时0.2s f 如果在启劝过程屮跳IW,可取9侪1恥1. 2>堵转保护电机堵转时,电流为4飞倍额定电流1“定值5倍I刊延时1头1.3.定时限保护定吋限保护件为堵转后备保护*可取询g延时5肌1.4.反时眼保护启动电流设置为l.lle t忖间常教设置为2齐电机aS1.2Ie运行时, 保护将在4加左Q跳阿2倍h电购运行时「保护将在5倍h 电流运行吋,保护將在3秒左右跳闸L 5*欠載保护也机运行在空sm况下■也流论期处于小电流运行惰况下,久载保护可用干报警口如果运行条件允许,可作用于跳闸「切除空毂运行也机,省久载电流可取0, 2U,延时1伽.L 6.不半衡保护当电机内WWffife路或缺相时.使电机运行不呼衡状态,如果段期运行” 则会烧毁ill机.不平衡百分比设置为™h延忖肚1 7.漏血保护需配置专门湎11互感XLO,潞毗电流収0.4A,延Iff 5s,用于跳叭1.8.过压探护山圧氏期过示运行,将影响电机的绝緣,甚至造成短路。

过斥值収1・lUe (Ue为220v),延时5s・1.9、欠圧保护山斥过低将引起电机转速降低,电流増人。

.欠圧值取0. 95Ue(Ue为220v), 延时5s«1. 10. TE吋间保护用于增安型吐机的过鐵保护。

TE时间取2s°1. Ll> I】艺联锁保护用于外部跳闸(DCS跳闸)> 延时0.5s1. 12.晃电再起对于ie:»u机,在系统晃电造成停机,恢复供电后要求电机重启口晃电电用80U4 恢复电圧0.95U。

,晃电时间可设置为3s,再起延时设置为Is (用于分批启动.根据实际情况设置)1. 13.电机启动时间在“参数设置”屮,根据电机启动过程时间设置,默认为6s°1. 14.额定电流在“参数设置”中,根据由机实际情况设置,110B狀札额定电流为207A,互感器选择SCT300,参数中额定电流设置为3・5A・1.15、CT 变比根堀选择的互感器设置,SCI300时,设置为60°2、定值整定说明:例fl: llOkw lU-^J 机,额定电流le=207A,选样SCT300, CT 变比60短路保护81沪1656A 折算到二次1656/60=27. 6A,在短路保护内,设置短路电流设置为27. 6A,保护延时0・2s堵转探护5Lo=1035A 折算到-)^1035 ;6(} 17. 25A.在堵转保护内,设置堵转电流为17,3A,保护延时g (注:堵转保护在壯动机E动过腥中关讯启动后打开,因此在胆动过程屮不会造成堵转觇护动作〉定时般探护二621A 折算到二次621/2 W. 35A r在定时限保护内,设置定时限H1流为10. 4九保护延Iff 5s,反时眼过流启劝电流1- lIe = 227.7A 折算到一•次227- 7/&0=3. 795A.在应忖限过流内』设置甘动也说为;J.SM.时间常ft2s=其它保护依次根据整定原则计算,讨算出次定值氐根据CT变比计算山—次定值.作为保护定值输入乜电动机的主要保护及计算、速断保护1•速断高值:动作电流高定值Isdg计算。

电动机保护

电动机保护

电动机保护第一节电动机的故障、异常运行状态及保护方式在电力生产和工矿企业中,大量地使用电动机。

发电厂厂用机械大部分用的是异步电动机,但厂用低速磨煤机、大容量给水泵以及水泵房循环水泵等则采用同步电动机。

以下介绍的内容主要以异步电动机为主。

电动机的安全运行对确保发电厂以至整个工业生产的安全、经济运行都有很重要的意义,因此应根据电动机的类型、容量及其在生产中的作用,装设相应的保护装置。

但是,由于实际使用的电动机数量很多,且大部分为中、小型,因而不可能在每一台电动机上都配置性能完善的保护装置,故在进行电动机保护配置时,除考虑继电保护的四个基本要求外,还应该从技术、经济上衡量,力求简单、可靠。

电动机的主要故障有定子绕组的相间短路、单相接地以及同一相绕组的匝间短路。

电动机发生相间短路故障时,不仅故障的电动机本身会遭受严重损伤,同时还将使供电电压显著下降,影响其他用电设备的正常工作,在发电厂中甚至可能造成停机、停炉的全厂停电事故。

因此,对电动机定子绕组及其引出线的相间短路,必须装设相应的保护装置,以便及时地将故障电动机切除。

通常,对于容量在75kW及以下的低压小容量电动机,可采用熔断器或低压断路器(自动空气开关)的短路脱扣器作为相间短路保护;容量较大的高压电动机,则装设由电磁型电流继电器或感应型电流继电器构成的电流速断作为相间短路保护;当电动机的容量在2000kW以上,或者很重要但电流速断灵敏度不能满足要求时,若具有六个引出线,可装设纵差保护。

单相接地对电动机的危害取决于供电网络中性点的运行方式。

对于380/220V的低压电动机,其电源中性点一般直接接地,故发生单相接地时,将产生很大的短路电流,因而也应尽快切除,故应该装设快速动作于跳闸的单相接地保护。

为了简化,一般由相间保护采用三相式接线即可;灵敏度不能满足要求的重要电动机,才考虑采用零序保护。

而对于3—10kV 的高压电动机,由于所在供电网络属于小电流接地系统,电动机单相接地后,只有电网的电容电流流过故障点,其危害一般较小。

高压电动机的继电保护

高压电动机的继电保护
高压电动机的继电保护 一、 概 述 GB50062-1992规定:对电压为3kV及以上的异步电动机和同步电动机的下列故障及异常运行方式,应装设 相应的保护装置:(1)定子绕组相间短路;(2)定子绕组单相短路;(3)定子绕组低电压;(4)定子绕组 过负荷;(5)同步电动机失步;(6)同步电动机失磁;(7)同步电动机出现非同步冲击电流。 对2000kW以下的高压电动机,宜采用电流速断保护,保护装置宜采用两相式。对 2000kW及以上的高压电 动机,或电流速断保护灵敏度不符合要求的2000kW以下的高压电动机,应装设纵联差动保护。所有保护装置 应动作于跳闸。 对生产过程中易发生过负荷的电动机,应装设过负荷保护。保护装置应根据负荷特性,带时限动作于信号 或跳闸。 当单相接地电流大于5A时,应装设有选择性的单相接地保护;当单相接地电流小于5A时,可装设绝缘监视 装置。单相接地电流为10A及以上时,保护装置应动作于跳闸;而10A以下时,可动作于跳闸或信号。 对下列高压电动机应装设低电压保护:(1)当电源电压短时降低或短时中断后又恢复时,需要断开的次要 电动机和有备用自动投入机械的电动机,一般要求低电压保护经0.5s动作于跳闸。(2)生产过程不允许或不需 要自启动的电动机,一般要求低电压保护经 0.5~1.5s动作于跳闸。(3)在电源电压长时间消失后须从电网中 自动断开的电动机,一般要求低电压保护经5~20s动作于跳闸。
电流速断保护的动作电流 Iq(b 速断电流),应躲过电动机的最大启动电流 Ist.max
来整定,整定计算的公式为
I qb
Krel Kw Ki
I st .max
(6-49)
式中 Krel 为可靠系数,采用DL型电流继电器时取1.4~1.6,采用GL型电流继电器时 取1.8~2。
2、采用纵联差动保护的接线及其动作电流的整定计算 在3~10kV系统中,电动机差动保护可采用两相两继电器式接线,如图6-46所 示。继电器KA可采用DL-11型电流继电器,也可采用专门的差动继电器(KD)。 差动保护的动作电流,应按躲过电动机额定电流来整定,整定计算的公式为

高压电动机保护

高压电动机保护

高压电动机的继电保护高压电动机的定子绕组和其引出线,一般应装设电流速断保护。

对生产过程中容易发生过载的电动机,应装设过负荷保护,过负荷保护可根据负荷特性带时限作用于信号、跳闸或自动减负荷装置。

对于高压电动机容量在2000kW以上的,在电流速断不能满足灵敏度要求时,应装设纵联差动保护。

当电源电压短时降低或短时中断后根据生产过程不允许或不需要自启动的电动机,以及为了保证重要电动机自启动而需要断开的次要电动机,应装设低电压保护,一般带有0.5~1.5s时限作用于跳闸,但是为了保证人身和设备的安全,在电源电压长时间小时后,须从系统中自动断开的电动机,也需要装设低电压保护,一般带有5~10s时限作用于跳闸。

一、高压电动机的相间短路保护-对于功率小于2000kW的电动机,常采用电流速断来作为电动机的相间短路保护,当灵敏度要求较高时,可以用DL型或GL型继电器构成两相不完全星型连接方式,其接线方式与电路线路或电力变压器的电路速断相同。

也可以采用两相差接线,即两相一继电器接线。

电流速断的动作电流按躲过电动机的最大启动电流来整定。

二、电动机的过压保护-过负荷保护可以采用一相一继电器接线,也可以采用两相两继电器不完全星型连接或两相差一继电器接线。

由于电动机装有电流速断保护,过负荷保护就可以利用GL型继电器的反时限过电流装置来实现过负荷保护。

过负荷的动作电流按躲过电动机的最大启动电流来整定。

过负荷保护的动作时间应大于电动机的启动时间,一般取10-16s,如用GL型继电器,可取两倍动作电流时的时间12-16s。

三、高压电机的低电压保护-当电压互感器一次测隔离开关断开时,低电压保护即退出工作,防止无动作。

对保护动作不重要的电动机,电压继电器按60%-70%额定电压整定,动作时间取0.5s;对动作较为重要的电动机,电压继电器按30%-50%额定电压整定,动作时间取5-10s。

四、高压电动机的差动保护-在小电流接地的供电系统中,可以采用两相两继电器的差动保护接线,差动保护的动作电流按躲过电动机额定电流In来整定,主要考虑二次回路断线时不至于引起误动作。

10kv电机接地线标准要求

10kv电机接地线标准要求

10kv电机接地线标准要求10kV电机接地线应满足以下标准要求:
1. 接地电阻:应符合国家标准,即接地电阻不应大于4Ω。

2. 接地电极:应埋设在深度不少于0.8m的湿土中,或者在深度不少于0.5m 的湿土中埋设两根接地电极,两根接地电极之间的距离不应小于2m。

3. 接地电极材料:应采用铜材质,直径不小于50mm,长度不小于2m。

4. 接地线:应与电机的接地线连接牢固,截面积应符合国家标准。

5. 定期检查:应定期检查接地电极和接地线,如发现接地电阻过大或接地电极损坏,应及时更换或修复。

6. 接地开关和保护器:在电机的接地线上应安装接地开关,以便在维修或检修时切断电机的接地线。

同时,应安装接地保护器,以便在电机出现漏电时及时切断电源,保护人身安全。

7. 规格尺寸:根据供电电压等级的不同,可选取不同型号的接地线。

一般低压10kV以下用截面为2.5mm²以上的单股软铜芯或铝质绞制圆型金属导线做接地体。

这些标准要求是为了确保10kV电机的接地线能够有效地保护设备和人员安全,防止发生触电和设备故障等意外情况。

同时,也要求接地线应具有良好的导电性能和耐腐蚀性能,能够长期稳定地工作。

6KV电机保护配置及运行维护检查

6KV电机保护配置及运行维护检查

6KV厂用高压电机保护配置及运行维护检查一、概述:目前微机型电动机保护除了原有的差动保护、速断保护、接地保护、过负荷、低电压保护外,还新增了负序保护、过热保护等。

如:#1、2、3给水泵,#1、2引风机及增压风机等容量较大电机带有差动保护。

装设接地保护。

当接地电流为5A一10A时可作用于信号,当接地电流大于10A时接地保护一般动作于跳闸。

但对容量为2000KW以上的电动机接地电容电流达5A,即应装设单相接地保护跳闸。

当保护灵敏度不够时允许带短时限(051—1S)动作。

电动机单相接地保护,由一电流继电器LJ0接于零序电流互感器LH0上构成。

电动机低压保护设置的一般原则电动机的低电压保护是一种辅助保护,只有在下列情况下才装设。

(1)为了保证重要电动机的自启动。

当供电网络电压降低或中断时,由该网供电的所有异步电动机的转速都要下降,而同步电动机有可能失步。

当电压恢复时,大量电动机自启动并吸收很大的自启动电流,致使电压恢复时间拖长,增加了自启动时间,甚至使自启动成为不可能。

因此,为了保证重要电动机的自启动,电动机低电压保护动作时,要跳开一些不重要电机。

(2)使不允许或不需要自启动的电动机跳闸。

根据生产工艺要求,当电源电压短时降低或中断时不允许或不需要自启动的电动机,应装设低电压保护,通过一定的时限跳闸。

(3)使困电源电压长时问消失,而不允许自起动的重要电动机跳闸。

据生产过程和技术保安要求,在电源电压长时间消失后,不允许自启动的重要电动机应装设低电压保护,以一定的时限跳闸。

二、厂用电动机低压保护接线的基本要求:(1)三相电压短时下降到整定值时,能可靠启动,并闭锁电压回路断线信号装置,不致误动作。

(2)当电压互感器二次熔断一相、二相或三相同时熔断时,低电压保护也不应该误动作。

为此,装设三相低电压启动元件,并在第三只继电器上增设分路熔断器。

(3)当母线电压降低到额定电压的60%ue一70%Ue时,首先应以0.5~1.5S的时限切除次要的电动机;当电压继续下降到50%ue~55%ue时,低电压保护才以5—10S的时限切除不允许长期失电后再启动的或有备用机组的重要电动机。

高压电动机的保护

高压电动机的保护

:高压电动机的保护一、概述高压电动机在运行中可能出现各种短路故障和不正常工作状态,为防止故障扩大,保证电动机的安全运行因此应装设相应保护装置。

保护装置的设置:根据GB50062—1992规定1、对电压为3kV 级以上,容量2000kW 以下的高压电动机相间短路,应装设电流速断保护;2、对容量2000kW 以上的高压电动机应装设差动保护;3、对容易发生过负荷的电动机应装设过负荷保护;4、对不重要的电动机或不允许自启动的电动机,应装设低电压保护;5、高压电动机单相接地电流大于5A 时,应装设有选择性的单相接地保护。

二、保护整定计算1、高压电动机过负荷保护按躲开高压电动机的额定电流整定,即继电器动作电流: I OP 。

r =K rel K CON I N 。

M re TA式中:K rel K re 分别为可靠系数与返回系数,当动作于信号时:K rel =1.05~1.1;当动作于跳闸时,K rel =1.2~1.25,I N 。

M 为电动机额定电流。

时限整定应大于电动机带负荷的启动时间,一般可取10~15s 。

2、高压电动机瞬时速断保护按躲开高压电动机的启动电流整定,即继电器动作电流: I OP 。

r =K rel K CON (K st I N 。

M )= K rel K CON I st 。

max ) (2-1) k TA k TA对于同步电动机,除应躲过启动电流I st 。

max 外,还应躲过外部短路时同步电动机输出的三相短路电流I //(3)K 。

max ,即I //(3)K 。

max =(1.05 +0.95sin ψN )I N 。

M (2-2)X //*.M式中:X //*.M 、ψN 同步电动机的次暂态电抗和额定功率因素角。

(1) 当I //(3)K 。

max 〈I st 。

max 时,继电器动作电流按式(2-1)计算。

(2) 当I //(3)K 。

max 〉I st 。

max 时,继电器动作电流按将式(2-1)中I st 。

高压电机接线标准

高压电机接线标准

高压电机接线标准答案:一、引接线的位置1.引接线必须安装在电机壳体上或底座上,并应与地面保持一定的距离。

2.如需在电机外部缆,引线不得垂直,并应采用绝缘套管进行保护。

3.引接线不得捆绑在电机的其他支架、冷却器、管路等上。

二、引接线的材质和规格1.引接线应选用铜导体或铜包铝导体,并应满足相应的规格要求。

2.引接线截面积应满足电机负载电流的要求,根据电机负载电流和引接线长度可选择相应的截面积。

3.引接线长度应控制在合理范围内,太短易影响安装和检修,太长易增加线路电阻和功率损失。

三、引接线的颜色1.三相电机引接线颜色应符合国家标准,一般为红、黄、蓝三种颜色。

2.接地线颜色应为绿色或绿黄相间。

3.如果引接线颜色不符合上述规定,必须在电机上贴上标示板。

四、其他注意事项1.连接端子应牢固可靠,接触电阻应符合电机的性能要求。

2.引接线的接头应采用铜制接头,并应紧固,防止松动。

3.底座或电机壳体的接地应符合电气安全规定。

总体来说,按照国家高压电机引接线最新规范,可以保障电机的正常运行,延长电机的使用寿命,同时也可以避免因线路故障导致的损失。

因此,电机的安装和调试必须严格按照相关规定进行,确保安全可靠。

首先,确保电源供应与电动机的额定电压和频率相匹配。

检查电源的额定电压和频率,确保其与电动机的额定电压和频率一致。

查看电机接线盒上的电气图或接线板上的引线标记,以了解电动机的引线标记和连接方式。

电动机的接线盒通常有编号的引线端子,每个端子都代表着特定的电源线。

连接电动机的三个相线(通常标记为L1、L2、L3)到电源相线。

根据电动机接线盒上的引线标记,将电源的三相线与电动机的三相线连接。

通常,这些线束通过螺纹接头或绝缘套管连接在一起。

1、将电源的L1相线连接到电动机的L1相线。

2、将电源的L2相线连接到电动机的L2相线。

3、将电源的L3相线连接到电动机的L3相线。

将电动机的接地线连接到地线。

在接线板上会有一个标识为E或GND (接地)的端子,将电动机的接地线连接到该端子。

高压电动机的继电保护

高压电动机的继电保护

动作电流按躲过电动机额定电流整定。
电 动 机
I op1
K rel K re
I NM
的 K rel——可靠系数 ,动作于信号取1.05,

动作于跳闸、自动减负载取1.2

K re ——返回系数 ,GL型取0.8。
2。动作时限整定:
一般取15~20 秒。
注意:
高 压 电
对于GL型继电器,其感应部分作为电 动机的过负荷保护,其速断部分作为电动
动 机 的
3 ) 当 电 源 电 压 下 降 到 60%~70%UN 时 , KV1 、 KV2及KV3释放,接通时间继电器KT1,经0.5s延时 后,使出口中间继电器KM得电,其接点接通跳闸小
保 母线,将不重要电动机切除。

4 ) 当 电 源 电 压 继 续 下 降 到 40%~50%UN 以 下 时
2。接线
高 压 电 动 机 的 保 护
高压电动机低电压保护原理图
3。电动机的低电压保护工作原理
1)在正常运行的各低电压继电器处于带电状态, 低电压保护不动作。
高 压 电
2)当电压互感器的一次侧或两次侧发生一相或两 相断线时,KV1,KV2及KV3中相应的低电压继电器 返回,从而起动中间继电器KM1,切断KT1和KT2线 圈电源,防止误跳阀,并发出电压回路短线信号定

保护装置动作电流:躲过电动机的起动电流
动 机
I op1 K rel I stM
的 保
K rel ——可靠系数 ,一般DL取1.8~2,

GL取1.4~1.6 。
I stM——电动机起动电流
I op• K
KW KTA
I op1
两相电流差接线:KW = 3 不完全星形接线:KW =1

10kv电机接地线标准要求

10kv电机接地线标准要求

10kv电机接地线标准要求
根据国家标准《GB50283-2013 建筑电气设计规范》的要求,10kV电机接地线的标准要求如下:
1. 接地电阻:电机的接地电阻应满足以下要求:
- 对于单台10kV电机接地电阻不得大于1欧姆。

- 对于接地网中多台10kV电机接地电阻总和不得大于规定值。

2. 接地线的材质和规格:接地线应选择导电性良好的铜材质或合适的铝材质制成。

其截面积应根据电流负荷和电阻要求进行合理选取。

3. 接地线的敷设方式:接地线应敷设在干燥、通风良好、不易损坏的场所,尽量避免潮湿和腐蚀环境。

同时,接地线应与其他线路保持一定的距离,防止互相干扰。

4. 接地线的连接方式:接地线的连接应采用可靠且密封良好的方式,以保证良好的接地效果。

连接部分应经过防松、防腐蚀等措施,并进行定期检查和维护。

以上是10kV电机接地线标准要求的一些基本内容,具体的要求还要根据电气设计的实际情况和相关标准进行确定。

因此,在具体的工程实施中,应参考国家标准和电气设计的要求进行设计和施工。

高压电动机综合保护整定原则

高压电动机综合保护整定原则

高压电动机综合保护整定原则我公司高压电动机数量多,且功率较大,运行之初,因综保装置整定不合理跳停频繁,误动多次,有的电机已出现问题但保护还未启动,使故障扩大,水泥生产无法正常,所以我查阅了很多资料,还有根据多年的经验,总结出高压电动机的整定原则,经过按照以下原则重新整定后,我公司高压电动机跳停次数大大降低,电动机也得到了可靠的保护。

1.差动电流速断保护:按躲过电动机空载投入时最大暂态电流引起的不平衡电流量大部分以及短路时的不平衡电流整定一般取:Idz=KIe/n式中: Idz:差动电流速断的动作电流Ie:电动机的额定电流K:一般取6—122.纵差保护:1)纵差保护最小动作电流的整定,最小动作电流应大于电动机启动过程中时的不平衡电流Idzmin=Kk△mIe/n式中:Ie:电动机额定电流;n: 电流互感器器的变比Kk:可靠系数,取3~4△m:由于电流互感器变比未完全匹配产生的误差,一般取0.1在工程实用整定计算中可选取Idzmin=(0.3~0.6)Ie/n。

2)比率制动系数K 按最大外部短路电流下差动保护不误动的条件,计算最大制动系数K= Kk Kfzq Ktx Ke式中:Ktx:电流互感器的同型系数,Ktx=0.5Kk:可靠系数,取2~3Ke:电流互感器的比误差,取0.1Kfzq:非周期分量系数,取1.5~2.0计算值Kmax=0.3,但是考虑电流互感器的饱和和暂态特性畸变的影响,在工程实用整定计算中可选取K=0.5~1.03.相电流速断保护:)速断动作电流高值IsdgIsdg= Kk/Ist式中:Ist:电动机启动电流(A)Kk:可靠系数,可取Kk=1.32)速断电流低值IsddIsdd可取0.7~0.8 Isdg一般取0.7 Isdg3)速断动作时间tsd当电动机回路用真空开关或少油开关做出口时,取Tsd=0.06s,当电动机回路用FC做出口时,应适当以保证熔丝熔断早于速断时间。

电动机启动时间Tsd按电动机的实际启动时间并留有一定裕度整定,可取Tsd=1.2s 倍实际启动时间。

电气接地的规范要求及接地的各项参数,收藏!

电气接地的规范要求及接地的各项参数,收藏!

电气接地的规范要求及接地的各项参数,收藏!为了主要目的是保护人身和设备的安全,减少公司电气事故发生,控制公司人员和财产不受损失,所有电气设备应按规定进行可靠接地。

接地规范1、适用范围本规范规定了生产经营单位用电系统、新建扩建、检维修、改造、办公区域、员工宿舍等电气线路接地规定。

2、术语和定义电气系统配置保护方法有:保护接地、保护接零、重复接地、工作接地等。

电气设备的某个部分与大地之间作良好的电气联接称为接地。

与大地土壤直接接触的金属导体或金属导体组称为接地体:联接电气设备应接地部分与接地体的金属导体称为接地线;接地体和接地线统称为接地装置。

3、接地概念及种类(1)防雷接地:为把雷电迅速引入大地,以防止雷害为目的的接地。

防雷装置如与电报设备的工作接地合用一个总的接地网时,接地电阻应符合其最小值要求。

(2)交流工作接地:将电力系统中的某一点,直接或经特殊设备与大地作金属连接。

工作接地主要指的是变压器中性点或中性线(N 线)接地。

N 线必须用铜芯绝缘线。

在配电中存在辅助等电位接线端子,等电位接线端子一般均在箱柜内。

必须注意,该接线端子不能外露;不能与其它接地系统,如直流接地、屏蔽接地、防静电接地等混接;也不能与 PE 线连接。

(3)安全保护接地:安全保护接地就是将电气设备不带电的金属部分与接地体之间作良好的金属连接。

即将大楼内的用电设备以及设备附近的一些金属构件,有PE 线连接起来,但严禁将PE 线与N 线连接。

(4)直流接地:为了使各个电子设备的准确性好、稳定性高,除了需要一个稳定的供电电源外,还必须具备一个稳定的基准电位。

可采用较大截面积的绝缘铜芯线作为引线,一端直接与基准电位连接,另一端供电子设备直流接地。

(5)防静电接地:为防止智能化大楼内电子计算机机房干燥环境产生的静电对电子设备的干扰而进行的接地称为防静电接地。

(6)屏蔽接地:为了防止外来的电磁场干扰,将电子设备外壳体及设备内外的屏蔽线或所穿金属管进行的接地,称为屏蔽接地。

高压电动机保护

高压电动机保护
一相绕组旳匝间短路
异常运营状态有:起动时间过长 一相熔断器熔断或三相不平衡 堵转 过负荷引起旳过电流 供电电压过低或过高。
定子绕组旳相间短路危害
引起电动机本身绕组绝缘严重损坏、铁芯烧伤 造成供电电网电压旳降低,影响或破坏其他顾客旳
正常工作
要求切除电机 高压电动机单相接地危害
假如接地电流不小于10A,电动机定子铁芯将烧损
保护动作于跳闸 电动机差动保护接线示意图
图 7- 2 电动机纵差保护原理接线图
a-采用DL型电流继电器两相式接线; b-采用BCH-2型差动继电器三相式接线
动作电流整定 动作电流按躲过电动机额定电流整定。
——可靠系数 ,DL取1.5 ~ 2, BCH-2取1.3,高敏捷度接线取0.55
敏捷度校验 ——电动机出口最小两相短路电流值
可能发展成匝间短路或相间短路 视接地电流大小,切除故障电动机或发出报警信号
高压电动机保护配置
纵差动保护和电流速断保护 2MW 相间短路保护
负序电流保护
起动时间过长保护
过热保护 堵转保护(过电流保护)
其他电流保护
单相接地保护(零序电流保护)
过负荷保护等
低电压和过电压保护
电压保护
2023kW下列 电流速断保护
电流
躲过电动机正常运营时, 差动回路旳不平衡电流
第三节 电动机旳其他电流保护
一、负序电流保护
负序电流保护(不平衡保护) 负序电流保护主要针对多种非接地旳不对称故障,
(匝间短路、断相、相序接反、电压不平衡) 负序电流保护动作于跳闸 能够根据需要选择定时限特征或反时限特征 当电动机旳负序电流不小于正序电流时,可鉴定为
安装地点尽量接近断路器 在电动机起动时不应动作 有高、低两个整定值

6KV及380V电动机保护配置及其原理

6KV及380V电动机保护配置及其原理

6KV及380V厂用电保护配置及其原理一、电动机保护:电动机主要配有下列保护:1、速断保护:速断保护主要是用来反应电动机内部短路故障,当电动机内部发生短路故障时,速断保护以0秒时限作用于该电动机的电源开关,电流速断保护作为电动机引出线及定子绕组相间短路的主保护之一2、过负荷:用来反应电动机过载,发信3、低电压:在电压降低或者消失电动机的转速下降;当电压恢复时,在电动机绕组内部开始流过比额定电流大好几倍的自启动电流,这样大的自启动电流将使电网电压降加大,使电压恢复的过程延长,增加电动机达到正常转数的困难,甚至不能自启动,为了保证重要电动机的自启动们必须切除一部分不重要的电动机,使电网的电压降减小,因此,在不重要和次要电动机上装设的电压保护,当电压消失或者降低时动作,将电动机从电网上断开。

当电压降低到65%时,以0.5秒切断次要负荷,当电压降低到45%时,以9秒的时限断开重要负荷。

4、零序:反应电动机线圈及其引出线部分的单相接地保护,当电动机出现单相接地时,以0.1秒的时限作用于电源开关。

5、反时限过流保护: 电动机热过载(过负荷)的主保护及定子绕组或引出线相间短路的后备保护6、负序电流:当发生电动机断相,反相、定子绕组或引出线不对称相间短路、定子绕组匝间短路时,将产生负序电流,采用负序电流保护来反应电动机内部不对称短路故障,负序Ⅰ段以0.5秒,Ⅱ段以10秒时限作用于电源开关7、差动:电动机的电流速断保护的动作电流是按照躲过电动机的起动电流来整定的,而电动机的起动电流比额定电流大得多,这就降低了保护的灵敏度,对于电动机内部保护区很小。

因此,大容量的电动机应装设差动保护。

8、堵转保护:在电动机正常运转过程中,假若转子被卡住,电流将增大,当电流大于整定值时,延时跳闸,这就是堵转保护。

9、起动时间过长保护:电动机开始起动,经过整定的起动时间,其电流值仍大于整定起动电流值,则表明电动机起动时间过长,此次起动未成功,电动机有严重发热的危险10、频繁起动保护:实际运行中,电动机若起动不起来,运行人员可能在较短时间内连续操作数次,使电动机频繁起动,或者有些电动机具有特殊的负载,需要频繁的跳开又起动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高压电动机单相接地保护的配置原则主要有以下几点:
1.根据规定,在高压电动机所接的小接地电流电网中,当单相接地电流大于5安时,应装设单相接地保护。

2.单相接地电流为10安及以上时,保护装置应无时限动作于跳闸。

3.单相接地电流为5~10安时,保护装置既可动作于跳闸,也可动作于信号。

4.单相接地保护通常采用零序电流保护装置,动作电流应大于电动机和配电系统本身的电容电流来整定。

一、高压开关柜实行温度在线监测的必要性
高压开关柜作为电力系统中非常重要的电气设备。

现代电力系统对电能质量的要求越来越高,相应地对高压开关柜的可靠性也提出了更高的要求。

随着电网的发展和设备技术的提高,10,35kV系统开关柜在电网中已大量使用。

而开关柜的内部过热现象已成为开关柜使用中的常见问题,由于开关柜体的密闭性,在一些负荷较重的地区,存在开关柜的温升超标问题。

开关柜的温升超标,直接影响设备的安全稳定运行,而且,过热问题是一个不断发展的过程,如果不加以控制,过热程度会不断加剧,并对绝缘件的性能及设备寿命产生很大的影响。

目前,对电力系统内部使用的开关柜,严格遵守设备采购程序及技术政策,确保入网的开关柜都通过型式试验,尤其对温升的要求比较严格。

运行中,负荷通常都不会达到开关柜的设计满容量,开关柜的温升问题应该不会很突出,但是实际情况并不尽然。

开关柜内部实际温升情况,尤其是母排连接等部位,通常总是比型式试验测出的数据高。

主要有以下几点原因:(1)型式试验测得数据通常在试验室完成,持续时间不长,一般不超过8h,不具备温升累积效应,不能等同于长期运行并持续发热的设备。

(2)不同金属的膨胀效应不同。

钢制螺栓的金属膨胀系数要比铜质、铝质母线小得多,尤其是螺栓型设备接头,在运行中随着负荷电流及温度的变化,其铝或铜与铁的膨胀和收缩程度将有差异而产生蠕变,也就是金属在应力的作用下缓慢的塑性变形,蠕变的过程还与接头处的温度有很大的关系。

实践证明,当接头处的运行工作温度超过80℃时,接头金属将因过热而膨胀,使接触表面位置错开,形成微小空隙而氧化。

当负荷电流减小温度降低回到原来接触位置时,由于接触面氧化膜的覆盖,不可能是原安装时金属间的直接接触。

每次温度变化的循环所增加的接触电阻,将会使下一次循环的热量增加,所增加的温度又使接头的工作状况进一步变坏,因而形成恶性循环。

(3)连接部位紧固螺栓压力不当。

部分安装或检修人员在导体连接上认为连接螺栓拧得愈紧愈好,其实不然。

特别是铝质母线,弹性系数小,当螺母的压力达到某个临界压力值时,若材料的强度差,再继续增加不当的压力,将会造成接触面部分变形隆起,反而使接触面积减少,接触电阻增大,从而影响导体接触效果。

(4)选用的导体材料电导率不满足要求,多数属于导体原材料纯度不够。

(5)现场的其它因素,比如可能存在安装检修工艺不当,如母线在加工、连接、安装过程中,对母线接触表面处理不到位、不平整、不光滑、没有涂专用电力脂等,导致有效接触面积减少接触电阻增大而发热。

相关文档
最新文档