单片机串口通讯必备基础知识

合集下载

单片机串口通信协议

单片机串口通信协议

单片机串口通信协议1. 引言单片机串口通信是一种常见的数据通信方式,它允许单片机与其他外部设备进行通信。

串口通信协议定义了数据传输的格式、波特率等参数,确保通信的稳定和可靠性。

本文将介绍单片机串口通信协议的基本原理和常用协议。

2. 串口通信基础串口通信是通过串行数据传输来实现的。

其中,UART(通用异步收发传输器)是实现串口通信的重要组件。

UART将并行数据转换为串行数据,并通过串口进行传输。

在单片机中,常用的串口通信引脚是TX(发送)和RX(接收)。

3. 串口通信协议串口通信协议定义了数据传输时各个数据包的格式和规则。

常见的串口通信协议有以下几种:3.1. RS-232RS-232是最早出现的串口通信协议之一。

它定义了数据传输的电气特性和信号级别。

RS-232使用9个引脚进行数据传输,包括发送和接收数据线、数据控制线等。

该协议具有较长的最大传输距离和可靠性,但通信速率相对较慢。

3.2. RS-485RS-485是一种多点通信的串口协议。

相比于RS-232,RS-485支持多个设备之间的通信。

它使用不同的信号级别和电气特性,可实现更远的传输距离和更高的通信速率。

RS-485通信中设备分为主设备和从设备,主设备负责控制通信流程。

3.3. SPISPI(Serial Peripheral Interface)是一种同步串口通信协议,常用于单片机与外部设备之间的通信。

SPI使用四条引脚进行通信,包括时钟线、数据线、主设备输出从设备输入线和主设备输入从设备输出线。

SPI通信速率较快,适用于高速数据传输。

3.4. I2CI2C(Inter-Integrated Circuit)是一种多主从通信的串口协议。

I2C使用两条引脚进行通信,包括时钟线和数据线。

在I2C总线上,可以连接多个设备,实现多个设备之间的通信和数据交换。

I2C通信速率较慢,但具有较简单的硬件设计和较低的功耗。

4. 协议选择和配置选择合适的串口通信协议需要考虑通信距离、通信速率、设备数量等因素。

单片机串口通信实现

单片机串口通信实现

单片机串口通信实现单片机串口通信是指通过串口来进行数据传输和通信的一种方式。

通过串口通信,可以实现单片机与其他外设设备的数据传输和控制,以达到实现各种功能的目的。

下面将介绍如何在单片机中实现串口通信。

一、串口的硬件设置串口通信需要硬件上的支持,主要包括波特率、数据位、停止位和校验位等设置。

以常见的UART串口为例,波特率值可设置为常见的9600、115200等,数据位通常为8位,停止位为1位,校验位可选择无校验、奇校验、偶校验等。

在单片机中,可以通过寄存器对这些参数进行设置,以满足具体的需求。

二、初始化串口在单片机中实现串口通信之前,需要对串口进行初始化设置。

具体步骤如下:1. 设置串口引脚将单片机的串口引脚与外部设备连接,可以通过查阅单片机的数据手册或引脚图来确定具体的引脚连接方式。

2. 设置波特率、数据位、停止位和校验位通过寄存器设置,将波特率、数据位、停止位和校验位等参数设置为所需的数值。

3. 使能串口使能串口功能,以便能够正常进行数据传输和通信。

三、发送数据发送数据是串口通信的核心部分。

在单片机中,通过向串口发送指令或数据来实现数据的发送。

具体步骤如下:1. 准备待发送的数据将需要发送的数据存储在单片机的某个特定的寄存器中。

2. 检查发送缓冲区状态检查发送缓冲区的状态,判断是否可继续发送数据。

如果发送缓冲区为空,则可以继续发送数据;如果发送缓冲区已满,则需要等待发送缓冲区空闲。

3. 发送数据将待发送的数据写入发送缓冲区,启动发送操作。

四、接收数据接收数据是串口通信的另一个重要部分。

在单片机中,通过接收串口传来的数据,可以实现对外部设备的控制和数据读取。

具体步骤如下:1. 检查接收缓冲区状态检查接收缓冲区的状态,判断是否有数据可读取。

如果接收缓冲区为空,则需要等待数据的到达;如果接收缓冲区有数据,则可以进行后续的读取操作。

2. 读取数据从接收缓冲区中读取数据,并存储在单片机指定的地址空间中。

简述单片机串行通信的波特率

简述单片机串行通信的波特率

简述单片机串行通信的波特率摘要:一、单片机串行通信的基本概念二、波特率的定义及意义三、波特率的计算方法四、波特率与通信距离、数据速率的关系五、如何选择合适的波特率六、结论正文:一、单片机串行通信的基本概念单片机串行通信是指单片机通过串行接口与其他设备进行数据传输的过程。

在这个过程中,数据是一位一位地按照一定的时间间隔依次传输,从而实现数据的远程传输和控制。

串行通信在电子设备、计算机网络等领域有着广泛的应用。

二、波特率的定义及意义波特率(Baud Rate)是衡量串行通信数据传输速率的重要指标,它表示每秒钟传输的比特数。

波特率越高,数据传输速率越快。

在实际应用中,波特率决定了通信的稳定性和可靠性,因此选择合适的波特率至关重要。

三、波特率的计算方法波特率的计算公式为:波特率= 数据速率/ 传输位数。

其中,数据速率指的是单位时间内传输的比特数,传输位数指的是每个数据帧中数据的位数。

四、波特率与通信距离、数据速率的关系波特率与通信距离和数据速率之间存在一定的关系。

通信距离较远时,信号衰减较大,可能导致数据传输错误,此时应降低波特率以提高通信的可靠性。

而数据速率较高时,传输时间较短,可以适当提高波特率以提高传输效率。

五、如何选择合适的波特率选择波特率时,应综合考虑通信距离、数据速率、传输可靠性等因素。

在保证通信可靠性的前提下,尽量选择较高的波特率以提高传输效率。

此外,还需注意波特率与通信协议的兼容性,确保不同设备之间的顺畅通信。

六、结论单片机串行通信的波特率是衡量数据传输速率的重要指标,选择合适的波特率对保证通信的稳定性和可靠性具有重要意义。

单片机中的串口通信技术

单片机中的串口通信技术

单片机中的串口通信技术串口通信技术是指通过串行接口将数据传输和接收的技术。

在单片机领域,串口通信是一种常见的数据交互方式。

本文将介绍单片机中的串口通信技术,并探讨其在实际应用中的重要性。

一、串口通信的原理串口通信是指通过串行接口传输数据的方式,其中包括一个数据引脚和一个时钟引脚。

数据引脚用于传输二进制数据,在每个时钟周期内,数据引脚上的数据会被读取或写入。

时钟引脚则用于控制数据的传输速度。

单片机中的串口通信主要包含两个部分:发送和接收。

发送时,单片机将数据转换为二进制形式,并通过串口发送出去。

接收时,单片机会从串口接收到二进制数据,并将其转换为可识别的格式。

通过发送和接收两个过程,单片机可以与外部设备进行数据交互。

二、串口通信的类型在单片机中,串口通信主要包含两种类型:同步串口和异步串口。

同步串口是指发送和接收两个设备之间使用相同的时钟信号,以保持数据同步。

同步串口通信速度快,但需要额外的时钟信号输入。

异步串口则是通过发送数据前提供起始位和终止位来区分不同数据帧的方式进行通信。

异步串口通信的优势是不需要额外的时钟信号,但速度相对较慢。

在实际应用中,通常使用异步串口通信。

异步串口通信相对简单易用,适合多种应用场景。

三、单片机串口通信的实现单片机中实现串口通信通常需要以下几个方面的内容:1. 串口通信引脚配置:单片机需要连接到一个串口芯片或者其他外部设备,因此需要配置相应的引脚作为串口通信的数据引脚和时钟引脚。

2. 波特率设置:波特率是指单位时间内传输的数据位数。

在进行串口通信时,发送端和接收端的波特率需要相同。

单片机中通常通过寄存器设置波特率,以确保数据传输的稳定性。

3. 数据发送和接收:在单片机中,通过将数据写入发送缓冲器并启动发送操作来发送数据。

接收数据时,单片机会接收到串口中的数据,并将其保存在接收缓冲器中。

4. 中断机制:在进行串口通信时,单片机通常会使用中断机制来处理数据接收和发送。

中断机制可以减轻单片机的负担,提高系统效率。

单片机教程 第9章-串口通信

单片机教程 第9章-串口通信

9.2
MCS-51单片机串行接口
方式1所传送的波特率取决于定时器T1的溢出 率和特殊功能寄存器PCON中SMOD的值,即方式1的
波特率=(2SMOD/32)×定时器T1的溢出率。
②方式1接收:当串行口置为方式1,且REN=1 时,串行口处于方式1输入状态。它以所选波特率 的16倍的速率采样RXD引脚状态。
示字符的结束。异步传送的字符格式如图所示。 ①字符帧:也叫数据帧,由起始位、数据位、奇 偶校验位和停止位4个部分组成。
9.1
串行通信基础
9.1
串行通信基础
②波特率:就是数据的传送速率,即每秒钟传送的 二进制位数,单位:位/秒。 说明:要求发送端与接收端的波特率必须一 致。波特率越高,传送速度越快。
9.1
串行通信基础
下图为以上两种通信方式的示意图。由图可知, 假设并行传送N位数据所需时间为T,那么串行传送 的时间至少为NT,实际上总是大于NT的。
9.1
串行通信基础
9.1.1
串行通信的分类
1、异步通信
异步传送的特点是数据在线路上的传送不连
续。在传送时,数据是以一个字符为单位进行传送
的。它用一个起始位表示字符的开始,用停止位表
;清0接收中断标志 ;接收数据 ;取奇偶校验位 ;偶校验时转L1 ;奇校验时RB8为0转出错处理
;偶校验时RB8为1转出错处理 ;奇偶校验对时存入数据 ;修改指针 ;恢复现场 ;中断返回 ;出错处理 ;中断返回
L1: L2:
ERR:
9.2
MCS-51单片机串行接口
4、方式3 方式3为波特率可变的9位异步通信方式,除了
fOSC 2 SMOD 64
T 1溢出率2 SMOD 32

单片机串口通讯及通信分类、特点、基本原理、参数与设计计算方法(图文并茂解析)

单片机串口通讯及通信分类、特点、基本原理、参数与设计计算方法(图文并茂解析)

单片机串口通讯及通信分类、特点、基本原理、参数与设计计算方法一、按照数据传送方向分类1、单片机的通讯功能就是由串口实现的,在串口的基础上可以扩展出RS232、RS485、LIN等。

2、单工:数据传输只支持数据在一个方向上传输。

3、半双工:允许数据在两个方向上传输。

但是,在某一时刻,只允许数据在一个方向上传输,它实际上是一种切换方向的单工通信;它不需要独立的接收端和发送端,两者可以合并一起使用一个端口。

4、全双工:允许数据同时在两个方向上传输。

因此,全双工通信是两个单工通信方式的结合,需要独立的接收端和发送端分别如下图中的a、b、c所示。

二、按照通信方式分类1、同步通信:带时钟同步信号传输。

比如:SPI,IIC通信接口。

2、异步通信:不带时钟同步信号。

比如:UART(通用异步收发器),单总线在同步通讯中,收发设备上方会使用一根信号线传输信号,在时钟信号的驱动下双方进行协调,同步数据。

例如:通讯中通常双方会统一规定在时钟信号的上升沿或者下降沿对数据线进行采样。

在异步通讯中不使用时钟信号进行数据同步,它们直接在数据信号中穿插一些用于同步的信号位,或者将主题数据进行打包,以数据帧的格式传输数据。

通讯中还需要双方规约好数据的传输速率(也就是波特率)等,以便更好地同步。

常用的波特率有4800bps、9600bps、115200bps等。

在同步通讯中,数据信号所传输的内容绝大部分是有效数据,而异步通讯中会则会包含数据帧的各种标识符,所以同步通讯效率高,但是同步通讯双方的时钟允许误差小,稍稍时钟出错就可能导致数据错乱,异步通讯双方的时钟允许误差较大。

三、STM32串口通信基础1、STM32的串口通信接口有两种,分别是:UART(通用异步收发器)、USART(通用同步异步收发器)。

而对于大容量STM32F10x系列芯片,分别有3个USART和2个UART。

2、UART引脚连接方法:①、RXD:数据输入引脚,数据接收;②、TXD:数据发送引脚,数据发送;对于两个芯片之间的连接,两个芯片GND共地,同时TXD和RXD交叉连接。

STM32串口通信学习总结

STM32串口通信学习总结

STM32串口通信学习总结STM32是STMicroelectronics推出的一款32位单片机系列,具有高性能、低功耗、丰富的外设等特点,广泛应用于工业控制、消费电子、汽车电子等领域。

其中,串口通信是单片机中常用的通信方式之一,本文将对STM32串口通信学习进行总结。

1.串口通信原理及基础知识在STM32中,USART(通用同步/异步收发器)是负责串口通信的外设。

USART提供了多种模式的串口通信,包括异步模式(Asynchronous)、同步模式(Synchronous)以及单线模式(Single-wire)等。

2.STM32串口通信配置步骤(1)GPIO配置:首先需要配置串口通信所涉及的GPIO引脚,通常需要配置为复用功能,使其具备USART功能。

(2)USART配置:根据需要选择USART1、USART2、USART3等串口进行配置,设置通信模式、波特率等参数。

在配置时需要注意与外部设备的通信标准和参数保持一致。

(3)中断配置(可选):可以选择中断方式来实现串口数据的收发。

通过配置中断,当接收到数据时会触发中断,从而实现接收数据的功能。

(4)发送数据:通过USART的发送寄存器将数据发送出去,可以通过查询方式或者中断方式进行发送。

(5)接收数据:通过读取USART的接收寄存器,获取接收到的数据。

同样可以通过查询方式或者中断方式进行接收。

3.常见问题及解决方法(1)波特率设置错误:在进行串口通信时,波特率设置错误可能会导致通信失败。

需要根据外设的要求,选择适当的波特率设置,并在STM32中进行配置。

(2)数据丢失:在高速通信或大量数据传输时,由于接收速度跟不上发送速度,可能会导致数据丢失。

可以通过增加接收缓冲区大小、优化接收中断处理等方式来解决该问题。

(3)数据帧错误:在数据传输过程中,可能发生数据位错误、校验错误等问题。

可以通过对USART的配置进行检查,包括校验位、停止位、数据位等的设置是否正确。

单片机间的串口通信连接方法

单片机间的串口通信连接方法

单片机间的串口通信连接方法单片机间的串口通信是一种常见的通信方式,它可以实现不同单片机之间的数据传输和控制。

下面是关于单片机间串口通信连接的十条方法及详细描述:1. 直连方式:通过两个单片机的串口引脚(TX和RX)直接相连,形成一个点对点连接。

其中一个单片机的TX引脚连接到另一个单片机的RX引脚,而另一个单片机的TX引脚连接到第一个单片机的RX引脚。

2. 串口转接板方式:使用串口转接板(如MAX232)将单片机的逻辑电平转换为标准的RS-232电平。

将串口转接板的TX、RX引脚与两个单片机的对应引脚相连。

3. TTL互连方式:如果两个单片机的串口电平都是TTL电平(0V和5V),可以直接将它们的TX和RX引脚相连。

4. 使用RS-485通信:将两个单片机的TX和RX引脚连接到RS-485芯片的A和B端,通过RS-485总线进行数据传输。

5. 使用RS-422通信:类似于RS-485,将两个单片机的TX和RX引脚连接到RS-422芯片的A和B端。

6. 使用I2C通信:将两个单片机的SDA和SCL引脚连接到I2C总线上,通过I2C协议进行通信。

7. 使用SPI通信:将两个单片机的MISO(Master In Slave Out)、MOSI(Master Out Slave In)、SCK(时钟)和SS(片选)引脚进行连接,通过SPI协议进行通信。

8. 使用CAN通信:将两个单片机的CAN_H(高电平)和CAN_L(低电平)引脚连接到CAN总线上,通过CAN协议进行通信。

9. 使用USB转串口方式:通过USB转串口模块将单片机的串口信号转换为USB信号,实现单片机间的USB通信。

10. 无线串口方式:使用无线模块(如蓝牙、Wi-Fi、RF模块等)将两个单片机的串口信号通过无线方式进行传输和通信。

单片机指令的串口通信学习如何使用单片机指令进行串口通信

单片机指令的串口通信学习如何使用单片机指令进行串口通信

单片机指令的串口通信学习如何使用单片机指令进行串口通信单片机指令的串口通信学习:如何使用单片机指令进行串口通信一、引言在嵌入式系统中,单片机是一种常见的核心控制部件。

而单片机的串口通信技术则是实现各种外设与单片机之间相互通信的基础。

本文将介绍如何使用单片机指令进行串口通信的学习。

二、串口通信原理串口通信是一种将数据一位一位地连续传输的通信方式,通常使用一对数据线(TX和RX)进行双向传输。

其中,TX(Transmit)线用于发送数据,RX(Receive)线用于接收数据。

在串口通信中,数据通过串行方式传输,即逐位发送和接收,由此可实现稳定和可靠的数据传输。

三、单片机指令的串口通信为了实现单片机的串口通信,我们需要掌握相应的指令和设置寄存器的方法。

以下是常用的单片机指令:1. 串口初始化指令在使用串口通信功能之前,需要对单片机的串口进行初始化配置。

不同型号的单片机可能会有差异,但一般包括以下内容:- 设置波特率:波特率是指单位时间内传输的数据位数。

常见的波特率有9600、115200等。

通过设置相应的寄存器,可以指定串口的波特率。

- 设置数据位、停止位和校验位:数据位指每个数据包含的位数,常见的有8位和9位;停止位用于标记一个数据包的结束,通常为1位;校验位用于检验数据的正确性和完整性。

- 启动串口:初始化配置完成后,通过启动串口指令,使串口开始工作。

2. 发送数据指令发送数据指令用于向外设发送数据。

主要包括以下步骤:- 检查发送缓冲区是否为空:在发送数据之前,需要先检查发送缓冲区是否为空,以确保前一次发送的数据已经被外设处理完毕。

- 写入发送数据:将待发送的数据写入发送寄存器中,等待发送完成。

- 等待发送完成:等待发送完成标志位的置位,表示数据已经发送完成。

3. 接收数据指令接收数据指令用于接收外设发送的数据。

主要包括以下步骤:- 检查接收缓冲区是否非空:在接收数据之前,需要先检查接收缓冲区是否非空,以确保有数据可以接收。

单片机串口通信协议

单片机串口通信协议

单片机串口通信协议单片机串口通信是指通过串行通信接口实现的一种数据传输方式,它在嵌入式系统中具有广泛的应用。

串口通信协议是指在串口通信中规定的数据传输格式和通信规则,它决定了数据的传输方式、数据的帧格式、数据的校验方式等重要参数,是保证串口通信正常进行的基础。

本文将介绍单片机串口通信协议的相关知识,帮助大家更好地理解和应用串口通信技术。

首先,我们来了解一下单片机串口通信的基本原理。

单片机的串口通信是通过串行通信接口实现的,它包括发送端和接收端两部分。

发送端将要发送的数据按照一定的格式发送出去,接收端接收到数据后进行解析和处理。

串口通信中的数据传输是按照一定的时序和规则进行的,发送端和接收端必须遵守相同的通信协议才能正常进行数据交换。

在单片机串口通信中,通信协议的制定非常重要。

通信协议包括数据帧格式、波特率、数据位、停止位、校验位等参数。

其中,数据帧格式决定了数据的传输格式,包括起始位、数据位、停止位和校验位等;波特率是指数据传输的速率,常用的波特率有9600、115200等;数据位是指每个数据字节中的数据位数,通常为8位;停止位是指每个数据字节后面的停止位数,通常为1位;校验位用于检验数据传输的正确性,常见的校验方式有奇偶校验、偶校验和无校验等。

这些参数的选择需要根据具体的应用场景来确定,不同的应用场景可能需要不同的通信协议参数。

在实际的单片机串口通信中,需要根据具体的应用需求来选择合适的通信协议。

通信协议的选择既要考虑数据传输的可靠性,又要考虑数据传输的效率。

通常情况下,波特率越高,数据传输的速率越快,但是对硬件要求也越高;数据位、停止位和校验位的选择要根据实际的数据格式和传输距离来确定,以保证数据的正确传输;同时,还需要考虑通信协议的兼容性和稳定性,以确保通信的可靠性和稳定性。

总之,单片机串口通信协议是保证串口通信正常进行的基础,它决定了数据的传输方式、数据的帧格式、数据的校验方式等重要参数。

单片机的通信接口

单片机的通信接口

单片机的通信接口在单片机(Microcontroller)的应用中,通信接口是非常重要的一部分。

通过通信接口,单片机可以与外部设备进行数据的传输和交互,实现与外部世界的连接。

本文将以常见的串口通信接口为例,介绍单片机通信接口的基本原理和应用。

一、串口通信接口的原理串口通信接口是一种数字通信接口,用于实现异步串行数据传输。

它由两根信号线组成:发送线(Tx)和接收线(Rx)。

发送线负责将单片机的数据发送给外部设备,接收线则用于接收外部设备发送的数据。

串口通信接口的传输速率可以通过波特率(Baud Rate)来表示。

波特率指的是每秒钟传输的比特数,常见的波特率有9600、115200等。

在通信双方设定相同的波特率之后,才能正确地进行数据传输。

二、串口通信接口的应用串口通信接口在实际应用中有着广泛的用途,下面列举几个常见的应用场景:1. 与计算机通信:通过串口通信,单片机可以与计算机进行数据交互。

在这种应用中,通常使用USB转串口的方式,将单片机与计算机连接起来。

这样,我们就可以通过计算机上的串口终端软件与单片机进行通信,并进行数据的发送与接收。

2. 与传感器交互:很多传感器具备串口通信接口,通过与单片机连接,可以获取传感器采集到的数据,并进行相应的处理。

例如,温湿度传感器可以通过串口将采集到的温湿度数据发送给单片机,从而实现温湿度的实时监测。

3. 控制外部设备:通过串口通信接口,单片机可以控制各种外部设备,实现功能的扩展。

例如,可以通过串口与液晶显示屏连接,将单片机中的数据实时显示在显示屏上;也可以控制电机、继电器等外部设备,实现各种控制功能。

4. 远程通信:通过串口通信,可以实现单片机与远程设备之间的数据传输。

例如,通过GPRS模块连接到互联网,实现单片机与远程服务器之间的数据交互,实现远程控制或监测等功能。

以上只是串口通信接口的一些常见应用场景,实际上,通信接口的应用是非常广泛的,可以根据具体需求选择不同的通信方式和协议。

单片机uart通信详解介绍 -回复

单片机uart通信详解介绍 -回复

单片机uart通信详解介绍-回复单片机UART通信详解介绍一、什么是UART通信?UART通信(Universal Asynchronous Receiver-Transmitter)是一种常见的串行通信方式,用于将数据以一位一位的方式传输。

它是一种异步通信方式,即发送端和接收端没有明确的时钟信号进行同步。

UART通信常用于单片机与外设之间的数据传输,如与电脑进行通信、传感器数据的采集与控制等。

二、UART通信原理及工作方式1. UART通信原理:UART通信包括发送端和接收端,其中发送端将数据按照一定的格式通过串行通道发送至接收端,接收端将接收到的串行数据解码为并行数据,使得单片机可以对其进行处理。

2. UART通信工作方式:UART通信的工作方式主要分为数据位、停止位、奇偶校验和波特率。

数据位:表示每次发送的数据位数,常用的有8位、7位、6位和5位。

8位的数据位是最常见的设置。

停止位:发送端在发送完每一字节数据后,要发送一个停止位,它通知接收端该字节数据已经结束。

常见的停止位为1位。

奇偶校验:用于检测数据传输过程中是否发生了错误。

奇偶校验分为奇校验和偶校验,通过在发送端和接收端分别设置校验位,实现数据的校验。

波特率:又称为比特率,表示每秒钟传输的数据位数。

常见的波特率有9600、115200等,波特率越高,传输速度越快。

三、UART通信的使用步骤使用UART通信需要进行一系列设置和操作,以下是使用UART通信的步骤:1. 确定通信参数:确定数据位、停止位、奇偶校验和波特率等通信参数,以便发送方和接收方设置相同的参数。

2. 引脚配置:将单片机引脚配置为UART通信功能的引脚。

大多数单片机具有多个UART通信功能引脚,在引脚设置时需要根据实际需求进行配置。

3. 初始化UART模块:在代码中初始化UART模块,包括设置通信参数、使能UART功能、配置发送和接收中断等。

4. 数据发送:通过调用发送函数将待发送的数据发送出去。

单片机基础(第3版——第8章

单片机基础(第3版——第8章
利用串行工作方式0, 加上“并入串出”或“串入并出” 芯片的配合, 80C51的串行口可实现数据的并行输入
/输出。 方式0实现数据并行输入/输出“并入串出”芯片 (74165)用于பைடு நூலகம்并行输入数据通过移位形成位串, 传送
给串行口;而“串入并出”芯片(74164)则接收串 行口的串行数据, 通过移位形成8位并行数据输 出。
80C51串行口寄存器结构
8.2.2 串行口控制机制
80C51串行口通过控制寄存器、中断功能和波特率设置实现串行通 信控制。
1.串行口控制寄存器(SCON)-98H
■ SM0、SM1——串行口工作方式选择位。其状态组合所对应的 工作方式为:
■ SM0SM1=00,工作方式0;SM0SM1=01,工作方式1; SM0SM1=10,工作方式2;SM0SM1=11,工作方式3。
工作方式0时, 移位操作(串入或串出)的波特率是固定的, 为单片机晶振频率的1/12, 若晶振频率用fosc表示, 则波特率=fosc/12。按此波特率的一个机器周期进行 一次移位, 若fosc=6 MHz, 则波特率为500 kb/s, 即 2 μs移位一次。
利用串行口方式0实现数据并行输入/输出
8.3.3 串行工作方式2 和3
串行工作方式2和3都是11位为一帧的串行通信方式, 即 1个起始位、9个数据位和1个停止位。
在这两种工作方式下, 字符还是8个数据位, 只不过增 加了一个第9数据位(D8), 它是一个可编程位, 其 功能由用户设定。
在发送数据时, 应予先在串行口控制寄存器SCON的 TB8 位中把第9个数据位的内容准备好。
单片机基础(第3版)
第8章 80C51单片机串行通信
1. 串行通信基础知识 2. 80C51串行口 3. 80C51串行口工作方式 4. 串行通信数据传输速率 5. 串行通信应用

单片机串口通讯初始化

单片机串口通讯初始化

单片机串口通讯初始化一、引言在嵌入式系统和自动化控制领域,单片机串口通讯是一种常见的通信方式。

通过串口通讯,单片机可以与其他设备或计算机进行数据交换,实现信息的传输和控制。

在单片机应用系统中,串口通讯初始化是关键步骤之一,它决定了整个系统通讯的稳定性和可靠性。

本文将详细介绍单片机串口通讯初始化的基本原理、硬件配置和软件实现方法。

二、单片机串口通讯的基本原理单片机串口通讯是一种基于串行传输的通信方式,它通过数据线(通常是TXD和RXD)逐位传输数据。

在串口通讯中,发送方将数据按顺序一位一位地发送给接收方,接收方再按顺序一位一位地接收数据。

由于串口通讯只需要一条数据线就可以实现数据的双向传输,因此它具有线路简单、成本低廉、可靠性高等优点。

三、单片机串口通讯的硬件配置在进行单片机串口通讯初始化时,首先需要完成硬件配置。

以下是一些常见的硬件配置步骤:1.确定单片机的型号和串口通讯模块:不同型号的单片机具有不同的串口通讯模块,需要根据具体的应用需求选择合适的单片机型号和串口通讯模块。

2.连接硬件电路:根据所选的单片机和串口通讯模块,需要设计并连接相应的硬件电路。

常见的硬件电路包括电源电路、晶振电路、复位电路以及数据传输线路(TXD和RXD)等。

3.配置引脚模式:在单片机中,某些引脚具有复用功能,可以配置为输入或输出模式。

需要根据串口通讯的需要,配置引脚模式,以确保数据传输的正确性。

4.配置波特率:波特率是串口通讯中数据传输的速率,需要根据具体的通信协议和通信速率要求进行配置。

选择合适的波特率可以提高数据传输的稳定性和可靠性。

5.配置数据位、停止位和校验位:根据通信协议的要求,需要配置数据位、停止位和校验位等参数。

这些参数决定了数据传输的格式和校验方式,是保证数据正确性的重要参数。

四、单片机串口通讯的软件实现方法在完成硬件配置后,需要编写相应的软件程序来实现单片机串口通讯的初始化。

以下是一些常见的软件实现步骤:1.初始化串口通讯模块:在软件中,需要编写代码来初始化串口通讯模块。

单片机串口判断指令方法

单片机串口判断指令方法

单片机串口判断指令方法引言:单片机的串口通信是常见的一种通信方式,可以通过串口与其他设备进行数据交互。

在实际应用中,我们需要判断串口接收到的指令,以执行相应的操作。

本文将介绍一种基于单片机串口的指令判断方法,帮助读者了解如何在单片机中实现指令的判断和执行。

一、串口通信基础在介绍指令判断方法之前,我们先了解一下串口通信的基础知识。

串口通信是通过发送和接收数据来实现设备之间的数据交互。

通常情况下,一条串口数据由起始位、数据位、校验位和停止位组成,其中起始位用于标识数据包的开始,停止位用于标识数据包的结束,数据位用于传输实际的数据,校验位用于校验数据的正确性。

二、指令判断方法在单片机中判断串口接收到的指令,主要有两种方法:基于字符串匹配和基于指令码判断。

1. 基于字符串匹配基于字符串匹配的方法是将串口接收到的数据与预定义的指令进行逐一的比较,如果匹配成功,则执行相应的操作。

这种方法的优点是简单易懂,适用于指令较少且指令格式固定的情况。

例如,我们可以定义指令“LED_ON”表示打开LED灯,“LED_OFF”表示关闭LED灯,当串口接收到“LED_ON”时,执行打开LED灯的操作。

2. 基于指令码判断基于指令码判断的方法是将串口接收到的数据转换为指令码,然后与预定义的指令码进行比较,如果匹配成功,则执行相应的操作。

这种方法的优点是效率高,适用于指令较多且指令格式多变的情况。

例如,我们可以将指令“0x01”定义为打开LED灯的指令码,“0x02”定义为关闭LED灯的指令码,当串口接收到“0x01”时,执行打开LED灯的操作。

三、实例演示为了更好地说明指令判断方法的应用,我们以基于指令码判断的方法为例,演示如何实现串口指令的判断和执行。

1. 硬件准备我们需要准备一块单片机开发板,例如常用的51单片机开发板或者Arduino开发板。

将开发板与电脑连接,并通过USB线将开发板的串口与电脑的串口相连。

2. 软件编程接下来,我们需要使用相应的软件编写单片机程序。

51单片机串口通信

51单片机串口通信

51单片机串口通信串行口通信是一种在计算机和外部设备之间进行数据传输的通信方式,其中包括了并行通信、RS-232通信、USB通信等。

而在嵌入式系统中,最常见、最重要的通信方式就是单片机串口通信。

本文将详细介绍51单片机串口通信的原理、使用方法以及一些常见问题与解决方法。

一、串口通信的原理串口通信是以字节为单位进行数据传输的。

在串口通信中,数据传输分为两个方向:发送方向和接收方向。

发送方将待发送的数据通过串行转并行电路转换为一组相对应的并行信号,然后通过串口发送给接收方。

接收方在接收到并行信号后,通过串行转并行电路将数据转换为与发送方发送时相对应的数据。

在51单片机中,通过两个寄存器来实现串口通信功能:SBUF寄存器和SCON寄存器。

其中,SBUF寄存器用于存储要发送或接收的数据,而SCON寄存器用于配置串口通信的工作模式。

二、51单片机串口通信的使用方法1. 串口的初始化在使用51单片机进行串口通信之前,需要进行串口的初始化设置。

具体的步骤如下:a. 设置波特率:使用波特率发生器,通过设定计算器的初值和重装值来实现特定的波特率。

b. 串口工作模式选择:设置SCON寄存器,选择串行模式和波特率。

2. 发送数据发送数据的过程可以分为以下几个步骤:a. 将要发送的数据存储在SBUF寄存器中。

b. 等待发送完成,即判断TI(发送中断标志位)是否为1,如果为1,则表示发送完成。

c. 清除TI标志位。

3. 接收数据接收数据的过程可以分为以下几个步骤:a. 等待数据接收完成,即判断RI(接收中断标志位)是否为1,如果为1,则表示接收完成。

b. 将接收到的数据从SBUF寄存器中读取出来。

c. 清除RI标志位。

三、51单片机串口通信的常见问题与解决方法1. 波特率不匹配当发送方和接收方的波特率不一致时,会导致数据传输错误。

解决方法是在初始化时确保两端的波特率设置一致。

2. 数据丢失当发送方连续发送数据时,接收方可能会出现数据丢失的情况。

单片机实践-单片机串口通信概述

单片机实践-单片机串口通信概述
IAP15W4K58S4单片机串 口通信概述
CONTENTS
串口模块结构 串口引脚 相关寄存器
1 串口模块结构
IAP15W4K58S4单片机具有4 个 串 口 , 属 于 通 用 异步 收 发 器 (Universal Asychronous Receiver/Transmitter,UART),是一种全双工异步串口 通信接口,包括串行口1、串行口2、串行口3和串行口4。
串行口2 TxD2 TxD2/P1.1 TxD2_2/P4.7
RxD2 RxD2/P1.0 RxD2_2/P4.6
2 串口引脚
串行口3对应的引脚是TxD3和RxD3。
P_SW2.B1(S3_S) 0 1
串行口3 TxD3 TxD3/P0.1 TxD3_2/P5.1
串行口4对应的引脚是TxD4和RxD4。
LSB TI
S2TI S3TI S3TI
99H
复位 值
RI 0x00 S2RI 0x00 S3RI 0x00 S3RI 0x00
0xxx
S2BUF 串口2缓冲器 9BH
0xxx
S3BUF 串口3缓冲器 ADH
0xxx
S4BUF 串口4缓冲器 85H
0xxx
T2H
T2高8位 D6H
0x00
T2L
T2低8位 D7H
1
0
TxD_3/P1.7/XTAL1
RxD_3/P1.6/XTAL 2
1
1
无效
2 串口引脚
通过对特殊功能寄存器P_SW2中的S4_S、S3_S和S2_S的设置,可以对串 行口2、串行口3和串行口4的发送和接收引脚进行切换。
串行口2对应的引脚是TxD2和RxD2。
P_SW2.B0(S2_S) 0 1

单片机第七课--串口

单片机第七课--串口

1、方式2和方式3发送
写入SBUF TXD TI(中断标志) 起始
D0 D1 D2 D3 D4 D5 D6 D7 TB8
停止位
发送前,先根据用户约定的通信协议由软件设置TB8的值, 然后把要发送的数据写入SBUF启动发送过程,先把起始位 0输出到TXD引脚,然后发送移位寄存器的输出位(D0)到 TXD引脚。每一个移位脉冲都使输出移位寄存器的各位右移 一位,并由TXD引脚输出。 第一次移位时,停止位“1”移入输出移位寄存器的第9位 上 ,以后每次移位,左边都移入0。当停止位移至输出位时, 左边其余位全为0,检测电路检测到这一条件时,使控制电 路进行最后一次移位,并置TI=1,向CPU请求中断。
一个字符帧 空 闲 起 始 位 数据位 校 验 位 停 止 位 空 闲
下一字符 起始位
LSB
MSB
异步通信对硬件要求较低,实现起来比较简单、灵活, 适用于数据的随机发送/接收,但因每个字节都要建立一次同 步,即每个字符都要额外附加两位,所以工作速度较低,在 单片机中主要采用异步通信方式。
2、同步通信 以一串字符为一个传送单位,字符间不加标识位,字符串开 始用同步字符标识(一般约定为1~2个字符),以触发同步时 钟开始发送或接收数据;多字节数据之间不允许有空隙,每位 占用的时间相等;空闲位需发送同步字符。 硬件要求高,通讯双方须严格同步,适用于成批数据传送。 单片机不用该方式。
在单片机的应用中,常用的晶振频率为:12MHz和 11.0592MHz。所以,选用的波特率也相对固定。 常用的串行口波特率以及各参数的关系如表所示。
串行口工作之前,应对其进行初始化,主 要是设置产生波特率的定时器1、串行口控 制和中断控制。具体步骤如下:
确定T1的工作方式(编程TMOD寄存器);

单片机通信接口知识详解(一)

单片机通信接口知识详解(一)

单片机通信接口知识详解(一)引言概述:单片机通信接口是一种用于实现单片机与外部设备之间数据交换的方法。

它在电子技术领域中应用广泛,为连接与控制不同设备提供了便利。

本文将分析单片机通信接口的工作原理和常见应用,为读者详细介绍单片机通信接口的知识。

正文:一、串行通信接口1. RS232通信协议2. RS485通信协议3. TTL串口通信4. UART串口通信5. 串口通信应用案例二、并行通信接口1. 并行通信原理2. 并行通信接口的种类3. 并行通信接口的使用范围4. 并行通信接口的应用案例5. 并行通信接口的优缺点三、SPI通信接口1. SPI通信协议2. SPI通信接口的硬件连接3. SPI通信接口的时序要求4. SPI通信接口的应用场景5. SPI通信接口的特点和优势四、I2C通信接口1. I2C通信协议2. I2C通信接口的硬件连接3. I2C通信接口的时序要求4. I2C通信接口的应用案例5. I2C通信接口的优点和缺点五、总线通信接口1. 总线通信基础概念2. 常见总线通信协议3. 总线通信接口的分类与选择4. 总线通信接口的应用案例5. 总线通信接口的发展趋势和前景总结:通过本文的介绍,我们了解了单片机通信接口的基本知识和常见技术。

串行通信接口和并行通信接口分别适用于不同的场景,SPI 和I2C通信接口则在特定的应用中发挥着重要的作用。

总线通信接口作为一种更高级的通信方式,可以连接多个设备,提供更高的数据传输效率。

单片机通信接口的知识在嵌入式系统、物联网和自动化控制等领域的应用中是非常重要的。

通过对单片机通信接口的深入理解和掌握,我们可以更好地利用单片机实现各种功能和应用。

单片机串口通信-RS232

单片机串口通信-RS232

单片机串口通信– RS232最基本的:1.异步串行通信方式2.几个参数需要设置:a)波特率(使用定时器)b)校验位、数据位、停止位(选择串口通信模式)3.编写中断服务程序。

切记,RI与TI需要软件清零。

几个关键寄存器:PCON:关注SMOD位。

SCON:其中,SM0、SM1:串行口工作方式选择位:REN:接收允许控制位。

TI与RI由软件清零。

然后就是定时器相关的寄存器,如TMOD,TH1和TL1的初值设定,启动定时器TR1,开启中断EA,ES。

常用波特率除值表:最简例程:发送(发送完成之后TI=1):#include <REG52.H>#include <stdio.h>void delay(unsigned int i); //函数声明char code MESSAGE[]= "小茉莉,太阳出来了(liao)。

";unsigned int a;void main (void) {SCON = 0x40; //串口工作模式1,即SM0=0,SM1=1TMOD|= 0x20; //定时器工作方式2 TH1 = 0xFD;//reload value 9600、数据位8、停止位1。

效验位无(11.0592)TL1 = 0xFD;TR1 = 1; //开启定时器1ES = 1; //开串口中断EA = 1; //开总中断while(1){ a=0;while(MESSAGE[a] != '\0'){SBUF = MESSAGE[a];while(!TI);// 等特数据传送(TI发送中断标志)。

当一个字节发送完毕后系统进入中断。

TI = 0;// 清除数据传送标志// RI 与TI都需要手动清除 a++;// 下一个字符}delay(10000);}}/**************************************************延时处理程序**************************************************/void delay(unsigned int i){unsigned char j;for(i; i > 0; i--)for(j = 200; j > 0; j--) ;}接收(接收到数据后RI=1):#include <REG52.H>#include <stdio.h>sbit BEEP = P1^5;unsigned char b;void main (void) {SCON = 0x50; //REN=1允许串行接受状态,串口工作模式1TMOD|= 0x20; //定时器工作方式2 TH1 = 0xFD;// 波特率9600 (11.0592M)TL1 = 0xFD;TR1 = 1;ES = 1; //开串口中断EA = 1; // 开总中断BEEP=1;//低电平触发蜂鸣器b=0xff ;while(1){BEEP=b;}}void ser() interrupt 4{RI =0 ;b = SBUF ;}收发:#include <REG52.H>bit Flag;unsigned char ReData,SenData;void main (void) {SCON = 0x50;TMOD|= 0x20; //定时器工作方式2TH1 = 0xFD;// 波特率9600、数据位8、停止位1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机串口通讯必备基础知识
你想熟悉单片机,那必须先看看单片机的结构和特殊寄存器,这是你编写软件的关键。

至于串口通信需要用到那些特殊功能寄存器呢,它们是SCON,TCON,TMOD,SCON等,各代表什么含义呢?
SBUF 数据缓冲寄存器 这是一个可以直接寻址的串行口专用寄存器。

有朋友这样问起过“为何在串行口收发中,都只是使用到同一个寄存器SBUF?而不是收发各用一个寄存器。

”实际上SBUF 包含了两个独立的寄存器,一个是发送寄存,另一个是接收寄存器,但它们都共同使用同一个寻址地址-99H。

CPU 在读SBUF 时会指到接收寄存器,在写时会指到发送寄存器,而且接收寄存器是双缓冲寄存器,这样可以避免接收中断没有及时的被响应,数据没有被取走,下一帧数据已到来,而造成的数据重叠问题。

发送器则不需要用到双缓冲,一般情况下我们在写发送程序时也不必用到发送中断去外理发送数据。

操作SBUF寄存器的方法则很简单,只要把这个99H 地址用关键字sfr定义为一个变量就可以对其进行读写操作了,如sfr SBUF = 0x99;当然你也可以用其它的名称。

通常在标准的reg51.h 或at89x51.h 等头文件中已对其做了定义,只要用#include 引用就可以了。

SCON 串行口控制寄存器 通常在芯片或设备中为了监视或控制接口状态,都会引用到接口控制寄存器。

SCON 就是51 芯片的串行口控制寄存器。

它的寻址地址是98H,是一个可以位寻址的寄存器,作用就是监视和控制51 芯片串行口的工作状态。

51 芯片的串口可以工作在几个不同的工作模式下,其工作模式的设置就是使用SCON 寄存器。

它的各个位的具体定义如下:
SM0 SM1 SM2 REN TB8 RB8 TI RI
SM0、SM1 为串行口工作模式设置位,这样两位可以对应进行四种模式的设置。

串行口工作模式设置。

SM0 SM1 模式 功能 波特率
0 0 0 同步移位寄存器 fosc/12
0 1 1 8位UART 可变
1 0
2 9位UART fosc/32 或fosc/64
1 1 3 9位UART 可变
在这里只说明最常用的模式1,其它的模式也就一一略过,有兴趣的朋友可以找相关的硬件资料查看。

表中的fosc 代表振荡器的频率,也就是晶振的频率。

UART 为(Universal Asynchronous Receiver)的英文缩写。

SM2 在模式2、模式3 中为多处理机通信使能位。

在模式0 中要求该位为0。

REM 为允许接收位,REM 置1 时串口允许接收,置0 时禁止接收。

REM 是由软件置位或清零。

如果在一个电路中接收和发送引脚P3.0,P3.1 都和上位机相连,在软件上有串口中断处理程序,当要求在处理某个子程序时不允许串口被上位机来的控制字符产生中断,那么可以在这个子程序的开始处加入REM=0 来禁止接收,在子程序结束处加入REM=1 再次打开串口接收。

大家也可以用上面的实际源码加入REM=0 来进行实验。

TB8 发送数据位8,在模式2 和3 是要发送的第9 位。

该位可以用软件根据需要置位或清除,通常这位在通信协议中做奇偶位,在多处理机通信中这一位则用于表示是地址帧还是数据帧。

RB8 接收数据位8,在模式2 和3 是已接收数据的第9 位。

该位可能是奇偶位,地址/数据标识位。

在模式0 中,RB8 为保留位没有被使用。

在模式1 中,当SM2=0,RB8 是已接收数据的停止位。

TI 发送中断标识位。

在模式0,发送完第8 位数据时,由硬件置位。

其它模式中则是在发送停止位之初,由硬件置位。

TI 置位后,申请中断,CPU 响应中断后,发送下一帧数据。

在任何模式下,TI 都必须由软件来清除,也就是说在数据写入到SBUF 后,硬件发送数据,中断响应(如中断打开),这时TI=1,表明发送已完成,TI 不会由硬件清除,所以这时必须用软件对其清零。

RI 接收中断标识位。

在模式0,接收第8 位结束时,由硬件置位。

其它模式中则是在接收停止位的半中间,由硬件置位。

RI=1,申请中断,要求CPU 取走数据。

但在模式1 中,SM2=1时,当未收到有效的停止位,则不会对RI 置位。

同样RI 也必须要靠软件清除。

常用的串口模式1 是传输10 个位的,1 位起始位为0,8 位数据位,低位在先,1 位停止位为1。

它的波特率是可变的,其速率是取决于定时器1 或定时器2 的定时值(溢出速率)。

AT89C51 和AT89C2051 等51 系列芯片只有两个定时器,定时器0 和定时器1,而定时器2是89C52 系列芯片才有的。

波特率 在使用串口做通讯时,一个很重要的参数就是波特率,只有上下位机的波特率一样时才可以进行正常通讯。

波特率是指串行端口每秒内可以传输的波特位数。

有一些初学的朋友认为波特率是指每秒传输的字节数,如标准9600 会被误认为每秒种可以传送9600个字节,而实际上它是指每秒可以传送9600 个二进位,而一个字节要8 个二进位,如用串口模式1 来传输那么加上起始位和停止位,每个数据字节就要占用10 个二进位,9600 波特率用模式1 传输时,每秒传输的字节数是9600÷10=960 字节。

51 芯片的串口工作模式0的波特率是固定的,为fosc/12,以一个12M 的晶振来
计算,那么它的波特率可以达到1M。

模式2 的波特率是固定在fosc/64 或fosc/32,具体用那一种就取决于PCON 寄存器中的SMOD位,如SMOD 为0,波特率为focs/64,SMOD 为1,波特率为focs/32。

模式1 和模式3 的波特率是可变的,取决于定时器1 或2(52 芯片)的溢出速率。

那么我们怎么去计算这两个模
式的波特率设置时相关的寄存器的值呢?可以用以下的公式去计算。

波特率=(2SMOD÷32)×定时器1 溢出速率
上式中如设置了PCON 寄存器中的SMOD 位为1 时就可以把波特率提升2 倍。

通常会使用定时器1 工作在定时器工作模式2 下,这时定时值中的TL1 做为计数,TH1 做为自动重装值 ,这个定时模式下,定时器溢出后,TH1 的值会自动装载到TL1,再次开始计数,这样可以不用软件去干预,使得定时更准确。

在这个定时模式2 下定时器1 溢出速率的计算公式如下:
溢出速率=(计数速率)/(256-TH1)
上式中的“计数速率”与所使用的晶体振荡器频率有关,在51 芯片中定时器启动后会在每一个机器周期使定时寄存器TH 的值增加一,一个机器周期等于十二个振荡周期,所以可以得知51 芯片的计数速率为晶体振荡器频率的1/12,一个12M 的晶振用在51 芯片上,那么51 的计数速率就为1M。

通常用11.0592M 晶体是为了得到标准的无误差的波特率,那么为何呢?计算一下就知道了。

如我们要得到9600 的波特率,晶振为11.0592M 和12M,定时器1 为模式2,SMOD 设为1,分别看看那所要求的TH1 为何值。

代入公式:
11.0592M
9600=(2÷32)×((11.0592M/12)/(256-TH1))
TH1=250
12M
9600=(2÷32)×((12M/12)/(256-TH1))
TH1≈249.49
上面的计算可以看出使用12M 晶体的时候计算出来的TH1 不为整数,而TH1 的值只能取整数,这样它就会有一定的误差存在不能产生精确的9600 波特率。

当然一定的误差是可以在使用中被接受的,就算使用11.0592M 的晶体振荡器也会因晶体本身所存在的误差使波特率产生误差,但晶体本身的误差对波特率的影响是十分之小的,可以忽略不计。

相关文档
最新文档