2017-2018学年高二3月月考数学(理)试卷

合集下载

2017-2018学年安徽省淮南市第二中学高二上学期第二次月考数学试题(文创班,答案不全)

2017-2018学年安徽省淮南市第二中学高二上学期第二次月考数学试题(文创班,答案不全)

2017-2018学年安徽省淮南市第二中学高二上学期第二次月考数学测试卷一、选择题: 本题共12题,每小题5分1.已知两定点()1,0A -, ()1,0B ,动点(),P x y 满足()()2222112x y x y ++--+=,则点P 的轨迹是( )A. 椭圆B. 双曲线C. 一条线段D. 一条射线2.已知()(),f x g x 是定义在[],a b 上连续函数,则“()()f x g x <对一切[],x a b ∈成立”是“()f x 的最大值小于()g x 的最小值”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.设函数()31(0)f x x ax a =++<,曲线()y f x =在点()(),a f a 处的切线方程为2y x b =+,则a b +=( )A. 1-B. 1C. 2D. 44.已知函数()y x f x =⋅'的图象如右下图,(其中()f x '是函数()f x 的导数),下面四个图像中, ()y f x =的图象大致是( )A. B. C. D.5.若函数()x tx x x f 323+-=在区间[]4,1上单调递减,则实数t 的取值范围是( )A. ⎥⎦⎤ ⎝⎛∞-851,B. (]3,∞-C. 51,8⎡⎫+∞⎪⎢⎣⎭D. [)3,+∞ 6. 已知不等式1<-m x 成立的一个充分不必要条件是2131<<x ,则实数m 的取值范围是( )A. ⎥⎦⎤⎢⎣⎡-21,34 B.⎥⎦⎤⎢⎣⎡-34,21 C. ⎪⎭⎫⎢⎣⎡+∞,34 D. ∅7. 已知抛物线28y x =的准线与双曲线221x y m-=交于,A B 两点,点F 为抛物线的焦点,若FAB ∆为直角三角形,则双曲线的离心率是( )A. 5B. 25C. 21D.2128. 已知椭圆和双曲线有共同焦点12,F F ,P 是它们的一个交点,且123F PF π∠=,记椭圆和双曲线的离心率分别12,e e ,则221213e e +的值为( ) A. 2 B. 3 C. 4 D. 59. 过抛物线24y x =的焦点F 的直线l 交抛物线于点,A B ,交其准线于点C ,若2BC BF =,则AB =( )A.83 B. 163C. 8D. 16 10.椭圆22154x y +=的左焦点为F ,直线x m =与椭圆相交于点,M N ,当FMN ∆的周长最大时,FMN ∆的面积是( ) A.55 B. 855 C. 655 D. 45511. 设函数()f x 的导函数为()'f x ,且在R 上()()'20f x xf x +<恒成立,则()1f ,()22f,()33f 的大小关系为( )A. ()()()12233f ff << B. ()()()33122f f f <<C. ()()()33221f f f <<D. ()()()13322f f f <<12.已知函数()22ln x e f x k x x x ⎛⎫=-+ ⎪⎝⎭,若2x =是函数()f x 的唯一一个极值点,则实数k的取值范围为 ( )A. (),e -∞B. [)0,eC. (],e -∞D. []0,e 二、填空题: 本题共4小题,每小题5分13. 已知双曲线2219y x m -=的一条渐近线方程为23y x =,则m = .14. 已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为()1,1-,则E 的方程为 .15.若函数()2ln 2-+=ax x x f 在区间⎪⎭⎫ ⎝⎛2,21内存在单调递增区间,则实数a 的取值范围是 .16.已知函数()4f x x x =+,()1a g x x x =++,若[]121,1,2,3,2x x ⎡⎤∀∈∃∈⎢⎥⎣⎦使得()()12f x g x ≥,则实数a 的取值范围是 .三、解答题:本题共6小题,第17题10分,第18至22题每小题12分17. 已知命题p : []13x ∀∈,,230x a -≥;命题q : 0x R ∃∈,使()20043110x a x +-+<.若“p 或q ”为真,“p 且q ”为假,求实数a 的取值范围.18. 已知12,F F 分别是椭圆2222:1(0)x y C a b a b+=>>的左右两个焦点,A 是椭圆C 的上顶点,B 是直线2AF 与椭圆C 的另一个交点,01260F AF ∠=.(1)求椭圆C 的离心率;(2)已知1AF B ∆的面积为403,求,a b 的值.19. 已知函数()2(2)ln f x ax a x x =-++. (1)若12x =是函数()f x 的一个极大值点,求a 的取值范围; (2)当0a >时,若()f x 在区间[]1,e 上的最小值为2-,求a 的取值范围.20. 已知函数()ln 1f x x x =+. (1)求()f x 的单调性;(2)设()()x g x e m x m R =+∈,若关于x 的方程()()f x g x =有解,求m 的取值范围.21. 已知抛物线()2:20C y px p =>的焦点F 与椭圆22:165x y E +=的一个焦点重合,点()0,2A x 在抛物线上,过焦点F 的直线l 交抛物线于,M N 两点. (1)求抛物线C 的方程以及AF 的值; (2)记抛物线C 的准线与x 轴交于点B ,若2240BM BN +=,求直线l 的方程.22. 已知函数2()ln(1)ln 2(0)f x ax x ax a =++--> (1)讨论()f x 在1,2⎡⎫+∞⎪⎢⎣⎭上的单调性;(2)若对(1,2)a ∀∈,总存在01,12x ⎡⎤∈⎢⎥⎣⎦使不等式20()(1)f x m a ≥-成立,求m 的范围.DBCBCB DCBBCC。

四川省广安第二中学校2017-2018学年高二下学期第二次月考数学(理)试题(解析版)

四川省广安第二中学校2017-2018学年高二下学期第二次月考数学(理)试题(解析版)

四川省广安第二中学校高2016级2018年春第二次月考理科数学试题及答案一、选择题(共12小题,每小题5分, 共60分。

每个小题给出的四个选项中只有一项是符合题目要求的)1.已知函数,则()A. B. C. D.【答案】A【解析】【分析】求导,将代入即可求出..【详解】已知函数则故选A.【点睛】本题考查函数在一点处的导数的求法,属基础题.2.已知复数(是虚数单位)是纯虚数,则实数()A. B. C. D.【答案】A【解析】【分析】利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0求解.【详解】为纯虚数,,即.故选A..【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )A. 1B.C.D.【答案】B【解析】本题考查古典概型..把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,基本事件的数是第二次抛出的也是偶数点包含的基本事件个数为则所求概率为故选B4.已知随机变量服从正态分布,且,则的值等于()A. 0.5B. 0.2C. 0.3D. 0.4【答案】D【解析】试题分析:因为随机变量服从正态分布,所以其正态曲线关于直线对称,如图,又因为,由对称性得,从而有:,故选D.考点:正态分布.5.设随机变量X服从二项分布,则函数存在零点的概率是( )A. B. C. D.【答案】C【解析】【分析】函数存在零点,可得,随机变量服从二项分布,可求.【详解】∵函数存存在零点,∵随机变量服从二项分布,.故选:C.【点睛】本题考查函数的零点,考查随机变量X服从二项分布,属于中档题.6.经过对K2的统计量的研究,得到了若干个观测值,当K2≈6.706时,我们认为两分类变量A、B( )A. 有67.06%的把握认为A与B有关系B. 有99%的把握认为A与B有关系C. 有0.010的把握认为A与B有关系D. 没有充分理由说明A与B有关系【答案】B【解析】【分析】根据所给的观测值,同临界值表中的临界值进行比较,根据P(K2>3.841)=0.05,得到我们有1-0.05=95%的把握认为A与B有关系.【详解】依据下表:,∴我们在错误的概率不超过0.01的前提下有99%的把握认为A与B有关系,故选:B.【点睛】本题考查独立性检验的应用,本题解题的关键是正确理解临界值对应的概率的意义,本题不用运算只要理解概率的意义即可.7.如果命题对于成立,同时,如果成立,那么对于也成立。

广西河池市高级中学2017-2018学年高二下学期第二次月考数学(理)试题

广西河池市高级中学2017-2018学年高二下学期第二次月考数学(理)试题

河池高中19届高二下学期第二次月考数学试题数学(理科) 第Ⅰ卷(共60分)一、选择题:(本大题共12个小题,每小题5分) 1. 设i 为虚数单位,则复数2(1)i +=( ) A .0 B .2 C .2i D .2+2i2.“0x >0>”成立的( )A .充分不必要条件B .必要不充分条件 C. 既不充分也不必要条件 D .充要条件3. 证明2111111(1)22342n n n n +<+++++<+> ,当2n =时,中间式子等于( ) A.1 B.11+2 C.11123++ D.1111234+++4. 定积分32(sin )2x x dx +-⎰的值是( )A.4cos 2-B.82cos 2-C.0D.2cos 2-5. 已知双曲线22221x y a b-=的一个焦点与抛物线2y =的焦点重合,且双曲线的离心率) A. 2219y x -= B. 2219x y -= C. 221x y -= D. 22199x y -= 6. 若命题“0x R ∃∈,使得200230x mx m ++-<”为假命题,则实数m 的取值范围是( ) A .[]26, B .[]6,2-- C. ()26, D .(6,2)--7. 如图所示,正四棱锥P ABCD -的底面积为3,体积为2,E 为侧棱PC 的中点,则PA 与BE 所成的角为( ) A.6π B. 4π C. 3π D. 2π8.设321()563f x x ax x =+++在区间[]1,3上为单调函数,则实数a 的取值范围( )A. [)5,-+∞B. (],3-∞-C. (]),3⎡-∞-+∞⎣D. ⎡⎣9. 已知函数()f x =则((()))n f f f x =共项( )AB 10. 设a R ∈,函数()x x f x e a e -=+⋅的导函数是()f x ',且()f x '是奇函数.若曲线()y f x =的一条切线的斜率是32,则切点的横坐标为( ) A .ln 2 B .ln 2- C.ln 22 D .ln 22-11. 设函数2()f x ax bx c =++ (a ,b ,c R ∈).若1x =-为函数()x f x e 的一个极值点,则下列图象不可能为()y f x =图象的是( )A .B . C. D .12. 已知抛物线22x py =和2212x y -=的公切线PQ (P 是PQ 与抛物线的切点,未必是PQ 与双曲线的切点),与抛物线的准线交于Q ,F 为抛物线的焦点,PQ =,则抛物线的方程是( )A . 24x y = B.2x = C.26x y = D.2x =第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 在平面ABC 中,(0,1,1)A ,(1,2,1)B ,(1,0,1)C --,若(1,,)a y z =-,且a 为平面ABC 的法向量,则y z += .14. 已知正方形ABCD ,则以,A B 为焦点,且过,C D 两点的椭圆的离心率为 .15.2ln ,0,()2,0,x x a x f x x x a x ->⎧=⎨---≤⎩若函数()y f x =有三个零点,则实数a 的取值范围是 .16. 已知32()69f x x x x abc =-+-,a b c <<,且()()()0f a f b f c ===.现给出如下结论: ①(0)(1)0f f >;②(0)(1)0f f <;③(0)(3)0f f >;④(0)(3)0f f <.其中正确结论的序号是 . 三、解答题 17.复数()21310z a i a =+-,22(25)1z a i a=+--,(0)a >,若12z z +是实数, (1)求实数a 的值; (2)求12z z 的模. 18.已知函数21()12f x x =-+,x R ∈. (1)求函数图象经过点(1,1)的切线的方程.(2)求函数()f x 的图象与直线1y =-所围成的封闭图形的面积.19. 若10a >,11a ≠,12(1,2,)1nn na a n a +==+ . (1)用反证法证明:1n n a a +≠; (2)令112a =,写出2a ,3a ,4a ,5a 的值,观察并归纳出这个数列的通项公式n a ;并用数学归纳法证明你的结论正确.20.已知函数21()ln 2f x x m x =-. (1)若函数()f x 在1(,)2+∞上单调递增的,求实数m 的取值范围;(2)当2m =时,求函数()f x 在[]1,e 上的最大值和最小值.21.已知在ABC ∆中,点,A B的坐标分别为(,,点C 在x 轴上方. (1)若点C坐标为,求以,A B 为焦点且经过点C 的椭圆的方程; (2)过点(,0)P m 作倾斜角为34π的直线l 交(1)中曲线于,M N 两点,若点(1,0)Q 恰在以线段MN 为直径的圆上,求实数m 的值. 22.已知32()(+22)x f x e x mx x =-+.(1)假设2m =-,求()f x 的极大值与极小值;(2)是否存在实数m ,使()f x 在[]2,1--上单调递增?如果存在,求m 的取值范围;如果不存在,请说明理由.河池高中2019届高二下学期第二次月考数学(理)答案一、选择题1-5:CADCB 6-10: ACCBA 11、12:DB 二、填空题1 15. 1(,1)e- 16. ②③ 三、解答题 17.(Ⅰ)22123232(10)(25)()(10)(25)11z z a i a i a a i a a a a⎡⎤+=+-++-=++-+-=⎣⎦-- 23(215)(1)aa a i a a -++--.因为12z z +是实数,所以22150a a +-=,解得5a =-或3a =.因为0a >,所以3a =.(2)由(1)知,11z i =+,21z i =-+,121111z i ii z i i+--=⋅=--+--∴121z z =.18.(1)设切点为2001(,1)2P x x -+,切线斜率00()k f x x '==-,所以曲线在P 点处的切线方程为20001(1)()()2y x x x x --+=--,把点(1,1)代入,得0001(2)002x x x -=⇒=或02x =,所以切线方程为1y =或23y x =-+.(2)由2121211x y x y y ⎧=-=-+⎧⎪⇒⎨⎨=-⎩⎪=-⎩或21x y =⎧⎨=-⎩ 所以所求的面积为[]232221116()122(2)220263f x dx x dx x x ⎛⎫+=-+=-+= ⎪--⎝⎭⎰⎰. 19.(1)(采用反证法)若1n n a a +=,即21n nn na a a =+,解得0n a =,1. 从而110n n a a a -==== ,1,与题设10a >,11a ≠相矛盾,故1n n a a +≠成立.(2)112a =,223a =,345a =,489a =,51617a =,11221n n n a --=+;数学归纳法证明:当01021212a ==+成立;假设n k =时,11221k k k a --=+成立; 则当1n k =+时,11111111222222121222112112121k kk k k k k k k kkk k a a a ---+----⋅++====⋅++++++也成立; 所以这个数列的通项公式11221n n n a --=+.20.(1)若函数()f x 在1(,)2+∞上是增函数,则()0f x '≥在1(,)2+∞上恒成立,而()m f x x x '=-,即2m x ≤在1(,)2+∞上恒成立,即14m ≤. (2)当2m =时,222()x f x x x x-'=-=.令()0f x '=,得x =当x ⎡∈⎣时,()0f x '<,当)x e ∈时,()0f x '>,故x =()f x 在[]1,e上唯一的极小值点,故min ()1ln 2f x f ==-.又1(1)2f =,22141()2222e f e e -=-=>,故2max 4()2e f x -=.21.(1)设椭圆方程为22221x y a b +=,c =24a AC BC =+=,b =为22142x y +=. (2)直线l 的方程为()y x m =--,令11(,)M x y ,22(,)N x y ,联立方程解得2234240x mx m -+-=,∴122124,324.3m x x m x x ⎧+=⎪⎪⎨-⎪=⎪⎩若Q 恰在以MN 为直径的圆上,则1212111y yx x ⋅=---,即212121(1)()20m m x x x x +-+++=,23450m m --=,解得23m ±=. 22.解:(1)当2m =-时,32()(222)x f x e x x x =--+,其定义域为(,)+∞-∞.则32222()(222)(342)(6)(3)(2)x x x f x e x x x e x x xe x x x x x e '=--++--=+-=+-,所以当(,3)x ∈-∞-或(0,2)x ∈时,()0f x '<;当(3,0)x ∈-或(2,)x ∈+∞时,()0f x '>;(3)(0)(2)0f f f '''-===,所以()f x 在(,3)-∞-上单调递减,在(3,0)-上单调递增;在(0,2)上单调递减,在(2,)+∞上单调递增,所以当3x =-或2x =时,()f x 取得极小值;当0x =时,()f x 取得极大值,所以3()(3)37f x f e -=-=-极小值,2()(2)2f x f e ==-极小值,()(0)2f x f ==极大值.(2)3222()(22)(322)(3)22x x x f x e x mx x e x mx xe x m x m '⎡⎤=+-+++-=+++-⎣⎦.因为()f x 在[]2,1--上单调递增,所以当[]2,1x ∈--时,()0f x '≥.又因为当[]2,1x ∈--时,0x xe <,所以当[]2,1x ∈--时,2(3)220x m x m +++-≤,所以22(2)(2)(3)220(1)(1)(3)220m m m m ⎧-+-++-≤⎨-+-++-≤⎩解得4m ≤,所以当(],4m ∈-∞时,()f x 在[]2,1--上单调递增.高考,好好发挥;心态,保持冷静;答题,仔细分析;科科,沉着应对;愿你,如鱼得水;祝你,马到成功;未来,一片光明;成功,走向未来。

(优辅资源)湖南师大附中高三月考试卷(六)(教师版)数学(理)Word版含解析

(优辅资源)湖南师大附中高三月考试卷(六)(教师版)数学(理)Word版含解析

湖南师大附中2018届高三月考试卷(六)数 学(理科)命题人:吴锦坤 张汝波 审题人:黄祖军本试题卷包括选择题、填空题和解答题三部分,共10页.时量120分钟.满分150分.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合题目要求的.(1)已知集合A ={x |x 2+x -2≤0,x ∈Z },B ={a ,1},A ∩B =B ,则实数a 等于(D) (A)-2 (B)-1 (C)-1或0 (D)-2或-1或0(2)设p :ln(2x -1)≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要而不充分条件,则实数a 的取值范围是(A)(A)⎣⎡⎦⎤0,12 (B)⎝⎛⎭⎫0,12 (C)(-∞,0]∪⎣⎡⎭⎫12,+∞ (D)(-∞,0)∪⎝⎛⎭⎫12,+∞ 【解析】由p 得: 12<x ≤1 ,由q 得:a ≤x ≤a +1,又q 是p 的必要而不充分条件,所以a ≤12且a +1≥1,∴0≤a ≤12. (3)某学校的两个班共有100名学生,一次考试后数学成绩ξ(ξ∈N )服从正态分布N (100,102),已知P (90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数为(A)(A)20 (B)10 (C)14 (D)21【解析】由题意知,P (ξ>110)=1-2P (90≤ξ≤100)2=0.2,∴该班学生数学成绩在110分以上的人数为0.2×100=20.(4)某几何体的三视图如图所示,则其体积为(C) (A)83 (B)2 (C)43 (D)23【解析】该几何体是:在棱长为2的正方体中,连接相邻面的中心,以这些线段为棱的一个正八面体.可将它分割为两个四棱锥,棱锥的底面为正方形且边长为2,高为正方体边长的一半,∴V =2×13(2)2×1=43.(5)我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S =2.5 (单位:升),则输入k 的值为(D)(A)4.5 (B)6 (C)7.5 (D)10【解析】模拟程序的运行,可得n =1,S =k , 满足条件n <4,执行循环体,n =2,S =k -k 2=k2,满足条件n <4,执行循环体, n =3,S =k 2-k 23=k3,满足条件n <4,执行循环体, n =4,S =k 3-k 34=k4,此时,不满足条件n <4,退出循环,输出S 的值为k4,根据题意可得:k4=2.5,计算得出:k =10.所以D 选项是正确的.(6)将函数f ()x =cosωx 2⎝⎛⎭⎫2sin ωx 2-23cos ωx 2+3,()ω>0的图像向左平移π3ω个单位,得到函数y =g ()x 的图像,若y =g ()x 在⎣⎡⎦⎤0,π4上为增函数,则ω的最大值为(B)(A)1 (B)2 (C)3 (D)4【解析】由题意,f ()x =2sin ⎝⎛⎭⎫ωx -π3()ω>0,先利用图像变换求出g ()x 的解析式:g ()x =f ⎝ ⎛⎭⎪⎫x +π3ω=2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +π3ω-π3,即g ()x =2sin ωx ,其图像可视为y =sin x 仅仅通过放缩而得到的图像.若ω最大,则要求周期T 取最小,由⎣⎡⎦⎤0,π4为增函数可得:x =π4应恰好为g ()x 的第一个正的最大值点,∴π4ω=π2ω=2.(7)已知x ,y 满足约束条件⎩⎨⎧x -2y -2≤0,2x -y +2≥0,x +y -2≤0,若ax +y 取得最大值的最优解不唯一,则实数a 的值为(C)(A)12或-1 (B)2或12(C)-2或1 (D)2或-1【解析】由题中约束条件作可行域如右图所示:令z =ax +y ,化为y =-ax +z ,即直线y =-ax +z 的纵截距取得最大值时的最优解不唯一.当-a >2时,直线y =-ax +z 经过点A (-2,-2)时纵截距最大,此时最优解仅有一个,故不符合题意;当-a =2时,直线y =-ax +z 与y =2x +2重合时纵截距最大,此时最优解不唯一,故符合题意;当-1<-a <2时,直线y =-ax +z 经过点B (0,2)时纵截距最大,此时最优解仅有一个,故不符合题意;当-a =-1时,直线y =-ax +z 与y =-x +2重合时纵截距最大,此时最优解不唯一,故符合题意;当-a <-1时,直线y =-ax +z 经过点C (2,0)时纵截距最大,此时最优解仅有一个,故不符合题意.综上,当a =-2或a =1时最优解不唯一,符合题意.故本题正确答案为C.(8)若直线ax +by -2=0(a >0,b >0)始终平分圆x 2+y 2-2x -2y =2的周长,则12a +1b 的最小值为(D)(A)3-224 (B)3-222(C)3+222 (D)3+224【解析】直线平分圆周,则直线过圆心f (1,1),所以有a +b =2,12a +1b =12(a +b )⎝⎛⎭⎫12a +1b=12⎝⎛⎭⎫32+b 2a +a b ≥12⎝⎛⎭⎫32+2b 2a ·a b =3+224(当且仅当b =2a 时取“=”),故选D. (9)把7个字符a ,a ,a ,b ,b ,α,β排成一排,要求三个“a ”两两不相邻,且两个“b ”也不相邻,则这样的排法共有(B)(A)144种 (B)96种 (C)30种 (D)12种【解析】先排列b ,b ,α,β,若α,β不相邻,有A 22C 23种,若α,β相邻,有A 33种,共有6+6=12种,从所形成的5个空中选3个插入a ,a ,a ,共有12C 35=120种,若b ,b 相邻时,从所形成的4个空中选3个插入a ,a ,a ,共有6C 34=24,故三个“a ”两两不相邻,且两个“b ”也不相邻,这样的排法共有120-24=96种.(10)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足F A →·FB →=0,|FB |≤|F A |≤2|FB |,则椭圆C 的离心率的取值范围是(A)(A)⎣⎡⎦⎤22,53 (B)⎣⎡⎭⎫53,1 (C)⎣⎡⎦⎤22,3-1 (D)[3-1,1) 【解析】作出椭圆左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又F A →·FB →=0,即F A ⊥FB ,故平行四边形AFBF ′为矩形,所以|AB |=|FF ′|=2c .设AF ′=n ,AF =m ,则在直角三角形ABF 中m +n =2a ,m 2+n 2=4c 2 ①,得mn =2b 2 ②,①÷②得m n +n m =2c 2b 2,令m n =t ,得t +1t =2c 2b2.又由|FB |≤|F A |≤2|FB |得m n =t ∈[1,2],∴t +1t =2c 2b2∈⎣⎡⎦⎤2,52,故离心率的取值范围是⎣⎡⎦⎤22,53.(11)在△ABC 中,AB =2m ,AC =2n ,BC =210,AB +AC =8,E ,F ,G 分别为AB ,BC ,AC 三边中点,将△BEF ,△AEG ,△GCF 分别沿EF 、EG 、GF 向上折起,使A 、B 、C 重合,记为S ,则三棱锥S -EFG 的外接球面积最小为(D)(A)292π (B)233π (C)14π (D)9π【解析】根据题意,三棱锥S -EFG 的对棱分别相等,将三棱锥S -EFG 补充成长方体, 则对角线长分别为m ,n ,10, 设长方体的长宽高分别为x ,y ,z,则x 2+y 2=m ,y 2+z 2=10,x 2+z 2=n ,∴x 2+y 2+z 2=5+m +n2,∴三棱锥S -EFG 的外接球直径的平方为5+m +n2,而m +n =4,m +n 2≥⎝ ⎛⎭⎪⎫m +n 22=4,∴5+m +n2≥9, ∴三棱锥S -EFG 的外接球面积最小为4π·94=9π,所以D 选项是正确的.(12)已知函数f (x )=⎩⎪⎨⎪⎧-32x +1,x ≥0,e -x -1,x <0,若x 1<x 2且f (x 1)=f (x 2),则x 2-x 1的取值范围是(B)(A)⎝⎛⎦⎤23,ln 2 (B)⎝⎛⎦⎤23,ln 32+13 (C)⎣⎡⎦⎤ln 2,ln 32+13 (D)⎝⎛⎭⎫ln 2,ln 32+13【解答】作出函数f (x )=⎩⎪⎨⎪⎧-32x +1,x ≥0,e -x -1,x <0的图像如右,由x 1<x 2,且f (x 1)=f (x 2),可得0≤x 2<23,-32x 2+1=e -x 1-1,即为-x 1=ln ⎝⎛⎭⎫-32x 2+2, 可得x 2-x 1=x 2+ln ⎝⎛⎭⎫-32x 2+2,令g (x 2)=x 2+ln ⎝⎛⎭⎫-32x 2+2,0≤x 2<23, g ′(x 2)=1+-32-32x 2+2=3x 2-13x 2-4.当0≤x 2<13时,g ′(x 2)>0,g (x 2)递增;当13<x 2<23时,g ′(x 2)<0,g (x 2)递减.则g (x 2)在x 2=13处取得极大值,也为最大值ln 32+13,g (0)=ln 2,g ⎝⎛⎭⎫23=23,由23<ln 2,可得x 2-x 1的范围是⎝⎛⎦⎤23,ln 32+13.故选B. 第Ⅱ卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答.二、填空题,本大题共4小题,每小题5分,共20分. (13)将八进制数705(8)化为三进制的数是__121210(3)__.【解析】705(8)=7×82+0×8+5×80=453, 根据除k 取余法可得453=121210(3).(14)计算:2cos 10°-23cos (-100°)1-sin 10°=.(15)已知P 是双曲线x 216-y 28=1右支上一点,F 1,F 2分别是双曲线的左、右焦点,O 为坐标原点,点M ,N 满足F 1P →=λPM →()λ>0,PN →=μ⎝ ⎛⎭⎪⎫PM →|PM →|+PF 2→|PF 2→|,PN →·F 2N →=0.若|PF 2→|=3,则以O 为圆心,ON 为半径的圆的面积为__49π__.【解析】由PN →=μ⎝ ⎛⎭⎪⎫PM →|PM →|+PF 2→|PF 2→|知PN 是∠MPF 2的角平分线,又PN →·F 2N →=0,故延长F 2N 交PM 于K ,则PN 是△PF 2K 的角平分线又是高线,故△PF 2K 是等腰三角形,|PK |=|PF 2|=3,因为|PF 2→|=3,故|PF 1→|=11,故|F 1K →|=14,注意到N 还是F 2K 的中点,所以ON 是△F 1F 2K 的中位线,|ON →|=12|F 1K →|=7,所以以O 为圆心,ON 为半径的圆的面积为49π.(16)如图,在△ABC 中,BE 平分∠ABC ,sin ∠ABE =33,AB =2,点D 在线段AC 上,且AD →=2DC →,BD =433,则BE =56__.【解析】由条件得cos ∠ABC =13,sin ∠ABC =223.在△ABC 中,设BC =a ,AC =3b ,则9b 2=a 2+4-43a ①.因为∠ADB 与∠CDB 互补,所以cos ∠ADB =-cos ∠CDB ,4b 2+163-41633b =-b 2+163-a 2833b ,所以3b 2-a 2=-6 ②,联立①②解得a =3,b =1,所以AC =3,BC =3. S △ABC =12·AC ·AB sin A =12×3×2×223=22,S △ABE =12·BE ·BA sin ∠EBA =12×2×BE ×33=33BE .S △BCE =12·BE ·BC sin ∠EBC =12×3×BE ×33=32BE .由S △ABC =S △ABE +S △BCE ,得22=33BE +32BE ,∴BE =456.70分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)设数列{a n }满足a 2n =a n +1a n -1+λ(a 2-a 1)2,其中n ≥2,且n ∈N ,λ为常数.(Ⅰ)若{a n }是等差数列,且公差d ≠0,求λ的值;(Ⅱ)若a 1=1,a 2=2,a 3=4,且数列{b n }满足a n ·b n =n -7对任意的n ∈N *都成立. ①求数列{}b n 的前n 项之和S n ;②若m ·a n ≥n -7对任意的n ∈N *都成立,求m 的最小值.【解析】(Ⅰ)由题意,可得a 2n =(a n +d )(a n -d )+λd 2,(2分)化简得(λ-1)d 2=0,又d ≠0,所以λ=1.(3分)(Ⅱ)①将a 1=1,a 2=2,a 3=4代入条件,可得4=1×4+λ,解得λ=0,(4分) 所以a 2n =a n +1a n -1,则数列{}a n 是首项为1,公比q =2的等比数列,所以a n =2n -1,从而b n =n -72n -1,(6分)所以S n =-620+-521+-422+…+n -72n -1,12S n =-621+-522+-423+…+n -72n , 两式相减得:12S n =-620+121+122+…+12n -1-n -72n =-5+5-n 2n ;所以S n =-10+5-n2n -1.(8分)②m ·2n -1≥n -7,所以m ≥n -72n -1对任意n ∈N *都成立.由b n =n -72n -1,则b n +1-b n =n -62n -n -72n -1=8-n2n ,所以当n >8时,b n +1<b n ; 当n =8时,b 9=b 8; 当n <8时,b n +1>b n . 所以b n 的最大值为b 9=b 8=1128,所以m 的最小值为1128.(12分) (18)(本小题满分12分)阿尔法狗(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能程序,由谷歌(Google)公司的团队开发.其主要工作原理是“深度学习”.2017年5月,在中国乌镇围棋峰会上,它与排名世界第一的世界围棋冠军柯洁对战,以3比0的总比分获胜.围棋界公认阿尔法围棋的棋力已经超过人类职业围棋顶尖水平.为了激发广大中学生对人工智能的兴趣,某市教育局组织了一次全市中学生“人工智能”软件设计竞赛,从参加比赛的学生中随机抽取了30名学生,并把他们的比赛成绩按五个等级进行了统计,得到如下数据表:(Ⅰ)根据上面的统计数据,试估计从本市参加比赛的学生中任意抽取一人,其成绩等级为“A 或B ”的概率;(Ⅱ)根据(Ⅰ)的结论,若从该地区参加比赛的学生(参赛人数很多)中任选3人,记X 表示抽到成绩等级为“A 或B ”的学生人数,求X 的分布列及其数学期望EX ;(Ⅲ)从这30名学生中,随机选取2人,求“这两个人的成绩之差大于1分”的概率. 【解析】(Ⅰ)根据统计数据可知,从本地区参加比赛的30名中学生中任意抽取一人,其成绩等级为“A 或B ”的概率为:430+630=13,(2分)即从本地区参加比赛的学生中任意抽取一人,其成绩等级为“A 或B ”的概率为13.(3分)(Ⅱ)由题意知随机变量X 可取0,1,2,3,则X ~B ⎝⎛⎭⎫3,13. P (x =k )=C k 3⎝⎛⎭⎫13k ⎝⎛⎭⎫233-k(k =0,1,2,3),(5分)所以X 的分布列为:(6分)则E (x )=3×13=1,所求期望值为1.(7分)(Ⅲ)设事件M :从这30名学生中,随机选取2人,这两个人的成绩之差大于1分. 设从这30名学生中,随机选取2人,记两个人的成绩分别为m ,n , 则基本事件的总数为C 230,不妨设m >n ,当m =5时,n =3,2,1,基本事件的个数为C 14(C 110+C 17+C 13); 当m =4时,n =2,1,基本事件的个数为C 16(C 17+C 13); 当m =3时,m =1,基本事件的个数为C 110C 13;P (M )=3487.(12分)(19)(本小题满分12分)如图,在四棱锥A -EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB ,EF ∥BC ,BC =4,EF =2a ,∠EBC =∠FCB =60°,O 为EF 的中点.(Ⅰ)求二面角F -AE -B 的余弦值;(Ⅱ)若点M 为线段AC 上异于点A 的一点,BE ⊥OM ,求a 的值. 【解析】(Ⅰ)因为△AEF 是等边三角形,O 为EF 的中点,所以AO ⊥EF , 又因为平面AEF ⊥平面EFCB ,平面AEF ∩平面EFCB =EF , AO平面AEF ,所以AO ⊥平面EFCB ,取BC 的中点G ,连结OG ,由题设知四边形EFCB 是等腰梯形,所以OG ⊥EF , 由AO ⊥平面EFCB ,又GO平面EFCB ,所以AO ⊥GO ,建立如图所示空间直角坐标系,则E ()a ,0,0,A ()0,0,3a ,B ()2,3()2-a ,0,EA →=()-a ,0,3a , BE →=()a -2,3()a -2,0,设平面AEB 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧n ·EA →=0,n ·BE →=0,即⎩⎨⎧-ax +3az =0,()a -2x +3()a -2y =0.令z =1,则x =3,y =-1,于是n =()3,-1,1,又平面AEF 的一个法向量为p =()0,1,0,设二面角F -AE -B 为θ,所以cos θ=cos 〈n ,p 〉=n ·p |n ||p |=-55.(6分) (Ⅱ)由(Ⅰ)知AO ⊥平面EFCB ,又BE 平面EFCB ,所以AO ⊥BE ,又OM ⊥BE ,AO ∩OM =O ,所以BE ⊥平面AOC ,所以BE ⊥OC ,即BE →·OC →=0,因为BE →=()a -2,3()a -2,0,OC →=()-2,3()2-a ,0, 所以BE →·OC →=-2()a -2-3()a -22, 由BE →·OC →=0及0<a <2,解得a =43.(12分)(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A 为圆心的圆与直线y =b ax 相交于P ,Q 两点,且AP →·AQ →=0,OP →=3OQ →.(Ⅰ)求椭圆C 的标准方程和圆A 的方程;(Ⅱ)不过原点的直线l 与椭圆C 相交于M ,N 两点,设直线OM ,直线l ,直线ON 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2成等比数列.①求k 的值;②是否存在直线l 使得满足OD →=λOM →+μON →(λ2+μ2=1,λ·μ≠0)的点D 在椭圆C 上?若存在,求出直线l 的方程;若不存在,请说明理由.【解析】(Ⅰ)如图,设T 为线段PQ 的中点,连接AT , 则AT ⊥PQ ,∵AP →·AQ →=0, 即AP ⊥AQ , 则|AT |=12|PQ |,又OP →=3OQ →,则|OT |=|PQ |, ∴|AT ||OT |=12,即b a =12, 由已知c =3,则a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1;(2分)又|AT |2+|OT |2=4,则|AT |2+4|AT |2=4|AT |=255,r =|AP |=2105, 故圆A 的方程为(x -2)2+y 2=85.(4分)(Ⅱ)①设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2), 由⎩⎪⎨⎪⎧x 24+y 2=1y =kx +m (1+4k 2)x 2+8kmx +4(m 2-1)=0,(5分) 则x 1+x 2=-8km 1+4k 2,x 1x 2=4(m 2-1)1+4k 2,(6分)由已知k 2=k 1k 2=y 1y 2x 1x 2=(kx 1+m )(kx 2+m )x 1x 2=k 2+km (x 1+x 2)+m2x 1x 2,(7分)则km (x 1+x 2)+m 2=0,即-8k 2m 21+4k2+m 2=0k 2=14k =±12.(8分)②假设存在直线l 满足题设条件,且设D (x 0,y 0), 由OD →=λOM →+μON →,得x 0=λx 1+μx 2,y 0=λy 1+μy 2, 代入椭圆方程得:(λx 1+μx 2)24+(λy 1+μy 2)2=1,即:λ2⎝⎛⎭⎫x 214+y 21+μ2⎝⎛⎭⎫x 224+y 22+λμx 1x 22+2λμy 1y 2=1,则x 1x 2+4y 1y 2=0,即x 1x 2+4(kx 1+m )(kx 2+m )=0, 则(1+4k 2)x 1x 2+4km (x 1+x 2)+4m 2=0, 所以(1+4k 2)·4(m 2-1)1+4k 2-32k 2m 21+4k2+4m 2=0, 化简得:2m 2=1+4k 2,而k 2=14,则m =±1,(11分)此时,点M ,N 中有一点在椭圆的上顶点(或下顶点),与k 1,k ,k 2成等比数列相矛盾, 故这样的直线不存在.(12分) (21)(本小题满分12分)已知函数f (x )=a x +x 2-x ln a (a >0,a ≠1). (Ⅰ)讨论函数f (x )的单调性;(Ⅱ)若存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1(e 为自然对数的底数),求a 的取值范围.【解析】(Ⅰ)f ′(x )=a x ln a +2x -ln a =2x +(a x -1)ln a ,(1分) 当a >1时,ln a >0,x ∈(0,+∞),f ′(x )>0,f (x )单调递增, x ∈(-∞,0),f ′(x )<0,f (x )单调递减;(2分) 当0<a <1时,ln a <0,x ∈(0,+∞),f ′(x )>0,f (x )单调递增, x ∈(-∞,0),f ′(x )<0,f (x )单调递减.(3分)综上:x ∈(0,+∞)时,f (x )单调递增,x ∈(-∞,0)时,f (x )单调递减.(4分)(Ⅱ)不等式等价于:|f (x 1)-f (x 2)|max ≥e -1, 即f (x )max -f (x )min ≥e -1,(5分)由(Ⅰ)知,函数的最小值为f (0)=1,f (x )max =max {}f (-1),f (1), 而f (1)-f (-1)=(a +1-ln a )-⎝⎛⎭⎫1a +1+ln a =a -1a -2ln a , 设g (a )=a -1a -2ln a ,则g ′(a )=1+1a 2-2a =⎝⎛⎭⎫1-1a 2>0,所以g (a )=a -1a -2ln a 在(0,+∞)单调递增,而g (1)=0,故a >1时,g (a )>0,即f (1)>f (-1);(7分) 0<a <1时,g (a )<0,即f (1)<f (-1).(8分) 所以当a >1时,原不等式即为:f (1)-f (0)≥e -1a -ln a ≥e -1,设h (a )=a -ln a (a >1),h ′(a )=1-1a =a -1a >0,故函数h (a )单调递增,又h (e)=e -1,则a ≥e ;(10分)当0<a <1时,原不等式即为:f (-1)-f (0)≥e -11a+ln a ≥e -1, 设m (a )=1a +ln a (0<a <1),m ′(a )=-1a 2+1a =a -1a 2<0,故函数m (a )单调递减,又m ⎝⎛⎭⎫1e =e -1,则0<a ≤1e.(11分) 综上,所求a 的取值范围是⎝⎛⎦⎤0,1e ∪[e ,+∞).(12分) 请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题计分. (22)(本小题满分10分)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-t ,y =2+t (t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=42cos ⎝⎛⎭⎫θ-π4.(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)设曲线C 与直线l 的交点为A ,B, Q 是曲线上的动点,求△ABQ 面积的最大值.【解析】(Ⅰ)由⎩⎪⎨⎪⎧x =3-t ,y =2+t 消去t 得x +y -5=0,所以直线l 的普通方程为x +y -5=0.由ρ=42cos ⎝⎛⎭⎫θ-π4=4cos θ+4sin θ,得ρ2=4ρcos θ+4ρsin θ.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入上式,得x 2+y 2=4x +4y ,即(x -2)2+(y -2)2=8.所以曲线C 的直角坐标方程为(x -2)2+(y -2)2=8.(5分)(Ⅱ)由(Ⅰ)知,曲线C 是以(2,2)为圆心,22为半径的圆,直线l 过定点P (3,2),P 在圆内,将直线的参数方程代入圆的普通方程,得2t 2-2t -7=0,t 1+t 2=1,t 1·t 2=-72.所以|AB |=|t 1-t 2|=15,又因为圆心到直线的距离d =|2+2-5|2=22,故△ABQ 面积的最大值为S △ABQ =12×15×⎝⎛⎭⎫22+22=5304.(10分)(23)(本小题满分10分) 已知函数f (x )=|2x +1|+|2x -1|. (Ⅰ)求f (x )的值域;(Ⅱ)若对任意实数a 和b ,|2a +b |+|a |-12|a +b |·f (x )≥0,求实数x 的取值范围.【解析】(Ⅰ)∵f (x )=⎩⎪⎨⎪⎧-4x ,x ≤-12,2,-12<x <12,4x ,x ≥12,∴f (x )≥2.∴f (x )的值域为[2,+∞).(5分)(Ⅱ)当a +b =0,即a =-b 时,|2a +b |+|a |-12|a +b |f (x )≥0可化为2|b |-0·f (x )≥0,即2|b |≥0恒成立,∴x ∈R .当a +b ≠0时,∵|2a +b |+|a |=|2a +b |+|-a |≥|(2a +b )-a |=|a +b |, 当且仅当(2a +b )(-a )≥0,即(2a +b )a ≤0时,等号成立, 即当(2a +b )a ≤0时,|2a +b |+|a ||a +b |=1.∴|2a +b |+|a ||a +b |的最小值等于1.∵|2a +b |+|a |-12|a +b |·f (x )≥0|2a +b |+|a ||a +b |≥12f (x ),∴12f (x )≤1,即f (x )≤2. 由(Ⅰ)知f (x )≥2,∴f (x )=2.当且仅当-12≤x ≤12时,f (x )=2.综上所述,实数x 的取值范围是⎣⎡⎦⎤-12,12.(10分)。

2022-2023学年四川省泸县高二年级下册学期3月月考数学(理)试题【含答案】

2022-2023学年四川省泸县高二年级下册学期3月月考数学(理)试题【含答案】

2022-2023学年四川省泸县高二下学期3月月考数学(理)试题一、单选题1.现须完成下列2项抽样调查:①从12瓶饮料中抽取4瓶进行食品卫生检查;②某生活小区共有540名居民,其中年龄不超过30岁的有180人,年龄在超过30岁不超过60岁的有270人,60岁以上的有90人,为了解居民对社区环境绿化方面的意见,拟抽取一个容量为30的样本.较为合理的抽样方法分别为( )A .①抽签法,②分层随机抽样B .①随机数法,②分层随机抽样C .①随机数法,②抽签法D .①抽签法,②随机数法【答案】A【分析】根据抽签法以及分层抽样的使用条件,可得答案.【详解】对于①,由于抽取的总体个数与样本个数都不大,则应用抽签法;对于②,抽取的总体个数较多,且总体有明确的分层,抽取的样本个数较大,则采用分层随机抽样.故选:A.2.若,则( )()3ln f x x x=+0(12)(1)limx f x f x ∆→+∆-=∆A .1B .2C .4D .8【答案】D【解析】由题意结合导数的运算可得,再由导数的概念即可得解.()14f '=【详解】由题意,所以,21()3f x x x '=+(1)134f '=+=所以.()00(12)(1)(12)(1)lim 2lim 2182x x f x f f x f f x x ∆→∆→+∆-+∆-'===∆∆故选:D.3.甲,乙两人在5天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则下列结论正确的是( )A .在这5天中,甲,乙两人加工零件数的极差相同B .在这5天中,甲,乙两人加工零件数的中位数相同C .在这5天中,甲日均加工零件数大于乙日均加工零件数D .在这5天中,甲加工零件数的方差小于乙加工零件数的方差【答案】C【分析】由茎叶图的数据,分别计算甲、乙加工零角个数的极差,中位数,平均数,方差,进而得解.【详解】甲在5天中每天加工零件的个数为:18,19,23,27,28;乙在5天中每天加工零件的个数为:17,19,21,23,25对于A ,甲加工零件数的极差为,乙加工零件数的极差为,故A 错误;281810-=25178-=对于B ,甲加工零件数的中位数为,乙加工零件数的中位数为,故B 错误;2321对于C ,甲加工零件数的平均数为,乙加工零件数的平均数为1819232728235++++=,故C 正确;1719212325215++++=对于D ,甲加工零件数的方差为,乙加工零件数的方差为222225404516.45++++=,故D 错误;222224202485++++=故选:C4.若函数的图象在处的切线与直线垂直,则的值为2()ln f x x x =+()(),a f a 2650x y +-=a ( )A .1B .2或C .2D .1或1412【答案】D【分析】由两线垂直可知处切线的斜率为3,利用导数的几何意义有,即可求()(),a f a ()3f a '=的值.a 【详解】由题意知:直线的斜率为,则在处切线的斜率为3,2650x y +-=13-()(),a f a 又∵,即,1()2f x x x '=+()123f a a a '=+=∴或,1a=12故选:D .5.函数的图象大致为( )sin x x x xy e e --=+A .B .C .D .【答案】B【分析】判断函数的奇偶性,再判断函数值的正负,从而排除错误选项,得正确选项.【详解】因为()sin x xx xy f x e e --==+所以()()sin sin x x x xx x x xf x e e e e ------+-==++得,()()f x f x =--所以为奇函数,sin x x x xy e e --=+排除C ;在,设,,单调递增,因此,[0,)+∞()sin g x x x =-()1cos 0g x x ='-≥()g x ()(0)0g x g ≥=故在上恒成立,sin 0x x x xy e e --=≥+[0,)+∞排除A 、D ,故选:B.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.6.正方形的边长为2,以为起点作射线交边于点,则的概率是( )ABCD A BC E BEAB .C .D.23131【答案】B【解析】求出以为起点作射线交边于点时所有射线形成的角的大小,再考虑对A BC E BE <应的射线所形成的角的大小,从而可求概率.【详解】如图,在边上取一点,使得,则.BC M BM =6BAM π∠=以为起点作射线交边于点时所有射线形成的角为,A BC E 4CAB π∠=以为起点作射线交边于点且时所有的射线形成的角为,A BC EBE <BAM ∠故时对应的概率为.BE <2634ππ=故选:B.7.已知为实数,则“”是“方程表示的曲线为椭圆”的a 1a >22113x y a +=-A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】取曲线不是椭圆,充分性不成立;反之成立.4a =【详解】当时,取 曲线是圆而不是椭圆,故充分性不成立;1a >4a =22133x y +=当方程表示的曲线为椭圆时,成立,所以“”是“方程表示的曲线22113x y a +=-1a >1a >22113x y a +=-为椭圆”的必要不充分条件.故选:B【点睛】方法点晴:曲线表示椭圆的充要条件是:,且.221x y m n +=0m >0n >m n ≠8.某市2016年至2020年新能源汽车年销量y (单位:百台)与年份代号x 的数据如下表,若根据表中的数据用最小二乘法求得y 关于x 的回归直线方程为,则表中的值为( )ˆ 6.59yx =+m 年份20162017201820192020年份代号x 01234年销量y1015m 3035A .22B .20C .30D .32.5【答案】B【分析】先求出、,再利用回归直线过进行求解.x y (,)x y 【详解】由题意,得,0123425x ++++==,101530359055m m y +++++==因为y 关于x 的回归直线方程为,ˆ 6.59yx =+所以,解得.90=6.52+95m +⨯20m =故选:B.9.圆关于直线对称,则的最小值是( )224610x y x y ++-+=()800,0ax by a b -+=>>32a b +A .B .C .D 3154【答案】B【分析】根据圆的标准方程得出圆的圆心,由圆的对称性可得直线过圆心,得到关于、的关系a b 式,运用基本不等式可求得的最小值.32a b +【详解】圆的标准方程为,圆心坐标为,224610x y x y ++-+=()()222312x y ++-=()2,3-而直线经过圆心,所以,得,()800,0ax by a b -+=>>2380a b --+=238a b +=因为,,0a >0b >()3213219431231238828b a a b a b a b a b ⎛⎫⎛⎫+=⨯+⨯+=⨯++≥+⨯= ⎪ ⎪⎝⎭⎝⎭当且仅当时,等号成立,23a b =因此,的最小值为.32a b +3故选:B.【点睛】本题考查圆的对称性,基本不等式的应用,关键在于巧妙地运用“”,构造基本不等式,1属于中档题.10.正方体,棱长为2,M 是CD 的中点,则三棱锥的体积为( )1111ABCD A B C D -11B AMD -A B .2C .D .4【答案】B【分析】取中点,连接,通过计算证明平面,再根据求解1AD 1,MN B N MN ⊥11AB D 1111B AD M M AB D V V --=即可.【详解】解:如图所示:取中点,连接,1AD 1,MN B N由题意可得,1111AB AD B D ===1MA MD ===13MB ==所以,,11B N AD ⊥1MN AD ⊥所以可得MN ==1B N =所以,222119MN B N MB +==所以,,1MN B N ⊥又因为,11B N AD N ⋂=所以,平面,MN ⊥11AB D所以=.1111B AD MM AB D V V --=111112332AB D S MN =⨯⨯= 故选:B.11.已知圆,过直线上一点向圆作切线,切点为,则()221:443C x y ⎛⎫-+-= ⎪⎝⎭:430l x y -=P C Q 的面积最小值为( )PCQ △A .3BC .D【答案】B【分析】结合图形,利用勾股定理可知取得最小值时也最小,从而求得CPPQmin PQ =而可得的面积最小值.PCQ △【详解】由圆,得圆心,半径,()221:443C x y ⎛⎫-+-= ⎪⎝⎭14,3C ⎛⎫⎪⎝⎭2r =所以圆心到直线的距离为,14,3C ⎛⎫ ⎪⎝⎭:430l x y -=3d因为PQ =所以当直线与垂直时,取得最小值,此时也最小,lCP CPdPQ故min PQ ==所以11222CPQ S PQ CQ PQ PQ =⨯⨯=⨯⨯=≥即PCQ △故选:B.12.若实数,满足,则( )x y 24ln 2ln 44x y x y +≥+-A .B .C .D.xy=x y +=1x y +=31x y =【分析】对不等式变形得到,换元后得到,2211ln 22222x y x y ⎛⎫⋅≥+- ⎪⎝⎭()ln 1ln 10a a b b -++-+≥构造,求导研究其单调性,极值最值情况,得到,从而只有()ln 1g x x x =-+()()max 10g x g ==时,即时,满足要求,从而解出,依次判断四个选项.1a b ==()()0g a g b ==12x y ==【详解】因为,24ln 2ln 44x y x y +≥+-所以,即,212ln ln 222x y x y +≥+-()221ln 222x y x y ≥+-所以,2211ln 22222x y x y ⎛⎫⋅≥+- ⎪⎝⎭令,21,22x a y b ==则,即,()ln 2ab a b ≥+-ln ln 2a b a b +≥+-所以,()ln 1ln 10a ab b -++-+≥令,则,()ln 1g x x x =-+()111xg x x x -'=-=当时,,单调递增,()0,1x ∈()0g x '>()g x 当时,,单调递减,()1,x ∈+∞()0g x '<()g x 所以在处取得极大值,也是最大值,()ln 1g x x x =-+1x =,()()max 1ln1110g x g ==-+=要想使得成立,只有时,即时,满足要求,()()0g a g b +=1a b ==()()0g a g b ==所以,211,212x y ==由定义域可知:,0,0x y >>解得:,12x y ==A 选项正确;xy =,BC 错误.12x y +=D 错误;312x y ==【点睛】对不等式或方程变形后,利用同构来构造函数解决问题,常见的同构型:(1);()()e ln ln e ln x x f x x f x x x x=⇒==+(2);()()ln ln e e e ln ln ln x x x xx f x f x x x x -==⇒==(3);()()ln ln e e e x x xf x x x x f x =+=⇒=+(4),()()e ln ln e e xx x f x x x f xx =-=⇒=-本题难点在于变形为,换元后得到24ln 2ln 44x y x y +≥+-2211ln 22222x y x y ⎛⎫⋅≥+- ⎪⎝⎭,从而构造解决问题.()ln 1ln 10a ab b -++-+≥()ln 1g x x x =-+二、填空题13.某社区利用分层抽样的方法从140户高收入家庭、280户中等收入家庭、80户低收入家庭中选出100户调查社会购买力的某项指标,则中等收入家庭应选________户.【答案】56【分析】由分层抽样的计算方法有,中等收入家庭的户数占总户数的比例再乘以要抽取的户数,即可得到答案.【详解】该社区共有户.14028080500++=利用分层抽样的方法, 中等收入家庭应选户28010056500⨯=故答案为:56【点睛】本题考查分层抽样,注意抽取比例是解决问题的关键,属于基础题.14.已知实数满足,则的最大值为___________.,x y 10301x y x y x --≤⎧⎪+-≤⎨⎪≥⎩2z y x =-【答案】0【分析】作出不等式组表示的平面区域,再利用目标函数的几何意义计算作答.【详解】作出不等式组表示的平面区域,如图中阴影(含边界),其中10301x y x y x --≤⎧⎪+-≤⎨⎪≥⎩ABC ,(1,2),(1,0),(2,1)A B C目标函数,即表示斜率为2,纵截距为z 的平行直线系,2z y x =-2y x z =+画出直线,显然直线经过点A ,其纵截距是经过阴影且斜率为2,纵截距为z 的平0:2l y x =0lABC 行直线系中最大的,所以的最大值为0.2z y x =-故答案为:015.若对任意的,均有成立,则称函数为和在上的[,]x a b ∈()()()≤≤g x h x f x ()h x ()g x ()f x [,]a b “中间函数”.已知函数,且是和在区间()(1)1,()3,()(1)ln =--=-=+h x m x g x f x x x ()h x ()g x ()f x 上的“中间函数”,则实数m 的取值范围是__________.[1,2]【答案】[]0,2【分析】根据“中间函数”的定义列出不等式,将问题转化成不等式恒成立问题,利用参变分离以及构造函数的方法来解决函数最值,从而求出的取值范围.m 【详解】依题意得:已知条件等价为:在区间上恒成立3(1)1(1)ln m x x x -≤--≤+[1,2]对于在区间上恒成立,变形为:3(1)1m x -≤--[1,2]21m x ≥-+令,易知单调递增, ()21F x x =-+()F x ()()max 20F x F ∴==()max 0m F x ∴≥=对于在区间上恒成立,变形为:(1)1(1)ln m x x x --≤+[1,2]()1ln 11x x m x++≤+令()()1ln 1ln 11ln 1x x x G x x x x x ++=+=+++则()2ln x xG x x -'=[1,2]x ∈ ()1ln 10x x x '∴-=-≥为增函数,ln x x ∴-ln 1ln10x x ∴-≥->在单调递增,()G x ∴[1,2]x ∈()()min 12G x G ∴==()min 2m G x ∴≤=综上所述: 即02m ≤≤[]0,2m ∈故答案为:.[]0,2【点睛】本题考查了用参变分离的方法解决恒成立的问题,考查了用导数求函数单调性、极值、最值以及恒成立的等价形式,对学生分析问题和解决问题的能力有一定的要求,属于难题.16.已知椭圆的左,右焦点分别为,,过作垂直轴的直线交椭圆2222:1(0)x y E a b a b +=>>1F 2F 1F x 于两点,点在轴上方.若,的内切圆的面积为,则直线的方程是E ,A B A x ||3AB =2ABF △916π2AF _____________________ .【答案】3430x y +-=【分析】利用,的内切圆的面积为求出a 、b 、c ,得到的坐标,即可求出||3AB =2ABF △916π2,A F 直线的方程.2AF 【详解】椭圆中,令,得,2222:1x y E a b +=x c =2422221c b y b a a ⎛⎫=-= ⎪⎝⎭所以.2223b AB y a ===又△ABF 2的内切圆面积为,即所以内切圆半径.916π2916r ππ=34r =由椭圆的定义可得△ABF 2的周长为4a ,而△ABF 2的面积为,即.113234224S c a=⋅⋅=⋅⋅2a c =又,解得:222223,b a b c a ==+2224,3,1a b c ===则,所以直线AF 2的方程是,即为3x +4y -3=0.()231,1,02A F ⎛⎫- ⎪⎝⎭()3014y x -=--故答案为:3x +4y -3=0三、解答题17.已知的极坐标方程为,以极点O 为坐标原点,极轴为x 轴正半轴,建立平面直C 4cos ρθ=角坐标系,(1)求的直角坐标方程,C (2)过作直线l 交圆于P ,Q 两点,且,求直线l 的斜率.()1,1M C 2PM QM=【答案】(1)()2224x y -+=【分析】(1)利用极坐标与直角坐标互化公式即可求解;(2)设直线的倾斜角为,则直线的参数方程为(t 为参数),代入圆方程中化α()()1cos :1sin x tl y t αα⎧=+⎪⎨=+⎪⎩简,利用根与系数的关系,结合已知和参数的几何意义即可求解.【详解】(1)解:因为的极坐标方程为:,且,C 4cos ρθ=cos ,sin x y ρθρθ==所以,,24cos ρρθ=224x y x +=故的直角坐标方程为.C ()2224x y -+=(2)解:设直线的倾斜角为,α则直线的参数方程为(t 为参数),()()1cos :1sin x t l y t αα⎧=+⎪⎨=+⎪⎩与联立,得.()2224x y -+=()22sin cos 20t t αα+--=点P 对应的参数为,点Q 对应的参数为,1t 2t 则,()12122sin cos 2t t t t αα⎧+=--⎨⋅=-⎩因为,所以,122t t =122t t =-联立可得,解得:23sin 8sin cos 3cos 0αααα-+=tan α=18.已知是函数的极值点,则:1x =()()()3221133x a x f a x a x =++-+-(1)求实数的值.a (2)求函数在区间上的最值.()f x []0,3【答案】(1);3a =(2)在上的最小值为,最大值为.()f x []0,3143-18【分析】(1)由求得的值;()10f '=a (2)结合函数的单调性来求得函数在区间上的最值.()f x ()f x []0,3【详解】(1),()()()22213f x x a x a a '=++-+-由题意知,()()()2112130f a a a '=++-+-=或,3a =2a =-时,,3a =()()()28991f x x x x x '=+-=+-当时,,函数在上单调递增,9x <-()0f x ¢>()f x (),9-∞-当时,,函数在上单调递减,91x -<<()0f x '<()f x ()9,1-当时,,函数在上单调递增,1x >()0f x ¢>()f x ()1,+∞所以为函数的极值点,满足要求;1x =时,,2a =-()()22211f x x x x '=-+=-因为,当且仅当时,,()0f x '≥1x =()0f x '=所以函数在上单调递增,()f x (),-∞+∞不是函数的极值点,不符合题意.1x =()f x 则.3a =(2)由(1)知,且在单调递减,在单调递增,()321493x f x x x =+-()f x []0,1[]1,3又,,,()00f =()1413f =-()318f =则,.()min 143f x =-()max 18f x =19.如图,已知多面体ABCDEF 中,平面ABCD ,平面ABCD ,且B ,D ,E ,F 四点共ED ⊥//EF 面,ABCD 是边长为2的菱形,,.60BAD ∠=︒1DE EF ==(1)求证:平面ACF ;EF ⊥(2)求平面AEF 与平面BCF 所成锐二面角的余弦值.【答案】(1)证明见解析;.【分析】(1)连BD 交AC 于点O ,连接OF ,证明四边形EFOD 为矩形,再利用线面垂直的判定推理作答.(2)以O 为原点,建立空间直角坐标系,利用空间向量求解二面角作答.【详解】(1)如图,连接BD 交AC 于点O ,连接OF ,因B ,D ,E ,F 四点共面,平面ABCD ,平面平面,则,//EF BDEF ⋂ABCD BD =//EF BD 而底面ABCD 是边长为2的菱形,,则,因此四边形EFOD 为平行四边形,60BAD ∠=︒1OD EF ==又平面ABCD ,且平面ABCD ,即,则为矩形,即,ED ⊥OD ⊂ED OD ⊥EFOD EF OF ⊥又,,则,而,平面ACF ,//EF BD AC BD ⊥EF AC ⊥OF AC O ⋂=,OF AC ⊂所以平面ACF .EF ⊥(2)由(1)知,,而平面ABCD ,则平面ABCD ,即有OA ,OB ,OF 两两//FO ED ED ⊥FO ⊥垂直,以O 为原点,以向量,,的方向分别为x ,y ,z 轴正方向建立空间直角坐标系,OA OB OFO xyz -如图,则,((0,1,0),(0,1,1),0),(0,0,),1A C F B E -,((0,1,0),(0,1,1),AF EF BF CB ===-=设为平面AEF 的法向量,则,令,得,111(,,)n x y z =11100n AF z n EF y ⎧⋅=+=⎪⎨⋅==⎪⎩11x=n = 设为平面BCF 的法向量,则,令,得,222(,,)m x y z =222200m BF y z m CB y ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ 21x =-(m =- 于是得,cos ,||n m n m n m ⋅〈〉===∣所以平面AEF 与平面BCF20.某蛋糕店计划按天生产一种面包,每天生产量相同,生产成本每个6元,售价每个8元,未售出的面包降价处理,以每个5元的价格当天全部处理完.(1)若该蛋糕店一天生产30个这种面包,求当天的利润y (单位:元)关于当天需求量n (单位:个,)的函数解析式;n N ∈(2)蛋糕店记录了30天这种面包的日需求量(单位:个),整理得表:日需求量n 282930313233频数346674假设蛋糕店在这30天内每天生产30个这种面包,求这30天的日利润(单位:元)的平均数及方差;(3)蛋糕店规定:若连续10天的日需求量都不超过10个,则立即停止这种面包的生产,现给出连续10天日需求量的统计数据为“平均数为6,方差为2”,试根据该统计数据决策是否一定要停止这种面包的生产?并给出理由.【答案】(1),;(2)平均数为(元),方差为;(3)一定要停止,330,306,30n n y n -<⎧=⎨-≥⎩n N ∈59 3.8理由见解析【分析】(1)当天需求量时,当天的利润,当天需求量时,当天的利润30n <330y n =-30n ≥,由此能求出当天的利润y 关于当天需求量n 的函数解析式.60y =(2)由题意,利用平均数和方差的公式,即可求出这30天的日利润的平均数和方差.(3)根据该统计数据,一定要停止这种面包的生产.推导出连续10天的日需求量都不超过10个,由此说明一定要停止这种面包的生产.【详解】(1)由题意可知,当天需求量时,当天的利润,30n <()853*******y n n n =+--⨯=-当天需求量时,当天的利润.30n ≥83063060y =⨯-⨯=故当天的利润y 关于当天需求量n 的函数解析式为:,.330,3060,30n n y n -<⎧=⎨≥⎩n ∈N (2)由题意可得:日需求量n 282930313233日利润545760606060频数346674所以这30天的日利润的平均数为(元),54357460235930⨯+⨯+⨯=方差为.()()()22254593575946059233.830-⨯+-⨯+-⨯=(3)根据该统计数据,一定要停止这种面包的生产.理由如下:由,()()()()()()22222212101210266621010x x xx x x x xx s -+-++--+-++-=== 可得,()()()222121066620x x x -+-++-= 所以(,,),所以,()2620kx -≤110k ≤≤N k ∈k x N ∈10k x ≤由此可以说明连续10天的日需求量都不超过10个,即说明一定要停止这种面包的生产.【点睛】本题主要考查了函数解析式、平均数、方差的求法,考查函数性质、平均数、方差公式等基础知识综合应用,考查运算求解能力.21.已知,分别是双曲线C :(,)的左、右焦点,,P 是C 上1F 2F 22221x y a b -=0a >0b >126F F =一点,,且112PF F F ⊥12PF PF +=(1)求双曲线C 的标准方程;(2)经过点的直线l 与双曲线C 交于A ,B 两点,过点A 作直线的垂线,垂足为D ,过点O2F 2x =作(O 为坐标原点),垂足为M .则在x 轴上是否存在定点N ,使得为定值?若存在,OM BD ⊥MN求出点N 的坐标;若不存在,请说明理由.【答案】(1)22163x y -=(2)存在,.5,04N ⎛⎫ ⎪⎝⎭【分析】(1)根据双曲线的定义取出a 、b 、c 即可;(2)设BD 交x 轴于E 点,∵OM ⊥BD ,∴若在x 轴上存在定点N ,使得为定值,则E 为定点,NMN为OE 中点,,即直线BD 过x 轴上的定点E .12MN OE =【详解】(1)由题意得,212PF PF a-=∵,,112PF F F ⊥1226F F c ==∴,222136PF PF -=又,∴,解得,12PF PF +=236a ⋅=a =∴,,26a =2293b a =-=∴双曲线C 的标准方程为.22163x y -=(2)由(1)得,设,,则,()23,0F ()11,A x y ()22,B x y ()12,D y易知直线l 的斜率不为0,设直线l 的方程为,3x ty =+t ≠联立直线l 与双曲线C 的方程,消去x 得,()222630ty ty -++=∵,∴,.()22410t∆=+>12262ty y t +=--12232y y t =-∵直线BD 的斜率,21212221y y y y k x ty --==-+∴直线BD 的方程为,()211221y y y y x ty --=-+设BD 交x 轴于E 点,如图,∵OM ⊥BD ,∴若在x 轴上存在定点N ,使得为定值,则E 为定点,MNN 为OE 中点,,即直线BD 过x 轴上的定点E .12MN OE =在直线BD 的方程中,令,得()211221y y y y x ty --=-+0y =()12112121121222ty y y ty y y x y y y y y ++=-=--+-,1122121233152222263222222t ty y t t t t y y t t ++--=-=-=+=⎛⎫---+ ⎪--⎝⎭∴直线BD 过定点.5,02E ⎛⎫⎪⎝⎭∴,则.5,04N ⎛⎫ ⎪⎝⎭1524MN OE ==综上,在x 轴上存在定点,使得为定值.5,04N ⎛⎫ ⎪⎝⎭MN5422.已知函数,,其中.()11ln f x a x x x ⎛⎫=--⎪⎝⎭()()12e 1x g x x -=--a R ∈(1)当时,判断的单调性;10a -<<()f x (2)当时,是否存在,,且,使得?证明你的结论.18a <<1x 2x 12x x ≠()()()1,2i i f x g x i ==【答案】(1)在单调递增,在单调递减()f x 10,a a +⎛⎫- ⎪⎝⎭1,a a +⎛⎫-+∞ ⎪⎝⎭(2)不存在,证明见解析【分析】(1)由,求导得到,再根据()()11ln R f x a x a x x ⎛⎫=--∈ ⎪⎝⎭()2211a a ax a f x x x x +++'=+=,由,求解;10a -<<()0f x ¢>()0f x '<(2)设,求导,分,()()()h x f x g x =-()()()121133e e x x ax a x h x f x x x --++-''=+-=+3x ≥,判断函数的单调性求解.03x <<【详解】(1)解:依题意,的定义域为,()f x ()0,∞+由,得,()()11ln R f x a x a x x ⎛⎫=--∈ ⎪⎝⎭()2211a a ax a f x x x x +++'=+=当时,令,得,10a -<<()0f x '=1a x a +=-当时,,所以在单调递增;10,a x a +⎛⎫∈- ⎪⎝⎭()0f x ¢>()f x 10,a a +⎛⎫- ⎪⎝⎭当时,,所以在单调递减;1,a x a +⎛⎫∈-+∞ ⎪⎝⎭()0f x '<()f x 1,a a +⎛⎫-+∞⎪⎝⎭综上,当时,在单调递增,在单调递减.10a -<<()f x 10,a a +⎛⎫- ⎪⎝⎭1,a a +⎛⎫-+∞ ⎪⎝⎭(2)法一:设,则,()()()h x f x g x =-()()()121133e e x x ax a x h x f x x x --++-''=+-=+①当时,恒成立,所以在单调递增,3x ≥()0h x '>()h x [)3,+∞又因为,所以,18a <<()221111113ln 31ln 31033e 33e h a ⎛⎫=---+>-+--> ⎪⎝⎭所以,在不存在零点;()0h x >()h x [)3,+∞②当时,设,则,03x <<()1ex x xϕ-=-()1e 1x x ϕ-'=-当时,,所以在单调递减;01x <<()0x ϕ'<()x ϕ()0,1当时,,所以在单调递增;13x <<()0x ϕ'>()x ϕ()1,3所以,即,因为,所以,()()10x ϕϕ≥=1e x x -≥0x >111e x x -≤又因为且,所以,18a <<03x <<133ex x x x ---≥所以,()()2223113x a x a ax a x h x x x x +-++++-'≥+=当时,函数18a <<()()231x x a x a δ=+-++,()()223411050a a a a ∆=--+=-+<所以,所以,所以在单调递增;()0x δ>()0h x '>()h x ()0,3综上可知,当时,均有在单调递增,18a <<()h x ()0,+∞因此不存在,,且,使得.1x 2x 12x x ≠()()()1,2i i f x g x i ==法二:设,则.()()()h x f x g x =-()()()121133e e x x ax a x h x f x x x --++-=+'-=+'则,又,()21221131113e e x x ax a x x h x a x x x x --++--⎛⎫'=+=+++ ⎪⎝⎭18a <<所以,()221211113123e e x x x x h x a x x x x x ----⎛⎫'=+++>++ ⎪⎝⎭当时,恒成立,所以在单调递增,3x ≥()0h x '>()h x [)3,+∞当时,设,则,03x <<()1ex x xϕ-'=-()1e 1x x ϕ-'=-当时,,所以在单调递减;01x <<()0x ϕ'<()x ϕ()0,1当时,,所以在单调递增;13x <<()0x ϕ'>()x ϕ()1,3所以,即,因为,所以.()()10x ϕϕ≥=1e x x -≥0x >111ex x -≤所以()222121221113123123220e e x x x x x x x h x a x x x x x x x x x ------+⎛⎫=+++>++≥++=> ⎪⎝⎭'所以,所以在单调递增;()0h x '>()h x ()0,3综上可知,当时,均有在单调递增,18a <<()h x ()0,+∞因此不存在,,且,使得.1x 2x 12x x ≠()()()1,2i i f x g x i ==。

山东省青岛市西海岸新区胶南第一高级中学2017-2018学年高二下学期3月月考数学(理)试题

山东省青岛市西海岸新区胶南第一高级中学2017-2018学年高二下学期3月月考数学(理)试题

高二理科数学月考2一、选择题(每小题5分,共60分)1.若曲线ln y kx x =+在点1(,k )处的切线平行于x 轴,则k= ( )A .-1B .1C .-2D .22.函数f (x )的定义域为开区间(a ,b ),其导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内的极值点有( )A .1个B .2个C .3个D .4个3.若()f x 在R 上可导,,则2()2'(2)3f x x f x =++,则3()f x dx =⎰( )4.A. 16 B. 18 C. 24 D. 544.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( ) A. (],2-∞- B. (],1-∞- C. [)2,+∞ D. [)1,+∞5.若方程330x x m -+=在[0,2]上有解,则实数m 的取值范围是( ) A .[2,2]- B .[0,2] C .[2,0]- D .(,2)-∞-∪(2,)+∞ 6.函数)(x f y =的图象如下图所示,则导函数)('x f y =的图象的大致形状是( )A .B .C .D .7.()f x 是定义在非零实数集上的函数,'()f x 为其导函数,且0.2220.222(2)(0.2)(log 5)0'()()0,,,20.2log 5f f f x xf x f x b c >-<==时,记a=则 ( )A.a<b<cB.b<a<cC. c<a<bD.c<b<a8.过点(1,-1)且与曲线32y x x =-相切的直线方程为( )A. 或B.20x y --=C. 或4510x y ++=D. +20x y -=9.已知函数32()f x x bx cx =++的图象如图所示,则212-x (x )等于( )A .32 B .34 C .38 D .31610.已知f(x)=2x 3-6x 2+m(m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A.-37B.-29C.-5D.以上都不对11.函数()22, 0,4,02,x x f x x x -≤⎧⎪=-<≤,则()22f x dx -⎰的值为 ( ) A. 6π+ B.2π- C.2π D. 8 12.已知函数()()32,5a fx g x x x x ==--,若对任意的121,,22x x ⎡⎤∈⎢⎥⎣⎦,都有()()122f x g x -≥成立,则实数a 的取值范围是A. [)2,∞+B. ()2,∞+C. (),0∞-D. (],1∞-- 二、填空题(每小题5分,共20分)13.已知函数11()(,)212ax f x x +=-∞-+在内单调递增,则实数a 的取值范围是 __ .14.函数()y f x =的图象在点()()2,2M f 处的切线方程是28y x =-,则()()'22f f =__________.15.曲线y =log 2x 在点(1,0)处的切线与坐标轴所围三角形的面积等于________.16.如图是函数()y f x =的导函数()y f x ='的图象,给出下列命题:O 2x1x yx12①()y f x =在0x =处切线的斜率小于零; ②2-是函数()y f x =的极值点;③()y f x =在区间()2,2-上单调递减. ; ④1不是函数()y f x =的极值点.则正确命题的序号是____.(写出所有正确命题的序号) 三、解答题(共70分)17.(本小题10分)若函数f(x)= xe x在x=c 处的导数值与函数值互为相反数,求c 的值.18.(本小题12分)求曲线y =x 2和直线x =0,x =1,y =t ,t ∈(0,1)所围成的图形的面积的最小值.19.(本小题12分)某超市销售某种小商品的经验表明,该商品每日的销售量y (单位:件)与销售价格(单位:元/件)满足关系式,其中,a为常数,已知销售价格为元/件时,每日可售出该商品件.若该商品的进价为元/件,当销售价格为何值时,超市每日销售该商品所获得的利润最大.20.(本小题12分)设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值.(1)求a ,b 的值;(2)若存在0x ∈[0,3],有f (0x )<c 2成立,求c 的取值范围.21.(本小题12分)已知函数()()1ln f x ax x a R =--∈. (1)讨论函数()f x 在定义域内的极值点的个数;(2)若函数()f x =0在区间1e ⎡⎤⎢⎥⎣⎦,e 上有两个解,求a 的取值范围。

三中高二数学上学期第一次月考试题(无答案)(2021年整理)

三中高二数学上学期第一次月考试题(无答案)(2021年整理)

编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江西省兴国县三中2018-2019学年高二数学上学期第一次月考试题(无答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江西省兴国县三中2018-2019学年高二数学上学期第一次月考试题(无答案)的全部内容。

答案)一、选择题1.空间中,可以确定一个平面的条件是 ( )A .两条直线B .一点和一条直线C .一个三角形D .三个点2.已知平面α与平面β、γ都相交,则这三个平面可能的交线有( )A .1条或2条B .2条或3条C .1条或3条D .1条或2条或3条3.直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( )A .至少有一条B .至多有一条C .有且只有一条D .没有4。

如图所示,长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AA 1和BB 1的中点,过EF 的平面EFGH 分别交BC 和AD 于G 、H ,则HG 与AB 的位置关系是( ) A .平行 B .相交C .异面D .平行和异面第4题图 第5题图5.如图,正方形O ′A ′B ′C ′的边长为1 cm ,它是水平放置的一个平面图形的直观图,则原图的周长是( ) A .8 cmB .6 cmC .2(1+3) cmD .2(1+错误!) cm6. 若直线x+y -3=0始终平分圆(x -a)2+(y -b )2=2的周长,则a+b=( )A .3B .2C .5D .17.已知直线x+my+1=0与直线m 2x -2y -1=0互相垂直,则实数m 为( )A .3错误!B .0或2C .2D .0或3错误!8。

三中高二数学上学期第一次月考试题(2021年整理)

三中高二数学上学期第一次月考试题(2021年整理)

甘肃省武山县三中2018-2019学年高二数学上学期第一次月考试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(甘肃省武山县三中2018-2019学年高二数学上学期第一次月考试题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为甘肃省武山县三中2018-2019学年高二数学上学期第一次月考试题的全部内容。

2018—2019学年第一学期第一次月考考试高二级数学试卷一、单选题(共12题;共24分)1。

在等差数列中,,则()A. 6 B。

7C。

8D. 92.已知数列的前前项和 ,那么它的通项公式是( )A. B。

C . D。

3。

已知数列满足 ,若,则等于()A。

1 B 。

2 C. 64D. 1284.设等差数列的前n项和为,已知,则 ( )A. -27B. 27C。

-54D. 545.在中,,,,则等于()A. B。

C.D。

6.﹣401是等差数列﹣5,﹣9,﹣13…的第()项.A。

98 B。

99C。

100D。

1017。

在等比数列{a n}中,已知a7a12=5,则a8a9a10a11=( )A。

10 B。

50C。

25D。

758.若数列{a n}为等差数列,a2 , a10是方程x2﹣3x﹣5=0的两根,则a4+a8的值为()A. 3B. ﹣3 C. 5D. ﹣59.已知等差数列{a n}的公差d≠0,且a3=2a1 , 则的值为 ( )A. B。

C.D.10。

+1与﹣1的等差中项是( )A. 1 B。

﹣1C.D。

±111.在△ABC中,若a2+b2<c2,则△ABC的形状是()A。

锐角三角形B。

直角三角形C。

钝角三角形D。

射洪中学2017-2018学年高二上学期第二次月考试题化学 含答案

射洪中学2017-2018学年高二上学期第二次月考试题化学 含答案

四川省射洪中学高2016级高二(上)第三学月测试化学试卷考试范围:选修三、选修四;考试时间:100分钟;命题人:钱洪; 审题人:任永泉第I卷一、选择题(共21小题,每小题2分,每题只有一个正确答案)1、下列关于电子云的说法中,正确的是A.电子云表示电子在原子核外运动的轨迹B.电子云表示电子在核外单位体积的空间出现的概率大小C.电子云界面图中的小黑点越密表示该核外空间的电子越多D.钠原子的1s、2s、3s电子云半径相同2、根据电子排布的特点,Cu在周期表属于A.s区B.p区C.d 区D.ds区3、关于乙炔的说法错误的是A.乙炔的键角为180°,是非极性分子B.碳原子sp杂化轨道形成σ键、未杂化的两个2p轨道形成两个π键,且互相垂直C.碳碳三键中三条键能量大小相同,其键长是碳碳单键的13 D.乙炔分子中既有极性键也有非极性键4、下列说法中错误..的是A.根据对角线规则,铍和铝的性质具有相似性B.[Cu(H2O)4]2+中Cu提供空轨道,H2O中O提供孤对电子形成配位键C.元素电负性越大的原子,吸引电子的能力越强D.手性分子互为镜像,它们的性质没有区别5、X、Y、Z、W、M为原子序数依次增大的短周期主族元素。

已知:①元素对应的原子半径大小为:X<Z〈Y〈M〈W;②Y是组成有机物的必要元素③Z与X可形成两种常见的共价化合物,与W 可形成两种常见的离子化台物;④M的电子层数与最外层电子数相等。

下列说法不正确的是()A.W、M的离子半径及最高价氧化物对应水化物的碱性皆为M<WB.YZ 2为直线型的共价化合物,W2Z2既含有离子键又含有共价键C.Y与X形成的化合物的熔沸点一定低于Z与X形成的化合物的熔沸点D.Z与M形成的化合物可作为耐高温材料,W、M、X以1:1:4组成的化合物是应用前景很广泛的储氢材料,具有很强的还原性6、下列现象与氢键有关的是()①NH3的熔、沸点比第ⅤA族其他元素氢化物的高②小分子的醇、羧酸可以和水以任意比互溶③冰的密度比液态水的密度小④尿素的熔、沸点比醋酸的高⑤邻羟基苯甲酸的熔、沸点比对羟基苯甲酸的低⑥水分子高温下很稳定A.①②④⑤⑥B.①②③④⑤C.①③④⑥D.①②④⑤7、下列说法中正确的是( )A.BF3、NF3分子的价层电子对互斥模型均为平面正三角形B.H—Cl 的键能为431.8kJ·mol -1 ,H-I 的键能为298。

2017-2018学年江西省上饶市铅山县第一中学高二数学上第二次月考(理)试题(含答案)

2017-2018学年江西省上饶市铅山县第一中学高二数学上第二次月考(理)试题(含答案)

铅山一中2017—2018学年度第一学期第二次月考高二年级理科数学试卷分值:150分 考试时间:120分钟 命题人:徐悠林 审题人:郭干军 一、单选题(每小题5分,共12小题,60分) 1.已知集合11A xx ⎧⎫=≤⎨⎬⎩⎭,集合{}1B x =<,则( )A. A B ⊇B. A B ⊆C.A B A ⋂=D. {}12A B x x ⋂=≤≤2.设向量()1cos a θ= ,与(1,4cos )b θ=- 垂直,则5sin 22πθ⎛⎫+ ⎪⎝⎭等于( )A.2B. 12-C. 0D. -13.在等比数列{}n a 中,1a 和2018a 是方程2220180x x +-=的两个根,则42015a a ⋅=( )A.2018B. 2018-C.1009-D. 10094.设()2211x y +-≤,则2x y +≥的概率为A.14B.3π24π+ C.12πD.π24π- 5.设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤≥-+≥--406302x y x y x ,则32z x y =-的最小值为( )A. 14B. 10C. 6D. 46.某几何体的三视图如图所示,则该几何体的体积为( ) A. 18πB. 36πC. 72πD. 144π7.已知函数f (x )的导函数f′(x )的图象如图所示,那么函数f (x ) 的图象最有可能的是( )A.B.C.D.8.执行如图所示的程序框图,如果输出49S =,则输入的n =( ) A. 3 B. 4 C. 5 D. 69.某班级星期一上午要排5节课,语文、数学、英语、音乐、体育各1节,考虑到学生学习的效果,第一节不排数学,语文和英语相邻,且音乐和体育不相邻,则不同的排课方式有( ) A. 14种B. 16种C .20种D .30种10.如图,正方体1111ABCD A B C D -的棱长为3,,E F 分别是棱1,BC DD 上的点,且1DF FD =,如果1B E ⊥平面ABF ,则1B E 的长度为( )A.32B.D.11.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图象,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位12.已知函数f(x)=⎪⎩⎪⎨⎧>≤---)1(,)1(,52x xa x ax x 在(),-∞+∞上是增函数,则a 的取值范围是( )A. (],2-∞-B. [)2,0-C. [)3,0- D. []3,2--二、填空题(每空5分,共20分)13.设向量=(4,m ),=(1,-2),且⊥,则|2b +=__________. 14.(1+x)(1-x)6展开式中,x 3的系数为__________.15.曲线21x y xe x =++在点()0,1处的切线方程为__________. 16.已知()11sin 2f x x ⎛⎫=+- ⎪⎝⎭,数列{}n a 满足()()12101n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则2017a =__________. 三.解答题(70分)17.(10分)在△ABC 中,角,,A B C 的对边分别为,,a b c ,且()cos 2cos b A c a B =-. (1)求B ;(2)若b =ABC ABC 的周长.18.(12分)已知数列{}n a 的前n 项和n S 满足241n n S a =-,其中*n N ∈(1)求数列{}n a 的通项公式;(2)设21log n n b a =+,求数列{}n n a b 的前n 项和n T .19.(12分)为了解学生对“两个一百年”奋斗目标、实现中华民族伟大复兴中国梦的“关注度”(单位:天),某中学团委组织学生在十字路口采用随机抽样的方法抽取了80名青年学生(其中男女人数各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组青年学生的月“关注度”分为6组:[)0,5,[)5,10,[)10,15,[)15,20,[)20,25,[]25,30,得到如图所示的频率分布直方图.(1)求a 的值;(2)现从“关注度”在[]25,30的男生与女生中选取3人,设这3人来自男生的人数为ξ,求ξ的分布列与期望;(3)在抽取的80名青年学生中,从月“关注度”不少于25天的人中随机抽取2人,求至少抽取到1名女生的概率.20.(12分)如图,三棱柱111ABC A B C -中,底面ABC 为正三角形,1AA ⊥底面ABC ,且13AA AB ==,D 是BC 的中点. (1)求证:1//A B 平面1ADC ; (2)求证:平面1ADC ⊥平面1DCC ;(3)在侧棱1CC 上是否存在一点E ,使得三棱锥C ADE -的体积是98?若存在,求出CE 的长;若不存在,说明理由.21.(12分)已知函数()()ln ,f x x a x a R =-∈ . (1)当0a =时,求函数()f x 的极小值;(2)若函数()f x 在()0,+∞上为增函数,求a 的取值范围.22.(12分)已知圆()()22:344C x y -+-=和直线:220l x y ++=,直线m ,n 都经过圆C 外定点()1,0A .(1)若直线m 与圆C 相切,求直线m 的方程;(2)若直线n 与圆C 相交于,P Q 两点,与l 交于N 点,且线段PQ 的中点为M , 求证:AM AN ⋅为定值.铅山一中2017—2018学年度第一学期第二次月考高二年级理科数学试卷答案1.A 2.B 3.C 4.D 5.C 6.B 7.A 8.B 9.C 10.D 11.A 12.D 二、填空题13.210 14. 15.310x y --= 16.2018 三、解答题17.(1)3π;(2)5【解析】(1)由()cos 2cos b A c a B =-,得2cos cos cos c B b A a B =+. 由正弦定理可得2sin cos sin cos C B B A =+()sin cos sin sin A B A B C =+=. 因为sin 0C ≠,所以1cos 2B =.因为0B π<<,所以3B π=.(2)因为1sin 2S ac B ==4ac =,又2222132c o s a c a c B a c a c =+-=+-,所以2217a c +=,所以1,4a c ==或4,1a c ==,则ABC 的周长为518.(1)13n n a -=(*n N ∈);(2)()213144n nn T -=+.试题解析:(1)∵122n n S a =-(*n N ∈),① 当1n =时,11122S a =-,∴112a =,当2n ≥时,∵11122n n S a --=-,②①-②:122n n n a a a -=-,即:12n n a a -=(2n ≥) 所以{}n a 是等比数列,∴12n n a -=(*n N ∈)(2)n b n =,12n n n a b n -=⋅∴21122322n n T n -=+⋅+⋅++⋅∴232222322nn T n =+⋅+⋅++⋅∴(1)21n n T n =-+19.(1)0.05;(2)答案见解析;(3)35. 解析:(1)()10.010.010.030.080.02510.1550.0555a -++++⨯-⨯===. (2)从频率分布直方图可知在[]25,30内的男生人数为0.025404⨯⨯=人,女生人数为0.015402⨯⨯=人,男女生共6人,因此ξ的取值可以为1,2,3,故()124236115C C P C ξ===,()214236325C C P C ξ===,()304236135C C P C ξ===. 所以ξ的分布列为数学期望()12325555E ξ=⨯+⨯+⨯==. (3)记“在抽取的80名青年学生中,从月“关注度”不少于25天的人中随机抽取2人,至少抽到1名女生”为事件A ,在抽取的女生中,月“关注度”不少于25天即在[]25,30内的人数为2,在抽取的男生中,月“关注度”不少于25天即在[]25,30内的人数为4,则在抽取的80名学生中,共有6人月“关注度”不少于25天,从中随机抽取2人,所有可能的结果有2615C =种,而事件A 包含的结果有1122429C C C +=种,所以()93155P A ==.20.(1)见解析;(2)见解析;(3试题解析:(1)如图,连接1AC交1AC 于点O ,连OD 。

平顶山市鲁山县第一高级中学2019_2020学年高二数学3月月考试题理含解析

平顶山市鲁山县第一高级中学2019_2020学年高二数学3月月考试题理含解析
对于③,取 ,则 ,但 ,故③错;
对于④,取 ,则 ,但 ,故④错;
故选:A.
(方法二)对于①,由于 ,则 ,而 ,但 的符号不确定,故①错;
对于②,由于 ,则 ,则 和 同号,但 的符号不确定,则 的符号也不确定,故②错;
对于③,由于 ,则 ,而 ,但 的符号不确定,故③错;
对于④,由于 ,则 ,而 ,但 的符号不确定,故④错;
20.已知Rt△ABC的顶点A(-3,0),直角顶点B(-1,- ),顶点C在x轴上.
(1)求点C的坐标;
(2)求斜边上的中线的方程.
【答案】(1)C(3,0);(2)y=2 x.
【解析】
【分析】
(1)由垂直得kAB·kBC=-1,设 ,即可得.
(2)求出 中点坐标,得中线斜率,从而得直线方程.
【详解】(1)∵AB⊥BC,故kAB·kBC=-1.
,故选A.
【点睛】本题考查正弦定理及余弦定理推论的应用.
12.如图, 为 的外心, 为钝角, 是边 的中点,则 的值为( )
A. 4B。 C. D.
【答案】B
【解析】
外心 在 上的投影恰好为它们的中点,分别设为 ,所以 在 上的投影为 ,而 恰好为 中点,故考虑 ,所以
点睛:和三角形外心有关的,多联系投影的应用,式子两边点击向量,出模长.
【详解】如图,
, 。
直线l的斜率k的取值范围为 。
故答案为A.
【点睛】本题考查了直线的斜率,考查了数形结合的解题思想方法,是中档题.
10.设函数 ,若对于任意 , 恒成立,则实数 的取值范围为( )
A。 B. C。 D.
【答案】C
【解析】
【分析】
恒成立问题,利用分离参数法得到m< ,转为求函数 在 的最小值,从而可求得m的取值范围.

数学---浙江省台州市书生中学2017-2018学年高二上学期第三次月考试题

数学---浙江省台州市书生中学2017-2018学年高二上学期第三次月考试题

浙江省台州市书生中学2017-2018学年高二上学期第三次月考试题命题人:常继国 (满分:150分 考试时间:120 分钟) 2017. 12选择题部分(共40分)参考公式:柱体的体积公式:V Sh =,其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式:13V Sh =,其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式:24πS R =, 球的体积公式34π3V R =,其中R 表示球的半径台体的体积公式:()112213V h S S S S =++其中12,S S 分别表示台体的上底、下底面积,h 表示台体的高一.选择题:(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知m ,n ,l 为三条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( ) A.α∥β,m ⊂α,n ⊂β⇒m ∥n B.l ⊥β,α⊥β⇒l ∥α C.m ⊥α,m ⊥n ⇒n ∥α D.α∥β,l ⊥α⇒l ⊥β2.已知R m ∈,“函数12-+=m y x有零点”是“函数x y m log =在),0(+∞上为减函数”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.过点()3,1作圆()2211x y -+=的两条切线,切点分别为,A B ,则直线AB 的方程为( )A.032=-+y xB.032=--y xC.034=--y xD.034=-+y x4.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,222侧视图正视图可得这个几何体的体积是 ( ) A.2 B.12 C.6 D.45.方程22123x y m m +=-+表示双曲线的一个充分不必要条件是 ( )A.30m -<<B.32m -<<C.34m -<<D.13m -<<6.已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为( )A.34B.54C.74D.347.若圆22:2430C x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆C 所作的切线长的最小值是( )A.2B.3C.4D.148.在正方体中,分别为棱,的中点,则在空间中与三条直线,,都相交的直线( ) A.不存在B .有且只有两条C.有且只有三条D.有无数条9. 若双曲线上不存在点P 使得右焦点F 关于直线OP (O 为双曲线的中心)的对称点在y 轴上,则该双曲线离心率的取值范围为( ) A.[2,)+∞ B .(2,)+∞ C .(1,2) D.(1,2]10.侧棱长为a 的正三棱锥S ABC -中,2BSA π∠=,P 为ABC ∆内一动点,且P 到三个侧 面SAB ,SBC ,SCA 的距离为123,,d d d .若123d d d +=,则点P 形成曲线的长度为( )A.22a B .2a C .(22)a + D.2(2)2a -非选择题部分二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

2018_2019学年高二数学上学期第一次月考试题_

2018_2019学年高二数学上学期第一次月考试题_

合肥九中2018 - 2019学年第一学期高二第一次月考数学试卷(考试时间120分钟满分150分)第Ⅰ卷(选择题)一.选择题:(共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.)1.将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括( ) A.一个圆台、两个圆锥 B.两个圆台、一个圆柱C.两个圆台、一个圆锥 D.一个圆柱、两个圆锥2.圆锥的高扩大到原来的4倍,底面半径缩短到原来的错误!未找到引用源。

21,则圆锥的体积()A.缩小到原来的一半B.扩大到原来的2倍C.不变D.缩小到原来的813.下列命题正确的有( )①若△ABC在平面α外,它的三条边所在直线分别交α于P,Q,R,则P,Q,R三点共线;②若三条平行线a,b,c都与直线l相交,则这四条直线共面;③三条直线两两相交,则这三条直线共面.A.0个B.1个C.2个D.3个4.一个水平放置的平面图形的斜二测直观图是一个底角为,腰和上底均为1的等腰梯形,则这个平面图形的面积为()A.1222+ B.212+C.21+D.22+5.如图所示,在正方体ABCD—A1B1C1D1中,M、N分别是BB1、BC的中点.则图中阴影部分在平面ADD1A1上的正投影为( )6.设n m ,是两条不同的直线,γβα,,是三个不同的平面,给出下列四个命题:①若αα//,n m ⊥,则n m ⊥;②若αγββα⊥m ,//,//,则γ⊥m ;③若αα//,//n m ,则n m //;④若γβγα⊥⊥,,则βα//.其中正确命题的序号是: ( )A 、①②B 、②③C 、③④D 、①④7. 长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球面的表面积为( )A .27πB .56πC .14πD .64π8.一正方体表面沿着几条棱裁开放平得到如图所示的展开图,则在原正方体中( )A .AB ∥CD B .AB ∥平面CDC .CD ∥GH D .AB ∥GH9、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D .310.如图所示,正四棱锥S —ABCD 的所有棱长都等于a ,过不相邻的两条棱SA ,SC 作截面SAC ,则截面的面积为( )。

高中数学专题02频率分布直方图及其应用分项汇编含解析新人教A版必修3

高中数学专题02频率分布直方图及其应用分项汇编含解析新人教A版必修3

专题 02频次散布直方图及其应用一、选择题1.【 2017-2018 年北京市国都师大附中高二期末】对高速公路某段上汽车行驶速度进行抽样检查, 画出以下频次散布直方图. 依据直方图预计在此路段上汽车行驶速度的众数和行驶速度超出80km/ h的概率A. 75,0.25B. 80,0.35C. 77.5,0.25D. 77.5,0.35【答案】 D应选D.2.【人教 B 版高中数学必修三同步测试】依据某水文观察点的历史统计数据, 获得某条河流水位的频次散布直方图(如图), 从图中能够看出, 该水文观察点均匀起码100 年才碰到一次的洪水的最低水位是()A. 48mB. 49mC. 50mD. 51m【答案】 C频次【分析】由频次散布直方图知水位为50 m的为0.005 2 0.01 ,即水文观察点均匀起码一百年才遇组距到一次的洪水的最低水位是50 m.本题选择 C选项.3.【福建省三明市 A 片区高中结盟校2017-2018 学年高二上学期阶段性考试】为认识某地域名高三男生的身体发育状况,抽查了该地域名年纪为~岁的高三男生体重() ,获得频次散布直方图如图. 依据图示,预计该地域高三男生中体重在kg 的学生人数是()A.B.C.D.【答案】 C点睛:本题主要考察了频次散布直方图在实质问题中的应用,属于中低档题型,也是常考考点. 在解决此类问题中,充足利用频次散布直方图的纵坐标的实质意义,其纵坐标值为:频次/ 组距,由此各组数据的频次=其纵坐标组距,各组频数=频次×整体,进而可预计出所求数据段的频数(即人数).4.【广东省中山一中、仲元中学等七校2017-2018 学年高二 3 月联考】某商场在国庆黄金周的促销活动中,对 10 月 1 日 9 时至 14 时的销售额进行统计,其频次散布直方图以下图.已知9 时至 10 时的销售额为 3 万元,则9 时至 14 时的销售总数为A. 10 万元B. 12 万元C. 15 万元D. 30 万元【答案】 D【分析】 9 时至 10 时的销售额频次为0.1 ,所以所有销售总数为万元,应选 D.5.【四川省成都外国语学校2017-2018 学年高二上学期期末考试】容量为100的样本,其数据散布在2,18 ,将样本数据分为 4 组:2,6 ,6,10 ,10,14 ,14,18 ,获得频次散布直方图以下图. 则以下说法不正确的选项是A. 样本数据散布在6,10 的频次为0.32B. 样本数据散布在10,14 的频数为40.样本数据散布在2,10的频数为40 . 10%散布在10,14C D 预计整体数据大概有【答案】 DD不正确.应选 .D6.【四川省雅安市 2017-2018 学年高二上学期期末考试】某高校进行自主招生,先从报名者中挑选出400 人参加笔试,再按笔试成绩择精选出100 人参加面试,现随机检查了24 名笔试者的成绩,以下表所示:据此预计同意参加面试的分数线大概是()A. 75B. 80C. 85D. 90【答案】 B应选 B7.【四川省成都市2017-2018 学年高二上学期期末调研考试】容量为100 的样本,其数据散布在2,18 ,将样本数据分为 4 组:2,6 , 6,10 , 10,14 , 14,18 ,获得频次散布直方图以下图,则以下说法不正确的是()A. 样本数据散布在6,10 的频次为 0.32B. 样本数据散布在10,14 的频数为 40.样本数据散布在2,10的频数为40.预计整体数据大概有10% 10,14C D 散布在【答案】 D【分析】整体数据散布在10,14 的概率为0.1 40%0.02 0.08 0.1 0.05应选 D8.【广西南宁市第二中学(曲靖一中、柳州高中)2017-2018 学年高二上学期末期考试】2014 年 5 月,国家统计局宣布了《 2013 年农民工监测检查报告》,报告显示:我国农民工收入连续迅速增添.某地域农民工人均月收入增添率如图1,并将人均月收入绘制成如图 2 的不完好的条形统计图.依据以上统计图来判断以下说法错误的选项是()A. 2013年农民工人均月收入的增添率是.B. 2011年农民工人均月收入是元.C. 小明看了统计图后说:“农民工2012 年的人均月收入比2011 年的少了”.D. 2009年到2013年这五年中2013 年农民工人均月收入最高.【答案】 C9.【四川省遂宁市2017-2018 学年高二上学期期末考试】供电部门对某社区位居民2017年12月份人均用电状况进行统计后,按人均用电量分为,,,,,,,,,五组,整理获得以下的频次散布直方图,则以下说法错误的选项是A. 月份人均用电量人数最多的一组有人B. 月份人均用电量不低于度的有人C. 月份人均用电量为度D. 在这位居民中任选位辅助收费,选到的居民用电量在,一组的概率为【答案】 C点睛:统计中利用频次散布直方图计算样本均值时,可利用组中值进行计算.10.【内蒙古赤峰市宁城县2017-2018 学年高二上学期期末考试】有关部门从甲、乙两个城市所有的自动售货机是随机抽取了16 台,记录上午8: 00~11: 00 间各自的销售状况(单位:元),用茎叶图表示:设甲、乙的均匀数分别为x1 , x2,标准差分别为s1 , s2,则()A.x1 x2 ,s1Bx1 x2,s1 s2s2.C. x x , D x x ,s1 s2. 2 s1 s21 2 1【答案】 D【分析】依据公式获得1 8 6 5 20 14 36 22 25 27 60 41 43 307x1 =16 16x2 1 10 12 18 20 22 46 27 31 32 68 38 42 43 48 47716 16故 x1 x2,再将以上均值代入方差的公式获得s1s2 . 或许察看茎叶图,获得乙的数据更集中一些,故得到s1s2 .故答案为: D.11.【陕西省黄陵中学2017-2018 学年高二(要点班)上学期期末考试】某篮球运动员在一个赛季的40 场比赛中的得分的茎叶图如右以下图所示:则中位数与众数分别为()A.3与3B.23与23C.3与23D.23与3【答案】 B点睛:茎叶图的问题需注意:(1) “叶”的地点只有一个数字,而“茎”的地点的数字位数一般不需要一致;(2)重复出现的数据要重复记录,不可以遗漏,特别是“叶”的地点的数据.12.【内蒙古鄂尔多斯市第一中学2017-2018 学年高二上学期第三次月考】如图是某次拉丁舞比赛七位评委为甲、乙两名选手打出的分数的茎叶图( 此中m为数字 0~9 中的一个 ) ,去掉一个最高分和一个最低分后,甲、乙两名选手得分的均匀数分别为a1、a2,则 a1、a2的大小关系是()A.a1= a2B. a1>a2C.a2>a1D.没法确立【答案】 C85 84 85 85 81 a15 84【分析】由茎叶图,得甲、乙两名选手得分的均匀数分别为,84 84 86 84 87 a25 85a1;应选 C.,即a2填空题13.【吉林省辽源市田家炳高级中学2017-2018 学年高二放学期 3 月月考】上方右图是一个容量为200 的样本的频次散布直方图,请依据图形中的数据填空:(1) 样本数据落在范围[5 , 9 )的可能性为 __________;(2)样本数据落在范围 [9 , 13 )的频数为 __________ .【答案】 0.32 72点睛:本题主要考察的知识点是频次散布直方图的意义以及应用图形解题的能力,属于基础题. 对于 1 根频次组距2组距频次样本容量即可求出结果 .据频次即可求出结果,对于依据频数14.【山西省临汾第一中学等五校2017-2018 学年高二上学期期末联考】当前北方空气污染愈来愈严重,某大学组织学生参加环保知识比赛,从参加学生中抽取40 名,将其成绩(均为整数)整理后画出的频次散布直方图如图,若从成绩是 80 分以上(包含80 分)的学生中选两人,则他们在同一分数段的概率为_______. 【答案】∵前三组的积累频次为:0.10+0.15+0.25=0.50,故此次环保知识比赛成绩的中位数为70;成绩在 [80 , 90)段的人数有10×0.010 ×40=4 人,成绩在 [90 , 100] 段的人数有10×0.005 ×40=2 人,15 种不一样的基本领件,从成绩是 80 分以上(包含 80 分)的学生中任选两人共有此中他们在同一分数段的基本领件有: 7,故他们在同一分数段的概率为故答案为 :.15.【黑龙江省大庆中学2017-2018 学年高二上学期期末考试】某高校在今年的自主招生考试成绩中随机抽取 100 名考生的笔试成绩,分为 5 组制出频次散布直方图以下图.则 a __________,d__________.【答案】30 0.2点睛:利用频次散布直方图求众数、中位数与均匀数时,易犯错,应注意划分这三者.在频次散布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左侧和右侧的小长方形的面积和是相等的;(3) 均匀数是频次散布直方图的“重心”,等于频次散布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.16.【辽宁省六校协作体 2017-2018 学年高二上学期期初联考】从某小学随机抽取100 名同学,将他们的身高(单位:厘米)数据绘制成频次散布直方图(如图).若要从身高在 [ 120 , 130), [130 , 140) , [140 , 150] 三组内的学生中,用分层抽样的方法选用18 人参加一项活动,则从身高在[140 , 150] 内的学生中选取的人数应为【答案】 3 人【分析】试题剖析:∵直方图中各个矩形的面积之和为1,∴10×( 0.005+0.035+ a+0.02+0.01 )=1,解得 a=0.03.由直方图可知三个地区内的学生总数为100×10×( 0.03+0.02+0.01 ) =60 人.此中身高在 [140 , 150] 内的学生人数为10 人,所以身高在 [140 , 150] 范围内抽取的学生人数为人.考点:频次散布直方图.评论:本题考察频次散布直方图的有关知识.直方图中的各个矩形的面积代表了频次,所以各个矩形面积之和为 1.同时也考察了分层抽样的特色,即每个层次中抽取的个体的概率都是相等的.解答题17.【2017-2018 学年人教A版数学必修三同步测试】我校正高二600 名学生进行了一次知识测试, 并从中抽取了部分学生的成绩( 满分 100 分 ) 作为样本 , 绘制了下边还没有达成的频次散布表和频次散布直方图.分组频数频次[50,60) 2 0. 04[60,70) 8 0. 16[70,80) 10[80,90)[90,100] 14 0. 28共计1. 00(1)填写频次散布表中的空格 , 补全频次散布直方图 , 并标出每个小矩形对应的纵轴数据;(2)请你估量该年级学生成绩的中位数;(3) 假如用分层抽样的方法从样安分数在[60,70)和[80,90)的人中共抽取 6 人 , 再从 6 人中选 2 人 , 求 2 人分数都在 [80,90)的概率.2【答案】 (1) 答案看法析; (2)83.125;(3)5【分析】试题剖析:试题分析:(1)填写频次散布表中的空格 , 以下表 :分组频数频次[50,60)20.04[60,70)80.16[70,80)100.2[80,90)160. 32[90,100]140. 28共计50 1. 00补全频次散布直方图,以以下图 :(2) 设中位数为x,依题意得0. 04+0. 16+0. 2+0. 032×( x- 80) =0. 5,解得 x=83. 125,所以中位数约为83. 125.(3) 由题意知样安分数在[60,70) 有 8 人, 样安分数在[80,90) 有 16人,用分层抽样的方法从样安分数在[60,70) 和 [80,90) 的人中共抽取 6 人 ,则抽取的分数在 [60,70) 和 [80,90) 的人数分别为2人和 4人.记分数在 [60,70) 的为 a , a ,在[80,90) 的为 b , b , b , b .1 2 1 2 3 4从已抽取的 6 人中任选两人的所有可能结果有15 种, 分别为{ a , a },{ a , b },{ a , b },{ a , b },{ a , b },{ a , b },{ a , b },{ a , b },{ a , b },{ b , b },{ b , b },{ b , b },{ b , b },{1 2 1 1 1 2 1 3 1 4 2 1 2 2 2 3 2 4 1 2 1 3 1 4 2 3b2, b4},{ b3, b4},设“2 人分数都在 [80,90) ”为事件A,则事件 A 包含{ b , b },{ b , b },{ b , b },{ b , b },{ b , b },{ b 6 2, b } 共 6 种 , 所以 P( A)= .1 2 1 3 1 4 2 3 2 4 3 4155点睛:利用频次散布直方图求众数、中位数和均匀数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左侧和右侧的小长方形的面积和是相等的;③均匀数是频次散布直方图的“重心”,等于频次散布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.18.【内蒙古自治区北方重工业公司有限公司第三中学2017-2018 学年高二 3 月月考】节能减排以来,兰州市 100 户居民的月均匀用电量单位:度,以,,,,,,,,,,,,,分组的频率散布直方图如图.求直方图中x 的值;求月均匀用电量的众数和中位数;预计用电量落在,中的概率是多少?【答案】(1)5;( 2)众数为,中位数为224;( 3).月均匀用电量在,中的概率是.试题分析:的频次之和为,的频次之和为,∴中位数在内,设中位数为y,则解得,故中位数为224.由频次散布直方图可知,月均匀用电量在中的概率是.点睛:利用频次散布直方图预计样本的数字特色(1)中位数:在频次散布直方图中,中位数左侧和右侧的直方图的面积相等,由此能够预计中位数值.(2)均匀数:均匀数的预计值等于每个小矩形的面积乘以矩形底边中点横坐标之和.(3)众数:最高的矩形的中点的横坐标.19.【河南师范大学隶属中学2017-2018 学年高二 4 月月考】某要点中学100 位学生在市统考取的理科综合分数,以160,180 ,180,200 ,200,220 ,220,240 ,240,260 ,260,280 ,280,300分组的频次散布直方图如图.( 1)求直方图中 x 的值;( 2)求理科综合分数的众数和中位数;( 3)在理科综合分数为220,240 , 240,260 , 260,280 , 280,300 的四组学生中,用分层抽样的方法抽取 11 名学生,则理科综合分数在220,240 的学生中应抽取多少人?【答案】 (1)0.0075(2)230 , 224 ( 3) 5 人【分析】试题剖析: ( 1)依据直方图求出 x 的值即可;( 2)依据直方图求出众数,设中位数为,获得对于 a 的方程,解出即可;a( 3)分别求出 [220 , 240), [240 ,260), [260 ,280), [280 , 300] 的用户数,依据分层抽样求出知足条件的概率即可.220 240( 2)理科综合分数的众数是230 ,2∵ 0.0020.0095 0.011 20 0.45 0.5,∴理科综合分数的中位数在 220,240 内,设中位数为a ,则 0.0020.0095 0.011 20 0.0125 a 2200.5,解得a 224,即中位数为 224 .( 3)理科综合分数在220,240的学生有 0.0125 20 100 25 (位),同理可求理科综合分数为240,260 ,260,280 ,280,300 的用户分别有15位、10位、5位,11 1故抽取比为2515 10 5 5 ,25 1 5∴从理科综合分数在220,240 的学生中应抽取 5 人.点睛:利用频次散布直方图求众数、中位数与均匀数时,易犯错,应注意划分这三者.在频次散布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左侧和右侧的小长方形的面积和是相等的;(3)均匀数是频次散布直方图的“重心”,等于频次散布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.20.【河北省阜城中学 2017-2018 学年高二上学期期末考试】某校高一年级某次数学比赛随机抽取100 名学生的成绩,分组为 [50 , 60), [60 , 70), [70 , 80), [80 , 90), [90 , 100] ,统计后获得频次散布直方图以下图:( 1)试预计这组样本数据的众数和中位数(结果精准到0.1 );( 2)年级决定在成绩[70 , 100] 顶用分层抽样抽取 6 人构成一个调研小组,对高一年级学生课外学习数学的状况做一个检查,则在[70 , 80), [80 , 90), [90 , 100] 这三组分别抽取了多少人?( 3)此刻要从( 2)中抽取的 6 人中选出正副 2 个小组长,求成绩在[80 , 90)中起码有 1 人入选为正、副小组长的概率.【答案】(1) 65, 73.3 ;( 2) 3, 2, 1;( 3)【分析】试题剖析:( 1)由频次散布直方图中面积最大的矩形中点可得众数、左右边积各为0.5的分界处为中位数.( 2)先求出成绩为[70 ,80)、[80 ,90)、[90 ,100] 这三组的频次,由此能求出[70 ,80)、[80 , 90)、[90 ,100] 这三组抽取的人数.( 3)由( 2)知成绩在[70 , 80)有 3 人,分别记为a, b, c;成绩在[80 , 90)有 2 人,分别记为d,e;成绩在 [90 , 100] 有1 人,记为 f .由此利用列举法能求出成绩在[80 ,90)中起码有 1 人入选为正、副小组长的概率.( 2)成绩为 [70 , 80)、 [80 , 90)、 [90 , 100] 这三组的频次分别为0.3 ,0.2 , 0.1 ,∴ [70 , 80)、 [80 ,90)、 [90 , 100] 这三组抽取的人数分别为 3 人,2 人,1人.( 3)由(2)知成绩在[70 , 80)有 3 人,分别记为 a,b, c;成绩在 [80 , 90)有 2 人,分别记为d, e;成绩在[90,100]有1 人,记为f.∴从( 2)中抽取的 6 人中选出正副 2 个小组长包含的基本领件有种,分别为:ab, ba, ac, ca, ad,da, ae, ea, af , fa , bc, cb, bd, db, be, eb, bf , fb , cd, dc, ce, ec,cf ,fc , de, ed, d f , fd ,ef , fe ,记“成绩在 [80 , 90)中起码有 1 人入选为正、副小组长”为事件Q,则事件 Q包含的基本领件有18 种,∴成绩在[80 , 90)中起码有 1 人入选为正、副小组长的概率P(Q)= .点睛:利用频次散布直方图求众数、中位数与均匀数时,易犯错,应注意划分这三者.在频次散布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左侧和右侧的小长方形的面积和是相等的;(3)均匀数是频次散布直方图的“重心”,等于频次散布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.21.【黑龙江省哈尔滨市第六中学2017-2018 学年高二 3 月月考】从某学校高三年级共800 名男生中随机抽取 50 名丈量身高,丈量发现被测学生身高所有介于155cm和 195cm之间,将丈量结果按以下方式分红八组:第一组 [155,160);第二组[160,165)、、第八组[190,195],以下图是按上述分组方法获得的频次散布直方图的一部分,已知第一组与第八组人数同样,第六组、第七组、第八组人数挨次构成等差数列.( 1)预计这所学校高三年级全体男生身高180cm以上 ( 含 180cm) 的人数;(2)求第六组、第七组的频次并增补完好频次散布直方图(如需增添刻度请在纵轴上标志出数据,并用直尺作图);(3)由直方图预计男生身高的中位数.【答案】(1);(2)详看法析;(3).试题分析: (1) 由直方图,前五组频次为(0.008 + 0.016 + 0.04 + 0.04 +0.06) ×5= 0.82 ,后三组频次为 1 -0.82 = 0.18.这所学校高三男生身高在180cm以上 ( 含 180cm) 的人数为800×0.18 = 144 人.(2)由频次散布直方图得第八组频次为 0.008 ×5= 0.04 ,人数为 0.04 ×50= 2 人,设第六组人数为 m,则第七组人数为0.18×50-2- m=7- m,又 m+2=2(7- m),所以m=4,即第六组人数为 4 人,第七组人数为 3 人,频次分别为0.08,0.06. 频次除以组距分别等于0.016,0.012,见图.( 3)设中位数为,由频次为22.【广东省中山一中、仲元中学等七校,所以2017-2018 学年高二,3 月联考】某公司职工,解得=174.5500 人参加“学雷锋”志愿活动,按年纪分组:第 1 组 [25 ,30) ,第[45 , 50] ,获得的频次散布直方图以下图.2 组[30 ,35) ,第3 组[35 ,40) ,第4 组[40 , 45) ,第5 组(1) 上表是年纪的频数散布表,求正整数的值;(2) 此刻要从年纪较小的第1,2,3 组顶用分层抽样的方法抽取 6 人,年纪在第1,2,3 组的人数分别是多少?(3) 在 (2) 的前提下,从这 6 人中随机抽取 2 人参加社区宣传沟通活动,求起码有 1 人年纪在第 3 组的概率.【答案】(1) ; (2) 第 1, 2, 3 组分别抽取 1 人,1人,4 人;(3) .【分析】试题剖析:( 1)) 由题设可知,2, 3 组的比率关系为 1:1:4 ,则分别抽取,1 人, 1人, 4 人;( 3)设第 1 组的 1 位同学为;( 2)由第1,,第 2组的 1位同学为,第3组的 4 位同学为,由穷举法,求得起码有 1 人年纪在第 3 组的概率为.(3) 设第 1 组的 1 位同学为,第2组的1位同学为,第3组的4位同学为,则从6位同学中抽两位同学有:共种可能.此中 2 人年纪都不在第 3 组的有:共 1 种可能,所以起码有 1 人年纪在第 3 组的概率为.。

云南省玉溪市江川一中2017-2018学年高二下学期3月份月

云南省玉溪市江川一中2017-2018学年高二下学期3月份月

玉溪市江川一中2017-2018学年下学期3月份月考高二化学试卷1、本试卷共8页,分为I卷和II卷,满分100分。

其中第I卷为选择题,共50分;第II卷为非选择题,共50分。

2、考试时间为90分钟。

3、请将答案填在答题卡内。

可能用到的原子量:H - 1 C - 12 N - 14 O - 16 F - 19 S - 32 Cl - 35.5 Ca - 40第I卷(选择题)一、选择题(本题共25个小题,每题2分,共50分,每个小题只有一个唯一的答案,请将答案涂在答题卡上。

)1.一定条件下,可逆反应NO2(g)+CO(g)NO(g)+CO2(g)在容积不变的密闭容器中进行,当下列物理量不再随时间变化时,能说明该反应已达到平衡状态,该选项是()A.混合气体的压强B.NO2的消耗速率与NO的生成速率之比C.混合气体的颜色D.混合气体的平均摩尔质量2.KClO3和KHSO3可发生下列反应:+―→+Cl-+H+(未配平),已知酸性越强,该反应的反应速率越快。

如图为反应速率v()随时间(t)的变化曲线。

下列有关说法不正确的是()A.KClO3和KHSO3发生反应的氧化剂与还原剂的物质的量之比为1∶3B.反应开始阶段速率逐渐增大可能是c(H+)逐渐增高导致的C.反应后期速率逐渐减小的主要原因是c()、c()降低D.纵坐标为v()时的v-t曲线与原图曲线完全吻合3.用质量均为100 g的铜棒做电极,电解硝酸银溶液,电解一段时间后,两个电极的质量差为28 g,则阴极的质量为()A.128 g B.114 g C.119 g D.121.6 g4.已知X、Y、Z三种元素组成的化合物是离子晶体,其晶胞如图所示,则下面表示该化合物的化学式正确的()A.ZXY3B.ZX2Y6C.ZX4Y8D.ZX8Y125.某学生想制作一种家用环保型消毒液发生器,用石墨作电极电解饱和氯化钠溶液。

通电时,为使Cl2被完全吸收,制得有较强杀菌能力的消毒液,设计了如图的装置,则对电源电极名称和消毒液的主要成分判断正确的是()A.a为正极,b为负极;NaClO和NaClB.a为负极,b为正极;NaClO和NaClC.a为阳极,b为阴极;HClO和NaClD.a为阴极,b为阳极;HClO和NaCl6.X与Y两元素的阳离子具有相同的电子层结构,X元素的阳离子半径大于Y元素的阳离子半径,Y与Z两元素的核外电子层数相同,Z元素的第一电离能大于Y元素的第一电离能,则X、Y、Z的原子序数()A.X>Y>Z B.Y>X>Z C.Z>X>Y D.Z>Y>X 7.在一定条件下,已达平衡的可逆反应:2A(g)+B(g)2C(g),下列说法中正确的是()A.平衡时,此反应的平衡常数K与各物质的浓度有如下关系:K=B.改变条件后,该反应的平衡常数K一定不变C.如果改变压强并加入催化剂,平衡常数随之变化D.若平衡时增加A和B的浓度,则平衡常数会减小8.在一支25 mL的酸式滴定管中装入0.1 mol·L-1的HCl溶液,其液面恰好在5.00 mL刻度处,若把滴定管中的溶液全部放入烧杯中,然后以0.1 mol·L-1的NaOH溶液进行中和,则所需NaOH溶液的体积()A.大于20 mL B.小于20 mL C.等于20 mL D.等于5 mL 9.2SO 2+O22SO3经a min后,SO3浓度的变化情况如图所示,在时间0~a min内用O2表示的平均反应速率为0.04 mol·,则a等于()A.5B.2.5C.7.5D.1010.在实验Ⅰ和实验Ⅱ中,用定量、定浓度的盐酸与足量的石灰石反应,并在一定的时间内测量反应所放出的CO2的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学(理科)检测卷时间120分钟满分150分第Ⅰ卷(选择题,共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四处备选项中,只有一项是符合题目要求.)1.复数z=1i-1的模为()A.12 B.22C. 2 D.22.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ”过程应用了() A.分析法B.综合法C.综合法、分析法综合使用D.间接证明法3.8个色彩不同的球已平均分装在4个箱子中,现从不同的箱子中取出2个彩球,则不同的取法共有()A.6种B.12种C.24种D.28种4.设i是虚数单位,z表示复数z的共轭复数.若z=1+i,则zi+i·z=()A.-2 B.-2iC.2 D.2i5. 已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=() A.-4 B.-3 C.-2 D.-16.若把英语单词“error”中字母的拼写顺序写错了,则可能出现错误的种数是()A .20B .19C .10D .97. 在(x 2-13x )n 的展开式中,只有第5项的二项式系数最大,则展开式中的常数项是( )A .-7B .7C .-28D .288. 已知a n =(13)n,把数列{a n }的各项排成如下的三角形:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (s ,t )表示第s 行的第t 个数,则A (11,12)=( ) A .(13)67 B .(13)68 C .(13)111 D .(13)1129. 将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为( )A .540种B .300种C .180种D .150种10. 设k = (sin x -cos x )d x ,若(1-kx )8=a 0+a 1x +a 2x 2+…+a 8x 8,则a 1+a 2+a 3+…+a 8=( )A .-1B .0C .1D .25611. 甲、乙、丙3人进行擂台赛,每局2人进行单打比赛,另1人当裁判,每一局的输方当下一局的裁判,由原来裁判向胜者挑战,比赛结束后,经统计,甲共打了5局,乙共打了6局,而丙共当了2局裁判,那么整个比赛共进行了( )A .9局B .11局C .13局D .18局12. 观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4小题,每小题5分,共20分,把答案填在题中相应的横线上.)13. i +i 2+i 3+…+i 2 019的值是________.14. 古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n , 正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n , 六边形数 N (n,6)=2n 2-n , ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________.15. 8个相同的小球放入5个不同盒子中,每盒不空的放法共有________种16.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17. (10分)复数z 1=3a +5+(10-a 2)i ,z 2=21-a +(2a -5)i ,若z -1+z 2是实数,求实数a 的值.18. (12分)若(1-2x )2010=a 0+a 1x +a 2x 2+…+a 2010x 2010(x ∈R ). 求(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+…+(a 0+a 2010)的值.19. (12分)设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.20.(12分)若在(x +124x)n 的展开式中,前三项的系数成等差数列,求展开式中的有理项.21. (12分)一个圆分成6个大小不等的小扇形,取来红、黄、蓝、白、绿、黑6种颜色,如图.(1)6个小扇形分别着上6种颜色,有多少种不同的方法?(2)从这6种颜色中任选5种着色,但相邻两个扇形不能着相同的颜色,有多少种不同的方法?22..(12分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.高二数学阶段性检测卷参考答案1.解析:z=i+1(i-1)(i+1)=-12-i2,|z|=(12)2+(12)2=22.答案:B2.解析:因为证明过程是“从左往右”,即由条件⇒结论.故选B.答案:B3. 答案 C解析从8个球中任取2个有C28=28种取法,2球位于同一箱子中有C14=4种取法,2球位于不同箱子的取法有28-4=24种.4.答案 C解析先根据z求出z及zi,结合复数的运算法则求解.∵z=1+i,∴z=1-i,zi=1+ii=-i2+ii=1-i.∴zi+i·z=1-i+i(1-i)=(1-i)(1+i)=2.故选C.5.解析:展开式中x2项系数为C25+a C15=10+5a,10+5a=5,a=-1,故选D.答案:D6.解析:“error”由5个字母组成,其中3个相同,这相当于5个人站队,只要给e,o选定位置,其余三个相同字母r位置固定,即所有拼写方式为A25,“ error”拼写错误的种数为:A25-1=19(种).故应选B.答案:B7.答案 B解析由题意知n=8,T r +1=C r 8·(x 2)8-r ·(-13x)r =(-1)r ·C r 8·x 8-r28-r ·1x r 3=(-1)r ·C r 8·x 8-r -r328-r , 由8-r -r3=0,得r =6.∴T 7=C 68·122=7,即展开式中的常数项为T 7=7.8. 答案 D解析 该三角形所对应元素的个数为1,3,5,…, 那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=(13)112.9. 答案 D解析 要将5名志愿者分配到3个不同的地方,每个地方至少一人,首先要将这5个人分成3组,因此有2种分组方案:1,1,3与1,2,2.当按1,1,3方案分组时,有C 35·A 33=60种方法;当按1,2,2方案分组时,先进行平均分组,有C 25C 23A 22=15种分组方法,因此有15×A 33=90种方法.所以一共有60+90=150种方案.故选D.10. 答案 B解析 ∵k = (sin x -cos x )d x =(-cos x -sin x )|π0=2, ∴(1-2x )8=a 0+a 1x +a 2x 2+…+a 8x 8.令x =0,得a 0=1;令x =1,得a 0+a 1+a 2+a 3+…+a 8=1.∴a 1+a 2+a 3+…+a 8=0.11. 答案 A解析 由题意甲与乙之间进行了两次比赛,剩余赛事为甲与丙或乙与丙进行,因此比赛场数为5+6-2=9.12. 答案 C解析 记a +b =f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.13. 答案 -114. 答案 1 000解析 方法一:已知式了可化为: N (n,3)=12n 2+12n =3-22n 2+4-32n , N (n,4)=n 2=4-22n 2+4-42n , N (n,5)=32n 2+-12n =5-22n 2+4-52n , N (n,6)=2n 2-n =6-22n 2+4-62n ,由归纳推理,可得N (n ,k )=k -22n 2+4-k2n , 故N (10,24)=24-22×102+4-242×10=1 100-100=1 000.方法二:由题意,设N (n ,k )=a k n 2+b k n (k ≥3),其中数列{a k }是以12为首项,12为公差的等差数列,数列{b k }是以12为首项,-12为公差的等差数列,所以N (n,24)=11n 2-10n ,当n =10时,N (10,24)=11×102-10×10=1 000.15. 答案:35【解析】 一共有8个相同的小球,放入5个不同的盒子,每个盒子不空,即将小球分成5份,每份至少1个.(定分数)将8个小球摆放一列,形成9个空,中间有7个空,(定空位)则只需在这7个空中插入4个隔板,隔板不同的放法有C 47=C 37=7×6×53×2×1=35种.(插隔板)16. 解析:不妨设1+x =t ,则x =t -1,因此有(t -1)5=a 0+a 1t +a 2t 2+a 3t3+a 4t 4+a 5t 5,则a 3=C 25(-1)2=10.答案:1017. 答案 a =3解析 z -1+z 2=3a +5+(a 2-10) i +21-a +(2a -5)i=(3a +5+21-a )+[(a 2-10)+(2a -5)]i =a -13(a +5)(a -1)+(a 2+2a -15)i.∵z -1+z 2是实数,∴a 2+2a -15=0,解得a =-5或a =3. 又(a +5)(a -1)≠0,∴a ≠-5且a ≠1,故a =3.18. 解:令x =0,则得a 0=(1-2×0)2010=1.令x =1,则得a 0+a 1+a 2+…+a 2010=(1-2×1)2010=1. ∴(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+…+(a 0+a 2010) =2009a 0+(a 0+a 1+a 2+…+a 2010) =2009×1+1=2010.19. 证明:(1)假设l 1与l 2不相交,则l 1与l 2平行或重合,有k 1=k 2, 代入k 1k 2+2=0,得k 21+2=0.这与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交. (2)由方程组⎩⎨⎧y =k 1x +1,y =k 2x -1,解得交点P 的坐标(x ,y )为⎩⎪⎨⎪⎧x =2k 2-k 1,y =k 2+k 1k 2-k 1.从而2x 2+y 2=2(2k 2-k 1)2+(k 2+k 1k 2-k 1)2=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1,交点P (x ,y )在椭圆2x 2+y 2=1上.20. 解:(x +124x)n的展开式中前三项是T 1=C 0n (x )n,T 2=C 1n (x )n -1·124x,T 3=C 2n (x )n -2(124x)2,其系数分别是C 0n ,12C 1n ,14C 2n ,由2·12C 1n =C 0n +14C 2n ,解得n=1或n =8,n =1不合题意应舍去,故n =8.当n =8时,T r +1=C r 8(x )8-r·(124x)r=C r 8·12r ·,T r +1为有理项的充要条件是16-3r4∈Z ,所有r 应是4的倍数,故r 可为0、4、8,故所有有理项为T 1=x 4,T 5=358x ,T 9=1256x 2..21. 解:(1)6个小扇形分别着上6种不同的颜色,共有A 66=720种着色方法.(2)6个扇形从6种颜色中任选5种着色共有C 26C 56A 55种不同的方法,其中相邻两个扇形是同一种颜色的着色方法共有6C 56A 55;因此满足条件的着色方法共有 C 26C 56A 55-6C 56A 55=6480种着色方法.22. 答案 (1)34(2)sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34解析 方法一:(1)选择②式,计算如下: sin 215°+cos 215°-sin15°cos15° =1-12sin30°=1-14=34.(2)三角恒等式为sin2α+cos2(30°-α)-sinαcos(30°-α)=3 4.证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=sin2α+(cos30°cosα+sin30°sinα)2-sinα(cos30°cosα+sin30°sinα)=sin2α+34cos2α+32sinαcosα+14sin2α-32sinαcosα-12sin2α=34sin2α+34cos2α=34.方法二:(1)同解法一.(2)三角恒等式为sin2α+cos2(30°-α)-sinαcos(30°-α)=3 4.证明如下:sin2α+cos2(30°-α)-sinαcos(30°-α)=1-cos2α2+1+cos(60°-2α)2-sinα·(cos30°cosα+sin30°sinα)=12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sinαcosα-12sin2α=12-12cos2α+12+14cos2α+34·sin2α-34sin2α-14(1-cos2α)=1-14cos2α-14+14cos2α=34.。

相关文档
最新文档