浅谈列一元一次方程解应用题的方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈列一元一次方程解应用题的方法
西安市临潼区任留初级中学夏圣策
分析问题和解决问题是数学学习的重要内容之一。
而列方程解应用题,是整个初中数学的重点和难点。
许多实际问题都可以归结为解一种方程。
所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养学生的分析问题、解决问题的能力。
因此对于这一部分教学内容,无论是教师还是学生,都要下一番工夫。
一.列一元一次方程解应用题的一般步骤
1.审题:学生默读题目,认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系,并要求学生用铅笔标注出来。
2.设未知数:一般的,求什么设什么,也可以间接地设其他未知量。
设出未知数后,表示出有关的含字母的式子。
3. 列方程:利用已找出的等量关系列出方程。
4.解方程:解所列的方程,求出未知数的值。
5.检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案。
二. 主要应用题目类型
题目类型1:市场经济、打折销售问题
1.商品利润=商品售价-商品成本价
2.商品利润率=
商品利润
商品成本价
×100%
3.商品销售额=商品销售价×商品销售量
4.商品的销售利润=(销售价-成本价)×销售量
5.商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.
例1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?
[分析]通过列表分析已知条件,找到等量关系式
等量关系:商品利润率=商品利润/商品进价
解:设标价是X 元,
,100
406060%80=- 解之:x=105
优惠价为),(8410510080%80元=⨯=x 例2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
[分析]探究题目中隐含的条件是关键,可直接设出成本为X 元
等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15
解:设进价为X 元,80%X (1+40%)—X=15,X=125
答:进价是125元。
跟踪练习
1.一种商品进价为50元,为赚取20%的利润,该商品的标价为________元.
2.某商品的标价为220元,九折卖出后盈利10%,则该商品的进价为______元.
3.某种商品若按标价的8折出售可获利20%,若按原标价出售,则可获利( ).
A .25%
B .40%
C .50%
D .1
4.两件商品都卖84元,其中一件亏本20%,另一件赢利40%,则两件商品卖后( ).
A .赢利16.8元
B .亏本3元
C .赢利3元
D .不赢不亏
5.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x 元,那么所列方程为( )
A.45%×(1+80%)x-x=50
B. 80%×(1+45%)x - x = 50
C. x-80%×(1+45%)x = 50
D.80%×(1-45%)x - x = 50
6.某商品的进货价为每件x 元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x 为( )
A、700元
B、约733元
C、约736元
D、约856元
7.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.
8.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.
9、某商品进价是1000元,标价为1500元,商品要求以利润率不低于5%的售价打折
出售,售货员最低可以打几折出售此商品?
题目类型2:方案选择问题
例1.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:
如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:
方案一:将蔬菜全部进行粗加工.
方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.
你认为哪种方案获利最多?为什么?
解:方案一:获利140×4500=630000(元)
方案二:获利15×6×7500+(140-15×6)×1000=725000(元)
方案三:设精加工x吨,则粗加工(140-x)吨.
依题意得
140
616
x x
-
+=15 解得x=60
获利60×7500+(140-60)×4500=810000(元)
因为第三种获利最多,所以应选择方案三.
例2.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的
费用分别为y
1元和y
2
元.
(1)写出y
1,y
2
与x之间的函数关系式(即等式).
(2)一个月内通话多少分钟,两种通话方式的费用相同?
(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?
解:(1)y
1=0.2x+50,y
2
=0.4x.
(2)由y
1=y
2
得0.2x+50=0.4x,解得x=250.
即当一个月内通话250分钟时,两种通话方式的费用相同.
(3)由0.2x+50=120,解得x=350
由0.4x+50=120,得x=300
因为350>300
故第一种通话方式比较合算.
例3.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?•应交电费是多少元?
解:(1)由题意,得 0.4a+(84-a)×0.40×70%=30.72 解得a=60 (2)设九月份共用电x千瓦时,则 0.40×60+(x-60)×0.40×70%=0.36x 解得x=90
所以0.36×90=32.40(元)
答:九月份共用电90千瓦时,应交电费32.40元.
例4.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.
(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程
1500x+2100(50-x)=90000 即5x+7(50-x)=300 2x=50 x=25
50-x=25
②当选购A,C两种电视机时,C种电视机购(50-x)台,
可得方程1500x+2500(50-x)=90000 3x+5(50-x)=1800 x=35
50-x=15
③当购B,C两种电视机时,C种电视机为(50-y)台.
可得方程2100y+2500(50-y)=90000
21y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C 种电视机15台.
(2)若选择(1)中的方案①,可获利 150×25+250×15=8750(元)若选择(1)中的方案②,可获利 150×35+250×15=9000(元)
9000>8750
故为了获利最多,选择第二种方案.
跟踪练习
小刚为书房买灯。
现有两种灯可供选购,其中一种是9瓦的节能灯,售价为49元/盏,另一种是40瓦的白炽灯,售价为18元/盏。
假设两种灯的照明效果一样,使用寿命都可以达到2800小时。
已知小刚家所在地的电价是每千瓦时0.5元。
(1).设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。
(费用=灯的售价+电费)
(2).小刚想在这两种灯中选购一盏。
①当照明时间是多少时,使用两种灯的费用一样多?
②试用特殊值判断:
照明时间在什么范围内,选用白炽灯费用低?照明时间在什么范围内,选用节能灯费用低?
(3).小刚想在这种灯中选购两盏。
假定照明时间是3000小时,使用寿命都是2800
小时。
请你设计一种费用最低的选灯照明方案,并说明理由。
题目类型3储蓄、储蓄利息问题
(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
利息的20%付利息税
(2)利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%)
(3)%,100⨯=本金
每个期数内的利息利润 例1. 某同学把250元钱存入银行,整存整取,存期为半年。
半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)
[分析]等量关系:本息和=本金×(1+利率)
解:设半年期的实际利率为X ,依题意得方程250(1+X )=252.7, 解得X=0.0108 所以年利率为0.0108×2=0.0216
答:银行的年利率是21.6%
例2. 为了准备6年后小明上大学的学费20000元,他的父亲现在就参
加了教育储蓄,下面有三种教育储蓄方式:
(1)直接存入一个6年期;
(2)先存入一个三年期,3年后将本息和自动转存一个三年期;
(3)先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育储蓄方式开始存入的本金比较少?
[分析]这种比较几种方案哪种合理的题目,我们可以分别计算出每种教育储蓄的本金是多少,再进行比较。
解:(1)设存入一个6年的本金是X 元,依题意得方程X (1+6×2.88%)=20000,解得X=17053
(2)设存入两个三年期开始的本金为Y 元,
Y (1+2.7%×3)(1+2.7%×3)=20000,X=17115
(3)设存入一年期本金为Z 元 ,
Z (1+2.25%)6=20000,Z=17894
所以存入一个6年期的本金最少。
跟踪练习
1.利息税的计算方法是:利息税=利息×20%.某储户按一年定期存款一笔,•年利率
2.25%,一年后取出时,扣除了利息税90元,据此分析,•这笔存款的到期利息是____元,本金是_______元,银行向储户支付的现金是________元.
2.小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到0.01%).
3.为了准备小明三年后上高中的学费,他的父母准备现在拿出3000元参加教育储蓄,已知教育储蓄一年期利率为1.98%,二年期利率为2.25%,三年期利率为2.52%,•请你帮小明的父母计算一下如何储蓄三年后得到的利息最多.
4.(北京海淀区)白云商场购进某种商品的进价是每件8元,销售价是每件10元(销售价与进价的差价2元就是卖出一件商品所获得的利润).现为了扩大销售量,•把每件的销售价降低x%出售,•但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,则x 应等于( ).
A .1
B .1.8
C .2
D .10
5.某人按定期2年向银行储蓄1500元,假设每年利率为3%(不计复利)到期支取时,扣除利息所得税(税率为20%)此人实得利息为(
) A 、1272元 B 、36元 C 、72元 D 、1572元
6.用若干元人民币购买了一种年利率为10% 的一年期债券,到期后他取出本金的一半用作购物,剩下的一半和所得的利息又全部买了这种一年期债券(利率不变),到期后得本息和1320元。
问张叔叔当初购买这咱债券花了多少元?
21.购买了25000元某公司1年期的债券,一年后扣除20%的利息税之后得到本息和为26000元,这种债券的年利率是多少?
题目类型4:工程问题
工作量=工作效率×工作时间 工作效率=工作量÷工作时间
工作时间=工作量÷工作效率 完成某项任务的各工作量的和=总工作量=1 例1. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?
[分析]甲独作10天完成,说明的他的工作效率是
,10
1乙的工作效率是,81 等量关系是:甲乙合作的效率×合作的时间=1
解:设合作X 天完成, 依题意得方程9
401)8
1101(==+x x 解得 答:两人合作940天完成 例2. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
[分析]设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。
解:设乙还需x 天完成全部工程,设工作总量为单位1,由题意得,
5
365331123)121151(===+⨯+x x 解之得 答:乙还需5
36天才能完成全部工程。
例3. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?
[分析]等量关系为:甲注水量+乙注水量-丙排水量=1。
解:设打开丙管后x 小时可注满水池,
由题意得,13
42133019)2()8161(===-++x x x 解这个方程得 答:打开丙管后13
42小时可注满水池。
跟踪练习
1.一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先
做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
2.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人
中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.
3.一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,乙参与工作,问还需几天完成?
题目类型5:若干应用问题等量关系的规律
(1)和、差、倍、分问题 此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、
慢等,它们能指导我们正确地列出代数式或方程式。
增长量=原有量×增长率 现在量=原有量+增长量
例1.某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出
20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的57
,问每个仓库各有多少 粮食?
设第二个仓库存粮x x 吨,则第一个仓库存粮吨,根据题意得3
9030333020)203(75=⨯==+=-x x x x 解得
(2)等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式
V=底面积×高=S ·h =πr 2h
②长方体的体积
V =长×宽×高=abc
例2.一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14).
解:设圆柱形水桶的高为x 毫米,依题意,得 ·(
202
)2x=300×300×80 x ≈229.3
答:圆柱形水桶的高约为229.3毫米. 跟踪练习
长方体甲的长、宽、高分别为260mm ,150mm ,325mm ,长方体乙的底面积为130×130mm 2,又知甲的体积是乙的体积的2.5倍,求乙的高?
题目类型6:行程问题
基本量之间的关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间
(1)相遇问题 (2)追及问题
快行距+慢行距=原距 快行距-慢行距=原距
(3)航行问题
顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. 例1. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
故可结合图形分析。
(1)分析:相遇问题,画图表示为:
等量关系是:慢车走的路程+快车走的路程=480公
里。
解:设快车开出x 小时后两车相遇,由题意得,
140x+90(x+1)=480 解这个方程,230x=390 ,23161 x 答:快车开出23161小时两车相遇 分析:相背而行,画图表示为:
等量关系是:两车所走的路程和+480公里=600公里。
解:设x 小时后两车相距600公里,
由题意得,(140+90)x+480=600解这个方程,230x=120 ∴ x=
23
12 答:2312小时后两车相距600公里。
(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。
甲 乙
600
甲 乙
解:设x小时后两车相距600公里,由题意得,(140-90)x+480=600 50x=120
∴ x=2.4
答:2.4小时后两车相距600公里。
分析:追及问题,画图表示为:
甲乙等量关系为:快车的路程=慢车走的路程+480公
里。
解:设x小时后快车追上慢车。
由题意得,140x=90x+480 解这个方程,50x=480 ∴ x=9.6
答:9.6小时后快车追上慢车。
分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。
解:设快车开出x小时后追上慢车。
由题意得,140x=90(x+1)+480 50x=570 ∴
x=11.4
答:快车开出11.4小时后追上慢车。
例2. 甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千
米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回
遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,
求此过程中,狗跑的总路程是多少?
[分析]]追击问题,不能直接求出狗的总路程,但间接的问题转化成甲乙两人的追
击问题。
狗跑的总路程=它的速度×时间,而它用的总时间就是甲追上乙的时间
解:设甲用X小时追上乙,根据题意列方程
5X=3X+5 解得X=2.5,狗的总路程:15×2.5=37.5
答:狗的总路程是37.5千米。
例3. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,
一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
A、
C两地之间的路程为10千米,求A、B两地之间的路程。
[分析]这属于行船问题,这类问题中要弄清:
(1)顺水速度=船在静水中的速度+水流速度;
(2)逆水速度=船在静水中的速度-水流速度。
相等关系为:顺流航行的时间+逆
流航行的时间=7小时。
解:设A 、B 两码头之间的航程为x 千米,则B 、C 间的航程为(x-10)千米, 由题意得,5.327281082==--++x x x 解这个方程得
答:A 、B 两地之间的路程为32.5千米。
跟踪练习
1.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.
2.已知甲、乙两地相距120千米,乙的速度比甲每小时快1千米,甲先从A 地出发2小时后,乙从B 地出发,与甲相向而行经过10小时后相遇,求甲乙的速度?
30.一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。
问:①若已知队长320米,则通讯员几分钟返回?②若已知通讯员用了25分钟,则队长为多少米?
31.一架飞机在两个城市之间飞行,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的飞行路程?
3.一轮船在甲、乙两码头之间航行,顺水航行需要4小时,逆水航行需要5小时,水流的速度为2千米/时,求甲、乙两码头之间的距离。
题目类型7:数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9)则这个三位数表示为:100a+10b+c 。
然后抓住数字间或新数、原数之间的关系找等量关系列方程.
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n —2表示;奇数用2n+1或2n —1表示。
例1. 一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数
[分析]由已知条件给出了百位和个位上的数的关系,若设十位上的数为x ,则百位上的数为X+7,个位上的数是3X ,等量关系为三个数位上的数字和为17。
解:设这个三位数十位上的数为X ,则百位上的数为X+7,个位上的数是3X X+X+7+3X=17 解得X=2
X+7=9,3X=6 答:这个三位数是926
例2. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,
那么所得的两位数比原两位数大36,求原来的两位数
等量关系:原两位数+36=对调后新两位数
解:设十位上的数字X,则个位上的数是2X,
10×2X+X=(10X+2X)+36解得X=4,2X=8,答:原来的两位数是48。
跟踪练习
一个两位数,十位数与个位上的数字之和为11,如果把十位上的数字与个位上的数字对调,那么得到的数比原来的数大63,求原来的两位数?
虽然我们分了几种类型对应用题进行了研究,但实际生活中的问题是千变万化的,远不止这几类问题。
因此我们要想学好列方程解应用题,就要学会观察事物,关心日常生产生活中的各种问题,如市场经济问题等等,要会具体情况具体分析,灵活运用所学知识,认真审题,适当设元,寻找等量关系,从而列出方程,解出方程,使问题得解。