崇礼区二中2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

崇礼区二中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 复数z 为纯虚数,若(3﹣i )•z=a+i (i 为虚数单位),则实数a 的值为( )
A .﹣
B .3
C .﹣3
D .
2. 已知F 1,F 2分别是双曲线C :

=1(a >0,b >0)的左右两个焦点,若在双曲线C 上存在点P 使
∠F 1PF 2=90°,且满足2∠PF 1F 2=∠PF 2F 1,那么双曲线C 的离心率为( )
A .
+1
B .2
C .
D .
3. 如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为(

A .0°
B .45°
C .60°
D .90°
4. 已知在R 上可导的函数f (x )的图象如图所示,则不等式f (x )•f ′(x )<0的解集为(

A .(﹣2,0)
B .(﹣∞,﹣2)∪(﹣1,0)
C .(﹣∞,﹣2)∪(0,+∞)
D .(﹣2,﹣1)∪(0,+∞)
5. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()
21
0x f x f x -<--的解集为(

A .()11-,
B .()()11-∞-+∞U ,,
C .()
1-∞-,
D .()
1+∞,6. 四棱锥的底面为正方形,底面,,若该四棱锥的所有顶点都在
P ABCD -ABCD PA ⊥ABCD 2AB =体积为
同一球面上,则( )24316
π
PA =A .3 B . C .
D .
729
2
【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.
7. 如图所示的程序框图,若输入的x 值为0,则输出的y 值为(

班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A.B.0C.1D.或0
8.使得(3x2+)n(n∈N+)的展开式中含有常数项的最小的n=()
A.3B.5C.6D.10
9.学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有()
A.20种B.24种C.26种D.30种
10.高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为()A.B.C.D.
11.已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()
A.B.ln(x2+1)>ln(y2+1)
C.x3>y3D.sinx>siny
12.若函数y=x2+bx+3在[0,+∞)上是单调函数,则有()
A.b≥0B.b≤0C.b>0D.b<0
二、填空题
13.设f(x)为奇函数,且在(﹣∞,0)上递减,f(﹣2)=0,则xf(x)<0的解集为 .
14.在直角三角形ABC中,∠ACB=90°,AC=BC=2,点P是斜边AB上的一个三等分点,则
= .
15.复数z=(i虚数单位)在复平面上对应的点到原点的距离为 .
16.当时,函数的图象不在函数的下方,则实数的取值范围是
0,1x ∈()()e 1x
f x =-2
()g x x ax =-a ___________.
【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.
17.与圆2
2
:240C x y x y +-+=外切于原点,且半径为 25的圆的标准方程为
18.过原点的直线l 与函数y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则
|
+
|= .
三、解答题
19.在直角坐标系xOy 中,以原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 1的极坐标方程为ρ(sin θ+cos θ)=1,曲线C 2的参数方程为
(θ为参数).
(Ⅰ)求曲线C 1的直角坐标方程与曲线C 2的普通方程;
(Ⅱ)试判断曲线C 1与C 2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.
20.(本小题满分12分)已知且过点的直线与线段有公共点, 求直()()2,1,0,2A B ()1,1P -AB 线的斜率的取值范围.
21.设f (x )=2x 3+ax 2+bx+1的导数为f ′(x ),若函数y=f ′(x )的图象关于直线x=﹣对称,且f ′(1)=0(Ⅰ)求实数a ,b 的值(Ⅱ)求函数f (x )的极值.
0,1n =()s n n
=+⋅1n n +3?>输出
s
22.已知函数f(x)=sin(ωx+φ)+1(ω>0,﹣<φ<)的最小正周期为π,图象过点P(0,1)(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设函数g(x)=f(x)+cos2x﹣1,将函数g(x)图象上所有的点向右平行移动个单位长度后,所得的图象在区间(0,m)内是单调函数,求实数m的最大值.
23.某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].
(1)求图中a的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分.
24.已知椭圆+=1(a>b>0)的离心率为,且a2=2b.
(1)求椭圆的方程;
(2)直线l:x﹣y+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由.
崇礼区二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
1.【答案】D
【解析】解:∵(3﹣i)•z=a+i,
∴,
又z为纯虚数,
∴,解得:a=.
故选:D.
【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
2.【答案】A
【解析】解:如图,∵∠F1PF2=90°,且满足2∠PF1F2=∠PF2F1,
∴∠F1PF2=90°,∠PF1F2=30°,∠PF2F1=60°,
设|PF2|=x,则|PF1|=,|F1F2|=2x,
∴2a=,2c=2x,
∴双曲线C的离心率e==.
故选:A.
【点评】本题考查双曲线的离心率的求法,是中档题,解题时要认真审题,注意双曲线的性质的合理运用. 
3.【答案】C
【解析】解:连结A1D、BD、A1B,
∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,
∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,
∵A1D=A1B=BD,
∴∠DA1B=60°.
∴CD1与EF所成角为60°.
【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养. 
4. 【答案】B
【解析】解:由f (x )图象单调性可得f ′(x )在(﹣∞,﹣1)∪(0,+∞)大于0,在(﹣1,0)上小于0,
∴f (x )f ′(x )<0的解集为(﹣∞,﹣2)∪(﹣1,0).故选B . 
5. 【答案】B 【解析】
试题分析:由()()()
()()2121
02102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当
0x >时,210x ->;当0x <时,210x -<,结合图象即得()()11-∞-+∞U ,,.考点:1、函数的单调性;2、函数的奇偶性;3、不等式.6. 【答案】B
【解析】连结交于点,取的中点,连结,则,所以底面,则,AC BD E PC O OE OE PA P OE ⊥ABCD O
到四棱锥的所有顶点的距离相等,即球心,均为,所以由球的体积O 12PC ==
可得
,解得,故选B .34243316ππ=7
2
PA =
7. 【答案】B
【解析】解:根据题意,模拟程序框图的运行过程,如下;输入x=0,x >1?,否;x <1?,是;
输出y=0,结束.
故选:B.
【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论.
8.【答案】B
【解析】解:(3x2+)n(n∈N+)的展开式的通项公式为T r+1=•(3x2)n﹣r•2r•x﹣3r=•x2n﹣5r ,
令2n﹣5r=0,则有n=,
故展开式中含有常数项的最小的n为5,
故选:B.
【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题. 
9.【答案】A
【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;
甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;
甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;
甲班级分配5个名额,有1种不同的分配方案.
故共有10+6+3+1=20种不同的分配方案,
故选:A.
【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.
10.【答案】
D
【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,
故两人都击不中的概率为(1﹣)(1﹣)=,
故目标被击中的概率为1﹣=,
故选:D.
【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.
11.【答案】C
【解析】解:∵实数x、y满足a x<a y(1>a>0),∴y<x.
对于A.取x=1,y=0,不成立,因此不正确;
对于B.取y=﹣2,x=﹣1,ln(x2+1)>ln(y2+1)不成立;
对于C.利用y=x3在R上单调递增,可得x3>y3,正确;
对于D.取y=﹣π,x=,但是sinx=,siny=,sinx>siny不成立,不正确.
故选:C.
【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力,属于基础题. 
12.【答案】A
【解析】解:抛物线f(x)=x2+bx+3开口向上,
以直线x=﹣为对称轴,
若函数y=x2+bx+3在[0,+∞)上单调递增函数,
则﹣≤0,解得:b≥0,
故选:A.
【点评】本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答. 
二、填空题
13.【答案】 (﹣∞,﹣2)∪(2,+∞) 
【解析】解:∵f(x)在R上是奇函数,且f(x)在(﹣∞,0)上递减,
∴f(x)在(0,+∞)上递减,
由f(﹣2)=0,得f(﹣2)=﹣f(2)=0,
即f(2)=0,
由f(﹣0)=﹣f(0),得f(0)=0,
作出f(x)的草图,如图所示:
由图象,得xf(x)<0⇔或,
解得x<﹣2或x>2,
∴xf(x)<0的解集为:(﹣∞,﹣2)∪(2,+∞)
故答案为:(﹣∞,﹣2)∪(2,+∞)
14.【答案】 4 .
【解析】解:由题意可建立如图所示的坐标系
可得A(2,0)B(0,2),P(,)或P(,),
故可得=(,)或(,),=(2,0),=(0,2),
所以+=(2,0)+(0,2)=(2,2),
故==(,)•(2,2)=4
或=(,)•(2,2)=4,
故答案为:4
【点评】本题考查平面向量的数量积的运算,建立坐标系是解决问题的关键,属基础题. 
15.【答案】 .
【解析】解:复数z==﹣i(1+i)=1﹣i,
复数z=(i虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.
故答案为:.
【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.
16.【答案】[2e,)
-+∞【解析】由题意,知当时,不等式,即恒成立.令0,1x ∈()2
e 1x x ax -≥-21e x
x a x
+-≥,.令,.∵,∴()21e x x h x x +-=()()()211e 'x x x h x x -+-=()1e x k x x =+-()'1e x k x =-()0,1x ∈∴在为递减,∴,∴,∴()'1e 0,x k x =-<()k x ()0,1x ∈()()00k x k <=()()()
211e '0x x x h x x -+-=>()
h x 在为递增,∴,则.
()0,1x ∈()()12e h x h <=-2e a ≥-17.【答案】 20
)4()2(2
2=-++y x 【解析】由已知圆心),(b a 在直线上,所以圆心x y 2-=,又因为与圆22:240C x y x y +-+=外切于原点,
)2,(a a -
且半径为,可求得52)2(2
2=-+a a ,舍去。

42=a 2,2=-=a a 所以圆的标准方程为20)4()2(2
2=-++y x 18.【答案】 4 .
【解析】解:由题意可得点B 和点C 关于原点对称,∴|
+|=2||,
再根据A 为抛物线x 2=﹣8y 的焦点,可得A (0,﹣2),
∴2||=4,
故答案为:4.
【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2||是解题的关键. 三、解答题
19.【答案】
【解析】解:(Ⅰ)由曲线C 1的极坐标方程为ρ(sin θ+cos θ)=1,可得它的直角坐标方程为x+y=1,
根据曲线C 2的参数方程为
(θ为参数),可得它的普通方程为+y 2=1.(Ⅱ)把曲线C 1与C 2是联立方程组
,化简可得 5x 2﹣8x=0,显然△=64>0,
故曲线C 1与C 2是相交于两个点.
解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,﹣).【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题.
20.【答案】或.
3k ≤-2k ≥【解析】
试题分析:根据两点的斜率公式,求得,,结合图形,即可求解直线的斜率的取值范围.
2PA k =3PB k =-试题解析:由已知,,11212PA k --=
=-12310
PB k --==--所以,由图可知,过点的直线与线段有公共点, ()1,1P -AB 所以直线的斜率的取值范围是:或.
3k ≤-2k ≥
考点:直线的斜率公式.
21.【答案】
【解析】解:(Ⅰ)因f (x )=2x 3+ax 2+bx+1,故f ′(x )=6x 2+2ax+b
从而f ′(x )=6
y=f ′(x )关于直线x=﹣对称,
从而由条件可知﹣=﹣,解得a=3
又由于f ′(x )=0,即6+2a+b=0,解得b=﹣12
(Ⅱ)由(Ⅰ)知f (x )=2x 3+3x 2﹣12x+1
f ′(x )=6x 2+6x ﹣12=6(x ﹣1)(x+2)
令f ′(x )=0,得x=1或x=﹣2
当x ∈(﹣∞,﹣2)时,f ′(x )>0,f (x )在(﹣∞,﹣2)上是增函数;
当x ∈(﹣2,1)时,f ′(x )<0,f (x )在(﹣2,1)上是减函数;
当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上是增函数.
从而f (x )在x=﹣2处取到极大值f (﹣2)=21,在x=1处取到极小值f (1)=﹣6.
22.【答案】
【解析】解:(Ⅰ)∵函数f (x )=sin (ωx+φ)+1(ω>0,﹣
<φ<)的最小正周期为π,∴ω==2,又由函数f (x )的图象过点P (0,1),
∴sinφ=0,
∴φ=0,
∴函数f(x)=sin2x+1;
(Ⅱ)∵函数g(x)=f(x)+cos2x﹣1=sin2x+cos2x=sin(2x+),
将函数g(x)图象上所有的点向右平行移动个单位长度后,
所得函数的解析式是:h(x)=sin[2(x﹣)+]=sin(2x﹣),
∵x∈(0,m),
∴2x﹣∈(﹣,2m﹣),
又由h(x)在区间(0,m)内是单调函数,
∴2m﹣≤,即m≤,
即实数m的最大值为.
【点评】本题考查的知识点是正弦型函数的图象和性质,函数图象的平移变换,熟练掌握正弦型函数的图象和性质,是解答的关键.
23.【答案】
【解析】解:(1)依题意,
根据频率分布直方图中各个小矩形的面积和等于1得,
10(2a+0.02+0.03+0.04)=1,
解得a=0.005.
∴图中a的值0.005.
(2)这100名学生语文成绩的平均分为:
55×0.05+65×0.4+75×0.3+85×0.2+95×0.05
=73(分),
【点评】本题考查频率分布估计总体分布,解题的关键是理解频率分布直方图,熟练掌握频率分布直方图的性质,且能根据所给的数据建立恰当的方程求解
24.【答案】
【解析】解:(1)由题意得e==,a2=2b,a2﹣b2=c2,
解得a=,b=c=1
故椭圆的方程为x2+=1;
(2)设A(x1,y1),B(x2,y2),
线段AB的中点为M(x0,y0).
联立直线y=x+m与椭圆的方程得,
即3x2+2mx+m2﹣2=0,
△=(2m)2﹣4×3×(m2﹣2)>0,即m2<3,
x1+x2=﹣,
所以x0==﹣,y0=x0+m=,
即M(﹣,).又因为M点在圆x2+y2=5上,
可得(﹣)2+()2=5,
解得m=±3与m2<3矛盾.
故实数m不存在.
【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题.。

相关文档
最新文档